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Abstract

Self-supervised representation learning has achieved impressive empirical success, yet its
theoretical understanding remains limited. In this work, we provide a theoretical perspective
by formulating self-supervised representation learning as an approximation to supervised
representation learning objectives. Based on this formulation, we derive a loss function closely
related to popular contrastive losses such as InfoNCE, offering insight into their underlying
principles. Our derivation naturally introduces the concepts of prototype representation
bias and a balanced contrastive loss, which help explain and improve the behavior of
self-supervised learning algorithms. We further show how components of our theoretical
framework correspond to established practices in contrastive learning. Finally, we empirically
validate the effect of balancing positive and negative pair interactions. All theoretical proofs
are provided in the appendix, and our code is included in the supplementary material.

1 Introduction

Representation learning, the process of acquiring condensed but meaningful representations (Bengio et al.,
2013; LeCun et al., 2015; Goodfellow et al., 2016), lies at the core of advancing machine learning capabilities.
Supervised learning, while effective, depends heavily on labeled data, which can be problematic in the face of
diverse and dynamic real-world environments. Human annotation is not only labor-intensive and costly (hard
to scale), but also subjective and prone to errors (hard to generalize) (Vasudevan et al., 2022; Beyer et al.,
2020; Shankar et al., 2020).

In response to these challenges, self-supervised learning (SSL), motivated by the idea that humans can learn
without explicit labels, has shown strong empirical success in domains such as computer vision, natural
language processing, and speech recognition (Ozbulak et al., 2023; Schiappa et al., 2023; Gui et al., 2023).
While supervised learning is built on well-defined objectives such as empirical risk minimization, self-supervised
learning has mainly progressed through architectural innovations, rather than starting from formal objective
formulations. Many recent methods adopt a Siamese architecture and combine various techniques such as
memory banks, momentum encoders, stop-gradient operations, and multi-view augmentations (Wu et al.,
2018; He et al., 2020; Grill et al., 2020; Chen & He, 2021; Caron et al., 2020; 2021; Zbontar et al., 2021;
Amrani et al., 2022).

In this paper, we present a theoretical framework that interprets self-supervised representation learning
as an approximation of supervised representation learning. While self-supervised representation learning
operates without ground-truth labels, it implicitly constructs supervision signals, suggesting an underlying
connection to supervised representation learning objectives.1 To explore this connection, we begin by
expressing supervised representation learning as an optimization over similarities to class prototypes. We then
approximate this formulation using only unlabeled data and data augmentations, leading to a self-supervised

1This is implied within expressions such as pseudo labels (Doersch et al., 2015; Noroozi & Favaro, 2016; Zhang et al., 2016;
Gidaris et al., 2018), target (or teacher) encoders (Tarvainen & Valpola, 2017; He et al., 2020; Grill et al., 2020; Chen & He,
2021; Caron et al., 2021; Oquab et al., 2023) in the literature.
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loss that closely resembles the InfoNCE loss used in SimCLR (Chen et al., 2020a), which serves as a hub for
many algorithms. This derivation clarifies how self-supervised representation learning can be understood
as solving a surrogate form of supervised representation learning. Additionally, our formulation naturally
introduces the concept of prototype representation bias, and motivates a balanced contrastive loss that improves
the approximation. These insights offer a more principled understanding of self-supervised representation
learning and its relationship to supervised objectives.

Contributions of our work are summarized as follows:

1. We present a theoretical framework that formulates self-supervised representation learning as an
approximation of supervised representation learning. From this formulation, we derive a contrastive
loss closely related to the InfoNCE loss, providing a principled explanation for its structure.

2. Our framework offers a perspective on common practices in contrastive learning, such as representation
normalization and the use of balanced datasets.

3. We introduce the concept of prototype representation bias arising from the approximation, and
observe its correlation with downstream performance.

4. We propose a balanced contrastive loss as a natural extension of the InfoNCE loss, and observe that
improved balancing leads to better performance.

2 Related work

Contrastive losses Our work falls into the category of contrastive learning, which is characterized by the
use of contrastive losses. The concept of contrastive loss was first introduced in Chopra et al. (2005). Since
then, several variants have emerged. The triplet loss simultaneously considers three representations, each
serving as an anchor, a positive sample, and a negative sample (Weinberger & Saul, 2009; Chechik et al.,
2010). Furthermore, the (m + 1)-tuplet loss treats m + 1 representations: an anchor, a positive sample, and
m − 1 negative samples, and it is composed in the form of a softmax function (Sohn, 2016). Wu et al. (2018)
combine a temperature parameter and proximal regularization to have the noise-contrastive estimation (NCE)
loss. The NT-Xent loss (equivalently, the InfoNCE loss (Oord et al., 2018)) is obtained by constructing a
cross-entropy form loss using 2m augmented images from a minibatch of m images (Chen et al., 2020a). Yeh
et al. (2022) remove the coupling between positive and negative terms in the NT-Xent loss. Some works
adaptively scale the temperature parameter (Huang et al., 2023; Manna et al., 2025; Kukleva et al., 2023). In
Khosla et al. (2020), the concept of contrastive loss is applied in reverse to the supervised setting. Several
studies analyze contrastive losses by decomposing them into an attracting term and a repelling term. Wang &
Isola (2020) show that contrastive losses asymptotically promote alignment and uniformity in representations.
Manna et al. (2021) improve performance by removing the positive–positive repulsion term and replacing the
negative term with its exponential upper bound. Our work aims to help understand contrastive losses by
showing how they can be derived as approximations of supervised learning objectives.

Perspectives on SSL There have been attempts to interpret contrastive learning within different conceptual
frameworks. There is an approach that provides unified views bridging contrastive learning and covariance-
based learning (Huang et al., 2021; Garrido et al., 2022; Lee et al., 2021; Balestriero & LeCun, 2022; Tian
et al., 2020; Zhang et al., 2024). There is another approach that interprets contrastive learning as maximizing
the mutual information of positive pairs (Hjelm et al., 2018; Oord et al., 2018; Bachman et al., 2019; Wang &
Isola, 2020; Li et al., 2021; Aitchison & Ganev, 2024). HaoChen et al. (2021) views self-supervised learning
as learning spectral embeddings of an augmentation graph. Beyond these analytical views, some works
frame self-supervised learning from more functional viewpoints, such as clustering (Caron et al., 2020),
bootstrapping (Grill et al., 2020), semi-supervised learning (Chen et al., 2020b), or knowledge distillation
(Caron et al., 2021; Oquab et al., 2023). The idea of supervision is often alluded to in various approaches.
We explore how self-supervised learning can be more explicitly connected to supervised learning through a
principled formulation.
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3 Problem formulation

In this section, we first formulate a supervised representation learning problem as an optimization problem,
followed by its self-supervised counterpart. Throughout the paper, we use uppercase letters to denote random
elements, lowercase letters to denote non-random elements (including realizations of the random elements),
and calligraphic letters to denote sets.

