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Abstract
Vision Graph Neural Networks (ViGs) are often limited by their reliance on a
fixed, homogeneous graph construction rule applied across all network stages.
To address this limitation, we introduce SearchViG, a novel framework that
automatically designs optimal heterogeneous architectures by performing a Graph
Construction Search (GCS) to produce the optimal graph topology for each
stage within our designated search space. Our search is guided by a zero-shot,
theoretically-grounded proxy: the spectral gap of the graph’s adjacency matrix,
which quantifies its Ramanujan-like expansion properties, provably linking it to
superior information flow. SearchViG discovers new heterogeneous architectures
that assign different graph topologies, number of neighbors, and hops between
neighbors based on feature resolution. Our resulting models establish a new
state-of-the-art Pareto frontier for Vision GNNs. For instance, our SearchViG-M
achieves 83.3% top-1 accuracy, outperforming both Vision GNN-B (ViG-B) and
Vision Hypergraph Neural Network-B (ViHGNN-B) while using over 70% fewer
parameters and 80% fewer GMACs. This efficiency extends to downstream
tasks, where our lightweight SearchViG-S obtains 43.4 mIoU, 43.5 AP box, and
39.9 APmask, surpassing the much larger Pyramid Vision Transformer-Large
(PVT-Large) across all metrics while using 80% fewer parameters. Code is
available at https://github.com/SLDGroup/SearchViG.

1 Introduction

The rapid growth of deep learning has led to remarkable successes across a diverse set of computer
vision tasks, including image classification [1, 2], object detection [3, 4], instance segmentation
[5], and semantic segmentation [6]. Key architectural paradigms driving this progress include
convolutional neural networks (CNNs) [1, 7, 8], Vision Transformers (ViTs) [2, 9], and multi-layer
perceptron (MLP)-based vision models [10, 11].

In CNNs and MLPs, input images are represented as a grid of pixels, whereas ViTs represent images
as a sequence of patch embeddings. By splitting an image into fixed-size patches and linearly
embedding them, ViTs leverage Transformer modules that were originally developed for natural
language processing [12] to model long-range dependencies. Unlike CNNs and MLPs, which
have local receptive fields, ViTs possess a global receptive field, which enables them to capture
relationships between distant regions in an image.

Recently, Vision Graph Neural Networks (ViGs) have emerged as an alternative in visual representa-
tion learning [13]. ViGs represent an image as a graph, where nodes correspond to patches and edges
are formed using a k-nearest neighbors (KNN) [14] graph construction strategy. This representation
offers a more flexible connectivity pattern than the rigid grids of CNNs or the sequential ordering of
ViTs. Extensions such as the Vision Hypergraph Neural Network (ViHGNN) [15] generalize ViGs by
replacing pairwise connections with hyper-edges, enabling richer relational modeling. Other works
[16–19] have explored dynamic and efficient graph construction, but they all still apply a single
homogeneous graph construction rule across all network stages.
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Figure 1: Comparison of model efficiency and performance on ImageNet-1K. SearchViG establishes a new
state-of-the-art Pareto frontier, achieving superior top-1 accuracy with significantly fewer (a) parameters and (b)
GMACs compared to competing vision models.

Despite these advances, all existing ViG-based architectures employ static, manually designed, or
homogeneous graph construction policies across all network stages. However, feature semantics
change substantially as the network progresses through different resolutions. A graph topology
that is optimal for low-resolution, high-semantic features may not be optimal for high-resolution,
low-semantic features. This mismatch can lead to suboptimal performance and under-utilization of
the expressive capacity of graph-based models. The limitations of current ViG-based models are:

• Homogeneous architectures: Existing ViGs adopt the same graph topology across all net-
work stages. This uniformity overlooks the fact that feature semantics vary with resolution:
low-resolution features encode high-level semantics, while high-resolution features capture
fine-grained details. A single topology cannot simultaneously optimize for both, leading to
suboptimal representations.

• Static graph construction rules: Existing ViGs rely on manually designed and fixed graph
construction rules, such as k-nearest neighbor or radius-based graphs [20]. These static rules
cannot adapt to the evolving properties of features as the network deepens. As a result, the
expressive capacity of graph-based models is underutilized, limiting their ability to fully exploit
stage-specific feature structures.

To overcome these limitations, we propose a new class of heterogeneous architectures where the graph
topology adapts to the changing properties of features at different network stages. To automatically
design these models, we introduce SearchViG, a Graph Construction Search (GCS) framework guided
by a zero-shot, theoretically grounded proxy, namely, the spectral gap of the graph’s adjacency
matrix, which measures expansion properties that have provable links to information flow [21, 22].
SearchViG automatically discovers the optimal graph construction module for each stage, producing
heterogeneous topologies that are tailored to the evolving feature representations. Unlike prior ViGs,
which are limited by fixed and homogeneous designs, SearchViG optimizes the number of neighbors,
hop distance, and construction method per resolution, and can seamlessly incorporate new graph
construction techniques into its search space. We summarize our contributions as follows:

• We propose SearchViG, a new framework that performs a zero-shot Graph Construction
Search (GCS) to automatically discover optimal Vision GNN topologies without any training.

• We propose our spectral search to discover heterogeneous architectures that adapt their graph
construction rules from static and homogeneous to dynamic, heterogeneous, and content-aware
based on feature resolution.

• SearchViG establishes a new state-of-the-art Pareto frontier, outperforming existing Vision
GNNs in both accuracy and efficiency as shown in Figure 1.
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2 Related Work
2.1 Deep Learning Architectures

Convolutional Neural Networks (CNNs) have been the cornerstone of modern vision systems since
AlexNet [8], with subsequent architectures like ResNet [1] and DenseNet [23] pushing accuracy via
deeper or more densely connected networks. CNNs exploit local receptive fields and weight sharing
to learn hierarchical feature representations efficiently. However, their grid-based convolutional
structure limits the modeling of long-range or irregular dependencies. Extensions such as non-local
neural networks [24] have been proposed to augment CNNs with global processing, thus underscoring
the need to go beyond purely local operations.

