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ABSTRACT

Vision Transformers (ViTs) have attracted a lot of popularity in recent years,
due to their exceptional capabilities in modeling long-range spatial dependencies
and scalability for large scale training. Although the training parallelism of self-
attention mechanism plays an important role in retaining great performance, its
quadratic complexity baffles the application of ViTs in many scenarios which
demand fast inference. This effect is even more pronounced in applications in
which autoregressive modeling of input features is required. In Natural Language
Processing (NLP), a new stream of efforts have proposed parallelizable models with
recurrent formulation that allows for efficient inference in generative applications.
Inspired by this trend, we propose a new class of computer vision models, dubbed
Vision Retention Networks (ViR), with dual parallel and recurrent formulations,
which strike an optimal balance between fast inference and parallel training with
competitive performance. In particular, ViR scales favorably for image throughput
and memory consumption in tasks that require higher-resolution images due to
its flexible formulation in processing large sequence lengths. The ViR is the
first attempt to realize dual parallel and recurrent equivalency in a general vision
backbone for recognition tasks. We have validated the effectiveness of ViR through
extensive experiments with different dataset sizes and various image resolutions
and achieved competitive performance. Our code and pretrained models will be
made publicly available.

1 INTRODUCTION

During the recent years, Transformers (Vaswani et al., 2017) and their variants (Devlin et al., 2019;
Dosovitskiy et al., 2020) have shown competitive performance across multiple domains such as
Natural Language Processing (NLP) and Computer vision. The main building block of Transformers
is self-attention which allows for cross interaction among all input sequence tokens with each other.
This scheme is effective in capturing both short and long-range spatial dependencies but also imposes
time and space quadratic complexity in terms of the input sequence length. The training parallelism
of Transformers allow for competitive performance. However, the inference is slow and expensive
due to the computational complexity.

Recently, Retentive Network (RetNet) (Sun et al., 2023) and Receptance Weighted Key Value
(RWKV) (Peng et al., 2023) independently proposed novel model architectures that include the
training parallelism of transformers and fast recurrent inference. The RWKV model uses a linear
channel-wise attention to relax the pairwise dot product bottleneck of vanilla self-attention. The
RetNet on the other hand proposes the concept of retention with dual form parallel and recurrent
representations. It is noteworthy to mention that both RWKV and RetNet models are primarily
proposed for autoregressive text generation.

Although Convolutional Neural Networks (CNNs) have been commonly used as the de-facto architec-
ture for various applications, the introduction of Vision Transformers (Dosovitskiy et al., 2020) (ViT)
demonstrated the possibility of achieving State-of-the-Art (SOTA) performance with a similar model
to the Transformers for NLP applications. As opposed to the autoregressive formulation in which
tokens from left to right are processed at each step to predict the next value, ViT uses the entire token
representations.

In the case of long token sequences (e.g. high-resolution images), processing the entire tokens may
create a bottleneck due to the quadratic complexity of the self-attention layers. As a result, despite the
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competitive performance of ViT models, this limits their usage for applications that require real-time
processing of high-resolution images (e.g. autonomous vehicles).

In this work, inspired by the success of RetNet, we explore the possibility of leveraging the duality of
parallel and recurrent formulations to enable fast and memory efficient deployment while maintaining
the training parallelism with a competitive performance.

In particular, the combination of parallel and recurrent modes, referred to as chunk-wise formulation,
enables optimal combination of both modes based on specific run-time hyper-parameters (e.g. batch
size) and hardware requirements. Due to this formulation, the memory consumption in ViR model
can then be decoupled from the sequence length, hence making it easier to process high-resolution
images in an efficient manner.

