
Under review as a conference paper at ICLR 2022

LOGARITHMIC UNBIASED QUANTIZATION: PRACTI-
CAL 4-BIT TRAINING IN DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantization of the weights and activations is one of the main methods to reduce
the computational footprint of Deep Neural Networks (DNNs) training. Current
methods enable 4-bit quantization of the forward phase. However, this constitutes
only a third of the training process. Reducing the computational footprint of the
entire training process requires the quantization of the neural gradients, i.e., the
loss gradients with respect to the outputs of intermediate neural layers. In this
work, we examine the importance of having unbiased quantization in quantized
neural network training, where to maintain it, and how. Based on this, we suggest
a logarithmic unbiased quantization (LUQ) method to quantize both the forward
and backward phase to 4-bit, achieving state-of-the-art results in 4-bit training.
For example, in ResNet50 on ImageNet, we achieved a degradation of 1.18%; we
further improve this to degradation of only 0.64% after a single epoch of high
precision fine-tuning combined with a variance reduction method. Finally, we
suggest a method that exploits the low precision format by avoiding multiplications
during two-thirds of the training process, thus reducing by 5x the area used by the
multiplier. A reference implementation is supplied in the supplementary material.

1 INTRODUCTION

Deep neural networks (DNNs) are a powerful tool that has shown superior performance in various
tasks spanning computer vision, natural language processing, autonomous cars, and more. Unfortu-
nately, their vast demand for computational resources, especially during the training process, is one
of the main bottlenecks in the evolution of these models.

Training of DNNs consists of three main general-matrix-multiply (GEMM) phases: the forward phase,
backward phase, and update phase. Quantization has become one of the main methods to compress
DNNs and reduce the GEMM computational resources. There has been a significant advance in the
quantization of the forward phase. There, it is possible to quantize the weights and activations to 4
bits while preserving model accuracy (Banner et al., 2019; Nahshan et al., 2019; Bhalgat et al., 2020;
Choi et al., 2018b). Despite these advances, they only apply to a third of the training process while
the backward phase and update phase are still computed with higher precision.

Recently, Sun et al. (2020) was able, for the first time, to train a DNN while reducing the numerical
precision of most of its parts to 4 bits with some degradation (e.g., 2.49% error in ResNet50). To do
so, Sun et al. (2020) suggested a non-standard radix-4 floating-point format, combined with double
quantization of the neural gradients (called two-phase rounding). This was an impressive step forward
in the ability to quantize all the training processes. However, since a radix-4 format is not aligned with
conventional radix-2, any numerical conversion between the two requires an explicit multiplication
to modify both the exponent and mantissa and may require additional hardware (Kupriianova et al.,
2013). Thus, their non-standard quantization requires specific hardware support that can reduce the
benefit of quantization to low bits.

The main challenge in reducing the numerical precision of the entire training process is quantizing
the neural gradients, i.e. the backpropagated error. Specifically, Chmiel et al. (2021) showed
the neural gradients have a heavy tailed near-lognormal distribution, and therefore they should be
logarithmically quantized at low precision levels. For example, for FP4 the optimal format was
[sign,exponent,mantissa] = [1,3,0], i.e. without mantissa bits. In contrast, that weights and activations

1

Under review as a conference paper at ICLR 2022

are well approximated with Normal or Laplacian distributions (Banner et al., 2019; Choi et al., 2018a),
and therefore are better approximated using uniform quantization (e.g., INT4).

In this work, in order to reduce the computational resources bottleneck, we dive deeper into under-
standing neural gradients’ quantization. Based on the findings of Chmiel et al. (2021), we focus on
the [1,3,0] FP4 format for the neural gradients. We analyze different types of quantization stochas-
tic rounding schemes to explain the importance of having an unbiased rounding scheme for the
neural gradients with such a logarithmic quantization format. We compare it with forward phase
quantization, where the bias is not a critical property.

Building on this analysis, we suggest a method called logarithmic unbiased quantization (LUQ) for
unbiased quantization of the neural gradients to the standard FP4 format of [1,3,0]. This, together
with quantization of the forward phase to INT4, achieves state-of-the-art results in full training in 4
bits (e.g., 1.18% error in ResNet50), with no overhead. Moreover, we suggest two additional methods
to further reduce the degradation, with some overhead: the first method reduces the quantization
variance of the neural gradients, while the second is a simple method of fine-tuning in high precision.
Combining LUQ with these two proposed methods we achieve, for the first time, only 0.64% error in
4-bit training of ResNet50. The overhead of our additional methods is no more than the previously
presented in Sun et al. (2020).

Finally, we exploit the specific FP4 format mantissa used for the neural gradients ([1,3,0]) and
suggest replacing the multiplication blocks with a proposed multiplication free backpropagation
(MF-BPROP) block. This way we completely avoid multiplication in the backward phase and the
update phase (which constitute two thirds of the training) and reduce by 5x the area which was
previously used for the multiplications in these phases.

The main contributions of this paper:

• A comparison of different rounding schemes.
• We suggest a simple and hardware friendly logarithmically unbiased quantization for the

neural gradients called LUQ.
• We demonstrate that two simple methods can further improve the accuracy in 4-bit training:

(1) variance reduction using re-sampling and (2) high precision fine-tuning for one epoch.
• We design a modern hardware block that exploits LUQ quantization to avoid multiplication

in two thirds of the training process, thus reducing by 5x the multiplier logical area.

2 ROUNDING SCHEMES COMPARISON

In this section, we study the effects of unbiased rounding for the forward and backward passes.
We show that rounding-to-nearest (RDN) should be applied for the forward phase while stochastic
rounding (SR) is more suitable for the backward phase. Specifically, We show that although SR is
unbiased, it generically has worse mean-square-error compared to RDN.

