
Learning Dynamics and Structure of Complex Systems
Using Graph Neural Networks

Zhe Li †,1,3 ∗

zhel@bcm.edu
Andreas S. Tolias 1,2,3 Xaq Pitkow †,1,2,3

xaq@rice.edu

Abstract

Many complex systems are composed of interacting parts, and the underlying
laws are usually simple and universal. While graph neural networks provide
a useful relational inductive bias for modeling such systems, generalization to
new system instances of the same type is less studied. In this work we trained
graph neural networks to fit time series from an example nonlinear dynamical
system, the belief propagation algorithm. We found simple interpretations of the
learned representation and model components, and they are consistent with core
properties of the probabilistic inference algorithm. We successfully identified
a ‘graph translator’ between the statistical attributes in belief propagation and
parameters of the corresponding trained network, and showed that it enables two
types of novel generalization: to recover the underlying structure of a new system
instance based solely on time series observations, and to construct a new network
from this structure directly. Our results demonstrated a path towards understanding
both dynamics and structure of a complex system and how such understanding can
be used for generalization.

1 Introduction

Many real world problems involve dynamical systems composed of interacting parts, such as planet
movement, social networks, protein folding, neural circuits, electrical grids, etc. While a system can
show complex and rich behavior, the elementary rules about the interaction are usually much simpler.
The ability to abstract these simple rules from complex dynamics is one hallmark of intelligence, as it
is a key feature of understanding.

When modeling such a dynamical system, we can usually exploit the underlying symmetry and
impose certain canonical assumptions on the model. Graph neural networks (GNN) explicitly model
each part of the system, and use local messages to model the interaction among them (Scarselli et al.,
2009; Li et al., 2016; Battaglia et al., 2018; Ying et al., 2018). While GNN framework has been used
to study a variety of dynamical systems (Gilmer et al., 2017; Watters et al., 2017; Kipf et al., 2018),
commonly it is used for modeling one specific instance of the system (Battaglia et al., 2016; Bapst
et al., 2020). As a result it is not trivial to disentangle the different aspects of the learned system, and
interpret components of the trained model (Cranmer et al., 2020). In this study, we propose to model
multiple instances of the same type of system, and explicitly learn the universal dynamics which are
shared across all instances, as well as the specific structure of each individual one. We analyze to
disentangle these two aspects of the learned GNN models and show how this understanding enables
generalization to new problem instances.

We choose the belief propagation (BP) algorithm on probabilistic graphical model (PGM) as the
dynamical system of interest. BP performs probabilistic inference on a set of random variables and

∗1 Department of Neuroscience, Baylor College of Medicine. 2 Department of Electrical and Computer
Engineering, Rice University. 3 Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine

A causal view on dynamical systems workshop at the 36th Conference on Neural Information Processing Systems
(NeurIPS 2022).



their statistical interactions via iterative computations. The algorithm itself is an important operation
as it marginalizes out nuisance variables efficiently (approximately for loopy graphs), which is useful
in many situations. Given the time series of BP outputs, we aim to understand how they change over
time (dynamics) and to recover the underlying PGM (structure).

In this report, we begin by introducing the mathematical definition of GNNs used in our work. We
next show the results of fitting GNN models to the BP outputs on time-varying multivariate Gaussian
distributions, and analyze the representation and components of trained models. We then develop
‘graph translator’ that links between the structural parameters of GNN models and static properties of
Gaussian distributions, and show how it enables two types of generalization to new PGM instances.
Lastly, we discuss the limitations and future directions of our approach.

2 Background

2.1 Graph neural network

A graph neural network (Scarselli et al., 2009; Li et al., 2016; Battaglia et al., 2018) is a message-
passing algorithm defined over a graph G = (V, E) with vertices V and edges E . For a graph of size
N , V = {1, . . . , N} and E ⊆ {(i, j) | (i, j) ∈ V2 ∧ i ̸= j} where (i, j) represents a directed edge
from vertex j to i. Each vertex i is associated with a vertex parameter vi, and each edge (i, j) is
associated with an edge parameter eij . We assume that all vertex parameters vi are of the same
dimension Dv , and all edge parameters eij are of dimension De.

We use GNNs to model observations of a dynamical system at discrete time points. At each time
point t, vertex i receives a Dx-dimensional external input xt

i. We take Dx to be the same for all
vertices, and Dx = 0 represents purely autonomous dynamics of a system. The state of vertex i
at time t is denoted as sti, which is a vector of dimension Ds. Vertex states get updated by both
time-varying inputs (when Dx > 0) and the lateral interaction from neighboring vertices in the form
of messages.

Along the edge (i, j), a pairwise message mt
ij of dimension Dm is generated by a message function

M(·),
mt

ij = M(sti, s
t
j ; eij ,ΘM), (1)

where ΘM is the parameter of M(·). All incoming messages on vertex i are then aggregated via an
aggregation function A(·),

mt
i = A({mt

ij | (i, j) ∈ E}). (2)

A(·) takes the set of pairwise messages as input, ignoring their order, hence it is invariant to
permutation. Simple choices of A(·) include element-wise summation and max pooling, while more
complicated mechanisms such as attention-based aggregation can also be used (Veličković et al.,
2018; Liao et al., 2019). We choose summation in this study. The vertex state is updated by an update
function U(·),

st+1
i = U(sti,xt

i,m
t
i;vi,ΘU ), (3)

where ΘU is the parameter of U(·). And finally, the GNN output is the projection of states via a
readout function R(·) that applies to every vertex separately,

ot
i = R(sti;ΘR), (4)

where ΘR is the parameter of R(·).
There is an intrinsic degeneracy among M(·), U(·) and R(·): the complexity of one function may be
compensated by the other two. In this study, we use simple linear readouts, so all nonlinearities must
be captured by message and update functions. We also assume the readout function R(·) does not
depend on vertex parameters vi.