3.1 Supervised representation learning problem

Figure 1: Supervised learning as an optimization.
The loss lattract(θ) encourages the image representation
to attract the prototype representation µdog that shares
the visual concept of that image. On the other hand,
the loss lrepel(θ) prompts the image representation to
repel the prototype representation µcat that is closest
among those not sharing the visual concept of that
image. The parameter λ balances the two losses.

Let X × Y be a dataset comprising images and their
associated visual concepts (represented as labels) of
interest. To exploit the dataset to the fullest, we
consider a set of transformations T that preserve
the visual concepts and leverage them to create an
augmented dataset.2 Then, we define the augmented
dataset induced by T as

T (X ) × Y
:= {(t(x), y) : (x, y) ∈ X × Y and t ∈ T }.

(1)

Equipped with the augmented dataset, we want to
train an encoder fθ : X → Rd \ {0} which is pa-
rameterized by learnable parameters θ. It maps an
image t(x) to its representation fθ(t(x)). Typically,
the representation dimension d is small relative to
the image size. By training the encoder, our goal
is to make representations of images with the same
visual concept, gathered close together, while repre-
sentations of images with different visual concepts
are meaningfully distant from each other. To keep
the theoretical framework intuitive and concise, we
begin with just these two fundamental ideas: pos-
itive samples are clustered, while negative samples
are separated.

To achieve our goal, we employ the concept of prototype representation of a visual concept to set targets for
images (Li et al., 2020; Caron et al., 2020). This denotes a point in the representation space that embodies
the visual concept. To see the whole approximation process, we start by assuming that an oracle gives the
ideal prototype representation, which can serve as a common target for images with the same visual concept
during training. However, since such an oracle does not exist in reality, we later construct the prototype
representation using available data.

From now on, we tag a data point (t(x), y) ∈ T (X ) × Y and base the formulation on it. Let lattract(θ) and
lrepel(θ) denote the attracting and repelling components of the loss function for the image representation
fθ(t(x)). Specifically, lattract(θ) encourages similarity with the prototype representation µy of its own label,
while lrepel(θ) penalizes similarity with the prototype representations µy′ of other labels (y′ ̸= y). The
similarity measure is usually chosen to be cosine similarity. Then, we formulate the supervised representation
learning problem as the following optimization problem:

min
θ

lattract(θ) + λlrepel(θ) (2)

where λ > 0 is a parameter which balances the two losses.
2Note that the choice of data augmentation can also be seen as a type of supervision (Xiao et al., 2020). By treating the

labels of augmented images as identical, we supervise the resolution at which the model should be transformation invariant.
Therefore, unlike X , T (X ) contains partial information about the labels, which enables self-supervised learning.
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In contrastive learning, there is no need to repel negative samples that are already dissimilar enough. In this
context, we only repel the prototype representation with the maximum similarity among those representing
distinct labels. Then, our problem becomes as follows:

min
θ

−s (fθ(t(x)), µy) + λ max
y′ ̸=y

s (fθ(t(x)), µy′) (3)

where s(·, ·) is a similarity measure (e.g., cosine similarity). For a better understanding, refer to Figure 1.

Note that our formulation is similar to minimizing the triplet loss in spirit (Chechik et al., 2010; Schroff et al.,
2015; Schultz & Joachims, 2003; Arora et al., 2019). In our formulation, we can see fθ(t(x)) as the anchor,
the prototype representation µy as the positive sample, and the prototype representation µy′ as the negative
sample. Only considering the negative sample with maximum similarity is related to the concept of hard
negative mining (Girshick, 2015; Faghri et al., 2017; Oh Song et al., 2016). This idea has sometimes been
implemented through the introduction of the concept of support vectors or margin (Cortes & Vapnik, 1995;
Schroff et al., 2015). Pursuing this to the extreme leads us to repel the most challenging example, namely,
the negative sample with maximum similarity.

Now, we construct the prototype representations. For a given label y, a natural choice for the prototype
representation of the label is the expectation of the representations of the images with the same label, i.e.,

µ̂y := ET,X|yfθ(T (X)) (4)

where T is distributed over T , and X is conditionally distributed over {x : (x, y) ∈ X × Y}. Plugging it to
Equation (3), our problem becomes as follows:

min
θ

−s
(
fθ(t(x)),ET,X|yfθ(T (X))

)
+ λ max

y′ ̸=y
s

(
fθ(t(x)),ET ′,X′|y′fθ(T ′(X ′))

)
(5)

where T ′ and X ′ are independent copies of T and X, respectively.

3.2 Self-supervised representation learning problem

In the self-supervised learning regime, we do not have access to the labels. So, we use a surrogate prototype
representation for the image t(x) as the target. We construct it as the expectation of the representations of
augmented views of the image x, i.e.,

µ̃ := ET fθ(T (x)). (6)
Since data augmentation preserves labels, augmented views share the same (unobserved) label y. In Section
5, we demonstrate the importance of finding a data augmentation strategy that approximates well from the
prototype representation ET,X|yfθ(T (X)) to the surrogate prototype representation ET fθ(T (x)). Plugging it
in the attracting component of Equation (5), we rewrite our problem as follows:

min
θ

−s (fθ(t(x)), µ̃) + λ max
y′ ̸=y

s (fθ(t(x)), µ̂y′) . (7)

Note that we leave the repelling component as is since it can be managed without modification. In Section 4,
we find an upper bound of the above objective function, and in Section 5, we show the upper bound can be
minimized using a Siamese network. Through this, we show how attracting and repelling pseudo-labels (µ̃
and µ̂y′) can be achieved through attracting and repelling samples (fθ(t′(x)) and fθ(t′(x′))). Refer to Figure
2 for a better understanding.