Given that we want to quantize x in a bin with a lower limit l(x) and an upper limit u(x), stochastic
rounding can be stated as follows:

SR(x) =

{
l(x), with probability p(x) = 1− x−l(x)

u(x)−l(x)
u(x), with probability 1− p(x) = x−l(x)

u(x)−l(x)
. (1)

The expected rounding value is given by

E[SR(x)] = l(x) · p(x) + u(x) · (1− p(x)) = x , (2)

where here and below the expectation is over the randomness of SR (i.e., x is a deterministic constant).
Therefore, stochastic rounding is an unbiased approximation of x, since it has zero bias:

Bias[SR(x)] = E[SR(x)− x] = E[SR(x)]− x = 0 . (3)

However, stochastic rounding has variance, given by

Var[SR(x)] = (l(x)− E[SR(x)])2 · p(x) + (u(x)− E[SR(x)])2 · (1− p(x))
= (x− l(x)) · (u(x)− x) ,

(4)

2

Under review as a conference paper at ICLR 2022

where the last transition follows from substituting the terms E[SR(x)]), and p(x) into Eq. (4).

We turn to consider the round-to-nearest method (RDN). The bias of RDN is given by

Bias[RDN(x)] = min (x− l(x), u(x)− x) . (5)

Since RDN is a deterministic method, it is evident that the variance is 0 i.e.,

Var[RDN(x)] = 0 . (6)

Finally for every value x and a rounding method R(x), the mean-square-error (MSE) can be written
as the sum of the rounding variance and the squared rounding bias,

MSE[R(x)] = E[R(x)− x]2 = Var[R(x)]+Bias2[R(x)] . (7)

Therefore, we have the following MSE distortion when using round-to-nearest and stochastic round-
ing:

MSE =

{
[min (x− l(x), u(x)− x)]2 RDN(x)

(x− l(x)) · (u(x)− x) SR(x)
. (8)

Note that since min(a, b)2 ≤ a · b for every a, b, we have that

MSE [SR (x)] ≥ MSE[RDN(x)], ∀x . (9)

In Fig. 1a we plot the mean-square-error for x ∈ [0, 1], l(x) = 0, and u(x) = 1. While round-to-
nearest has a lower MSE than stochastic rounding, the former is a biased estimator.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.05

0.10

0.15

0.20

0.25

M
SE

stochastic rounding
round-to-nearest

(a)

0 25 50 75 100 125 150 175 200
Epochs

0
10
20
30
40
50
60
70

Ac
cu

ra
cy

 (%
)

Baseline
Fwd SR
Fwd RDN

(b)

0 25 50 75 100 125 150 175 200
Epochs

0
10
20
30
40
50
60
70

Ac
cu

ra
cy

 (%
)

Baseline
Bwd SR
Bwd RDN

(c)

Figure 1: Comparison between stochastic rounding (SR) and round-to-nearest (RDN) quantization.
In (a) we present the MSE of a uniform distributed tensor with the two different rounding schemes.
Quantization to 4 bits of the forward phase (b) and backward phase (c) of ResNet18 - Cifar100
dataset with SR and RDN. Notice that while MSE is important in the forward phase, unbiasness
achieved with SR is crucial for the backward phase. The bwd and fwd in (b) and (c) respectively, are
in full precision to focus on the effect of the rounding scheme only in one pass of the network in each
experiment.

2.1 BACKGROUND: UNBIASED GRADIENT ESTIMATES

To prove convergence, textbook analyses of SGD typically assume the expectation of the (mini-batch)
weight gradients is sufficiently close to the true (full-batch) gradient (e.g., assumption 4.3 in (Bottou
et al., 2018)). This assumption is satisfied when the weight gradients are unbiased. Next, we show
that this condition is met when the neural gradients are quantized without bias.

Denote Wl as the weights between layer l − 1 and l, C the cost function, and fl as the activation
function at layer l. Given an input–output pair (x, y), the loss is:

C (y, fL (WLfL−1 (WL−1 · · · f2 (W2f1 (W1x)) · · ·))) . (10)

Let zl be the weighted input (pre-activation) of layer l and denote the output (activation) of layer l by
al. The derivative of the loss in terms of the inputs is given by the chain rule:

δl =
dC

daL
· daL
dzL
· dzL
daL−1

· daL−1
dzL−1

· dzL−1
daL−2

· · · dal
dzl
· dzl
dal−1

. (11)

3

Under review as a conference paper at ICLR 2022

In its quantized version, Eq. (11) gets the following form.

δlq = Q

(
dC

daL

)
·Q
(
daL
dzL

)
· · ·Q

(
da1
dz1

)
·Q
(

dz1
dal−1

)
. (12)

AssumingQ(x) is an unbiased stochastic quantizer withE[Q(x)] = x, the quantized backpropogation
δlq is an unbiased approximation of backpropogation δl

E[δlq] = E

[
Q

(
dC

daL

)
·Q
(
daL
dzL

)
· · ·Q

(
da1
dz1

)
·Q
(

dz1
dal−1

)]
= E

[
Q

(
dC

daL

)]
· E
[
Q

(
daL
dzL

)]
· · ·E

[
Q

(
da1
dz1

)]
· E
[
Q

(
dz1
dal−1

)]
=

dC

daL
· daL
dzL
· dzL
daL−1

· daL−1
dzL−1

· dzL−1
daL−2

· · · da1
dz1
· dz1
dal−1

= δl

(13)

In Eq. (13) we used the linearity of back-propagation to express the expected product as a product
of expectations. Finally, since the gradient of the weights in layer l is ∇Wl

C = δl · al−1 and in
its quantized form it becomes ∇Wl

Cq = δlq · al−1, the update ∇Wl
Cq is an unbiased estimator of

∇Wl
C:

E [∇Wl
Cq] = E

[
δlq · al−1

]
= E

[
δlq
]
· al−1 = δl · al−1 = ∇Wl

C . (14)

The forward pass is different from the backward pass in that unbiasedness at the tensor level is not
necessarily a guarantee of unbiasedness at the model level since the activation functions and loss
function are not linear. Therefore, even after stochastic quantization, the forward phase remains
biased.