In order to improve the efficiency, we have redesigned the retention mechanism by removing the
gated function. In addition, the proposed retention formulation is also generic and does not rely on
any specific relative position embedding formulations (e.g. xPos (Sun et al., 2022) as in RetNet.
Our proposed ViR is the first attempt beyond generative applications for leveraging autoregressive
vision-friendly retentive networks for recognition tasks (e.g. image classification)

The summary of our specific contributions in this work is as follows:

• We introduce ViR, which is the first attempt in leveraging autoregressive retentive network
with dual parallel and recurrent formulations for vision recognition tasks. We demonstrate
that ViR can scale favorably to larger image resolutions in terms of image throughput and
memory consumption.

• We propose a general vision backbone with a redesigned retention mechanism. The new
retention mechanism is free of any gating function and does not rely on any specific relative
position embedding formulations.

• We have validated the effectiveness of ViR by pretraining and finetuning on both ImageNet-
21K and ImageNet-1K datasets for different models sizes to demonstrate the scalability of
our proposed model as a general computer vision backbone.

2 RELATED WORK

Vision Transformers ViT (Dosovitskiy et al., 2020) introduced a new paradigm to move away from
the convolutional inductive biases towards a simpler model with minimal priors. The effectiveness
of self-attention in modeling long-range spatial dependencies and scalability of ViTs make them a
great candidate as a backbone model for various vision tasks. However, the quadratic complexity of
self-attention creates a bottleneck for fast deployment, especially for high-resolution images with
longer sequence lengths. Swin Transformers (Liu et al., 2021) proposed to compute self-attention in
smaller partitioned windows to address this problem.

Although this scheme improves the efficiency, the limited cross-region interactions across local
windows may impact the performance. Independently, Pyramid Vision Transformer (PVT) (Wang
et al., 2021) introduced a hierarchical architecture, similar to Swin Transformer, that employ a patch
embedding layer at the beginning of each stage and reduces the spatial dimension to improve the
computational efficiency.

On the other hand, Twins Transformer (Chu et al., 2021a) introduced a spatially separable self-
attention mechanism that consisted of global sub-sampling and locally-grouped modules that can
model both short and long-range interactions in an efficient manner. Several follow up efforts proposed
to address this issue by introducing global (Hatamizadeh et al., 2023b) or carrier (Hatamizadeh et al.,
2023a) tokens and multi-axis grid attention (Tu et al., 2022).

In addition to these works, a stream of hybrid models (i.e. CNN and ViT) (Graham et al., 2021; Wu
et al., 2021; Yuan et al., 2021) were proposed to improve the data efficiency and achieve competitive
performance without considerably larger model sizes. Convolutional vision Transformer (CvT) (Wu
et al., 2021) proposes the concept of convolutional token embedding layer which is integrated with a
Transformer block in a hierarchical architecture to improve the data efficiency and performance of
the ViT models. In addition, Tokens-To-Token Vision Transformer (T2T-ViT) (Yuan et al., 2021)
introduced a tailored transformation layer for aggregating nearby tokens which can be ten used as
image priors for leveraging spatial correlations.
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Cross-covariance Image Transformer (XCiT) (Ali et al., 2021) proposed a transposed self-attention
block for capturing the token interactions in feature channels space. In addition, by conditioning
the position encoding on localized patch tokens, Conditional Position encoding Vision Transformer
(CPVT) (Chu et al., 2021b) achieved better performance on different recognition tasks such as image
classification and object detection. Our proposed contributions in this work are orthogonal to these
recent advances as ViR can benefit from a hybrid architecture as well as a window-based retention.
Please see Sec. 5.3 for discussion on the effect of hybrid architectures on the performance of ViR
models.

Autoregressive Models Deep Autoregressive models Greff et al. (2016); Van Den Oord et al. (2016);
Van den Oord et al. (2016); Chen et al. (2018); Radford et al. (2018) have primarily been used for
generative application and achieved great success in this domain. Most notably, PixelCNN (Van den
Oord et al., 2016) and PixelRNN (Van Den Oord et al., 2016) demonstrated that sequential pixel-
by-pixel prediction can be an effective in learning the explicit probability distribution for both
discrete and continuous data while having better training stability compared to Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014). With the emergence of Transformers (Vaswani et al.,
2017), several efforts (Parmar et al., 2018; Chen et al., 2020; Cao et al., 2021; Chang et al., 2022)
demonstrated the capability of autoregressive modeling at scale. However, the sequential nature of
autoregressive decoding, which requires access to previously generated tokens for future predictions,
hinders the efficiency of such models.