4 Theoretical derivation

In this section, we determine upper bounds of the attracting and repelling components. Our objective is to
minimize these upper bounds, addressing the optimization problem discussed in the previous section. We
show that the triplet loss with pseudo-labels can be interpreted as an approximation to an InfoNCE-type loss
with samples. This perspective provides a theoretical link between prototype-based supervised learning and
contrastive self-supervised learning frameworks.
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Figure 2: Self-supervised learning as an approximation of supervised learning. (1) In an ideal
supervised regime, the ideal prototype representation µy is given by an oracle. (2) In a realistic supervised
regime, the prototype representation is constructed as the expectation ET,X|yfθ(T (X)) of the representations
of the images with the same label y. (3) In a self-supervised regime, a surrogate prototype representation is
constructed as the expectation ET fθ(T (x)) of the representations of the available images sharing the same
label as t(x). (4) This can be effectively implemented using a Siamese network.

4.1 Attracting component

We first find an upper bound for the attracting component by making the following assumptions based on
common practice.
Assumption 4.1 (cosine similarity). The similarity measure s(·, ·) is cosine similarity, i.e., s(x1, x2) =
x1 · x2/(∥x1∥∥x2∥). When we say s(x1, x2), we assume x1 and x2 are nonzero.

Assumption 4.2 (l2-normalization). Representations at the end of the encoder are l2-normalized so that
∥fθ(t(x))∥ = 1, i.e., fθ : X → Sd−1. Here, Sd−1 := {x ∈ Rd : ∥x∥ = 1} denotes the unit sphere in Rd.

Assumption 4.3 (technical assumption). We additionally make a technical assumption which means that the
two vectors fθ(t(x)) and ET fθ(T (x)) lie in the same hemisphere, i.e., fθ(t(x)) · ET fθ(T (x)) ≥ 0. Informally
speaking, this means that the augmentation does not distort the image too much, so ET fθ(T (x)) does not
point in a completely different direction.

Theorem 4.4 (upper bound of the attracting component). Assume Assumption 4.1, 4.2, and 4.3 hold. Then,

− s (fθ(t(x)),ET fθ(T (x))) ≤ −ET s (fθ(t(x)), fθ(T (x))) . (8)

Proof. Refer to Appendix A.1.1.

We approximate the upper bound and obtain the following sample analog:

l̃attract(θ) := − 1
|T̂ |

∑
t′∈T̂

s (fθ(t(x)), fθ(t′(x))) (9)

where T̂ is the set of transformation samples.

4.2 Repelling component

We now find an upper bound for the repelling component by making the following assumption.
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Assumption 4.5 (balanced dataset). Labels are uniformly distributed, i.e., p(y) = 1
n , where n is the finite

number of labels.

Theorem 4.6 (upper bound of the repelling component). Assume Assumption 4.1, 4.2, and 4.5 hold. Let
ν := miny′ ̸=y ∥ET ′,X′|y′fθ(T ′(X ′))∥. Then, for all α > 0,

max
y′ ̸=y

s
(
fθ(t(x)),ET ′,X′|y′fθ(T ′(X ′))

)
≤ ET ′

[
1

να
logEX′ exp (αs (fθ(t(x)), fθ(T ′(X ′))))

]
+ 1

να
log n. (10)

Proof. We approximate the maximum function by the log-sum-exp function and apply Jensen inequality to
pull out the expectations. For the detailed proof, refer to Appendix A.1.2.

If we approximate the upper bound and trim the constant terms, which are not relevant to optimization, we
obtain the following:

l̃repel(θ) := 1
|T̂ |

∑
t′∈T̂

1
να

log
∑

x′∈X̂

exp(αs(fθ(t(x)), fθ(t′(x′)))) (11)

where T̂ is the set of transformation samples, and X̂ is the set of image samples.

4.3 Total loss

By combining Equation (9) and (11), the total loss l̃(θ) := l̃attract(θ) + λl̃repel(θ) is as follows:

l̃(θ) = 1
|T̂ |

∑
t′∈T̂

−s (fθ(t(x)), fθ(t′(x))) + λ

ν

 1
α

log
∑

x′∈X̂

exp(αs(fθ(t(x)), fθ(t′(x′))))

 . (12)

By rearranging, we have

l̃(θ) = 1
α|T̂ |

∑
t′∈T̂

[
− log exp(αs (fθ(t(x)), fθ(t′(x))))(∑

x′∈X̂ exp(αs(fθ(t(x)), fθ(t′(x′))))
)λ/ν

]
. (13)

Note that this equation and the NT-Xent in SimCLR are similar in their forms, which we discuss in more
detail in the next section.

5 Theoretical insights

In this section, we present theoretical insights derived from our framework, illustrating how it relates to
several components commonly used in self-supervised learning. We use SimCLR (Chen et al., 2020a) as a
primary example, as it has served as a central reference point for many subsequent algorithms.

For our experiments, we adopt SimCLR with a temperature parameter τ = 0.5, using ImageNet (Deng et al.,
2009) as the dataset and ResNet-50 (He et al., 2016) as the backbone. We assess top-1 accuracy using linear
evaluation, a standard protocol for evaluating self-supervised learning algorithms. For a fair comparison, all
settings are kept the same except for the specific factor under investigation. For the detailed implementation,
refer to A.3.

5.1 Loss: NT-Xent

Let {x1, . . . , xm} be a minibatch of m images. If we transform each image in two different ways and pass them
through the encoder, we obtain representation pairs {(fθ(t(xi)), fθ(t′(xi))) : i = 1, . . . , m} of 2m augmented

6



Published in Transactions on Machine Learning Research (10/2025)

-co
lor

_di
sto

rtio
n

+ran
do

m_ro
tat

ion

+ga
uss

ian
_no

ise

-ga
uss

ian
_bl

ur

+ran
do

m_cu
tou

t
ba

se

Data augmentation

62.5

63.0

63.5

64.0

64.5

65.0

65.5

66.0

Ac
cu

ra
cy

 (%
)

62.56

63.3
63.51

64.57

65.76
65.98Accuracy (%)

Prototype rep. bias

36.6

36.8

37.0

37.2

37.4

37.6

37.8

38.0

38.2

38.4

Pr
ot

ot
yp

e 
re

p.
 b

ia
s

38.21
38.11

37.95

37.43

37.29

36.72

Figure 3: Accuracy vs. prototype representation bias. We investigate the relationship between accuracy
and prototype representation bias by adding or removing transformations from SimCLR’s data augmentation
strategy (base). Lower prototype representation bias tends to result in higher accuracy.

images, which we denote as {(zi, z′
i) : i = 1, . . . , m}. Then, in the case of λ = ν, the summand in Equation

(13) can be implemented as

− log exp(αs(zi, z′
i))∑

j∈[m]\{i} exp(αs(zi, z′
j)) (14)

where [m] := {1, . . . , m}.