Vision Transformers (ViTs) [2] introduce a fundamentally different architecture, processing images
as a sequence of patch tokens with global self-attention. By design, ViTs can capture long-range
interactions from early layers, addressing CNNs’ limitation in long-distance modeling. Hierarchi-
cal variants like Swin Transformer [25] further improve efficiency by restricting self-attention to
non-overlapping local windows and alternating window shifts to enable cross-region interaction.
Pure MLP-based models (e.g., the MLP-Mixer [10]) have also been explored which mixes spatial
information via all-MLP layers. But, these approaches come with trade-offs: ViTs and Mixers
lack the inductive bias of locality and require very large training data and computations, and even
with self-attention, they operate on a fixed grid of patches with a mostly uniform (fully-connected
or windowed) attention pattern. This uniform structure may not optimally model irregular scene
relationships; for instance, ViTs attend globally but do not explicitly distinguish which connections
are useful. These limitations have inspired interest in more adaptive connectivity mechanisms, which
paves the way for graph-based approaches.

2.2 Vision GNNs

ViGs have emerged in computer vision as a new paradigm to represent images beyond the rigid grid or
sequence structures of CNNs and ViTs. In a ViG, image patches serve as nodes, and their relationships
are encoded as edges, which enables flexible context modeling and long-range interactions [26].

A key research question for ViGs is how to construct the underlying graph of patches. The original
ViG [13] employs a simple graph construction rule across all stages: a k-nearest neighbor graph in
which all patch nodes share the same type of connection [13]. Subsequent work has attempted to
improve graph construction efficiency and adaptivity. For example, MobileViG [20] introduces a
static graph construction mechanism to reduce computational overhead for mobile vision applications.
In parallel, other methods proposed clustered [17], windowed [19], and dynamic axial processing [16]
to enable adaptivity while limiting computational cost. Despite improved efficiency, these extensions
still operate on a single graph construction rule across all stages to propagate information.

Another line of research addressed a limitation of the above pairwise graph approaches: standard
graphs encode only binary relationships between nodes. Using only pairwise edges can lead to
an explosion of connections and fails to model higher-order dependencies among image regions.
To overcome this issue, Vision Hypergraph Neural Network (ViHGNN) [15] represents images
with a hypergraph structure. In a hypergraph, a single hyperedge can connect multiple patches
simultaneously, thus enabling the modeling of group-wise relationships beyond simple pairs.

2.3 Neural Architecture Search

Neural Architecture Search (NAS) has emerged as a powerful approach to automate the design
of high-performance deep networks. Multi-shot NAS methods explore architectures by training
numerous candidates but suffer from high computational costs. In contrast one-shot NAS mitigates
this by sharing weights among sub-networks through a supernet, achieving faster yet still training-
dependent searches [27]. Recently, zero-shot NAS has gained attention for completely removing the
training stage by ranking candidate architectures using computation-efficient proxies [28–34]. The
effectiveness of zero-shot NAS depends on the quality of these proxies. Early works assess network
expressivity via the number of linear regions [35, 36], while others adopt gradient-based metrics such
as SynFlow [37], SNIP [38], and GraSP [39], derived from Taylor expansions of neural networks.
Additional proxies like Zen-score [40] and Jacobian covariance [41] further capture architectural
complexity. However, studies show that simple heuristics such as the number of parameters can
outperform existing proxies [42], underscoring the need for more robust and theoretically grounded
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zero-shot NAS approaches. Furthermore, current NAS based approaches focus on optimizing channel
width, network depth, or kernel size but there are no NAS based methods to determine graph
construction for Vision GNNs.

2.4 Need for Heterogeneous Graph Topologies

Despite recent progress, Vision GNNs, including ViG [13] and its extensions, still rely on homo-
geneous graph construction rules, where all node connections are defined by a single relational
rule. However, image regions naturally exhibit diverse relationships: spatial adjacency, appearance
similarity, and semantic affinity, to name a few. Imposing a uniform connectivity pattern, regardless
of the underlying data’s unique structure, creates bottlenecks that hinder the flow of information and
limit the model’s representational power. This aligns with a broader principle where prior work has
shown the benefits of relating data characteristics to the design of networks [43, 44].

To address this gap, we introduce SearchViG, a framework that automatically discovers stage-
specific, heterogeneous graph topologies rather than relying on a fixed rule. By searching over diverse
construction strategies (e.g., local spatial neighbors, feature-driven similarity, logarithmic connections,
etc.), SearchViG learns optimal graph construction tailored to evolving feature semantics. The
resulting heterogeneous architectures capture complementary interaction types among patches, which
enables more discriminative visual representations. Unlike prior models that enforce homogeneous
connectivity patterns, SearchViG adapts the graph structure to the data and network depth, thus
overcoming the limitations of homogeneous graphs and establishing a stronger foundation for graph-
based vision understanding.

3 Methodology
3.1 Preliminaries

Our work is grounded in spectral graph theory, which studies the properties of a graph through the
eigenvalues and eigenvectors of its associated matrices. This section introduces the concepts that
motivate our use of a spectral gap as a proxy for discovering optimal graph topologies in ViGs.

Graph and Matrix Representations. A graph is defined as G = (V, E), where V is the set of
N = |V| nodes and E is the set of edges. The structure of the graph is captured by its Adjacency Matrix
A ∈ {0, 1}N×N . We also define the Degree Matrix D as a diagonal matrix where Dii =

∑
j Aij .

From these, the Normalized Laplacian is defined as Lnorm = I − D−1/2AD−1/2. The spectra of
both A and Lnorm reveal insights into the graph’s structure.

The Spectral Gap as a Measure of Connectivity. Spectral graph theory offers two primary ways
to measure a graph’s expansion properties via its spectral gap:

• The Laplacian Spectral Gap (µ1) is the second-smallest eigenvalue of the Normalized Laplacian
(Lnorm). Also known as the algebraic connectivity, it is a measure of connectivity; a graph is
connected if and only if µ1 > 0.

• The Adjacency Spectral Gap (λ1 − λ2) is the difference between the first and second largest
eigenvalues of the Adjacency Matrix (A). This gap serves as a strong indicator of a graph’s
expansion properties.

Ramanujan Graphs as an Optimal Spectral Proxy. Our goal is to find graph topologies that
are optimal for information flow, which leads to the concept of Expander Graphs [22]: a family of
graphs that are both sparse yet highly connected. The properties of these graphs are deeply connected
to the spectrum of their Adjacency Matrix, A. For a graph with adjacency eigenvalues sorted as
λ1 ≥ λ2 ≥ · · · ≥ λN , the Adjacency Spectral Gap, λ1 − λ2, is an indicator of its expansion quality.