Self-attention Alternatives To address the quadratic computation complexity of self-attention,
many efforts have proposed various approaches such as approximation of the softmax activation
function (Joulin et al., 2017; Gao et al., 2020), linear attention by using other kernels (Wang et al.,
2020; Katharopoulos et al., 2020a) to estimate the attention scores or computing the attention in the
channel feature space (Ali et al., 2021). However, the improved efficiency negatively impacts the
performance of the model. Other efforts (Zhai et al., 2021; Gu et al., 2021) have also proposed to
entirely replace the self-attention with other mechanisms.

In particular, recently in NLP, RWKV (Peng et al., 2023) and RetNet (Sun et al., 2023) proposed to
redefine the Transformers to leverage the duality of parallel and recurrent formulation for training and
inference. RWKV follows an attention-free formulation (Zhai et al., 2021) but employs an exponential
decay to enable the recurrent formulation. RetNet proposes to use multi-scale gated retention
to maintain the expressivity of the contextual information and achieve competitive performance.
Although our work is inspired by RetNet, it is aimed for computer vision, in particular recognition,
and has a tailored retention mechanism and architecture redesign for optimal performance.

3 METHODOLOGY

3.1 RETENTION MECHANISM

In this section, we discuss the retention mechanism and its different formulations (Sun et al., 2023).
Consider an input sequence X P R|X|ˆD that will be encoded in an autoregressive manner. Given the
query (qn), key (kn) and value (vn) in state sn, this sequence-to-sequence mapping can be written as

sn “ αsn´1 ` kn
Jvn,

RetpXnq “ qnsn,
(1)

where Ret and α denote retention and decay mask, respectively. In essence, sn conveniently maintains
the previous internal states. As shown in (Sun et al., 2023), retention can also be defined in a parallel
formulation

RetpXq “ pqkJ d Mqv, (2)
Where M denotes a mask with a decay factor α as in

Mij “

"

αi´j , i ě j

0, i ă j
(3)

This dual representation of the retention in parallel and recurrent modes enable many desired
properties such as training parallelism and fast inference. For longer sequences the recurrent mode
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Figure 1: Overview of the architecture of ViR model. Similar to ViT, Flattened patches are linearly
projected into a patch embedding. The position embedding are then added to the patch embedding
and a class token is appended to this sequence. The retention encoder comprises of alternating
Multi-Head Retention and MLP blocks. The MHR blocks use a causal decay mask. Best viewed in
color.

can become inefficient. As a result, a hybrid approach, referred to as chunkwise, which combines
recurrent and parallel formulation is desired. Specifically, the input X is split into smaller sequences
with chunksize C, in which xrms “ rxpm´1qC`1, ¨ ¨ ¨ ,xmCs represents the m-th chunk. The
chunkwise query, key and values can be defined as

qrms “ qCm:Cpm`1q, krms “ kCm:Cpm`1q, vrms “ vCm:Cpm`1q, (4)

The chunkwise retention formulation is as follows
Rm “ kJ

rmspvrms d ζq ` γBRm´1, ζmt “ γB´m´1

RetpXrmsq “ pqrmsk
J
rms d Mqvrms ` pqrmsRm´1q d ξ, ξmt “ αm`1

(5)

The underlying motivation of the chunkwise formulation is to employ the parallel mode in each
chunk, while processing cross-chunk representations in the recurrent mode. For high resolution
images with long sequences, the chunkwise formulation allows for faster processing of tokens and
decoupling the memory. In Sec. 5.2, we demonstrate how ViRs compare more favorably to ViTs due
to the chunkwise formulation for efficient processing of longer sequences.