On the other hand, in the NT-Xent loss used in SimCLR, if we let the temperature parameter τ be 1/α, the
NT-Xent loss is represented as

− log exp(αs(zi, z′
i))∑

j∈[m] exp(αs(zi, z′
j)) +

∑
j∈[m]\{i} exp(αs(zi, zj)) . (15)

This is a variant of Equation (14). Having the second summation in the denominator can be seen as a method
to more fully exploit the provided representations, since (zi, zj) are also considered negative pairs when j ̸= i.

In the first summation in the denominator, the positive pair is explicitly excluded in our theoretical derivation,
yielding a decoupled loss formulation. Interestingly, this coincides with the decoupled contrastive loss proposed
by Yeh et al. (2022), who empirically showed that summing over [m] \ {i} performs better than over [m].

Common expressions of contrastive losses, such as cross-entropy and temperature, typically frame them in
the form of the Boltzmann (or Gibbs) distribution. Our framework offers a complementary perspective by
deriving a similar structure from a supervised learning formulation.

5.2 Data augmentation: debiased prototype representation

When transitioning from supervised to self-supervised learning, we approximate the prototype representation
ET,X|yfθ(T (X)) with the surrogate prototype representation ET fθ(T (x)). To examine the quality of this
approximation, we define the prototype representation bias as

Biasproto := E(X0,Y0)∥ET,X|Y0fθ(T (X)) − ET fθ(T (X0))∥. (16)

We hypothesize that reducing this bias is associated with improved downstream accuracy. To test this, we
vary the distribution of T through different data augmentation strategies. Specifically, we compare SimCLR’s
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default data augmentation (base) with cases where we exclude Gaussian blur (-gaussian_blur) and color
distortion (-color_distortion), and with cases where we include random cutout (+random_cutout), random
rotation (+random_rotation), and gaussian noise (+gaussian_noise), resulting in a total of six scenarios.

Figure 3 shows that using data augmentation with debiased prototype representation leads to an increase in
accuracy. Notably, SimCLR’s default augmentation achieves both the highest accuracy and the smallest bias.
Interestingly, enriching the data augmentation by adding transformations such as random cutout, random
rotation, or gaussian noise does not improve accuracy. This may be due to an increased mismatch between
the surrogate and true prototype representations.

5.3 Similarity measure: cosine similarity with normalized representations

Table 1: Comparison of similarity measures with and
without l2-normalization. The results show that cosine
similarity with normalization significantly outperforms
the other variants.

CS w/ l2 Dot w/o l2 -Eucl. w/o l2

65.98 0.43 10.63

When computing similarity between two representa-
tions, many self-supervised learning algorithms in-
cluding SimCLR normalize the representations and
calculate cosine similarity as in Assumption 4.1 and
4.2. To investigate the empirical implications of these
assumptions, we compare three cases: 1) cosine sim-
ilarity with normalization, 2) dot product without
normalization, and 3) negative Euclidean distance
without normalization.3

Table 1 shows that cosine similarity with normalized
representations significantly outperforms the alternatives. Among the unnormalized variants, negative
Euclidean distance performs better than the dot product, possibly because it captures spatial dissimilarity
more directly. These results suggest that the widespread use of cosine similarity with normalization in
contrastive learning is consistent with both empirical effectiveness and the assumptions required for tractable
theoretical analysis.

5.4 Dataset: balanced class distribution

Table 2: Comparison of class distributions. The results
show that the uniform class distribution leads to better
performance.

Uniform Long-tailed
20.82 13.65

To examine the effect of class balance as in Assump-
tion 4.5, we conduct a controlled experiment compar-
ing uniform and long-tailed class distributions. In
both cases, the training sets contain the same num-
ber of images (115,846, which is 9% of the ImageNet
training set), but they differ in class distribution.
We use an identical test set for both cases.

Table 2 shows that SimCLR performs better on a
balanced dataset compared to an imbalanced one. The observed effect supports the idea that class balance,
a widely adopted practice in contrastive learning (Assran et al., 2022b;a; Zhou et al., 2022), aligns with
assumptions that enable tractable theoretical analysis in our framework.

5.5 Architecture: Siamese networks

The upper bound −ET s (fθ(t(x)), fθ(T (x))) in Equation (8) involves comparing the similarity between two
representations fθ(t(x)) and fθ(t′(x)), where t and t′ are independently sampled augmentations. This
naturally corresponds to a Siamese network architecture (Bromley et al., 1993), where a single image x is
augmented twice to produce t(x) and t′(x), and each is passed through a shared encoder fθ. Siamese networks
naturally align with the structure of similarity-based objectives in our framework.

Although Siamese networks are typically symmetric, with two encoders that share parameters and have
identical architectures, several algorithms introduce asymmetry to improve performance (He et al., 2020;

3Note that when dealing with two normalized vectors, cosine similarity is equivalent to the dot product. Additionally, negative
Euclidean distance with normalization is equivalent to cosine similarity with normalization since −∥a − b∥2 = −2 + 2a · b.
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Figure 4: Impact of balancing parameters α and λ. Better balancing can be accomplished through the
adjustments of the balancing parameters.

Chen & He, 2021; Grill et al., 2020; Caron et al., 2020; 2021; Oquab et al., 2023; Tian et al., 2021). In such
cases, it has been empirically observed that performance improves when one encoder produces outputs with
lower variance than the other (Wang et al., 2022). The lower-variance encoder is commonly referred to as the
target or teacher, and the higher-variance encoder as the source or student.

In our problem formulation, the original attracting component in Equation (8) is −s (fθ(t(x)),ET fθ(T (x)))
where the two attracting objects fθ(t(x)) and ET fθ(T (x)) are asymmetric. Note that ET fθ(T (x)) can be
approximated by 1

n

∑n
i=1 fθ(Ti(x)), and 1

n

∑n
i=1 fθ(Ti(x)) has less variance than fθ(T (x)).

This suggests that our problem formulation, along with Theorem 4.4, may provide insight into the coexistence
of both symmetric and asymmetric designs in the self-supervised learning literature.