2.2 Belief propagation on probabilistic graph models

A probabilistic graph model (PGM) describes a joint distribution of N random variables θ1, . . . , θN .
Here we focus on PGMs with pairwise interactions. In a graph of size N , each vertex i is associated

2



with a singleton potential ϕi(θi), and each undirected edge (i, j) is associated with a pairwise potential
ψij(θi, θj). The joint distribution of (θ1, . . . , θN ) is proportional to the product of all potentials,

p(θ1, . . . , θN ) ∝
∏
i∈V

ϕi(θi) ·
∏

(i,j)∈E

ψij(θi, θj). (5)

Marginalization of the joint distribution is one of the most used computation in statistical analysis,
and many different methods have been developed for it, including belief propagation (BP), which
is an iterative algorithm that operates on a PGM. At each time point t, BP estimates the marginal
distribution pi(θi) as p̂ti(θi). BP is not guaranteed to converge, and even when it converges it is not
guaranteed to converge to the true marginal distribution, however it provides a decent estimation in
many cases (Murphy et al., 1999; Wainwright et al., 2003).

To make the BP dynamics more interesting, we use time-varying singleton potentials ϕti(θi) while
keeping the pairwise potential ψij(θi, θj) constant. This simulates a system with time-varying
local evidence while the coupling among different parts is fixed. BP output p̂ti(xi) therefore is the
continuous estimate of pti(θi) determined by ϕti(θi) and ψij(θi, θj).

3 Related work

GNNs have been widely used to model time series of physical systems, often about predicting
trajectories of interacting objects. In Chang et al. (2017); Bapst et al. (2020); Sanchez-Gonzalez et al.
(2020), the adjacency matrix of the interaction graph is determined by spatial proximity instead of
being learned from data, therefore are not applicable for systems in which ‘neighborhood’ is not
clearly defined (for instance probabilistic inference). Chang et al. (2017) demonstrates GNN can
extrapolate to new environments containing more objects, but the structural properties of the system,
namely the mass, is the same for all objects and environments.

Chang et al. (2017) uses GNNs to infer latent properties such as object mass. Similarly, Kipf et al.
(2018) uses GNN to infer interaction type in a multi-object system. However, the vertex and edge
properties in these studies are designed as discrete values. Our work instead investigates a spectrum
of continuous graph properties and reveals the intrinsic low-dimensional structure of them.

Cranmer et al. (2020) encourages a GNN model to learn compact internal representation, and
performs symbolic regression based on it. Our work reveals low-dimensional structure of GNNs also
through regularization. We analyze states and messages as vectors instead of just analyzing individual
components, hence avoid the loss of information when representation is not perfectly factorized.
Also, we manage to disentangle the structural properties of the system (e.g. mass, charge) instead of
assuming they are known. The graph translator proposed in our work can be seen as a more general
form of symbolic regression which enables generalization to new instances of complex system.

Besides modeling physical systems, past work has used GNNs for probabilistic inference (Qu et al.,
2019; Garcia Satorras et al., 2019). GNN is often proposed as a better alternative to traditional BP
algorithm, especially on loopy graphs (Yoon et al., 2019) or when higher-order statistics is critical
(Zhang et al., 2019; Fei & Pitkow, 2021). Our work instead focuses on using GNN to model BP
algorithm as a dynamical system, whether it produces accurate probabilistic inference is outside the
scope of this work.

4 Methods

4.1 Multi-graph training

An important merit of GNN is that the dynamical and structural aspects of a system are represented
separately. The canonical functions characterize the dynamics “law” of a certain type of system, such
as the BP algorithm, while the graph parameters describe the structure of a particular system instance,
e.g. the pairwise coupling in a PGM.

Because both aspects affect the system behavior, it is not trivial to disentangle them based on the
observations of the system. In order to inspect the effect of different structures while keeping the
dynamics fixed, we need a large number of vertices and edges that cover a wide range of parameters,
which suggests using a huge graph. However, training GNN on a huge fully connected graph is

3



computationally expensive. Instead, a more feasible approach is to train multiple medium graphs
simultaneously. It is equivalent to training on a huge graph with the knowledge that it is a union of
several disconnected components.

In this study, we prepare BP traces on multiple PGMs and simultaneously train multiple GNNs
corresponding to each. The GNNs share the same canonical functions but different graph parameters
for each individual PGM. The training objective function is simply the summation of loss function
over all PGMs (Fig. 1a). Each individual loss is designed to be proportional to the amount of data,
therefore the trained canonical functions are naturally biased towards the PGMs with more training
data.

...

Graph 1 Graph 2 Graph G

Loss: L=L1+L2+…+LG

eij

vi

Message M(⋅)
Update U(⋅)
Readout R(⋅)

b

a c

Figure 1: Schematic of multi-graph training and example traces of BP algorithm on a multivariate
Gaussian distribution. (a) While each GNN has its own graph parameters, the canonical functions
are shared by all. Canonical functions and graph parameters represent the dynamical and structural
aspects of the system, respectively. (b) Bias sequence bti (Eq. 6) serves as the input to GNN models,
and the noisy BP estimation of marginal mean µt

i (Eq. 9) is the target for GNN output to fit. Each
variable is plotted with a different color. (c) One example of the 36 PGMs. Only the off-diagonal part
of precision matrix A is shown, characterizing the coupling among variables.