The theoretical ideal for expander graphs is captured by the properties of Ramanujan Graphs [21, 45].
The Alon-Boppana bound [45] establishes a limit on the spectral expansion of any d-regular graph,
stating that its second-largest eigenvalue must satisfy λ2 ≥ 2

√
d− 1− o(1). Ramanujan graphs are

those that nearly meet this fundamental limit, being formally defined as d-regular graphs where all
non-trivial eigenvalues λi are bounded by |λi| ≤ 2

√
d− 1.
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These graphs are, in a spectral sense, the best possible expanders. Therefore, the adjacency spectral
gap serves as a direct, zero-shot proxy to guide our search for optimal Vision GNN topologies. The
graphs found are optimal with respect to the search space since a large spectral gap is provably linked
to superior information flow [22] and because it mitigates the problems of oversmoothing [46] and
oversquashing [47], as shown in Appendix A.

3.2 Spectral Analysis of Graph Structure

The choice of a graph construction rule is a central, yet underexplored, challenge in Vision GNN
design. An effective rule must generate a topology that is conducive to stable and deep information
propagation. The spectral properties of a graph serve as a powerful, training-free (zero-shot) indicator
of this behavior. This section provides a detailed analysis of how the spectral gap is linked to the
mitigation of common GNN failure modes, thus justifying its use as a strong objective for our Graph
Construction Search. Detailed analysis can be found in our Appendix Sections A and B.

Resistance to Oversmoothing. A primary challenge in deep GNNs is oversmoothing [48], where
repeated message passing causes node features to converge to a uniform, noninformative state.
This phenomenon is governed by the convergence properties of the graph’s propagation matrix,
which is often a normalized version of the adjacency matrix (e.g., P = D−1/2AD−1/2). The
rate of convergence to an over-smoothed state is controlled by the second largest eigenvalue of
this propagation matrix. For regular graphs, this eigenvalue is directly proportional to λ2, the
second largest eigenvalue of the adjacency matrix A. A smaller λ2 slows the convergence, thus
preserving feature diversity for more layers. Since the adjacency spectral gap for a regular graph is
λ1 − λ2 = d− λ2, maximizing this gap is equivalent to minimizing λ2. Therefore, our search for a
large adjacency spectral gap favors graph topologies that are more resistant to oversmoothing.

Prevention of Oversquashing. The second critical challenge is oversquashing [47], a structural
issue where information from a large receptive field is bottlenecked when passing through the
graph. This is fundamentally a problem of graph expansion. As established in the preliminaries, the
Adjacency Spectral Gap is a direct, theoretical measure of a graph’s expansion properties. A graph
with a large spectral gap is a good expander. By definition, an expander graph has no bottlenecks,
ensuring that information and gradients can flow efficiently between any two regions of the graph.
Therefore, maximizing the adjacency spectral gap is a principled method for discovering topologies
that are structurally guaranteed to prevent oversquashing.

A Principled Zero-Shot Proxy. The analysis above demonstrates that the spectral gap is not merely
a descriptive statistic, but is linked to the dynamic properties essential for effective GNNs. Because
the spectral gap (λ1 − λ2) can be calculated at initialization without any training, it serves as an ideal
zero-shot proxy for Vision GNN trainability. It allows our GCS to efficiently evaluate a vast design
space and identify architectures that are predisposed to stable and powerful learning, making the
discovery of well performing heterogeneous topologies computationally tractable. To our knowledge,
SearchViG is the first framework to use the spectral gap as a zero-shot proxy for discovering optimal,
stage-specific graph construction rules in Vision GNNs.

3.3 Graph Construction Search

We introduce a zero-shot Graph Construction Search (GCS) framework designed to identify the
best graph construction policy for each stage of the SearchViG architecture. Our search is guided by
a single, theoretically-grounded objective, which helps us find the stage-specific graph topology, G∗

s ,
that maximizes the adjacency spectral gap. Formally, for each stage s in the architecture, SearchViG
solves the following optimization problem:

G∗
s = argmax

G∈Cs

(λ1(A(G))− λ2(A(G))) (1)

where Cs is the set of candidate graph construction methods for that stage, A(G) is the adjacency
matrix of graph G, and λ1, λ2 are the largest eigenvalues. The entire search process, detailed in
Algorithm 1, is performed without any model training, making it computationally efficient. When we
benchmark the graph construction cost compared to the training cost, we find it is less than 0.5% of
the training cost in terms of GPU hours. A formal complexity analysis and detailed cost breakdown
are provided in Appendix D.
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Algorithm 1 Graph Construction Search (GCS)
1: Input: Set of stages (resolutions) S, Set of candidate methodsM, Data sample Dsample

2: Output: Optimal heterogeneous ViG configuration G∗ (the set of the stage-specific optimal rules G∗s )
3: G∗ ← new empty map ▷ Initialize the final configuration map
4: for all stage s ∈ S do
5: best_spectral_gap← −1
6: G∗s ← None
7: for all method Mi ∈M do
8: for all hyperparameter k of Mi do
9: spectral_gaps← []

10: for all image ∈ Dsample do
11: A← ConstructAdjacencyMatrix(image, s,Mi, k)
12: (λ1, λ2)← LargestEigenvalues(A)
13: spectral_gaps.append(λ1 − λ2)
14: end for
15: avg_gap← mean(spectral_gaps)
16: if avg_gap > best_spectral_gap then
17: best_spectral_gap← avg_gap
18: G∗s ← (Mi, k)
19: end if
20: end for
21: end for
22: G∗[s]← G∗s ▷ Add the best graph construction rule for stage s to the map
23: end for
24: return G∗

Search Space. The search space for our GCS consists of a theoretically infinite search space of
graph construction mechanisms as users can add additional graph construction mechanisms to the
search process. For our experiments, we used a comprehensive set of static, dynamic, local, and
global construction mechanisms. These include strided axial connections [20, 49, 50] and dynamic
content-based methods (KNN [13], windowed KNN [19], Clustered-KNN [15, 17], dynamic axial
connections [16], and similarity-thresholded [18]) methods. For each method, we also search over a
set of hyperparameters, such as the hop distance or neighbor count K. This rich search space allows
the GCS to explore a diverse range of possible topologies.