6 Empirical study

In this section, we introduce a loss that is motivated by the form of Equation (12). Our aim is to help
understand the roles of the balancing parameters that constitute this loss in our framework and to empirically
report how varying them affects performance. For notational simplicity, we rewrite λ/ν as λ. Given a
representation z among the 2m representations obtained from a minibatch of m images, we define the
following loss:

− s(z, z+) + λ

[
1
α

log
∑
z−

exp(αs(z, z−))
]

(17)

where (z, z+) is the positive pair and (z, z−) are 2(m − 1) negative pairs. The cost for the whole minibatch is
then calculated by taking the mean of the losses of all representations. Note that the attracting component
consists of one attracting force, and the repelling component consists of multiple repelling forces. We refer to
this as the balanced contrastive loss.

There are two hyperparameters α > 0 and λ > 0 in the balanced contrastive loss. We refer to these as the
balancing parameters since each governs a different form of balance in contrastive learning. The parameter α
modulates the relative influence among negative samples within the repelling term (Kalantidis et al., 2020;
Zhang et al., 2022; Jiang et al., 2024). Note that the repelling component is a smooth approximation to the
maximum function (refer to Lemma A.1 and Wang & Liu (2021)):

lim
α→∞

[
1
α

log
∑
z−

exp(αs(z, z−))
]

= max
z−

s(z, z−). (18)
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As α increases, representations with higher similarity contribute more strongly to the repelling term. In
self-supervised learning, negative samples may include images with the same label (referred to as sampling
bias in Chuang et al. (2020)). So, if α is too large, there is a risk of repelling images with the same label.
Appropriately choosing α can be interpreted as a form of risk hedging over multiple negative samples. This
also offers insight into the role of the temperature parameters of InfoNCE-type losses. On the other hand,
the parameter λ adjusts the relative magnitudes of the attracting and repelling forces.

To investigate the impact of balancing parameters α and λ, we evaluate the balanced contrastive loss over a
grid of parameters {(α, λ) : α, λ ∈ {1, 2, 4, 8}}. We also consider a variant where the positive pair is included
in the repelling component in Equation (17), which we refer to as the generalized NT-Xent loss, as it reduces
to NT-Xent when λ = 1. Figure 4 illustrates the changes in accuracy based on various combinations of the
parameters. Note that, since ImageNet contains 1,000 classes, the chance-level top-1 accuracy is 0.1%.

Overall, the balanced contrastive loss achieves higher peak performance than the generalized NT-Xent loss.
For the balanced contrastive loss, the best performance is obtained at (α, λ) = (4, 2), while the generalized
NT-Xent loss performs best at (2, 2). In both cases, the highest accuracy is not achieved when λ = 1. This
highlights the significance of the balancing parameter λ. Additionally in both scenarios, it is crucial for α to
have an appropriate value that is not too large or too small. Specifically for the generalized NT-Xent, it is
advantageous to set α to a smaller value compared to the balanced contrastive loss. This may be due to the
presence of the positive sample in the repelling component, meaning that increasing α results in a larger
repulsion of the positive sample.

Given the 0.1% chance-level accuracy on ImageNet, these performance differences are substantial, especially
considering they are achieved solely by adjusting the balancing parameters. These results suggest that further
improvements to contrastive losses may be possible through better balancing.

7 Conclusion

In this work, we present a theoretical framework that conceptualizes self-supervised representation learning as
an approximation to supervised representation learning. Starting from a concise formulation of the supervised
objective, we derive how a natural approximation emerges in the absence of labels. In particular, we show
that the triplet loss with pseudo-labels can be viewed as an approximation to an InfoNCE-type loss with
samples, offering a principled explanation for the structure of widely used contrastive losses. Our framework
provides theoretical insights into common design choices in self-supervised learning. Additionally, it sheds
light on sources of bias in prototype representations and motivates a balanced contrastive loss that improves
empirical performance. We hope that our work will benefit the community by offering helpful perspectives
and encouraging further exploration of the connections between supervised and self-supervised learning.
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A Appendix

A.1 Proofs

This subsection presents the proofs of Theorem 4.4 and Theorem 4.6.

A.1.1 Proof of Theorem 4.4

We restate the assumptions and the theorem and provide the proof below.
Assumption 4.1 (cosine similarity). The similarity measure s(·, ·) is cosine similarity, i.e., s(x1, x2) =
x1 · x2/(∥x1∥∥x2∥). When we say s(x1, x2), we assume x1 and x2 are nonzero.
Assumption 4.2 (l2-normalization). Representations at the end of the encoder are l2-normalized so that
∥fθ(t(x))∥ = 1, i.e., fθ : X → Sd−1. Here, Sd−1 := {x ∈ Rd : ∥x∥ = 1} denotes the unit sphere in Rd.
Assumption 4.3 (technical assumption). We additionally make a technical assumption which means that the
two vectors fθ(t(x)) and ET fθ(T (x)) lie in the same hemisphere, i.e., fθ(t(x)) · ET fθ(T (x)) ≥ 0. Informally
speaking, this means that the augmentation does not distort the image too much, so ET fθ(T (x)) does not
point in a completely different direction.
Theorem 4.4 (upper bound of the attracting component). Assume Assumption 4.1, 4.2, and 4.3 hold. Then,

− s (fθ(t(x)),ET fθ(T (x))) ≤ −ET s (fθ(t(x)), fθ(T (x))) . (8)

Proof.

−s (fθ(t(x)),ET fθ(T (x))) (i)= − fθ(t(x)) · ET fθ(T (x))
∥fθ(t(x))∥∥ET fθ(T (x))∥ (19)

(ii)= −fθ(t(x)) · ET fθ(T (x))
∥ET fθ(T (x))∥ (20)

(iii)
≤ −fθ(t(x)) · ET fθ(T (x))

ET ∥fθ(T (x))∥ (21)

(iv)= −fθ(t(x)) · ET fθ(T (x)) (22)
(v)= −ET [fθ(t(x)) · fθ(T (x))] (23)
(vi)= −ET

[
fθ(t(x)) · fθ(T (x))

∥fθ(t(x))∥∥fθ(T (x))∥

]
(24)

(vii)= −ET s (fθ(t(x)), fθ(T (x))) (25)

where (i) and (vii) are by Assumption 4.1, (ii), (iv), and (vi) are by Assumption 4.2, (iii) is by Assumption
4.3, the convexity of l2-norm (Boyd & Vandenberghe, 2004), and Jensen’s inequality, and (v) is by the linearity
of expectation. This completes the proof of Theorem 4.4.