3.2 VIR MODEL

In the following, we discuss the components of ViR in more details. Fig. 1 illustrates an overview
of our proposed model. Given an input image X P RHˆWˆC with height H and width W , it is
partitioned into patches and flattened into a sequence of tokens. This is similar to the tokenization
scheme which was previously proposed by ViT (Dosovitskiy et al., 2020). The tokenized patches are
then projected into a patch embedding Z “ rz1, ¨ ¨ ¨ , z|z|s P R|z|ˆD with dimension D. Different
from ViT, we first add the position embedding to the patch embedding and then append a [class]
token (Z0

n “ Xclass).

The output of the ViR encoder with L layers (Zn
L) is used in a classification Mult-Layer Perceptron

(MLP) head during both pre-training and finetuning. Due to the autoregressive nature of the ViR
model, the position of the [class] plays an important role as appending to the end of embedding
sequence acts as a summarizing of all the previous tokens.

In lieu of self-attention, we use retention to enforce a recurrent formulation via masking. However,
our formulation does not depend on gated retention or specific relative position embeddings (e.g.
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xPos (Sun et al., 2022) or RoPE (Su et al., 2021)) and achieves numerical equivalency between
parallel, recurrent and hybrid (i.e. mixture of local recurrent and global parallel) formulations.
Specifically, the parallel retention formulation solely depends on query q, key k, value v and a decay
Mask M and defined according to

q,k,v “ zAqkv (6)

Retpzq “ p
qkJ

?
Dh

d Mqv (7)

where Ret represents retention and Dh is a scaling factor to balance the compute and parameter
counts. Note that the retention formulation is free of softmax activation function which is commonly
used in self-attention to improve performance and maintain training stability at the cost of reduced
efficiency. In addition, the original retention formulation, as proposed in RetNet (Sun et al., 2023),
increases the number of parameters due to the addition of the learnable gated function, and a result
decreases the image throughput under the same network layout.

The retention (Ret) is further extended to Multi-Head Retention (MHR). The retention is computed
across each head with a constant decay factor and normalized with LayerNorm (Ba et al., 2016) (LN)
according to

Y “ LNprRet1pzq; Ret2pzq; ¨ ¨ ¨Retkpzqsq (8)

A GELU activation function is then employed on the concatenated outputs and before projecting
them with a linear layer

MHRpzq “ GELUpYqAmhr (9)

We use alternating MHR and MLP blocks with LayerNorm (LN) and residual connections as the
building blocks of the encoder according to

Z1l “ MHRpLNpZlqq ` Zl´1

Zl “ MLPpLNpZ1lqq ` Z1l
(10)

4 EXPERIMENTS

4.1 SETUP

We trained all ViR model variants on ImageNet-1K dataset (Deng et al., 2009) except for ViR-L/14.
This model was first pre-trained on ImageNet-21K dataset on 224 ˆ 224 resolution. The pretraining
was conducted for 90 epochs with a global batch size of 4096 and an initial learning rate of 1e´3 with
a cosine decay learning rate scheduler. The model was subsequently finetuned on both 224ˆ 224 and
448 ˆ 448 resolutions with a learning rate of 5e´5. In addition, the models on ImageNet-1K were
trained for 600 epochs with a learning rate of 3e´3, weight decay of 5e´2 and global batch size of
4096.

We used moderate data augmentation techniques such as mixup and cutmix. For Hybrid ViR models,
we used a 4-stage hierarchical architecture in which the first 2 stages comprise of residual CNN-based
blocks, while the rest of stages contain ViR-based blocks. In between each stage, the resolution is
decreased by a factor of two with strided CNN layers.

4.2 IMAGE CLASSIFICATION

We present image classification benchmarks for all models in Table 1. The ViR models demonstrate
competitive performance across different model variants. Specifically, ViR variants outperform
ViT counterparts by considerable margins different models, validating the effectiveness of our
proposed appproach. The ViR-L/14 model also achieves competitive performance when pretrained
and finetuned on ImageNet-21K and ImageNet-1K datasets, respectively.