Conclusions. It was previously proved that unbiased neural gradients quantization leads to an unbi-
ased estimate of the weight gradients (e.g., Chen et al. (2020a)), which enables proper convergence
of SGD (Bottou et al., 2018). Thus, bias in the gradients can hurt the performance and should be
avoided, even at the cost of increasing the MSE. Therefore, neural gradients, following should be
quantized using SR, following subsection 2.1. However, the forward phase should be quantized
deterministically (using RDN) since stochastic rounding will not make the loss estimate unbiased
(due to the non-linearity of the loss and activation functions) while unnecessarily increasing the MSE
(as shown in Eq. (9)). There are cases where adding limited noise, such as dropout, increases MSE
but improves generalization. However, this is typically not the case, especially if the noise is large.
Figs. 1b and 1c show that these theoretical observations are consistent with empirical observations
favoring RDN for the forward pass and SR for the backward pass.

3 LUQ - A LOGARITHMIC UNBIASED QUANTIZER

A recent work (Chmiel et al., 2021) showed that the neural gradients can be approximated with the
lognormal distribution. This distribution has many values concentrated around the mean but is also
heavy-tailed, making the extreme values orders of magnitudes larger than the small values sampled
from this distribution. They exploit this fact and showed that the neural gradients can be pruned to a
high pruning ratio without accuracy degradation (e.g., 85% in ResNet18 ImageNet dataset), using an
unbiased pruning method. We build on top of this pruning method, and combine it with an unbiased
logarithmic quantizer, as described below.

Unbiased stochastic pruning Given an underflow threshold α we define a stochastic pruning
operator, which prunes a given value x, as

Tα (x) =

x , if |x| ≥ α
sign(x) · α w.p. |x|α , if |x| < α

0 w.p. 1− |x|α , if |x| < α .

(15)

4

Under review as a conference paper at ICLR 2022

Unbiased FP quantizer Given an underflow threshold α, let Qα(X) be a FP round-to-nearest
b-bits quantizer with bins {α, 2α, ..., 2b−1α}. Assume, without loss of generality, 2n−1α < x < 2nα
(n ∈ {0, 1..., b− 1}) . We will use the following unbiased quantizer, which is a special case of SR
(Eq. (1)):

Qα(x) =

{
2n−1α w.p. 2nα−x

2nα−2n−1α

2nα w.p. 1− 2nα−x
2nα−2n−1α = x−2n−1α

2n−1α .
(16)

It is unbiased since

E[Qα(x)] = 2n−1α · 2nα− x
2nα− 2n−1α

+ 2nα · x− 2n−1α

2n−1α
= x , (17)

and as a special case of Eq. (2).

Underflow threshold In order to create an unbiased quantizer, the largest quantization value 2b−1α
should avoid clipping any values of x, otherwise this will create a bias. Therefore, the underflow
threshold α is chosen as the optimal unbiased value, i.e

α =
max(|x|)
22b−1 ,

where b = 3 for FP4.

Logarithmic rounding Traditionally, stochastic rounding as in eq. 16 is implemented by adding
a uniform random noise ε ∼ U [− 2n−1α

2 , 2
n−1α
2] to x and then use a round-to-nearest operation. In

order to implement round-to-nearest directly on the exponent, we need to correct an inherent bias
since α · 2blog(

|x|
α)e 6= α · b2log(

|x|
α)e.

For a bin [2n−1, 2n], the midpoint xm is

xm =
2n + 2n−1

2
=

3

4
· 2n−1 . (18)

Therefore, we can apply round-to-nearest-power (RDNP) directly on the exponent x of any value
2n−1 ≤ 2x ≤ 2n as follows:

RDNP(2x) = 2blog (
4
3 ·2

x)c = 2bx+log (4
3)c = 2RDN(x+log (4

3)−
1
2) ≈ 2RDN(x−0.084) . (19)

Logarithmic unbiased quantization (LUQ) In the following, we suggest LUQ, a 4-bit unbiased
estimation of neural gradients that apply stochastic pruning (Eq. (15)) to the 4-bit floating point
quantizer Qα(x)

Xq = Tα (Qα(x)) . (20)

Since Tα and Qα are unbiased, it follows by the law of total expectation that Xq is an unbiased
estimator for x:

E[Xq] = E [Tα (Qα(x))] = E [E [Tα (Qα(x))] |Qα(x)] = E [Qα(x)] = x , (21)

where the expectation is over the randomness of Tα and Qα. In Fig. 2 we show an illustration of LUQ.
The first step includes stochastic pruning for the values below the pruning threshold (|x| < α). The
second step includes the logarithmic quantization with format FP4 of the values above the pruning
threshold (|x| > α). In Fig. 3a we show an ablation study of the effect of the different parts of LUQ
on ResNet50 ImageNet dataset - while standard FP4 diverges, adding stochastic-pruning or round-to-
nearest-power allow to converge with significant degradation. Combining both methods improves the
results and finally the suggested LUQ which includes additionally the suggested underflow threshold
choice as the optimal unbiased value gets the best results.