Search Process. The search is performed independently for each of the four stages of the SearchViG
architecture, which correspond to feature resolutions of 56× 56, 28× 28, 14× 14, and 7× 7. For a
given resolution, we iterate through every candidate graph construction method and hyperparameter
in our search space. For each candidate, we generate graph topologies for a representative subset
of 1000 ImageNet images. We then compute the Adjacency Spectral Gap for the largest connected
component of each generated graph and average the results over all images. The policy that yields
the highest average spectral gap is selected as the optimal constructor for that specific stage. This
zero-shot evaluation allows us to efficiently find a powerful heterogeneous architecture.

3.4 Heterogeneous Graph Convolution

The Graph Construction Search (GCS) detailed in Section 3.3 yields a novel architectural paradigm
for Vision GNNs. Instead of relying on a single, fixed graph construction rule, our search discovers an
optimal, stage-specific rule for each resolution. This finding motivates the design of our architectural
building block, the Heterogeneous Graph Convolution (HGC) Block.

An HGC Block is a module whose internal graph construction mechanism is not fixed, but is instead
determined by the output of the GCS. For a stage s in the network, let the optimal graph construction
rule discovered by our search be G∗

s with its corresponding hyperparameter K∗
s . The HGC block

processes an input feature map X(s) through two main sub-modules: a Heterogeneous Grapher and a
Feed-Forward Network (FFN), with residual connections. The operation is defined as follows:

X ′(s) = X(s) + Graphers(X
(s)) (2)

X(s+1) = X ′(s) + FFN(X ′(s)) (3)
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Figure 2: SearchViG Architecture. (a) The overall 4-stage hierarchical architecture. Each stage combines
MBConv blocks for local processing with our HGC Block for global information mixing. (b) The initial
convolutional stem for feature extraction. (c) The MBConv Block used for local feature processing. This
block consists of pointwise convolutions, GeLU activation, and depthwise convolution (DWConv). (d) The
downsample block used between stages to reduce spatial resolution. (e) The Heterogeneous Graph Convolution
(HGC) Block. (f) The Heterogeneous Grapher module, which instantiates the optimal graph constructor
for its stage. This block consists of reparameterizable conditional positional encoding (RepCPE), pointwise
convolutions, and max-relative graph convolution (MRConv). (g) The Feed-Forward Network (FFN). (h) Our
Graph Construction Search (GCS), which selects the best graph construction policy and hyperparameters from a
set of candidates for each HGC Block.

The key to this block is the Heterogeneous Grapher module, Graphers, which is parameterized by
the search result for its specific stage:

Graphers(X) = ϕout(GraphConvG∗
s ,K

∗
s
(ϕin(X))) (4)

where ϕin and ϕout represent feature-processing MLPs, and GraphConvG∗
s ,K

∗
s

is the graph convolu-
tion layer that utilizes the specific graph topology found by our search. This formulation allows each
HGC block in the network to employ a different, specialized graph convolution policy.

3.5 SearchViG Architecture

The SearchViG architecture, shown in Figure 2(a), is a hierarchical design composed of a convolu-
tional stem and four subsequent stages that progressively reduce spatial resolution while increasing
channel width. The Stem (Figure 2(b)) uses two 3×3 convolutions, each with a stride of 2, to down-
sample the input and extract initial low-level features. Each of the four Stages contains a sequence of
blocks for both local and global feature processing. For local processing, we use MBConv blocks
(Figure 2(c)) based on the inverted residual structure [51]. MBConv blocks capture local patterns
using a combination of depthwise [52] and pointwise convolutions, along with GeLU [53] activation.

For global processing, we introduce our novel Heterogeneous Graph Convolution (HGC) Block
(Figure 2(e)). Crucially, the internal graph construction mechanism of the HGC block is tailored to
each stage, having been discovered by our Graph Construction Search. This allows the network to
apply the most effective graph topology (e.g., static, long-range, dynamic, clustered, etc.) at each level
of feature abstraction. The HGC block is composed of the Heterogeneous Grapher and an FFN. As
detailed in Figure 2(f), the Heterogeneous Grapher first enriches features with positional information
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Table 1: Classification results on ImageNet-1k for SearchViG and other state-of-the-art models. Bold entries
indicate results obtained for SearchViG proposed in this paper. The Top-1 accuracy results for SearchViG
models show the mean ± standard deviation averaged over three experiments with different random seeds.

Model Type Resolution Params (M) GMACs Epochs Accuracy (%)
ResNet18 [1] CNN 224× 224 11.7 1.8 300 69.7
ResNet50 [1] CNN 224× 224 25.6 4.1 300 80.4

ConvNext-T [58] CNN 224× 224 28.6 7.4 300 82.7
EfficientFormer-L1 [59] CNN-ViT 224× 224 12.3 1.3 300 79.2
EfficientFormer-L3 [59] CNN-ViT 224× 224 31.3 3.9 300 82.4
EfficientFormer-L7 [59] CNN-ViT 224× 224 82.1 10.2 300 83.3

LeViT-192 [60] CNN-ViT 224× 224 10.9 0.7 1000 80.0
LeViT-384 [60] CNN-ViT 224× 224 39.1 2.4 1000 82.6
PVT-Small [61] ViT 224× 224 24.5 3.8 300 79.8
PVT-Large [61] ViT 224× 224 61.4 9.8 300 81.7

Swin-T [25] ViT 224× 224 29.0 4.5 300 81.3
Swin-S [25] ViT 224× 224 50.0 8.7 300 83.0

PoolFormer-s12 [62] Pool 224× 224 12.0 2.0 300 77.2
PoolFormer-s24 [62] Pool 224× 224 21.0 3.6 300 80.3
PoolFormer-s36 [62] Pool 224× 224 31.0 5.2 300 81.4

ViHGNN-S [15] GNN 224× 224 23.2 5.6 300 81.5
ViHGNN-B [15] GNN 224× 224 88.1 19.4 300 82.9

PViHGNN-Ti [15] GNN 224× 224 12.3 2.3 300 78.9
PViHGNN-S [15] GNN 224× 224 28.5 6.3 300 82.5
PViHGNN-B [15] GNN 224× 224 94.4 18.1 300 83.9

ViG-S [13] GNN 224× 224 22.7 4.5 300 80.4
ViG-B [13] GNN 224× 224 86.8 17.7 300 82.3

PViG-Ti [13] GNN 224× 224 10.7 1.7 300 78.2
PViG-S [13] GNN 224× 224 27.3 4.6 300 82.1
PViG-B [13] GNN 224× 224 92.6 16.8 300 83.7