Increasing the image resolution from 224 ˆ 224 to 448 ˆ 448 during the finetuning results in a
considerable +1.1% improvement in terms of Top-1 accuracy. Hence, these benchmarks demonstrates
the scalability of ViR models to larger training dataset and higher image resolutions.
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Table 1: Image classification benchmarks on ImageNet-1K (Deng et al., 2009) validate set. Models
with ; are pretrained on ImageNet-21K dataset.

Method Param (M) FLOPs (G) Image Size Top-1 (%)

ResMLP-S12 (Touvron et al., 2021a) 15 3.0 2242 76.6
PVT-v2-B1 (Wang et al., 2022) 13 2.1 2242 78.7

GC ViT-XXT (Hatamizadeh et al., 2023b) 12 2.1 2242 79.8

DeiT-Small/16 (Touvron et al., 2021b) 22 4.6 2242 79.9
T2T-ViT-14 (Yuan et al., 2021) 22 5.2 2242 81.5

CPVT-Small-GAP (Chu et al., 2021b) 23 4.6 2242 81.5

ResNet50 (He et al., 2016) 25 4.1 2242 76.1
CrossViT-S (Chen et al., 2021) 26 5.6 2242 81.0
PVT-Small (Wang et al., 2021) 24 3.8 2242 79.8

Twins-PCPVT-S (Chu et al., 2021a) 24 3.8 2242 81.2
Swin-T (Liu et al., 2021) 29 4.5 2242 81.3

CoAtNet-0 (Dai et al., 2021) 25 4.2 2242 81.6
PVT-v2-B2 (Wang et al., 2022) 25 4.0 2242 82.0
ConvNeXt-T (Liu et al., 2022b) 29 4.5 2242 82.1

Focal-T (Yang et al., 2021) 29 4.9 2242 82.2
CSwin-T (Dong et al., 2022) 23 4.3 2242 82.7

ResNet-101 (He et al., 2016) 44 7.9 2242 77.4
ResMLP-S24 (Touvron et al., 2021a) 30 6.0 2242 79.4

PVT-Medium (Wang et al., 2021) 44 6.7 2242 81.2
T2T-ViT-19 (Yuan et al., 2021) 39 8.9 2242 81.9

Twins-PCPVT-B (Chu et al., 2021a) 44 6.7 2242 82.7
Swin-S (Liu et al., 2021) 50 8.7 2242 83.0

ConvNeXt-S (Liu et al., 2022b) 50 8.7 2242 83.1
PVT-v2-B3 (Wang et al., 2022) 45 6.9 2242 83.2

ViT-L/32 (Dosovitskiy et al., 2020) 328 15.3 2242 71.2
ViT-B/32 (Dosovitskiy et al., 2020) 88 4.4 2242 73.4
ViT-L/16 (Dosovitskiy et al., 2020) 304 59.7 2242 76.5

ResNet-152 (He et al., 2016) 60 11.6 2242 78.3
ViT-B/16 (Dosovitskiy et al., 2020) 86 17.6 2242 77.9

ResMLP-B24 (Touvron et al., 2021a) 116 23.0 2242 81.0
PVT-Large (Wang et al., 2021) 61 9.8 2242 81.7

DeiT-Base/16 (Touvron et al., 2021b) 86 17.6 2242 81.8
CrossViT-B (Chen et al., 2021) 104 21.2 2242 82.2
T2T-ViT-24 (Yuan et al., 2021) 64 14.1 2242 82.3

CPVT-B (Chu et al., 2021b) 88 17.6 2242 82.3
Twins-PCPVT-L (Chu et al., 2021a) 61 9.8 2242 83.1

Swin-B (Liu et al., 2021) 88 15.4 2242 83.3
PVT-v2-B4 (Wang et al., 2022) 62 10.1 2242 83.6

Twins-SVT-L (Chu et al., 2021a) 99 15.1 2242 83.7
ConvNeXt-B (Liu et al., 2022b) 89 15.4 2242 83.8