5

Under review as a conference paper at ICLR 2022

𝑥𝑇𝛼 𝑥

𝛼−𝛼−𝛼 𝛼

𝑄𝛼 𝑇𝛼 𝑥

−𝛼 𝛼

Figure 2: The effect of LUQ on the neural gradients histograms for one layer of ResNet18 Cifar100
dataset, with the underflow threshold α (red dashed line). The first step (green arrow) represents the
effect of stochastic pruning (Eq. (15)) on the neural gradient. The second step (grey arrow) represents
the logarithmic unbiased quantization (Eq. (16)), that quantize all the values |x| > α.

3.1 SMP: REDUCING THE VARIANCE WHILE KEEPING IT UNBIASED

In the previous section, we presented an unbiased method for logarithmic quantization of the neural
gradients called LUQ. Following the bias-variance decomposition, if the gradients are now unbiased,
then the only remaining issue should be their variance. Therefore, we suggest a method to reduce the
quantization variance by repeatedly sampling from the stochastic quantizers in LUQ, and averaging
the resulting samples of the final weight gradients. The different samples can be calculated in parallel,
so the only overhead on the network throughput will be the averaging operation. The power overhead
will be ∼ 1

3 of the number of additional samples since it affects only in the update GEMM (Eq. (24)).
For N different samples, the proposed method will reduce the variance by a factor of 1

N , without
affecting the bias (Gilli et al., 2019). In Fig. 3b we show the effect of the different number of samples
(SMP) on 2-bit quantization of ResNet18 Cifar100 dataset. There, we achieve with 16 samples
accuracy similar to a full-precision network. This demonstrates that the variance is the only remaining
issue in neural gradient quantization using LUQ, and that the proposed averaging method can erase
this variance gap, with some overhead.

0 20 40 60 80
Epochs

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

Baseline
FP4
FP4 + RDNP
FP4 + SP
FP4 + SP + RDNP
LUQ

(a)

0 25 50 75 100 125 150 175 200
Epochs

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

Baseline
LUQ 2 bits
LUQ 2 bits with 2 samples
LUQ 2 bits with 4 samples
LUQ 2 bits with 8 samples
LUQ 2 bits with 16 samples

(b)

Figure 3: (a): ResNet50 top-1 validation accuracy in ImageNet dataset with different quantization
schemes for the neural gradients. SP refers to stochastic pruning (Eq. (15)). RDNP refers to round-
to-nearest-power (Eq. (19)). Notice that with the suggested LUQ we are able to almost close the
degradation from baseline. (b): ResNet18 top-1 validation accuracy in CIFAR100 with quantization
of the neural gradients to 2-bit (FP2 - [1,1,0] format) using different samples numbers to reduce the
variance. Notice that 16 samples completely close the gap to the baseline.

3.2 FNT: FINE-TUNING IN HIGH PRECISION FOR ONE EPOCH

We suggest running one additional epoch in which we increase all the network parts to full-precision,
except the weights which remain in low precision. We notice that with this scheme we get the best
accuracy for the fine-tuned network. In inference time the activations and weights are quantized to
lower precision. In Table 1 we can see the effect of the proposed fine-tuning scheme, improving the
accuracy of the models by ∼ 0.4%.

6

Under review as a conference paper at ICLR 2022

4 EXPERIMENTS

In this section, we evaluate the proposed LUQ for 4-bit training on various DNN models. For
all models, we use their default architecture, hyper-parameters, and optimizers combined with a
custom-modified Pytorch framework that implemented all the low precision schemes. Additional
experimental details appear in Appendix A.1.

Main results In Table 1 we show the top-1 accuracy achieved in 4-bit training using LUQ to
quantizing the neural gradients to FP4 and combined with a previously suggested method, SAWB
(Choi et al., 2018a), to quantize the weights and activations to INT4. We compare our method with
Ultra-low (Sun et al., 2020) showing better results in all the models, achieving SOTA in 4-bit training.
Moreover, we improve the results with the two proposed schemes: neural gradients sampling (SMP -
Section 3.1) and fine-tune in high precision (FNT - Section 3.2) achieving for the first time in 4-bit
training 0.64% error in ResNet-50 ImageNet dataset, with our simple and hardware friendly methods.
In Table 2 we apply the proposed LUQ on NLP models, achieving less than 0.4% BLUE score
degradation in Transformer-base model on the WMT En-De task.

Overhead of SMP and FNT We limit our experiments with the proposed SMP method to only
two samples. This is to achieve a similar computational overhead as Ultra-low, with their suggested
two-phase-rounding (TPR) which also generates a duplication for the neural gradient quantization.
The FNT method is limited to only 1 epoch to reduce the overhead in comparison to Ultra-low, which
keeps the 1x1 convolutions in 8-bit. Specifically, the throughput of a 4-bit training network is 16x
in comparison to high precision training (Sun et al., 2020). This means that doing one additional
epoch in high precision reduces the throughput of ResNet-50 training by ∼ 16% . In comparison,
Ultra-low (Sun et al., 2020) does full-training with all the 1x1 convolutions in 8-bits, which reduces
the throughput by ∼ 50%.

Table 1: Comparison of 4-bit training of the proposed method LUQ with Ultra-low (Sun et al., 2020)
in various DNNs models with ImageNet dataset. FNT refers to fine-tune the trained model one
additional epoch with the neural gradients at high precision (Section 3.2) and SMP refers to doing
two samples of the SR quantization of neural gradients in order to reduce the variance (Section 3.1).