WiGNet-Ti [19] GNN 256× 256 10.8 2.1 300 78.8
WiGNet-S [19] GNN 256× 256 27.4 5.7 300 82.0
WiGNet-M [19] GNN 256× 256 49.7 11.2 300 83.0

MobileViG-S [20] CNN-GNN 224× 224 7.2 1.0 300 78.2
MobileViG-M [20] CNN-GNN 224× 224 14.0 1.5 300 80.6
MobileViG-B [20] CNN-GNN 224× 224 26.7 2.8 300 82.6

SearchViG-S (Ours) CNN-GNN 224× 224 12.4 1.7 300 81.3 ± 0.2
SearchViG-M (Ours) CNN-GNN 224× 224 25.7 3.7 300 83.3 ± 0.1
SearchViG-B (Ours) CNN-GNN 224× 224 34.2 5.0 300 84.0 ± 0.2

via a reparameterizable conditional positional encoding (CPE) layer [54, 55]. The features then pass
through pointwise convolution with batch normalization [56], max-relative graph convolution [57]
for message passing, and a final pointwise convolution. Between each stage, a Downsample block
(Figure 2(d)) halves the resolution and expands the channel dimension.

4 Experimental Results
We compare SearchViG with competing CNN, ViT, and Vision GNN architectures on the tasks
of image classification, object detection, instance segmentation, and semantic segmentation to
demonstrate its superior performance. For additional results on the CIFAR [63], OrganSMNIST
[64], DermaMNIST [64], DeepCrack [65], Crack500 [66], CityScapes [67], and COCO-Stuff [68]
benchmarks, please refer to the Appendix Section C.

4.1 Image Classification

All SearchViG models are trained from scratch on the ImageNet-1K dataset [69] using PyTorch [70]
and the Timm library [71]. We train for 300 epochs using the AdamW optimizer [72, 73], a learning
rate of 2e−3 with a cosine annealing schedule, and a standard training resolution of 224× 224.
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As shown in Table 1, our SearchViG models set a new state-of-the-art for Vision GNNs, outperforming
prior works across all model sizes. Our smallest model, SearchViG-S, achieves an impressive 81.3%
Top-1 accuracy with only 12.4M parameters and 1.7 GMACs. This significantly surpasses other
GNNs in its class like PViG-Ti (+3.1%) and PViHGNN-Ti (+2.4%) with equal or lower parameters
and GMACs. Our mid-sized model, SearchViG-M, reaches 83.3% accuracy, outperforming WigNet-
M [19] by 0.3% with 67% fewer GMACs and ViG-B [13] by 1.0% with 79% fewer GMACs. Lastly,
our SearchViG-B model achieves a remarkable 84.0% accuracy with only 5.0 GMACs. This result
surpasses larger and more computationally expensive competitors from all paradigms, including Swin-
S [25] (83.0%, 8.7 GMACs), EfficientFormer-L7 [59] (83.3%, 10.2 GMACs), and even the 94.4M
parameter PViHGNN-B [15] (83.9%, 18.1 GMACs), establishing the superiority of SearchViG.

4.2 Object Detection and Instance Segmentation

To evaluate generalization to downstream tasks, we use SearchViG as a backbone in the Mask-RCNN
framework [74] for object detection and instance segmentation tasks on the MS COCO 2017 dataset
[75]. The model is initialized with ImageNet-1K pretrained weights from 300 epochs of training. We
use the AdamW [72, 73] optimizer with an initial learning rate of 2e−4 and train the model for 12
epochs with a standard resolution (1333 × 800) following prior work [16, 20, 59, 76, 77].

The results in Table 2 demonstrate SearchViG’s strong performance. SearchViG-S achieves 43.5
AP box and 39.9 APmask, significantly outperforming other models like PoolFormer-S12 [62] by
+6.2 AP box and +5.3 APmask. Our SearchViG-B model achieves 46.5 AP box and 42.4 APmask,
surpassing similarly sized models like EfficientFormer-L3 [59] by +5.1 AP box and +4.3 APmask.

Table 2: Object detection, instance segmentation, and semantic segmentation results of SearchViG and
other backbones on MS COCO 2017 and ADE20K. Bold entries indicate results obtained using SearchViG
proposed in this paper. A (-) denotes a model that did not report these results.

Backbone Params (M) AP box AP box
50 AP box

75 APmask APmask
50 APmask

75 mIoU

EfficientFormer-L1 [59] 12.3 37.9 60.3 41.0 35.4 57.3 37.3 38.9
PoolFormer-S12 [62] 12.0 37.3 59.0 40.1 34.6 55.8 36.9 37.2
FastViT-SA12 [78] 10.9 38.9 60.5 42.2 35.9 57.6 38.1 38.0
MobileViG-M [20] 14.0 41.3 62.8 45.1 38.1 60.1 40.8 -

PoolFormer-S24 [62] 21.0 40.1 62.2 43.4 37.0 59.1 39.6 40.3
SearchViG-S (Ours) 12.4 43.5 65.6 47.4 39.9 62.3 43.5 43.4

EfficientFormer-L3 [59] 31.3 41.4 63.9 44.7 38.1 61.0 40.4 43.5
EfficientFormer-L7 [59] 82.1 42.6 65.1 46.1 39.0 62.2 41.7 45.1

FastViT-SA36 [78] 30.4 43.8 65.1 47.9 39.4 62.0 42.3 42.9
Pyramid ViG-S [13] 27.3 42.6 65.2 46.0 39.4 62.4 41.6 -

Pyramid ViHGNN-S [15] 28.5 43.1 66.0 46.5 39.6 63.0 42.3 -
PVT-Large [61] 61.4 42.9 65.0 46.6 39.5 61.9 42.5 42.1

MobileViG-B [20] 26.7 42.0 64.3 46.0 38.9 61.4 41.6 -
SearchViG-B (Ours) 34.2 46.5 68.7 51.5 42.4 65.9 45.6 47.9

4.3 Semantic Segmentation

We further validate our models on semantic segmentation using the ADE20K dataset [79]. Following
the methodologies of prior work [59, 62], we use SearchViG as a backbone for the Semantic FPN [80]
segmentation decoder. The SearchViG backbones are initialized with their ImageNet-1K pre-trained
weights and trained for 40K iterations. We use the AdamW [73] optimizer with a learning rate
of 2 × 10−4 and a polynomial decay schedule with a power of 0.9. All models are trained with a
resolution of 512× 512 following prior work [16, 59, 77].