ViT-L/16; (Dosovitskiy et al., 2020) 86 17.6 2242 85.1
PVT-v2-B5 (Wang et al., 2022) 82 11.8 2242 83.8

ViR-B/32 88 4.3 2242 75.7
ViR-S/16 22 4.2 2242 78.3

Hybrid ViR-S/16 31 3.3 2242 80.3
ViR-B/16 86 16.8 2242 81.3

Hybrid ViR-B/16 75.8 8.8 2242 82.4
ViR-L/14; 304 77.8 2242 84.9
ViR-L/14; 304 310.3 4482 86.0

5 ABLATION

5.1 COMPONENT STUDY

In this section, we study the effect of different component design choices on the overall performance
by examining the Top-1 and throughput trade-off. As the base model, we use a ViR-B/16 with a
Top-1 accuracy of 81.3% on ImageNet-1K dataset.
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Figure 2: Comparison of image throughput for ViT-B and ViR-B networks. Throughput is measured on an
A100 80GB NVIDIA GPU with batch sizes of 16 and 128. With batch size of 128, the parallel mode went OOM
for both ViT and ViR. At the 768 image size, chunkwise matches the throughput of parallel mode, and is also
the only configuration capable of processing 128 batch size at 1024 resolution.

First, we studied the effect of [class] token by removing it and using a global average pooling
layer before the classification head. In this case, the Top-1 accuracy decreases by 0.4%. As discussed
in Sec.3.2, the [class] plays an important role as it encapsulates global information from the
preceding tokens that can be useful for the task of image classification. In addition, the throughput
decreased by 1.90%.

We also investigated the effect of adding a gated function to the retention. For fair comparison,
we reduced the number of layers to match the same number of parameters as the base model.
However, this configuration decreased the image throughput and Top-1 accuracy by 2.91% and
0.3% respectively. Furthermore, we replaced the proposed GELU activation function with a Swish
activation function, as originally proposed in RetNet. This configuration slightly decreased the image
throughput by 1.04% while also lowering the Top-1 accuracy by 0.2%.

Design Component Throughput (im/sec) Top-1 (%)

No class token 1525 80.9
Gated retention 1516 81.0
Swish activation 1538 81.1
Key (k) scaling 1550 81.2
Multipass encoding 774 81.4
Base Model 1554 81.3

Table 2: Ablation study on the effect of different design
choices on ImageNet Top-1 accuracy vs throughput
performance tradeoff. The throughput is measured on
an A100 80GB NVIDIA GPU with a batch size of 128.
The base model is ViR-B/16.

We also investigated effect of scaling the
key tensor, in lie of the query. Although im-
age throughput and Top-1 accuracy remain
roughly unchanged, we observed some in-
stabilities with sudden changes in loss val-
ues during training. In addition, as opposed
to an autoregressive formulation, we also
studied the possibilities of using multipass
encoding by providing both left and right
token orders.

Our results show that although Top-1 ac-
curacy is slightly improved by +1.0%, the
throughput is severly impacted and reduced
by half. Hence, multipass encoding does
not provide an optimal performance vs. ef-
ficiency tradeoff in our case.

5.2 THROUGHPUT ANALYSIS

The primary motivation behind ViR is to find an attention formulation that allows for high inference
throughput without sacrificing model quality. In (Sun et al., 2023) the authors provide a brief overview
of attention methods, comparing scaling complexity, memory complexity, and resulting model quality,
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to arrive at the conclusion that the RetNet formulation achieves the best results in the ”impossible
triangle” of (1) inference cost, (2) training parallelism, and (3) model quality.

Related to computer vision, the sequence length N is derived from the input height H , width W , and
patch size P ((Dosovitskiy et al., 2020)), forming N “ HW

P 2 . Of note, because compute and memory
complexity scales quadratically with sequence length, for regular attention, we see a scaling rule of
O

´

H2W 2

P 4

¯

, which strongly inhibits pursuing higher resolution image processing.