A.1.2 Proof of Theorem 4.6

Before we prove Theorem 4.6, we need three additional lemmas. While the proofs of the lemmas are
straightforward, they are not readily available in the existing literature. Therefore, we provide them here for
the sake of self-containedness.
Lemma A.1. For α > 0 and xi ∈ R, i = 1, 2, . . . , n,

max
i=1,...,n

xi ≤ (1/α) log
n∑

i=1
exp(αxi) ≤ max

i=1,...,n
xi + log n

α
, (26)

where the equalities hold when α goes to infinity.
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Proof. We have

exp
(

max
i=1,...,n

(αxi)
)

≤
n∑

i=1
exp (αxi) ≤ n exp

(
max

i=1,...,n
(αxi)

)
. (27)

Since α > 0,

α max
i=1,...,n

xi ≤ log
n∑

i=1
exp (αxi) ≤ α max

i=1,...,n
xi + log n. (28)

This completes the proof of Lemma A.1.

Lemma A.2. For α > 0 and xi ∈ R, i = 1, 2, . . . , n,

u(x1, . . . , xn) := (1/α) log
n∑

i=1
exp(αxi) (29)

is convex on Rn.

Proof. Note that the log-sum-exp function v(x1, . . . , xn) := log
∑n

i=1 exp(xi) is convex on Rn (Boyd &
Vandenberghe, 2004; Ghaoui, 2014). u(x1, . . . , xn) = (1/α)v(α(x1, . . . , xn)), and composition with an affine
mapping preserves convexity (Boyd & Vandenberghe, 2004). Thus, u(x1, . . . , xn) is also convex on Rn. This
completes the proof of Lemma A.2.

Lemma A.3. If g1(x) ≥ 0 for all x, and g2(x) ≥ 0 for some x, then

max[g1(x)g2(x)] ≤ max[g1(x)] max[g2(x)]. (30)

Proof. By default, g2(x) ≤ max[g2(x)]. Since g1(x) ≥ 0 for all x, g1(x)g2(x) ≤ g1(x) max[g2(x)]. Taking
the maximum of both sides, we have max[g1(x)g2(x)] ≤ max[g1(x) max[g2(x)]]. Since g2(x) ≥ 0 for some
x, max[g2(x)] ≥ 0, and thus max[g1(x)g2(x)] ≤ max[g1(x)] max[g2(x)]. This completes the proof of Lemma
A.3.

Now, we are ready to prove Theorem 4.6. We restate the assumption and the theorem and provide the proof
below.
Assumption 4.5 (balanced dataset). Labels are uniformly distributed, i.e., p(y) = 1

n , where n is the finite
number of labels.
Theorem 4.6 (upper bound of the repelling component). Assume Assumption 4.1, 4.2, and 4.5 hold. Let
ν := miny′ ̸=y ∥ET ′,X′|y′fθ(T ′(X ′))∥. Then, for all α > 0,

max
y′ ̸=y

s
(
fθ(t(x)),ET ′,X′|y′fθ(T ′(X ′))

)
≤ ET ′

[
1

να
logEX′ exp (αs (fθ(t(x)), fθ(T ′(X ′))))

]
+ 1

να
log n. (10)

Proof.

max
y′ ̸=y

s
(
fθ(t(x)),ET ′,X′|y′fθ(T ′(X ′))

) (i)= max
y′ ̸=y

fθ(t(x)) · ET ′,X′|y′fθ(T ′(X ′))
∥fθ(t(x))∥∥ET ′,X′|y′fθ(T ′(X ′))∥ (31)

(ii)= max
y′ ̸=y

fθ(t(x)) · ET ′,X′|y′fθ(T ′(X ′))
∥ET ′,X′|y′fθ(T ′(X ′))∥ (32)

(iii)
≤ 1

ν
max
y′ ̸=y

ET ′,X′|y′s (fθ(t(x)), fθ(T ′(X ′))) (33)

where (i) is by Assumption 4.1, (ii) is by Assumption 4.2, and (iii) is by the following argument.

Let y∗ be the label that achieves the maximum in Equation (32). Note that under Assumption 4.2,
0 < ∥ET ′,X′|y′fθ(T ′(X ′))∥ ≤ 1. If in an ideal case, fθ(t′(x′)) produces the same representation for every t′(x′)
that shares the same label y′, then ∥ET ′,X′|y′fθ(T ′(X ′))∥ = ∥fθ(t′(x′))∥ = 1. To show (iii), we proceed by
considering the following two cases.
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Case 1: If fθ(t(x)) · ET ′,X′|y∗fθ(T ′(X ′)) ≤ 0, then

fθ(t(x)) · ET ′,X′|y∗fθ(T ′(X ′))
∥ET ′,X′|y∗fθ(T ′(X ′))∥

(i)
≤

fθ(t(x)) · ET ′,X′|y∗fθ(T ′(X ′))
ET ′,X′|y∗∥fθ(T ′(X ′))∥ (34)

(ii)= fθ(t(x)) · ET ′,X′|y∗fθ(T ′(X ′)) (35)
(iii)= ET ′,X′|y∗s(fθ(t(x)), fθ(T ′(X ′))) (36)
≤ max

y′ ̸=y
ET ′,X′|y′s(fθ(t(x)), fθ(T ′(X ′))) (37)

(iv)
≤ 1

ν
max
y′ ̸=y

ET ′,X′|y′s(fθ(t(x)), fθ(T ′(X ′))) (38)

where (i) is by Jensen’s inequality, (ii) is by Assumption 4.2, (iii) is by a similar argument in the proof of
Theorem 4.4, and (iv) follows from the fact that 0 < ν ≤ 1.
Case 2: If fθ(t(x)) · ET ′,X′|y∗fθ(T ′(X ′)) > 0, then

fθ(t(x)) · ET ′,X′|y∗fθ(T ′(X ′))
∥ET ′,X′|y∗fθ(T ′(X ′))∥

(i)
≤ max

y′ ̸=y

1
∥ET ′,X′|y′fθ(T ′(X ′))∥ max

y′ ̸=y

[
fθ(t(x)) · ET ′,X′|y′fθ(T ′(X ′))

]
(39)

= 1
ν

max
y′ ̸=y

[
fθ(t(x)) · ET ′,X′|y′fθ(T ′(X ′))

]
(40)

(ii)= 1
ν

max
y′ ̸=y

ET ′,X′|y′s(fθ(t(x)), fθ(T ′(X ′))) (41)

where (i) is by Lemma A.3, and (ii) is by a similar argument in the proof of Theorem 4.4.