The results in Table 2 confirm the generalization of our SearchViG backbone to dense prediction tasks.
Our SearchViG-S achieves 43.4 mIoU, outperforming other efficient models like EfficientFormer-L1
[59] by a margin of +4.5 mIoU with a comparable parameter count. Furthermore, our SearchViG-B
model obtains a state-of-the-art 47.9 mIoU. This surpasses larger models like EfficientFormer-L7
[59] (+2.8 mIoU) while using less than half the parameters. The performance of SearchViG across
these tasks shows its ability to generalize to downstream tasks.
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4.4 Ablation Studies

We conduct ablation studies on the ImageNet-1K [69] dataset to validate our design choices. We use
the SearchViG-S architecture as the baseline for these experiments as shown in Table 3.

Effectiveness of the Spectral Gap as a Search Metric. To verify that our spectral-aware search
is a meaningful proxy for final model performance, we compare it against an architecture found
by a random search baseline. We construct a RandomViG-S model by randomly selecting a graph
construction policy and K-value for each stage from our search space. As shown in Table 3, the
architecture discovered by our spectral-aware GCS significantly outperforms the randomly constructed
one by 1.3% top-1 accuracy (81.3% vs. 80.0%), confirming that maximizing the spectral gap is an
effective strategy for discovering high-performance topologies.

Impact of Heterogeneous Architecture. To verify that a heterogeneous graph topology is superior
to a homogeneous one, we construct three homogeneous baselines by using a single graph policy
(SVGA [20], KNN [13, 14], or Clustered KNN [15, 17]) across the stages. Table 3 shows that
our heterogeneous SearchViG-S outperforms all homogeneous variants. Notably, it surpasses the
strongest homogeneous baseline (Clustered KNN) by 0.8%, demonstrating that adapting the graph
construction to the feature resolution is critical for achieving optimal performance.

Table 3: Ablation studies on SearchViG-S. We validate our spectral search metric and compare our discovered
heterogeneous architecture against homogeneous and alternative search baselines.

Configuration Parameters (M) Top-1 Accuracy (%)
Homogeneous (SVGA Only) 12.4 80.4
Homogeneous (KNN Only) 12.4 80.4
Homogeneous (Clustered KNN Only) 12.4 80.5
RandomViG-S 12.4 80.0

SearchViG-S (Heterogeneous, Ours) 12.4 81.3

5 Conclusion
In this work, we have introduced SearchViG, a novel framework that challenges the prevailing
paradigm of homogeneous graph construction in Vision GNNs. We proposed a zero-shot Graph
Construction Search (GCS) guided by a theoretically-grounded spectral proxy to automatically
discover optimal, stage-specific graph topologies. Our proposed heterogeneous architecture of
SearchViG intelligently adapts its connectivity based on the resolution of the input. The resulting
SearchViG models demonstrate the power of this heterogeneous design method, establishing a new
state-of-the-art Pareto frontier for Vision GNNs on ImageNet-1K classification and downstream
tasks. Most notably, our work provides the first principled method for automating the discovery of
heterogeneous graph topologies, opening a new and promising direction for the future of Vision GNN
design. Future work could explore expanding the search space with additional graph construction
mechanisms or proposing new search policies for Vision GNN graph construction.
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A Theoretical Analysis
A.1 Theoretical Justification for Spectral-Aware Graph Search

Our work, SearchViG, is motivated by the principle that a neural network’s graph topology is critical
for effective learning. We propose a Graph Construction Search (GCS) that, for the first time, creates
a heterogeneous Vision GNN by selecting the optimal graph construction module at each resolution
to produce topologies with superior spectral properties.

In this section, we provide the theoretical justification for our approach. We show that optimizing
for the spectral gap leads to a graph structure with more stable gradient flow, addressing the key
challenges of oversmoothing, oversquashing, and vanishing gradients in Vision GNNs.

A.2 Spectral Preliminaries for a GNN Layer

A single GNN layer updates a node feature matrix H ∈ RN×C by applying a graph-aware transfor-
mation:

H ′ = σ (PHW ) (5)

where W is a learnable weight matrix and σ is a non-linearity. The stability and effectiveness of this
layer are intrinsically linked to the spectral properties of the propagation matrix P ∈ RN×N , which
mixes information across the graph’s nodes.

The propagation matrix is the symmetrically normalized adjacency matrix, P = D−1/2AD−1/2,
where D is the diagonal degree matrix with Dii =

∑
j Aij . The eigenvalues of P , denoted 1 = p1 ≥

p2 ≥ · · · ≥ pN ≥ −1, dictate the layer’s behavior as a graph filter. The properties of P are, in turn,
governed by the spectrum of the Adjacency Matrix A.

Let the eigenvalues of the adjacency matrix A be sorted as λ1 ≥ λ2 ≥ · · · ≥ λN . Our search
is guided by the Adjacency Spectral Gap, defined as λ1 − λ2. As established in our main paper,
maximizing this gap is a means to find graphs with strong, Ramanujan-like expansion properties. The
spectra of A and the propagation matrix P are closely related; for the simple case of a d-regular graph,
the eigenvalues are related by pi = λi/d. Therefore, a large adjacency spectral gap in A leads to a
favorable spectral structure in P , which is critical for GNN stability. While our analysis focuses on the
adjacency spectrum, we note its relation to the normalized Laplacian (Lnorm), another key analytical
tool. As defined in Section 3.1, the normalized Laplacian is Lnorm = I −D−1/2AD−1/2. Given that
the propagation matrix is P = D−1/2AD−1/2, this is equivalent to the equation Lnorm = I − P ,
where I is the identity matrix.

Note on Graph Regularity. Exact results on the relation between adjacency and Laplacian spectral
gaps (e.g., Ramanujan bounds) hold for d-regular graphs. In Vision GNNs, many graphs are irregular
(e.g., similarity graphs), though some constructions like SVGA [20] with wrap-around connections
are d-regular. For irregular graphs, the adjacency spectral gap is best viewed as a practical heuristic
for expansion and stability, even though only the regular case provides formal guarantees.

A.3 The Impact of the Spectral Gap on Gradient Dynamics

We now provide a detailed analysis demonstrating how maximizing the spectral gap improves the
stability of a Vision GNN.