Model Baseline Ultra-low LUQ LUQ + FNT LUQ + SMP LUQ + SMP + FNT

ResNet-18 69.7 % 68.27% 69.0% 69.39 % 69.1 % 69.47 %
ResNet-50 76.5% 74.01% 75.32 % 75.52 % 75.63 % 75.86 %
MobileNet-V2 71.9 % 68.85 % 69.69 % 69.87 % 69.9 % 70.13 %
ResNext-50 77.6 % N/A 76.12 % 76.39 % 76.32 % 76.55 %

Table 2: Comparison of the BLUE score for 4-bit training of the proposed method LUQ with Ultra-low
(Sun et al., 2020) in Transfomer base model on the WMT En-De task.

Model Baseline Ultra-low LUQ

Transfomer-base 27.5 25.4 27.17

Forward-backward ablations In Table 3 we show the top-1 accuracy in ResNet50 with different
quantization schemes. The forward phase (activations + weights) is quantized to INT4 with SAWB
(Choi et al., 2018a) and the backward phase (neural gradients) to FP4 with LUQ. As expected, the
network is more sensitive to the quantization of the backward phase.

5 MF-BPROP: MULTIPLICATION FREE BACKPROPAGATION

The main problem of using different datatypes for the forward and backward phases is the need to
cast them to a common data type before the multiplication during the backward and update phases.
In our case, the weights (W) and pre-activations (a) are quantized to INT4 while the neural gradients
(∂C∂a) to FP4, where C represent the loss function, φ a non-linear function and v the post-activation.
During the backward and update phases, in each layer l there are two GEMMs between different

7

Under review as a conference paper at ICLR 2022

datatypes:
[Forward] al =Wlvl−1 vl = φ(al) (22)

[Backward]
∂C

∂al−1
= Diag(φ′(al−1)WT

l

∂C

∂al
(23)

[Update]
∂C

∂Wl
=
∂C

∂al
aTl (24)

Regularly, to calculate these GEMMs there is a need to cast both data types to a common data type
(in our case, FP7 [1,4,2]), then do the GEMM and finally, the results are usually accumulated in a
wide accumulator (Fig. 4a). This casting cost is not negligible. For example, casting INT4 to FP7
consumes ∼ 15% of the area of an FP7 multiplier.

In our case, we are dealing with a special case where we do a GEMM between a number without
mantissa (neural gradient) and a number without exponent (weights and activations), since INT4 is
almost equivalent to FP4 with format [1,0,3]. We suggest transforming the standard GEMM block
(Fig. 4a) to Multiplication Free BackPROP (MF-BPROP) block which contains only a transformation
to standard FP7 format (see Fig. 4b) and a simple XOR operation. More details on this transformation
appear in Appendix A.3. In our analysis (Appendix A.4) we show the MF-BPROP block reduces
the area of the standard GEMM block by 5x. Since the FP32 accumulator is still the most expensive
block when training with a few bits, we reduce the total area in our experiments by ∼ 8%. However,
as previously showed (Wang et al., 2018) 16-bits accumulators work well with 8-bit training, so it is
reasonable to think, it should work also with 4-bit training. In this case, the analysis (Appendix A.4)
shows that the suggested MF-BPROP block reduces the total area by ∼ 22%.

Casting to
FP7 (1-4-2)

Casting to
FP7 (1-4-2)

INT4

FP4

FP7 (1-4-2)
multiplier

FP32
Accumulator

Casting to
FP32

Standard GEMM block Summation block

(a)

INT4

FP4

Transform to
standard

FP7 (1-4-2)

FP32
Accumulator

Casting to
FP32

MF-BPROP block Summation block

(b)
Figure 4: (a): Standard MAC block illustration containing the two main blocks - one for GEMM and
second for accumulator. The GEMM block for hybrid datatype as in our case (FP4 and INT4) requires
a casting to a common datatype before being inserted into the multiplier. (b): The suggested MAC
block, which replace the multiplier with the proposed MF-BPROP. Instead of doing an expensive
casting followed by a multiplication, we propose to make only a simple XOR and a transformation
(Appendix A.3) reducing the GEMM area by 5x (Appendix A.4).

6 RELATED WORKS

Neural networks Quantization has been extensively investigated in the last few years. Most of the
quantization research has focused on reducing the numerical precision of the weights and activations
for inference (e.g., Courbariaux et al. (2016); Rastegari et al. (2016); Banner et al. (2019); Nahshan
et al. (2019); Choi et al. (2018b); Bhalgat et al. (2020); Choi et al. (2018a); Liang et al. (2021)).
In standard ImageNet models, the best performing methods can achieve quantization to 4 bits with
small or no degradation Choi et al. (2018a). These methods can be used to reduce the computational
resources in approximately a third of the training. However, without quantizing the neural gradients,

8

Under review as a conference paper at ICLR 2022

we cannot reduce the computational resources in the remaining two thirds of the training process. An
orthogonal approach of quantization is low precision for the gradients of the weights in distributed
training (Alistarh et al., 2016; Bernstein et al., 2018) in order to reduce the bandwidth and not the
training computational resources.