Now for brevity, let g(T ′(X ′)) := s (fθ(t(x)), fθ(T ′(X ′))). Then,

max
y′ ̸=y

ET ′,X′|y′g(T ′(X ′))
(i)
≤ 1

α
log

∑
y′ ̸=y

exp
(
αET ′,X′|y′g(T ′(X ′))

)
(42)

(ii)
≤ 1

α
log

∑
y′

exp
(
αET ′,X′|y′g(T ′(X ′))

)
(43)

= 1
α

log
∑
y′

exp
(
αET ′EX′|y′g(T ′(X ′))

)
(44)

(iii)
≤ ET ′

 1
α

log
∑
y′

exp
(
αEX′|y′g(T ′(X ′))

) (45)

(iv)
≤ ET ′

 1
α

log
∑
y′

EX′|y′ exp (αg(T ′(X ′)))

 (46)

(v)= ET ′

 1
α

log

n
∑
y′

p(y′)EX′|y′ exp (αg(T ′(X ′)))

 (47)

= ET ′

[
1
α

log
(
nEY ′EX′|Y ′ exp (αg(T ′(X ′)))

)]
(48)

= ET ′

[
1
α

log (nEX′ exp (αg(T ′(X ′))))
]

(49)

= ET ′

[
1
α

log (EX′ exp (αg(T ′(X ′))))
]

+ 1
α

log n. (50)

where (i) is by Lemma A.1, (ii) is by the positivity of exp(αx) and the monotonicity of log(x), (iii) is
by Lemma A.2 and Jensen’s inequality, (iv) is by the convexity of exp(αx), Jensen’s inequality, and the
monotonicity of log(x), and (v) is by Assumption 4.5. This completes the proof of Theorem 4.6.
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A.2 Cross-reference

Table 3 shows how each component of SimCLR corresponds to specific parts of our problem formulation and
theoretical derivation.

Table 3: Cross-reference between SimCLR and our framework. We compare the key components and provide
references to the corresponding sections and theorems.

Component SimCLR Our framework
Architecture Siamese network Subsection 4.1 and 4.2
Loss NT-Xent Subsection 4.3
Data augmentation debiased prototype representation Subsection 3.2
Similarity measure cosine similarity with normalization Theorem 4.4 and 4.6
Dataset balanced class distribution Theorem 4.6

A.3 Implementation details

This subsection offers a comprehensive description of the implementation details for our experiments. Readers
can also refer to the code provided in the supplementary material. With 8 NVIDIA V100 GPUs, the
pretraining takes about 2.5 days and 13 GB peak memory usage, the linear evaluation takes about 1.5 days
and 8 GB peak memory usage, and the k-nearest neighbors takes about 40 minutes and 30 GB peak memory
usage.

A.3.1 Base setting

Dataset We use ImageNet as the benchmark dataset, as it is one of the most representative large-scale
image datasets. The training set comprises 1,281,167 images, while the validation set comprises 50,000 images.
As ImageNet’s test set labels are unavailable, we utilize the validation set as a test set for evaluation purposes.
ImageNet encompasses 1,000 classes.

Data augmentation The following data transformations are sequentially applied during pretraining. Due
to variations in image sizes, they are first cropped to dimensions of 224 × 224.

• RandomResizedCrop: Randomly crop a patch of the image within the scale range of (0.2, 1), then
resize it to dimensions of (224, 224).

• ColorJitter: Change the image’s brightness, contrast, saturation, and hue with strengths of
(0.4, 0.4, 0.4, 0.1) with a probability of 0.8.

• RandomGrayscale: Convert the image to grayscale with a probability of 0.2.

• GaussianBlur: Apply the Gaussian blur filter to the image with a radius sampled uniformly from
the range [0.1, 2] with a probability of 0.5.

• RandomHorizontalFlip: Horizontally flip the image with a probability of 0.5.

• Normalize: Normalize the image using a mean of (0.485, 0.456, 0.406) and a standard deviation of
(0.229, 0.224, 0.225).

Network architecture The encoder consists of a backbone followed by a projector. We employ ResNet-50
as the backbone and a three-layered fully-connected MLP as the projector. For the projector, the input and
output dimensions of all layers are set to 2,048. Batch normalization (Ioffe & Szegedy, 2015) is applied to all
layers, and the ReLU activation function is applied to the first two layers.

Pretraining configuration We pretrain the encoder with a batch size of 512 for 100 epochs. We employ
the SGD optimizer and set the momentum to 0.9, the learning rate to 0.1, and the weight decay rate to
0.0001. Additionally, we implement a cosine decay schedule for the learning rate, as proposed by Loshchilov
& Hutter (2016); Chen et al. (2020a).
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Evaluation configuration After pretraining, we employ linear evaluation, which is the standard evaluation
protocol. We take and freeze the pretrained backbone and attach a linear classifier on top. The linear classifier
is then trained on the training set and evaluated on the test set. Training the linear classifier is conducted
with a batch size of 4,096 for 90 epochs, utilizing the LARS optimizer (You et al., 2017).

A.3.2 Implementation details for Section 5.2

To estimate the value of the prototype representation bias, for each (xi, yi) in the ImageNet training set D,
we sample ti from T and x′

i from X|yi and calculate the deviation ∥fθ(ti(x′
i)) − fθ(ti(xi))∥. Then, we take

the average over the entire D as follows:
1

|D|
∑

(xi,yi)∈D

∥fθ(ti(x′
i)) − fθ(ti(xi))∥. (51)

So, we consider total 1,281,167 samples, which is equivalent to the number of images in the ImageNet training
set.

A.3.3 Implementation details for Section 5.3

When normalization is not carried out, there is a risk of loss overflow, so we resort to using the log-sum-exp
trick. It does not alter the values themselves.