We categorize the GNN parameters as dynamical parameters ΘD = ΘM ∪ΘU ∪ΘR and structural
parameters ΘS = {eij} ∪ {vi}. Denoting the number of GNN models as G, we need to learn one
set of shared dynamical parameters ΘD, and G sets of structure parameters ΘS

1 , . . . ,Θ
S
G for each

PGM respectively.

4.2 Problem formulation

We study the BP algorithm on a time-varying multivariate Gaussian distribution defined by

ϕti(θi) = exp
(
−ai

2
θ2i + btiθi

)
, (6)

ψij(θi, θj) = exp (−Jijθiθj) . (7)

The joint distribution p(θ) can be rewritten as

p(θ) ∝ exp

(
−1

2
θTAθ + bt

T
θ

)
, (8)

with Aii = ai,Aij = Aji = Jij as the precision matrix. The bias time series bt is a sequence of
constant values with random duration following a Poisson process, while switching between periods
are smoothed by a Hamming window.

Since the marginal distributions pi(θi) are also Gaussian distributions, BP on Gaussian distribution
(Bickson, 2009) returns its single-variable means µt

i and standard deviations σt
i , i.e.,

p̂ti(θi) ∝ exp

(
− 1

2σt
i
2

(
θi − µt

i

)2)
. (9)

4



When converged, these means are exact but the standard deviations are approximate for loopy graphs
(Weiss & Freeman, 2001). We use a damped version of the BP algorithm so that belief update is
slower, and add processing noise at each time step (??). The damping parameter is adjusted so that
transient dynamics makes up a significant portion of the full trial. When the precision matrix A is
constant, the estimated standard deviation σt

i quickly converges to the true value 1√
ai

independent of
any time-dependent bias terms, so we focus on µt

i only. An example trial of BP trace is shown in
Fig. 1b.

The inputs to GNN are xt
i = [bti], and the targets for the GNN to match are defined as yt

i = [µt
i]. The

GNN output ot
i (Eq. 4) is constructed to have the same dimension as yt

i, in this case of dimension 1.
We use the squared error L =

∑
i,t ∥ot

i − yt
i∥2 as the loss function. As introduced in Section 4.1,

the losses on all PGMs are summed up as the overall objective function. In practice, each training
batch is fetched from a randomly selected PGM. Our loss includes L2 regularization on the structural
parameters ΘS = {eij} ∪ {vi}, which turn out to be critical in disentangling ΘS from ΘD (see
Section 5.5).

BP traces for 36 random PGMs are generated, using different number of variables, number of trials
and time duration for each. The graph density and coupling strengths are approximately the same for
all PGMs. More details can be found in Appendix D.

5 Results

5.1 Architecture comparison

The GNN architecture is determined by various hyper-parameters, including the underlying graph
connectivity E , the dimensions Dv , De, Ds, Dm, and hidden layer sizes of canonical functions M(·)
and U(·). We study the effect of hyper-parameters by performing an extensive search of model
configurations and comparing the fitting quality of the trained GNNs. We first define a set of possible
values for each hyper-parameter, randomly choose combinations for a GNN architecture, and find
the best architecture conditioned on each value to examine the effect of this hyper-parameter. For
example, if the candidate values for edge dimension De are {0, 2, 4, 8}, the best architectures found
by hyper-parameter search conditioned on each De value are compared.

a b

Figure 2: GNN architecture comparison and the best trained model. (a) The distribution of log
mean squared errors (MSE) in the held-out testing set for the best GNN conditioned on each hyper-
parameter value. Graph connectivity E , vertex dimension Dv, edge dimension De, state dimension
Ds, message dimension Dm and the hidden layer size of message function M(·) are examined.
Dashed line is the baseline performance, which is the median of MSE if noiseless BP traces is treated
as prediction. (b) BP target yt

i against GNN output ot
i of the best trained model.

The graph connectivity E is treated as a hyper-parameter because it is difficult to learn it in an
end-to-end manner. Without any prior knowledge of the structure of a system, the only fair choices
are a null graph (E = ∅) or a complete graph (E = {(i, j) | (i, j) ∈ V2 ∧ i ̸= j}). The former
(‘null’) assumes no coupling among variables, while the latter (‘full’) assumes all pairs of coupling
are possible. Not surprisingly, ‘full’ GNNs fit data better than ‘null’ GNNs (Fig. 2a), demonstrating
the necessity of pairwise messages for explaining the traces in our BP example. It is worth mentioning
that even the ‘null’ GNNs produce good fit (R2 = 0.923), because BP estimates µt

i in this example
are largely determined by the singleton potentials ϕi(xi) and only slightly ‘pulled’ by other variables.
The reason for using the moderately coupled system is to avoid numerical instability of BP.

5



We next examine the effects of model component dimensions, including Dv, De, Ds and Dm. The
results (Fig. 2a) show that a non-zero edge dimension is critical in fitting the BP traces on Gaussian
distribution; the real coupling is a scalar and thus of dimension 1. Surprisingly, the vertex dimension
does not have to be greater than zero, even though the precision parameter Aii is a vertex attribute
of dimension 1. We will discuss how to identify ground truth dimension through graph translators
in Section 6. There is a small benefit of increasing state dimension Ds, but no significant effect of
message dimension Dm. It should be noticed that the best architecture for each conditioned value
is usually different. For example, the best configuration is (Dv = 0, De = 8) for Dm = 2 and
(Dv = 4, Dv = 1) for Dm = 12.

Lastly we examine the effect of message function complexity characterized by the hidden layer sizes
in M(·), and find that nonlinearity in the message is crucial for GNNs to fit well (Fig. 2a). Due to
the high cost of hyper-parameter search, we do not compare different update functions, but fix it as a
GRU function modulated by the vertex parameter vi. A more thorough search is left for future work.