Sakr & Shanbhag (2019) suggest a systematic approach to design a full training using fixed point
quantization which includes mixed-precision quantization. Banner et al. (2018) first showed that it is
possible to use INT8 quantization for the weights, activations, and neural gradients, thus reducing
the computational footprint of most parts of the training process. Concurrently, Wang et al. (2018)
was the first work to achieve full training in FP8 format. Additionally, they suggested a method to
reduce the accumulator precision from 32bit to 16 bits, by using chunk-based accumulation and
floating point stochastic rounding. Later, Wiedemann et al. (2020) showed full training in INT8 with
improved convergence, by applying a stochastic quantization scheme to the neural gradients called
non-subtractive-dithering (NSD) that induce sparsity followed by stochastic quantization. Also, Sun
et al. (2019) presented a novel hybrid format for full training in FP8, while the weights and activations
are quantized to [1,4,3] format, the neural gradients are quantized to [1,5,2] format to catch a wider
dynamic range. Fournarakis & Nagel (2021) suggest a method to reduce the data traffic during the
calculation of the quantization range.

While it appears that it is possible to quantize to 8-bits all computational elements in the training
process, 4-bits quantization of the neural gradients is still challenging. Chmiel et al. (2021) suggested
that this difficulty stems from the heavy-tailed distribution of the neural gradients, which can be
approximated with a lognormal distribution. This distribution is more challenging to quantize in
comparison to the normal distribution which is usually used to approximate the weights or activations
(Banner et al., 2019).

Sun et al. (2020) was the first work that presented a method to reduce the numerical precision to 4-bits
for the vast majority of the computations needed during DNNs training. They use known methods to
quantize the forward phase to INT4 (SAWB (Choi et al., 2018a) for the weights and PACT (Choi
et al., 2018b) for the activations) and suggested to quantize the neural gradients twice (one for the
update and another for the next layer neural gradient) with a non-standard radix-4 FP4 format. The
use of the radix-4, instead of the commonly used radix-2 format, allows covering a wider dynamic
range. The main problem of their method is the specific hardware support for their suggested radix-4
datatype, which may limit the practicality of implementing their suggested data type.

Chen et al. (2020b) suggested reducing the variance in neural gradients quantization by dividing them
into several blocks and quantizing each to INT4 separately. Their method requires each iteration
to sort all the neural gradients and divide them into blocks, a costly operation that will affect the
network throughput. Additionally, they suggested another method to quantize each sample separately.
The multiple scales per layer in both methods do not allow the use of an efficient GEMM operation.

7 CONCLUSIONS
In this work, we analyze the difference between two rounding schemes: round-to-nearest and
stochastic-rounding. We showed that, while the former has lower MSE and works better for the
quantization of the forward phase (weights and activations), the latter is an unbiased approximation
of the original data and works better for the quantization of the backward phase (specifically, the
neural gradients).

Based on these conclusions, we propose a logarithmic unbiased quantizer (LUQ) to quantize the
neural gradients to format FP4 [1,3,0]. Combined with a known method for quantizing the weights
and activations to INT4 we achieved, without overhead, state-of-the-art in 4-bit training in all the
models we examined, e.g., 1.18 % error in ResNet50 vs 2.49 % for the previous known SOTA
(Sun et al. (2020)). Moreover, we suggest two more methods to improve the results, with overhead
comparable to Sun et al. (2020). The first reduces the quantization variance, without affecting the
unbiasedness of LUQ, by averaging several samples of stochastic neural gradients quantization. The
second is a simple method for fine-tuning in high precision for one epoch. Combining all these
methods, we were able for the first time to achieve 0.64 % error in 4-bit training of ResNet50
ImageNet dataset.

Finally, we exploit the special formats used for quantization (INT4 in the forward phase and FP4 for-
mat [1,3,0] in the backward phase) and suggest a block called MF-BPROP that avoids multiplication
during two thirds of the training, thus reducing by 5x the area previously used by the multiplier.

9

Under review as a conference paper at ICLR 2022

REPRODUCIBILITY

A source code of the experiments appears in the supplementary material. Additionally, in Ap-
pendix A.1 we added the details of the experiments, including the hyper-parameters used.

REFERENCES

Dan Alistarh, Demjan Grubic, Jungshian Li, Ryota Tomioka, and M. Vojnovic. Qsgd: Communication-
optimal stochastic gradient descent, with applications to training neural networks. 2016.

R. Banner, Yury Nahshan, and Daniel Soudry. Post training 4-bit quantization of convolutional
networks for rapid-deployment. In NeurIPS, 2019.

Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. Scalable methods for 8-bit training of
neural networks. In NeurIPS, 2018.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd:
compressed optimisation for non-convex problems. ArXiv, abs/1802.04434, 2018.

Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen Blankevoort, and Nojun Kwak. Lsq+: Improving
low-bit quantization through learnable offsets and better initialization. 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2978–2985, 2020.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

Jianfei Chen, Yu Gai, Zhewei Yao, Michael W Mahoney, and Joseph E Gonzalez. A statistical
framework for low-bitwidth training of deep neural networks. arXiv preprint arXiv:2010.14298,
2020a.

Jianfei Chen, Yujie Gai, Z. Yao, M. Mahoney, and Joseph Gonzalez. A statistical framework for
low-bitwidth training of deep neural networks. In NeurIPS, 2020b.

Brian Chmiel, Liad Ben-Uri, Moran Shkolnik, E. Hoffer, Ron Banner, and Daniel Soudry. Neural
gradients are lognormally distributed: understanding sparse and quantized training. In ICLR, 2021.

Jungwook Choi, P. Chuang, Zhuo Wang, Swagath Venkataramani, V. Srinivasan, and K. Gopalakrish-
nan. Bridging the accuracy gap for 2-bit quantized neural networks (qnn). ArXiv, abs/1807.06964,
2018a.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, P. Chuang, V. Srinivasan, and K. Gopalakrish-
nan. Pact: Parameterized clipping activation for quantized neural networks. ArXiv, abs/1805.06085,
2018b.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to
+1 or -1. arXiv e-prints, art. arXiv:1602.02830, February 2016.