A.3.1 Mitigating Oversmoothing

Oversmoothing [46, 48] describes the phenomenon where, as the number of GNN layers increases,
the features of all nodes converge to a single, uninformative state, erasing discriminative information.
This collapse of the feature space causes the problem of the vanishing gradients in deep GNNs.

Proposition. A larger adjacency spectral gap corresponds to a graph structure that is more robust
to oversmoothing [48].

Proof. The oversmoothing [46, 48] process can be analyzed as governed by the propagation matrix
P = D−1/2AD−1/2. Let Hc = H − H̄ be the centered feature matrix, where H̄ is the mean feature
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vector. The convergence of these features to zero represents the loss of unique information. The rate
of this convergence is controlled by p2, the second-largest eigenvalue of P .

After a single GNN layer, the total magnitude of the centered features, as measured by the Frobenius
norm, is bounded by the second-largest eigenvalue, p2:

∥H ′
c∥F ≤ p2∥Hc∥F (6)

A smaller value of p2 signifies less information loss in a single step. In a deep GNN with L layers,
this effect is compounded exponentially. The features after L layers are bounded by:

∥H(L)
c ∥F ≤ (p2)

L∥H(0)
c ∥F (7)

As established in the preliminaries, for a d-regular graph, p2 is directly proportional to the second-
largest eigenvalue of the adjacency matrix, λ2, via p2 = λ2/d. The adjacency spectral gap is
λ1 − λ2 = d− λ2. Therefore, maximizing the adjacency spectral gap is equivalent to minimizing λ2,
which in turn minimizes the convergence rate p2.

By maximizing the adjacency spectral gap, our GCS discovers graph topologies with a smaller
p2. This slows the exponential decay of information, making the Vision GNN more resistant to
oversmoothing. This is critical for deep models, as it helps prevent the network’s end-to-end Jacobian
matrix, J = ∂H(L)

∂H(0) , from collapsing. For a linear GNN, this Jacobian is proportional to PL (where L
is the number of layers/depth in the GNN), so a smaller p2 preserves its rank and mitigates vanishing
gradients.

We note that minimizing p2 is equivalent to maximizing the Laplacian spectral gap µ1, since for the
propagation matrix P , it holds that p2 = 1− µ1. Our search therefore uses the adjacency gap as a
robust proxy to achieve these desirable spectral properties. ■

A.3.2 Preventing Oversquashing via Graph Expansion

Oversquashing [47] is a structural problem where the graph topology itself creates information
bottlenecks, constricting the flow of messages and gradients between distant nodes.

Proposition. Maximizing the spectral gap promotes graph structures that are robust to oversquash-
ing.

Proof. Oversquashing [47] is fundamentally a problem of poor graph expansion. The solution is to
find topologies that are good expander graphs, which by definition lack the bottlenecks that cause
information to be squashed. A high expansion constant ensures that there is a rich set of paths between
any two regions of the graph. This structural property guarantees that gradients can propagate from
the loss function back to any node in the computational graph without being "squashed" or attenuated
by topological constrictions. This is critical for learning long-range dependencies within an image.

The foundational link between a graph’s spectrum and its expansion properties is captured by
Cheeger’s Inequality [81]:

µ1

2
≤ h(G) ≤

√
2µ1 (8)

where h(G) is the Cheeger constant (a measure of bottlenecks) and µ1 is the Laplacian spectral gap.
This inequality provides a provable guarantee that maximizing µ1 leads to better graph expansion.
This result has since been generalized and extended to various domains relevant to modern graph
learning, including weighted graphs [82], vertex expansion [83], and even hypergraphs [84].

While Cheeger’s Inequality is defined using the Laplacian, maximizing the Laplacian spectral gap
(µ1) is spectrally related to maximizing the Adjacency Spectral Gap (λ1 − λ2). For a d-regular graph,
where the largest eigenvalue is known to be λ1 = d, the second-largest eigenvalue of the propagation
matrix, p2, is related to both spectra: p2 = λ2/d and p2 = 1− µ1. This implies that maximizing the
adjacency gap (d − λ2) is equivalent to minimizing λ2, which is equivalent to minimizing p2 and
maximizing µ1.

Therefore, by maximizing the adjacency spectral gap, our GCS is optimizing for the same spectral
properties that guarantee high expansion via Cheeger’s Inequality. We choose the adjacency gap as
our proxy not only for this strong theoretical connection, but also for its practical robustness, as it
provides a meaningful measure even for disconnected graphs where µ1 would be zero. ■
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A.3.3 Detailed Gradient Flow and Spectral Conditioning

To provide a more rigorous basis for our claims, we now present a detailed mathematical analysis of
the gradient signal during backpropagation. We demonstrate that maximizing the spectral gap, our
core objective in SearchViG, is linked to optimizing the conditioning of the gradient propagation
pathway, which is essential for stable and efficient learning in deep architectures.

Backpropagation as a Series of Vector-Jacobian Products. The backpropagation algorithm
computes the gradient of the loss L with respect to the network’s parameters by first finding the
gradient with respect to the layer features. Let g(l) = ∂L

∂H(l) be the gradient vector (or its flattened
representation) at layer l. The gradient is propagated backward from layer l to layer l − 1 via the
vector-Jacobian product:

g(l−1) = g(l)J (l−1) (9)

where J (l−1) = ∂H(l)

∂H(l−1) is the Jacobian matrix of the layer l transformation. Propagating the gradient
from the final layer L back to the input layer 0 involves a product of these Jacobians:

g(0) = g(L)

(
0∏

l=L−1

J (l)

)
(10)

The stability of this process depends on the properties of this cumulative Jacobian product. The norm
of the gradient vector is bounded at each step:

∥g(l−1)∥2 ≤ ∥g(l)∥2 · ∥J (l−1)∥2 (11)

where ∥ · ∥2 is the spectral norm, defined as the largest singular value of the matrix. If the spectral
norms of the Jacobians are consistently greater than 1, gradients will explode; if they are consistently
less than 1, gradients will vanish.