To summarize, the results show strong dependency of fitting quality on graph connectivity, edge
dimension and the message function nonlinearity, which indicates that in order to fit this dataset well,
nonlinear messages between vertices are essential, and the GNN edges need to be parameterized.

5.2 GNN training result

One of the best architecture we find uses ‘full’ connectivity, De = 2, Dv = 2, Dh = 12, Dm = 12
and a message function with one hidden layer of size 16. After a short initial burn-in period, the
outputs of the trained GNNs faithfully reproduce the BP traces on the held-out testing set (R2 = 0.988,
Fig. 2b). Not only do the GNN outputs reach the same equilibrium as BP targets within each input
period, but the temporal profile at each input switch is also accurate. An example trial is shown in
Appendix E (Fig. 8).

5.3 State and message manifold

We next analyze the states and messages of this well-trained GNN. We gathered these time series from
all graphs and performed principal component analysis (PCA) on them. As expected, GNN states and
messages only occupy a small portion of the high-dimensional space. The effective dimension of the

manifold is defined as D̃ =
(
∑

i λi)
2∑

i λ
2
i

, where λi denotes the variance of the i-th PC. When the state

dimension is set to Ds = 12, the effective dimension of state manifold is only D̃s ≈ 1.74 (Fig. 3a).
We visualize GNN states in 2D and find they are organized by vertices. States at each vertex form its
own curved 1D manifold, slightly separated for different vertices (Fig. 3b).

a b c d

Figure 3: Manifold analysis of GNN states and messages. (a) PCA spectrum of states on all vertices
in all GNNs. The effective dimension is D̃s ≈ 1.74 (for Ds = 12). (b) Projection of states sti of
one GNN onto the space spanned by first two state PCs. Each point is colored by the parameter of
vertex it belongs to, i.e. the diagonal element of precision matrix A. (c) PCA spectrum of messages
on all edges in all GNNs. The effective dimension is D̃m ≈ 3.37 (for Dm = 12). (d) Projection of
messages mt

ij of one GNN onto the space spanned by first two message PCs. Each point is colored
by the parameter of the edge it travels on, i.e. the coupling strength Aij .

We perform the same analysis on pairwise messages as well. The effective dimension of messages is
D̃m ≈ 3.37 for message dimension Dm = 12 (Fig. 3c). Different manifolds occupy the message
space with different orientations and offsets. Though messages gathered from all edges are not as
structured as states, those on individual edges also trace out its own 1D manifold (Fig. 3d). We

6



analyze the dimensionality of aggregated messages mt
i (Eq. 2) and find they also lie approximately

on a 1D manifold specific to each vertex (Appendix F).

5.4 Interpretable canonical functions

With a clearer picture of the GNN states and messages, we next analyze the learned canonical
functions U(·) and M(·). We take advantage of the fact that the states and messages conditioned on a
vertex or an edge approximately lie on a curved 1-D manifold (Section 5.3). Therefore we can project
the states or messages on the leading PC for that vertex or edge, and use this projection as a proxy to
visualize how these functions depend on their inputs. Although inputs and outputs of U(·) and M(·)
are vectors, we use scalar proxies as coordinates to plot heat maps of canoncial functions (Fig. 4).

a b

Figure 4: Visualizations of example update and message functions for a randomly selected vertex
and edge. Since the high-dimensional states and messages lie on approximately 1-D manifolds, we
plot these quantities according to their projection onto their first PCs. (a) State change as a function
of aggregated message and the external input. (b) Pairwise message as a function of state at source
vertex i and target vertex j.

For a GNN vertex with parameter vi, the update function U(·) (Eq. 3) is a function of sti, x
t
i and

mt
i, in which the mt

i is the aggregated message for vertex i at time t. The input xt
i is the external

input, which is simply the local bias bti in this case. We denote the scalar proxies as s̃ti, s̃
t+1
i and m̃t

i

respectively. We then focus on the state change ∆s̃ti = s̃t+1
i − s̃ti as a function of xt

i and m̃t
i. Fig. 4a

shows one example, in which the state change ∆s̃ti is positive when m̃t
i is small and xt

i is large, and
is negative otherwise. Hence ∆s̃ti encodes the discrepancy between aggregated message m̃t

i and
the external input xt

i. For a GNN edge with parameter eij , the message function M(·) (Eq. 1) is a
function of sti and stj that returns mt

ij . Again we denote corresponding scalar proxies as s̃ti, s̃
t
j and

m̃t
ij . It appears that m̃t

ij changes monotonically with either sti or stj , while depending mostly on the
source vertex state s̃tj (Fig. 4b).

5.5 Graph translator

a b

Figure 5: Low-dimensional structure of learned graph parameters. (a) Vertex parameters of dimension
Dv = 2 from all trained GNNs, colored according to the local precision parameter Aii. (b) Edge
parameters of dimension De = 2 from all trained GNNs, colored according to the coupling strength
parameter Aij .

The structural parameters ΘS = {eij} ∪ {vi} of each individual GNN are learned independently,
and they should relate to the true parameters of the corresponding PGMs. In a multivariate Gaussian
distribution, a local precision parameter Aii is associated with each variable, and a coupling strength
parameter Aij (Eq. 6–8) is associated with each pair of variables. The hypothesis is that there exists a
mapping between GNN vertex parameters vi and Aii, as well as between GNN edge parameters eij
and Aij . We will learn this mapping between GNN structural parameters and the static attributes of

7



the target nonlinear dynamical system, and term it a ‘graph translator’ because the conversion goes
both ways.

Before learning the translators, we first look at the distribution of vi and eij . Though Dv = De = 2
in the trained GNN, both vertex parameters and edge parameters approximately form a 1-D manifold.
Moreover, locations on the two manifolds are continuously mapped to the corresponding attributes of
PGM (Fig. 5).