Typical methods for working around this involve eliminating global attention in favor of local attention
((Liu et al., 2022a), (Li et al., 2022)), approximating the attention matrix ((Choromanski et al., 2021),
(Wang et al., 2020), (Kitaev et al., 2020)), or choosing a different formulation of attention that has
better scaling behavior ((Katharopoulos et al., 2020b), (Bolya et al., 2022), (Sun et al., 2023)).

Adopting the RetNet formulation allows us to understand the inference cost in three different modes:
Recurrent, Chunkwise, and Parallel. Because the recurrent formulation only depends on the previous
token to compute the next, the compute complexity wrt the input is OpNq. Parallel mode can process
all tokens simultaneously, but comes with the quadratic scaling complexity of OpN2q.

Chunkwise is a hybrid mode where one chunk only depends on the previous chunk, and within a
chunk, we adopt the parallel formulation. Let C be the chunk size, then the number of chunks is rNC s,
the per-chunk complexity is OpC2q, resulting in an overall complexity of O

`

N
CC2

˘

“ OpNCq.

Since modern inference hardware is able to simultaneously perform numerous math operations, the
chunkwise formulation is compelling because it allows us to trade-off saturating the compute hardware
(larger C) with computational complexity (smaller C). In addition to throughput improvements,
recurrent and chunkwise also adopt desirable memory properties. If the downstream application
doesn’t require patch features (e.g. a classification task), then the memory complexity for recurrent
is Op1q and for chunkwise is OpC2q. If patch features are required, then it becomes OpNq and
OpN ` C2q respectively.

It can be seen in figure 2 how throughput varies between ViT-B and ViR-B at different image sizes,
and particularly how ViR shows better scaling characteristics as resolution increases. At very high
resolution, only ViR-chunkwise is able to run on an A100 80GB NVIDIA GPU, as the parallel
variants run out of memory.

Due to the different compute complexity scaling rules between parallel and chunkwise, it is apparent
how chunkwise eventually matches parallel throughput, and then surpasses it at high resolution. Refer
to appendix A.1 and figure S.1 for how scaling works for ViT-L and ViR-L variants. Unsurprisingly,
parallel mode runs out of memory at lower resolution (768) whereas chunkwise is able to operate
under all settings.

5.3 HYBRID ARCHITECTURE

Due to lack of inductive biases such as locality of weight sharing in CNNs, ViTs often require more
training data or comprehensive data augmentation to achieve the same accuracy in relatively small to
medium-sized datasets (e.g. ImageNet-1K). The proposed ViR also face the same challenges in such
benchmarks. As a result, we have presented Hybrid ViR-S/16 and ViR-B/16 variants to demonstrate
the feasibility of integrating CNN-based encoders with ViR.

As presented in Table 1, Hybrid ViR-S/16 (80.3%) outperforms the counterpart ViT-S/16 (78.3%) by
a considerable +2.0% margin. Similarly, Hybrid ViR-B/16 (82.4%) surpasses the ViT-B/16 (81.3%)
by +1.1% in terms of Top-1 accuracy. These results confirm the possibility of achieving highly
competitive performance under in small-scale data regimes by combining CNN and ViR models. We
leave investigation of more advanced hybrid architectures to future efforts.

6 OUTLOOK

In this work, we demonstrated the first attempt in leveraging autoregressive vision transformers,
with dual parallel and recurrent representations, for image recognition tasks. We believe that the
proposed ViR can be further explored for other applications such as dense prediction tasks in which
ViTs struggle with high-resolution images due to the quadratic complexity of its self-attention layers.
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Other tasks such as autoregressive image generation can also benefit from this new formulation that
allows for fast inference of considerably longer token sequences.