A.3.4 Implementation details for Section 5.4

We use ImageNet-LT (ImageNet Long-Tailed) as a benchmark for imbalanced datasets. ImageNet-LT is a
representative dataset specifically designed to address the challenges associated with imbalanced datasets. It
is subsampled across the 1,000 classes of ImageNet, following a Pareto distribution with a shape parameter α
of 6. The training set consists of 115,846 images, which is approximately 9% of the entire ImageNet training
set. The class with the most images contains 1,280 images, while the class with the fewest has only 5 images.
The test set is balanced, consisting of 50,000 images, with each class having exactly 50 images.

We construct ImageNet-Uni (ImageNet Uniform) as a subset of ImageNet to enable a fair comparison. We
uniformly sample 115,846 images from the ImageNet training set, matching the size of the ImageNet-LT
training set. The test set is configured to be identical to that of ImageNet-LT.

A.4 Further experiments

In this subsection, we provide additional experimental results. We include results on CIFAR-10 (Krizhevsky
et al., 2009). Note that, since CIFAR-10 contains 10 classes, the chance-level accuracy is 10%.

A.4.1 Implementation details for CIFAR-10 experiments

Dataset The training set comprises 50,000 images, while the test set comprises 10,000 images. CIFAR-10
contains 10 classes, with all images standardized to a fixed size of 32 × 32.

Data augmentation The following data transformations are sequentially applied during pretraining.

• RandomResizedCrop: Randomly crop a patch of the image within the scale range of (0.08, 1), then
resize it to dimensions of (32, 32).

• RandomHorizontalFlip: Horizontally flip the image with a probability of 0.5.

• ColorJitter: Change the image’s brightness, contrast, saturation, and hue with strengths of
(0.4, 0.4, 0.4, 0.1) with a probability of 0.8.

• RandomGrayscale: Convert the image to grayscale with a probability of 0.2.

• Normalize: Normalize the image using a mean of (0.485, 0.456, 0.406) and a standard deviation of
(0.229, 0.224, 0.225).

19



Published in Transactions on Machine Learning Research (10/2025)

Table 4: Standard evaluations. We report top-1 accuracy on CIFAR-10 and ImageNet using two standard
evaluation protocols: k-nearest neighbor and linear evaluation. Each result is presented as the mean ±
standard deviation over 5 runs.

Dataset Protocol
k-NN Linear eval.

CIFAR-10 80.32 ± 0.32 86.08 ± 0.07
ImageNet 51.00 ± 0.22 67.40 ± 0.07
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(b) Generalized NT-Xent loss

Figure 5: Impact of balancing parameters α and λ on CIFAR-10. Better balancing can be accomplished
through the adjustments of the balancing parameters.

Network architecture The encoder consists of a backbone followed by a projector. We employ a variant
of ResNet-18 for CIFAR-10 as the backbone and a two-layered fully-connected MLP as the projector. For the
projector, the input and output dimensions of the first layer and 512 and 2,048, respectively, and the input
and output dimensions of the second layer are 2,048. Batch normalization is applied to all layers, and the
ReLU activation function is applied to the first layer.

Pretraining configuration We pretrain the encoder with 512 batch size for 200 epochs. We employ the
SGD optimizer and set the momentum to 0.9, the learning rate to 0.1, and the weight decay rate to 0.0001.

Evaluation configuration We train the linear classifier with a batch size of 256 for 90 epochs using SGD
with momentum 0.9 and learning rate 30, and apply a cosine decay schedule.

A.4.2 Standard evaluations

Table 4 presents a set of standard evaluations. Error bars, represented as the mean ± standard deviation, are
reported based on five independent runs. We choose (α, λ) as (4, 2) and (2, 4) for ImageNet and CIFAR-10,
respectively. We also include k-nearest neighbors evaluation. Specifically, we retrieve the k nearest training
image representations for a given test image representation. Their respective labels are aggregated using a
majority voting process to predict the label for the test image. In ImageNet experiments, k is set to 200,
whereas in CIFAR-10 experiments, k is set to 1.

A.4.3 Impact of balancing parameters on CIFAR-10

As in Section 6, Figure 5 shows that, balancing between the attracting component and the repelling component
is important using balancing parameters α and λ.
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Table 5: Comparison of class distributions under balanced contrastive loss. The results show that the uniform
class distribution leads to better performance.

Class distribution
Uniform Long-tailed

21.24 15.01

(a) Attracting bound (Equation (8)) (b) Repelling bound (Equation (10))

Figure 6: Bound tightness: mean gap ∆ = RHS − LHS over training checkpoints. Lower is tighter.

A.4.4 Impact of data imbalance on the balanced contrastive loss

As an extension of Section 5.4, we investigate the impact of data imbalance on the balanced contrastive loss
in Table 5. We adopt the balancing parameters α = 2 and λ = 1 for comparison, as the SimCLR loss is
equivalent to the generalized NT-Xent loss under this setting. Compared to SimCLR, the balanced contrastive
loss exhibits relatively improved performance. Nevertheless, similar to SimCLR, performance is higher when
the class distribution is balanced. This observation aligns well with our theoretical framework, which assumes
uniformity in class distribution.

A.4.5 Tightness of the upper bounds

We quantify the tightness of our upper bounds in Equation (8) and Equation (10) by measuring the per-sample
gap ∆ = RHS−LHS and reporting the mean across the dataset. We train on CIFAR-10 and store checkpoints
every 10 epochs. For each checkpoint we evaluate: (i) the attracting bound using K = 10 Monte Carlo
samples of T to approximate ET ; (ii) the repelling bound using K = 1 draw of T ′ and a memory bank of
M = 50,000 negatives (all training images) to approximate ET ′ and EX′ , respectively.

Figure 6 shows the epoch-wise mean gap for the attracting and repelling components, respectively. Both gaps
decrease and then stabilize at a small value, indicating that the bounds become tight as training progresses.
The repelling bound shows a consistently larger mean gap than the attracting bound across epochs.

Equality conditions. For the attracting bound, the proof of Equation (8) has slack only from Jensen’s
inequality on the norm: ∥ET fθ(T (x))∥ ≤ ET ∥fθ(T (x))∥ = 1. Hence, the equality holds when ∥ET fθ(T (x))∥ =
1, i.e., all augmented views of the same image map to the same unit vector (view-invariance).

For the repelling bound, the proof of Equation (10) uses several inequalities. In practice, tightness is
approached when similarities s(fθ(t(x)), fθ(T ′(X ′))) vary little across T ′ and X ′, so moving expectations
through exp and log adds negligible slack. It is also approached when a single negative class dominates or α
is large, making 1

α log
∑

exp(α ·) ≈ max.
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