The explicit structure that emerges in parameter space depends critically on the regularization of
structural parameters during training. Such low-dimensional structure does not show up without the
L2 norm regularization on vi and eij . Well-trained but unregularized GNNs still give approximately
the same good predictions of BP traces, but the effective dimensionality for vertex and edge parameters
are very close to their embedding dimensions of Dv and De (Appendix G).

The graph translator we train is simply an MLP with two hidden layers, though it can be any regression
model that predicts Aii from vi (vertex translator) or Aij from eij (edge translator), or the opposite
direction. To quantitatively evaluate graph translators, we divide all G graphs into training, validation
and testing sets. Only the original PGM attributes (e.g. Aii and Aij) of training and validation
graphs will be used to learn the graph translator, and the testing graphs will be used to evaluate
how well the translator behaves. The training graphs are used to train the translator directly, and
the validation graphs are only used for early stopping. We also assume it is expensive to obtain the
original graph attributes (e.g. in neuroscience applications it is laborious to measure synapse strength
by patch-clamping experiments), so we use only a subset of the data in training and validation graphs.
Specifically, only 80% of the vertices or edges are randomly selected for training the corresponding
graph translator. All vertices and edges in the testing graphs are used for evaluation.

The translated local precision Aii and coupling strength Aij both match the ground truth well, with
R2 = 0.946 and R2 = 0.867 respectively (Fig. 6a). Recovered coupling matrix Aij looks similar
to the ground truth (Fig. 6b), revealing the correct interactions among different random variables.
Since we do not enforce any symmetry about GNN edges eij , the recovered coupling matrix is not
perfectly symmetric. It is straightforward to reveal the underlying structural connectivity between
variables by thresholding the coupling strength (Appendix H).

a b

Figure 6: Translating from GNN graph parameters to precision matrix. (a) Both the vertex translator
and edge translator predict attributes of PGM on the testing graphs. (b) The coupling matrix Aij

(i ̸= j) recovered by the edge translator closely resembles the ground truth. Diagonal part of A is not
shown for better visualization.

Graph translators can also be used in the reverse direction to directly construct GNN models for a
given PGM. The new GNN uses old dynamical parameter ΘD with the new structural parameter ΘS

translated from precision matrix A. We compare the constructed GNNs with two control models. The
first is the best trained colorless GNN with Dv = De = 0, i.e. vertices and edges are homogeneous in
a graph. Colorless GNNs can be constructed for new PGM directly, without using a graph translator.
The second control is the best-trained GNNs with the same parameter dimension as the constructed
one, namely the GNNs we obtained earlier for the testing graphs.

The graph parameters of constructed and trained GNNs are close to each other (Fig. 7a). The
constructed v̂i and êij for the testing PGMs are close to the optimal values v∗

i and e∗ij from the
corresponding trained GNNs. Although the strong bias terms (bti) ensure that even disconnected
GNNs would capture some amount of the correct marginals, the colorless GNNs match true traces
worst, indicating the benefits of parameterized edges. The trained GNNs match true traces best, since
they have access to trace data of the new PGM. The translated GNNs, though never trained on these
BP traces, can generate credible traces (Fig. 7b).

8



a

b

c

Figure 7: Translating a precision matrix to GNN graph parameters. (a) Comparison of graph
parameters between the constructed GNN (v̂i, êij) and the trained GNN (v∗

i , e∗ij). (b) BP targets
against GNN outputs for the colorless GNN (Dv = De = 0), the trained GNN and the translated
GNN. Data is colored by vertices. (c) An example trial comparing the BP target and GNN outputs,
only 6 random variables are shown for clarity.

6 Conclusion and discussions

Using the belief propagation (BP) algorithm on Gaussian probabilistic graph models (PGM) as an
example nonlinear dynamical system, we show that graph neural network (GNN) models can be
trained on multiple instances of the same type of complex system. Via architecture search, we identify
that messages generated by a nonlinear function of states and heterogeneous GNN edges are needed
for fitting the BP traces well. We also show that the representation and canonical functions of GNN
models have interpretations that are consistent with the principle of probabilistic inference. We
further propose the novel concept of a graph translator that links graph parameters in GNN models to
graph attributes of the original system. We show that the learned graph translator for Gaussian BP
enables two types of generalization: recovering the precision matrix of a new Gaussian PGM from
the traces of BP performing inference, and to construct GNN model for a new Gaussian PGM in order
to reproduce BP algorithm without knowing its implementation. Unlike generalization to new inputs,
such generalization to new instances of the same system builds on the successful disentanglement
between dynamics and structure.

We find regularization is crucial to disentangle dynamical parameters ΘD = ΘM ∪ΘU ∪ΘR and
structural parameters ΘS = {eij} ∪ {vi}. When no regularization is used during GNN training, the
learned ΘS does not show clear structure despite the fact that multiple PGMs are trained together.
L2 norm regularization on vertex and edge parameters vi and eij is used in our study, but other
options might also work, e.g. regularization on states si or messages mij . We also observed that
low-dimensional structure of GNN states si and messages mij is still present when no regularization
is used (Appendix G).

Though BP on Gaussian PGM is an important probabilistic inference algorithm, its dynamics are
undoubtedly still simple. In future work we would like to test our framework in other complex
systems such as celestial mechanics, epidemiology, population ecology, and neuroscience. More
advanced GNN architecture is perhaps necessary for these applications, such as stacking GNN layers
or attention-based message aggregation. One straightforward next step is to study PGMs with more
complicated couplings, for instance a multivariate von Mises distribution whose pairwise potential
ψij(θi, θj) is specified by 4 free parameters. We predict that GNN edge dimension De has to be at
least 4 to faithfully model BP traces on such PGMs.