Marios Fournarakis and Markus Nagel. In-hindsight quantization range estimation for quantized
training. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 3057–3064, 2021.

Manfred Gilli, Dietmar Maringer, and Enrico Schumann. Chapter 6 - generating random numbers. In
Manfred Gilli, Dietmar Maringer, and Enrico Schumann (eds.), Numerical Methods and Optimiza-
tion in Finance (Second Edition), pp. 103–132. Academic Press, second edition edition, 2019. ISBN
978-0-12-815065-8. doi: https://doi.org/10.1016/B978-0-12-815065-8.00017-0. URL https:
//www.sciencedirect.com/science/article/pii/B9780128150658000170.

Sasan Iman and Massoud Pedram. Logic Synthesis for Low Power VLSI Designs. Kluwer Academic
Publishers, USA, 1997. ISBN 0792380762.

10

https://www.sciencedirect.com/science/article/pii/B9780128150658000170
https://www.sciencedirect.com/science/article/pii/B9780128150658000170

Under review as a conference paper at ICLR 2022

Olga Kupriianova, Christoph Lauter, and Jean-Michel Muller. Radix conversion for ieee754-2008
mixed radix floating-point arithmetic. 2013 Asilomar Conference on Signals, Systems and Comput-
ers, Nov 2013. doi: 10.1109/acssc.2013.6810471. URL http://dx.doi.org/10.1109/
ACSSC.2013.6810471.

Tailin Liang, C. John Glossner, Lei Wang, and Shaobo Shi. Pruning and quantization for deep neural
network acceleration: A survey. ArXiv, abs/2101.09671, 2021.

Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii Zheltonozhskii, Ron Banner, Alex M. Bronstein,
and Avi Mendelson. Loss aware post-training quantization. arXiv preprint arXiv:1911.07190,
2019. URL http://arxiv.org/abs/1911.07190.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In ECCV, 2016.

Charbel Sakr and Naresh R Shanbhag. Per-tensor fixed-point quantization of the back-propagation
algorithm. 2019.

Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vijayalakshmi
Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash Gopalakrishnan. Hybrid 8-bit floating point
(hfp8) training and inference for deep neural networks. In NeurIPS, 2019.

Xiao Sun, Naigang Wang, Chia-Yu Chen, Jiamin Ni, A. Agrawal, Xiaodong Cui, Swagath Venkatara-
mani, K. E. Maghraoui, V. Srinivasan, and K. Gopalakrishnan. Ultra-low precision 4-bit training
of deep neural networks. In NeurIPS, 2020.

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and K. Gopalakrishnan. Training
deep neural networks with 8-bit floating point numbers. In NeurIPS, 2018.

Simon Wiedemann, Temesgen Mehari, Kevin Kepp, and W. Samek. Dithered backprop: A sparse
and quantized backpropagation algorithm for more efficient deep neural network training. 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.
3096–3104, 2020.

A APPENDIX

A.1 EXPERIMENTS DETAILS

In all our experiments we use the most common approach (Banner et al., 2018; Choi et al., 2018b)
for quantization where a high precision of the weights are kept and quantized on-the-fly. The updates
are done in full precision.

ResNet / ResNext We run the models ResNet-18, ResNet-50 and ResNext-50 from torchvision.
We use the standard pre-processing of ImageNet ILSVRC2012 dataset. We train for 90 epochs,
use an initial learning rate of 0.1 with a 0.1 decay at epochs 30,60,80. We use standard SGD with
momentum of 0.9 and weight decay of 1e-4. The minibatch size used is 256. Following the DNNs
quantization conventions (Banner et al., 2018; Nahshan et al., 2019; Choi et al., 2018b) we kept the
first and last layer (FC) at higher precision. Additionally, similar to Sun et al. (2020) we adopt the
full precision at the shortcut which constitutes only a small amount of the computations (∼ 1%). The
”underflow threshold” in LUQ is updated in every bwd pass as part of the quantization of the neural
gradients. In all experiments, the BN is calculated in high-precision.

MobileNet V2 We run Mobilenet V2 model from torchvision. We use the standard pre-processing
of ImageNet ILSVRC2012 dataset. We train for 150 epochs, use an initial learning rate of 0.05 with
a cosine learning scheduler. We use standard SGD with momentum of 0.9 and weight decay of 4e-5.
The minibatch size used is 256. Following the DNNs quantization conventions (Banner et al., 2018;
Nahshan et al., 2019; Choi et al., 2018b) we kept the first and last layer (FC) at higher precision.
Additionally, similar to Sun et al. (2020) we adopt the full precision at the depthwise layer which
constitutes only a small amount of the computations (∼ 3%). The ”underflow threshold” in LUQ is
updated in every bwd pass as part of the quantization of the neural gradients. In all experiments, the
BN is calculated in high-precision.

11

http://dx.doi.org/10.1109/ACSSC.2013.6810471
http://dx.doi.org/10.1109/ACSSC.2013.6810471
http://arxiv.org/abs/1911.07190

Under review as a conference paper at ICLR 2022

Transformer We run the Transformer-base model based on the Fairseq implementation on the
WMT 14 En-De translation task. We use the standard hyperparameters of Fairseq including Adam
optimizer. We implement LUQ over all attention and feed forwards layers.

Table 3: ResNet-50 accuracy with ImageNet dataset while quantization different parts of the network.
The forward phase is quantized to INT4 format with SAWB (Choi et al., 2018a) while the backward
phase is quantized with the proposed LUQ. As expected, the quantization of the backward phase
makes more degradation to the network accuracy.