7 CONCLUSION

In this work, we introduced a new class of computer vision models, referred to as Vision Retention
Networks (ViR), with dual parallel and recurrent formulations. The equivalency of these formulations
allow for desired properties such as training parallelism and fast inference while maintaining a
great performance. In addition, a hybrid formulation, denoted as chunkwise, enables processing of
longer sequences with considerably more efficient time and space complexities. We have trained and
tested the proposed ViR on ImageNet-1K and ImageNet-21K datasets with different resolutions and
achieved competitive performance. Hence, this validates the effectiveness of the proposed ViR in
different data regimes and image resolutions. We believe the proposed ViR could be the foundation of
a new class of efficient vision-friendly models that offer training and inference flexibility for a variety
of applications.
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A APPENDIX

A.1 THROUGHPUT ANALYSIS

Further results for the throughput analysis provided for ViT and ViR large models, along with a full
table of results.
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Figure S.1: Comparison of image throughput for ViT-L and ViR-L networks. Throughput is measured
on A100 80GB GPU with batch sizes of 16 and 128. With BS P r768, 128s, the parallel mode went
OOM for both ViT and ViR. At the 768 image size, chunkwise matches the throughput of parallel
mode, and is also the only configuration capable of BS=128 at 768 or 1024px.
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Table S.1: Full throughput analysis results
Model Type Batch Size Img Size Mode Throughput (im/sec)

vit-b 16 224 parallel 1472.4778
vit-b 128 224 parallel 1691.0991
vit-b 16 384 parallel 413.6345
vit-b 128 384 parallel 439.6699
vit-b 16 512 parallel 176.5976
vit-b 128 512 parallel 179.8491
vit-b 16 768 parallel 45.0924
vit-b 128 768 parallel 44.8039
vit-b 16 1024 parallel 17.8864
vit-b 128 1024 parallel OOM
vir-b 16 224 parallel 1363.4267
vir-b 16 224 chunkwise 525.3381
vir-b 128 224 parallel 1554.5852
vir-b 128 224 chunkwise 558.4554
vir-b 16 384 parallel 422.9626
vir-b 16 384 chunkwise 176.7866
vir-b 128 384 parallel 438.0182
vir-b 128 384 chunkwise 185.7153
vir-b 16 512 parallel 200.6345
vir-b 16 512 chunkwise 100.1816
vir-b 128 512 parallel 207.2452
vir-b 128 512 chunkwise 103.7436
vir-b 16 768 parallel 61.4616
vir-b 16 768 chunkwise 44.2865
vir-b 128 768 parallel 61.1587
vir-b 128 768 chunkwise 45.8153
vir-b 16 1024 parallel 23.6144
vir-b 16 1024 chunkwise 24.7994
vir-b 128 1024 parallel OOM
vir-b 128 1024 chunkwise 25.7132
vit-l 16 224 parallel 536.0380
vit-l 128 224 parallel 564.4117
vit-l 16 384 parallel 146.0362
vit-l 128 384 parallel 151.0871
vit-l 16 512 parallel 62.6439
vit-l 128 512 parallel 62.8844
vit-l 16 768 parallel 16.3647
vit-l 128 768 parallel OOM
vit-l 16 1024 parallel 6.5186
vit-l 128 1024 parallel OOM
vir-l 16 224 parallel 489.3484
vir-l 16 224 chunkwise 195.1421
vir-l 128 224 parallel 521.3833
vir-l 128 224 chunkwise 200.8896
vir-l 16 384 parallel 145.2371
vir-l 16 384 chunkwise 63.6531
vir-l 128 384 parallel 150.8908
vir-l 128 384 chunkwise 67.2084
vir-l 16 512 parallel 70.9078
vir-l 16 512 chunkwise 35.8030
vir-l 128 512 parallel 72.4739
vir-l 128 512 chunkwise 37.5940
vir-l 16 768 parallel 21.9964
vir-l 16 768 chunkwise 15.8472
vir-l 128 768 parallel OOM
vir-l 128 768 chunkwise 16.6237
vir-l 16 1024 parallel 8.5903
vir-l 16 1024 chunkwise 8.8889
vir-l 128 1024 parallel OOM
vir-l 128 1024 chunkwise 9.3387
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