In this study, we make zero assumption about the connectivity of the underlying graph, which leaves
us to choose either a null graph or a fully connected one. However the connectivity can also be
learned in principle if proper inductive bias is imposed, e.g. a sparsity prior, proximity rules, etc. In
fact, one can try to estimate the connectivity from the learned fully connected edge parameters eij

9



and use these estimates as the graph’s edges E for the next iteration of GNN training. Approaches
that learn connectivity end-to-end should also be explored.

From fitting quality alone, we obtain a basic picture on the dimensions of the complex system (Fig. 2),
but identification of the exact values of Dv, De, Ds and Dm is still an open question. Preliminary
data suggests that it is possible to identify them using generalization performance on new instances
(Fig. 7) as a metric. Only the GNNs with correct assumptions about dimensions can accurately
predict system behavior on a new instance, because either underestimation or overestimation will
result ‘incorrectly’ constructed GNNs. We will examine the results further, also include Dv = 1 and
De = 1 in the architecture search.

Acknowledgements

The authors thank Rajkumar Raju, Yicheng Fei, and KiJung Yoon for helpful conversations. This
work was supported in part by NSF CAREER grant 1552868 to XP, NSF NeuroNex grant 1707400
to AT and XP, an award from the McNair Foundation to XP, AFOSR grant FA9550-21-1-0422 in the
Cognitive and Computational Neuroscience program to XP, and the Intelligence Advanced Research
Projects Activity (IARPA) via Department of Interior/Interior Business Center (DoI/IBC) contract
number D16PC00003 to AT and XP. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright annotation thereon. Disclaimer:
the views and conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of IARPA,
DoI/IBC, or the U.S. Government.

Disclosed interests: AT and XP are co-founders of Upload AI, LLC.

References
Bapst, V., Keck, T., Grabska-Barwińska, A., Donner, C., Cubuk, E. D., Schoenholz, S. S., Obika,

A., Nelson, A. W. R., Back, T., Hassabis, D., and Kohli, P. Unveiling the predictive power of
static structure in glassy systems. Nature Physics, 16(4):448–454, 2020. ISSN 1745-2481. doi:
10.1038/s41567-020-0842-8.

Battaglia, P., Pascanu, R., Lai, M., Jimenez Rezende, D., and kavukcuoglu, k. Interaction networks
for learning about objects, relations and physics. In Lee, D. D., Sugiyama, M., Luxburg, U. V.,
Guyon, I., and Garnett, R. (eds.), Advances in Neural Information Processing Systems 29, pp.
4502–4510. Curran Associates, Inc., 2016.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M.,
Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gulcehre, C., Song, F., Ballard, A., Gilmer, J.,
Dahl, G., Vaswani, A., Allen, K., Nash, C., Langston, V., Dyer, C., Heess, N., Wierstra, D., Kohli,
P., Botvinick, M., Vinyals, O., Li, Y., and Pascanu, R. Relational inductive biases, deep learning,
and graph networks. ArXiv e-prints, Jun 2018.

Bickson, D. Gaussian belief propagation: theory and application. PhD thesis, The Hebrew University
of Jerusalem, Nov 2009.

Chang, M., Ullman, T., Torralba, A., and Tenenbaum, J. B. A compositional object-based approach to
learning physical dynamics. In 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.
URL https://openreview.net/forum?id=Bkab5dqxe.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio,
Y. Learning phrase representations using RNN encoder–decoder for statistical machine translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1724–1734. Association for Computational Linguistics, 2014. doi: 10.3115/v1/
d14-1179.

Cranmer, M., Sanchez-Gonzalez, A., Battaglia, P., Xu, R., Cranmer, K., Spergel, D., and Ho, S.
Discovering symbolic models from deep learning with inductive biases. arXiv e-prints, June 2020.

10

https://openreview.net/forum?id=Bkab5dqxe


Fei, Y. and Pitkow, X. Generalization of graph network inferences in higher-order probabilistic
graphical models. arXiv preprint arXiv:2107.05729, 2021.

Garcia Satorras, V., Akata, Z., and Welling, M. Combining generative and discriminative models for
hybrid inference. Advances in Neural Information Processing Systems, 32:13825–13835, 2019.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. Neural message passing for
quantum chemistry. In Precup, D. and Teh, Y. W. (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.
1263–1272, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel, R. Neural relational inference for
interacting systems. ArXiv e-prints, February 2018.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. Gated graph sequence neural networks. In In
Proceedings of the International Conference on Learning Representations, 11 2016.

Liao, R., Li, Y., Song, Y., Wang, S., Hamilton, W., Duvenaud, D. K., Urtasun, R., and Zemel, R.
Efficient graph generation with graph recurrent attention networks. Advances in Neural Information
Processing Systems, 32:4255–4265, 2019.

Murphy, K. P., Weiss, Y., and Jordan, M. I. Loopy belief propagation for approximate inference:
An empirical study. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial
Intelligence, UAI’99, pp. 467–475, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers
Inc. ISBN 1558606149.

Qu, M., Bengio, Y., and Tang, J. GMNN: Graph Markov neural networks. In Chaudhuri, K. and
Salakhutdinov, R. (eds.), Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 5241–5250. PMLR, 09–15 Jun
2019.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., and Battaglia, P. Learning to
simulate complex physics with graph networks. In III, H. D. and Singh, A. (eds.), Proceedings of
the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 8459–8468. PMLR, 13–18 Jul 2020.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. The graph neural network
model. IEEE Transactions on Neural Networks, 20(1):61–80, Jan 2009. ISSN 1045-9227. doi:
10.1109/TNN.2008.2005605.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. Graph attention
networks. In International Conference on Learning Representations, 2018. URL https://
openreview.net/forum?id=rJXMpikCZ.