Forward Backward Accuracy

FP32 FP32 76.5 %
INT4 FP32 76.35 %
FP32 FP4 75.6 %
INT4 FP4 75.32 %

A.2 ADDITIONAL EXPERIMENTS

LUQ requires the measurement of the maximum of the neural gradient in order to get the underflow
threshold (Section 3). In Fig. 5a we compare the proposed LUQ with the method proposed in
Fournarakis & Nagel (2021) which suggests reducing the data movement overhead that occurs in the
calculation on-the-fly of the quantization ranges by using a running average of the previous iterations
statistics. As we can notice, the limited dynamic range in 4-bit quantization requires an exact statistics
measurement of the tensor since the proposed approximation induces significant accuracy degradation.
The SMP method (Section 3.1) has a power overhead of ∼ 1

3 of the number of additional samples
since it influences only the update GEMM. In Fig. 5b we compare LUQ with one additional sample
which has∼ 33% power overhead with regular LUQ with additional∼ 33% epochs. The lr scheduler
was expanded respectively. We can notice that even both methods have similar overhead the variance
reduction achieved with SMP is more important for the network accuracy than increasing the training
time.

0 20 40 60 80
Epochs

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

Baseline
LUQ
In-hind

(a)

0 50 100 150 200
Epochs

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

Baseline
LUQ 3 bits - 2 samples
LUQ 3 bits - longer training

(b)

Figure 5: (a): Comparison of the top-1 validation accuracy in ResNet-50 ImageNet dataset with the
proposed LUQ and with the quantization dynamic range approximation in In-hind Fournarakis &
Nagel (2021) in 4-bit training. (b): Comparison of ResNet-18 3 bit training on Cifar100 dataset of
LUQ with 2 samples with longer training of regular LUQ. Both methods have similar overhead, but
the SMP method leads to better accuracy.

A.3 TRANSFORM TO STANDARD FP7

We suggest a method to avoid the use of an expensive GEMM block between the INT4 (activation or
weights) and FP4 (neural gradient). It includes 2 main elements: The first is a simple xor operation
between the sign of the two numbers and the second is a transform block to standard FP7 format. In

12

Under review as a conference paper at ICLR 2022

Fig. 6 we present an illustration of the proposed method. The transformation can be explained with
a simple example: for simplicity, we avoid the sign which requires only xor operation. The input
arguments are 3 (011 bits representation in INT4 format) and 4 (011 bits representation in FP4 1-3-0
format). The concatenation brings to the bits 011 011. Then looking at the table in the input column
where the M=3 (since the INT4 argument = 3) and get the results in FP7 format of 0100 10 (= E+1
2) which is 12 in FP7 (1-4-2) as the expected multiplication result.

In the next section, we analyze the area of the suggested block in comparison to the standard GEMM
block, showing a 5x area reduction.

Transform to
standard FP7 (1-4-2)

INT4

FP4

Input Output

FP4 INT4 Exp Mant

0 M 0 0

E 0 0 0

E 1 E 0

E 2 E+1 0

E 3 E+1 2

E 4 E+2 0

E 5 E+2 1

E 6 E+2 2

E 7 E+2 3

MF-BPROP block

Exp Mant

Figure 6: Illustration of MF-BPROP block which replaces a standard multiplication. It includes: (1)
a simple xor operation between the sign. (2) A transform to standard FP7 format. We present the
table to make this transform - E and M represent the bits of the FP4 and INT4 respectively without
the sign. Exp and Mant are the bits of the output exponent (4-bit) and mantissa (2-bit) of the output
in FP7 format.

A.4 BACKPROPAGATION WITHOUT MULTIPLCATION ANALYSIS

In this section, we show a rough estimation of the logical area of the proposed MF-BPROP block
which avoids multiplication and compares it with the standard multiplier. In hardware design, the
logical area can be a good proxy for power consumption (Iman & Pedram, 1997). Our estimation
doesn’t include synthesis optimization. In Table 4 we show the estimation of the number of gates of a
standard multiplier, getting 264 logical gates while the proposed MF-BPROP block has an estimation
of 49 gates (Table 5) achieving a ∼ 5x area reduction. For fair comparison we remark that in the
proposed scheme the FP32 accumulator is the most expensive block with an estimation of 2453 gates,
however we believe it can be reduced to a narrow accumulator such as FP16 (As previously shown in
Wang et al. (2018) which have an estimated area of 731 gates. In that case, we reduce the total are by
∼ 22%.

Table 4: Rough estimation of the number of logical gates for a standard GEMM block which contain
two blocks: a casting to FP7 and a FP7 multiplier.

Block Operation # Gates

Casting to FP7 Exponent 3:1 mux 12
Mantissa 4:1 mux 18

FP7 [1,4,2] multiplier

Mantissa multiplier 99
Exponent adder 37
Sign xor 1
Mantissa normalization 48
Rounding adder 12
Fix exponent 37

Total 264

13

Under review as a conference paper at ICLR 2022

Table 5: Rough estimation of the number of logical gates for the proposed MF-BPROP block.

Block Operation # Gates

MF-BPROP
Exponent adder 30
Mantissa 4:1 mux 18
Sign xor 1

Total 49

14

	Introduction
	Rounding schemes Comparison
	Background: unbiased gradient estimates

	LUQ - a logarithmic unbiased quantizer
	SMP: Reducing the variance while keeping it unbiased
	FNT: Fine-tuning in high precision for one epoch

	Experiments
	MF-BPROP: multiplication free backpropagation
	Related works
	Conclusions
	Appendix
	Experiments details
	Additional experiments
	Transform to standard fp7
	Backpropagation without multiplcation analysis