Wainwright, M., Jaakkola, T., and Willsky, A. Tree-based reparameterization framework for analysis
of sum-product and related algorithms. IEEE Transactions on Information Theory, 49(5):1120–
1146, 2003. doi: 10.1109/TIT.2003.810642.

Watters, N., Zoran, D., Weber, T., Battaglia, P., Pascanu, R., and Tacchetti, A. Visual interaction
networks: Learning a physics simulator from video. In Guyon, I., Luxburg, U. V., Bengio, S.,
Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

Weiss, Y. and Freeman, W. T. Correctness of belief propagation in gaussian graphical models of
arbitrary topology. Neural computation, 13(10):2173–2200, 2001.

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and Leskovec, J. Hierarchical graph representa-
tion learning with differentiable pooling. In Bengio, S., Wallach, H., Larochelle, H., Grauman,
K., Cesa-Bianchi, N., and Garnett, R. (eds.), Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

Yoon, K., Liao, R., Xiong, Y., Zhang, L., Fetaya, E., Urtasun, R., Zemel, R., and Pitkow, X. Inference
in probabilistic graphical models by graph neural networks. In 2019 53rd Asilomar Conference on
Signals, Systems, and Computers, pp. 868–875. IEEE, 2019.

11

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ


Zhang, Z., Wu, F., and Lee, W. S. Factor graph neural network. arXiv preprint arXiv:1906.00554,
2019.

A Meta-MLP

We design a family of MLPs organized by meta-parameters, called meta-MLP or mMLP for short.
In an original MLP, the input vector x is defined as layer 0 activation x0. L sequential perceptrons
transform activation from one layer to the next by

xl = f l
(
W lxl−1 + bl

)
, (10)

in which W l and bl are the weight and bias of layer l respectively, and f l(·) is the nonlinear activation
function of layer l. The L-th layer activation xL is defined as the output of the MLP,

MLP(x;Θ) ≡ xL, (11)

with Θ = {W 1, b1, . . . ,WL, bL}.

In an mMLP with meta-parameter ζ, each layer is defined as

xl+1 = f l
(
W l

[
xl

ζ

]
+ bl

)
. (12)

In Eq. 12, the meta-parameter ζ modulates each layer transformation by acting as an extra input. The
output of the mMLP is defined as the last layer activation

mMLP(x, ζ;Θ) ≡ xL. (13)

Optionally, batch normalization layers can be added right before each nonlinear activation function.
When a batch normalization layer with trainable affine transformation is added, the bias bl will be
removed.

In this study, all layers in an mMLP except the last one use the nonlinear ELU activation, i.e.

f l(z) =

{
z z ≥ 0,
ez − 1 z < 0,

(14)

for 1 ≤ l < L. The activation function of last layer is the identity function fL(z) = z.

B Canonical functions

B.1 Message function

In this study, the message function M(·) is defined as

M(sti, s
t
j ; eij ,ΘM) ≡ mMLP

([
sti
stj

]
, eij ;ΘM

)
. (15)

While message parameter ΘM is shared across all edges, meta-parameter eij are different for
different edges.

B.2 Update function

We use a modified version of gated recurrent unit (GRU) function (Cho et al., 2014) as the update
function U(·) (Eq. 1). The form of original GRU update is

zt = σg
(
W zx

t +Uzs
t + bz

)
,

rt = σg
(
W rx

t +U rs
t + br

)
,

st+1 = (1− zt) ◦ st + zt ◦ σs
(
W sx

t +U s

(
rt ◦ st

)
+ bh

)
,

12



in which xt and st are the external input and hidden state at time t respectively. zt and rt are the
update gate and reset gate vectors, while σg(·) and σs(·) are nonlinear functions typically chosen as
logistic function and hyperbolic tangent function respectively.

While original GRU uses perceptrons for gates and state updates, we replace them by meta-MLPs with
vertex parameter vi. We do not append nonlinear activation to the last layer of mMLP (Appendix A),
hence the gating nonlinearities σg and σs are kept. Another difference is each vertex receives not
only external input, but also aggregated messages from neighbors. The update function U(·) (Eq. 3)
is defined through

zt
i = σg

mMLP

 iti
mt

i
sti

 ,vi;ΘUz

 , (16)

rti = σg

mMLP

 iti
mt

i
sti

 ,vi;ΘUr

 , (17)

st+1
i = (1− zt

i) ◦ sti + zt
i ◦ σs

mMLP

 iti
mt

i
sti

 ,vi;ΘUs

 . (18)

The update parameter is defined as ΘU = ΘUz ∪ΘUr ∪ΘUs .

B.3 Readout function

We choose a simple linear function as canonical readout R(·) (Eq. 4),
R(sti;ΘR) = WRsti + bR, (19)

with readout parameter ΘR = {WR, bR}.

C Noisy belief propagation algorithm

We use belief propagation (BP) algorithm to estimate the marginal distribution of all variables. We
define the message from vertex j to i as mij(θi), namely the belief about i from j. At each iteration,
BP updates mij(θi) to

mij(θi) =
m̃ij(θi)∑
θi
m̃ij(θi)

, (20)

m̃ij(θi) =
∑
θj

ϕj(θj)ψij(θi, θj)
∏

k∈N(j)\i

mjk(θj)

 , (21)

in which N(j) is the set of neighbors of j. The marginal distribution of θi is

pi(θi) =
p̃i(θi)∑
θi
p̃i(θi)

, (22)

p̃i(θi) = ϕi(θi)
∏

j∈N(i)

mij(θi). (23)

We explicitly normalize messages and estimated marginal distributions at each iteration.

BP is not guaranteed to converge on loopy graphs, even when it converges it may not converge
to the true marginal distribution. However if damping update is used, BP usually gives a stable
good approximation and can be considered as a valid inference algorithm. We denote the damping
coefficient as γ. BP updates messages in logarithm domain following

mt
ij(θi) =

m̃t
ij(θi)∑

θi
m̃t

ij(θi)
, (24)

ln
(
m̃t+1

ij (θi)
)
= γ ln

(
mt

ij(θi)
)
+ (1− γ) ln

∑
θj

ϕtj(θj)ψij(θi, θj)
∏

k∈N(j)\i

mt
jk(θj)

 ,

(25)

13



with superscript t marks the time step in BP. Here the singleton potential ϕti(θi) changes over time.
Similarly, the estimated marginal distribution is also dynamic,

pti(θi) =
p̃ti(θi)∑
θi
p̃ti(θi)

, (26)

p̃ti(θi) =
1

Z
ϕti(θi)

∏
j∈N(i)

mt
ij(θi). (27)

We additionally add processing noise to the inference algorithm to mimic a physical system. Since
the message by definition is non-negative, we use additive noise in logarithmic domain to distort each
update step. The complete form is

ln
(
mt

ij(θi)
)
+ (1− γ) ln

∑
θj

ϕtj(θj)ψij(θi, θj)
∏

k∈N(j)\i

mt
jk(θj)

+ nti, (28)

in which nti ∼ N (0, σ2
n) is independent Gaussian noise with variance σ2

n.

D Trace data

BP traces are generated for 36 PGMs. For each PGM, its graph size is randomly sampled from
{12, 14, 16, 18}, the BP duration is randomly sampled from {80, 100, 120}, and the number of trials
is randomly sampled from {1000, 1250, 1500}. Precision matrix of each PGM is a random positive-
definite matrix, generated by applying random rotations on a subset of indices starting from a diagonal
matrix until desired density is reached (similar to ‘sprandsym’ function in MATLAB). The reciprocal
condition number is 0.2, and the desired density is 60% (estimated using a threshold of ϵ = 0.01
when the starting diagonal matrix has maximum value of 1).

The full dataset includes approximately 75 million data points (graph size × duration × number of
trials, summed up for all 36 PGMs). 90%, 5% and 5% of the data are used for training, validation
and testing respectively.

E Example trial of the best GNN

An example trial of the best fit GNN (Fig. 2b) is shown in Fig. 8.

Figure 8: An example trial of the first six random variables of one PGM. The input sequence is from
a held-out testing set.

Since no processing noise is introduced in GNN, its output is smoother than the target traces given
by noisy BP algorithm. The trained GNN captures main component of observed dynamical data,
effectively removing the noise within.

F PCA on aggregated messages

PCA is performed on the aggregated messages mt
i (Eq. 2) for the trained GNN. Similar to the

geometry of states sti (Fig. 3), aggregated messages for each vertex also lie on a curved 1-D manifold
in the high-dimensional space.

14



a b

Figure 9: Manifold analysis of aggregated messages. (a) PCA spectrum of aggregated messages mt
i

in the example GNN. (b) 2D visualization of mt
i, colored by the precision matrix of each vertex.

G Training with no regularization

When no regularization is added on structural parameters vi and eij , the trained GNN can still predict
BP traces well. One of the best architectures we found is De = 8, Dv = 4, Dh = 12, Dh = 12 and a
message function with two hidden layers of size [32, 16]. Though the its fitting performance is high
(R2 = 0.989), PCA on the learned vi and eij does not reveal low-dimensional manifold.

a b

c d

Figure 10: Learned structural parameters with no regularization. (a) PCA spectrum of vi when
Dv = 4. (b) 2D visualization of vi colored by Aii. (c) PCA spectrum of eij when De = 12. (d) 2D
visualization of eij colored by Aij .

However, PCA on the states and pairwise messages of the trained GNNs still show low-dimensional
structure, similar to Fig. 3. In fact, the messages seem to be more organized as the 1-D manifolds
belonging to different edges are aligned parallel.

H Connectivity prediction

When two nodes are correlated, it does not necessarily indicate there is an edge connecting them.
The underlying graph we use is not fully connected, i.e. some values of the coupling matrix Aij is
set to 0. We predict the connectivity by thresholding either the activity correlation matrix ρij or the
coupling matrix Âij recovered by edge translator (Fig. 12a), and plot the ROC curves for both case
(Fig. 12b). Area under the curve (AUC) is larger for the prediction from recovered coupling matrix.

15



a b

Figure 11: PCA of GNN states and messages when no regularization is used during training. (a)
Projection of states sti onto the space spanned by its first two PCs, colored by precision parameter
Aii (b) Projection of messages mt

ij onto the space spanned by its first two PCs, colored by coupling
strength Aij .

a b

Figure 12: Predicting underlying graph. Prediction based on correlation is not as accurate as from
GNN recovery.

16


	Introduction
	Background
	Graph neural network
	Belief propagation on probabilistic graph models

	Related work
	Methods
	Multi-graph training
	Problem formulation

	Results
	Architecture comparison
	GNN training result
	State and message manifold
	Interpretable canonical functions
	Graph translator

	Conclusion and discussions
	Meta-MLP
	Canonical functions
	Message function
	Update function
	Readout function

	Noisy belief propagation algorithm
	Trace data
	Example trial of the best GNN
	PCA on aggregated messages
	Training with no regularization
	Connectivity prediction