The Role of Graph Structure in Conditioning the Jacobian. For a GNN layer, the Jacobian J (l)

can be expressed as:

J (l) = (W (l)T ⊗ IN ) · diag(σ′(a(l))) · (IC ⊗ P ) (12)

where a(l) = PH(l)W (l), and ⊗ is the Kronecker product. While this form is complex, its spectral
norm is fundamentally influenced by the norms of its constituent parts. We can state that ∥J (l)∥2 ≤
∥W (l)∥2 · ∥diag(σ′)∥2 · ∥P∥2. Assuming the learnable weights and activation derivatives are bounded
(e.g., via weight decay and choice of σ), the spectral norm of the propagation matrix, ∥P∥2, becomes
a structural regularizer. The conditioning of this Jacobian is fundamentally influenced by the spectral
properties of the propagation matrix P = D−1/2AD−1/2. An ill-conditioned P can lead to an
ill-conditioned J , thereby destabilizing the gradient flow. Our objective is therefore to find graph
structures that produce a well-conditioned propagation matrix.

The more significant danger is gradient vanishing. This occurs if the cumulative Jacobian product
is ill-conditioned, meaning its singular values are spread over many orders of magnitude. An
ill-conditioned Jacobian will disproportionately shrink vectors aligned with its small singular vectors.

Spectral Gap as a Gradient Conditioner. Let us decompose the gradient vector g(l) into a
component parallel to the graph’s stationary distribution (the eigenvector v0 of P for eigenvalue
λ0 = 1) and an orthogonal component: g(l) = g

(l)
∥ + g

(l)
⊥ . The parallel component, g(l)

∥ , represents
a uniform gradient across all nodes and is uninformative for learning node-specific features. The
informative part of the signal is g(l)

⊥ .

The propagation of the informative gradient component is governed by the non-trivial eigenvalues
of the propagation matrix P . An ill-conditioned matrix P , characterized by a wide range of these
eigenvalues, will distort the gradient. The conditioning of P in the informative subspace (orthogonal
to the principal eigenvector) can be characterized by the ratio of its largest and smallest non-trivial
eigenvalues, κ⊥(P ) = p2/|pN |, where a value close to 1 indicates good conditioning. As established
in our proof for oversmoothing, maximizing the adjacency spectral gap (λ1 − λ2) is equivalent to
minimizing p2. Minimizing p2 is the most critical factor in improving this condition number, as it
pushes the entire non-trivial spectrum of P away from its dominant eigenvalue p1 = 1. Furthermore,
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our search for a large adjacency spectral gap is a proxy for finding graphs with Ramanujan-like
properties, which by definition have tightly clustered non-trivial eigenvalues, leading to a well-
conditioned P . This ensures that orthogonal components of the gradient are attenuated more uniformly
during backpropagation, preserving the richness of the gradient signal and leading to more stable and
efficient training.

A.3.4 Mathematical Derivation of Gradient Propagation

We provide a mathematical derivation to show how the spectral properties of a graph’s propagation
matrix are linked to the stability of the gradient signal during backpropagation.

1. The Layer-wise Gradient. Let the loss be L and the gradient vector with respect to the features
at layer l be g(l) = ∂L

∂H(l) . The backpropagation rule from layer l to l − 1 is given by the chain rule:

g(l−1) = g(l)J (l−1) (13)
where J (l−1) is the layer’s Jacobian. To isolate the effect of the graph structure, we analyze the
propagation component, P . The structural update to the gradient, ignoring learnable weights, is:

g
(l−1)
struct = PTg

(l)
struct (14)

Since our propagation matrix P = D−1/2AD−1/2 is symmetric, PT = P .

2. End-to-End Gradient Propagation. For a deep GNN with L layers, the gradient at the input
layer is structurally dependent on the L-th power of the propagation matrix:

g(0) = PLg(L) (15)
The stability of learning depends entirely on the behavior of the matrix power PL.

3. Gradient Norm Analysis. Using the property of the spectral norm, we can bound the norm of
the output gradient:

∥g(0)∥2 = ∥PLg(L)∥2 ≤ ∥PL∥2 · ∥g(L)∥2 (16)
Further, since ∥PL∥2 ≤ ∥P∥L2 , and the spectral norm of our propagation matrix is ∥P∥2 = p1 = 1,
we get:

∥g(0)∥2 ≤ ∥g(L)∥2 (17)
This demonstrates that the graph propagation step is non-expansive and acts as a regularizer against
exploding gradients. The primary risk is the vanishing of the informative gradient signal.

4. Vanishing of the Informative Gradient Component. To analyze this, we decompose the
gradient g(L) into two orthogonal components: one parallel to the principal eigenvector of P
(associated with p1 = 1), which represents a uniform, non-informative signal, and one orthogonal to
it, which carries the useful, node-specific information.

g(L) = g
(L)
∥ + g

(L)
⊥ (18)

The non-informative component is preserved during backpropagation (PLg
(L)
∥ = g

(L)
∥ ). The infor-

mative component, however, evolves as:

g
(0)
⊥ = PLg

(L)
⊥ (19)

The action of P on this informative subspace is governed by its second-largest eigenvalue, p2. We
can thus bound the norm of the informative gradient:

∥g(0)
⊥ ∥2 = ∥PLg

(L)
⊥ ∥2 ≤ ∥PL

⊥∥2 · ∥g(L)
⊥ ∥2 (20)

≤ (p2)
L · ∥g(L)

⊥ ∥2 (21)
This leads to the final, critical relationship:

∥g(0)
⊥ ∥2 ≤ (p2)

L · ∥g(L)
⊥ ∥2 (22)

Equation 22 shows that the norm of the informative gradient component vanishes exponentially
at a rate controlled by p2. To preserve the gradient signal, p2 must be minimized. As established
previously, maximizing the adjacency spectral gap is equivalent to minimizing p2. Therefore, our
search method optimizes the graph structure to mitigate the vanishing of informative gradients.
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Limitations of Gradient Analysis. Our gradient flow analysis focuses on the structural component
of backpropagation to isolate the effect of graph topology. This analysis does not include the
interactions between learnable weight matrices and activation functions. Furthermore, our analysis
relies on the symmetry of the propagation matrix (PT = P ), a condition met by the undirected graphs
in our work, though we note this assumption does not extend to all graph construction methods (e.g.,
those with directed graphs). While this analysis provides strong intuition for why spectral properties
matter, the full gradient dynamics in deep networks involve additional complexities not captured here.

A.4 The Heterogeneous GCS Objective

The theoretical analysis above provides a firm justification for our search strategy. The objective of
our Graph Construction Search (GCS) is to create a novel heterogeneous Vision GNN. As formally
stated in Equation 1 of the main paper, for each stage s of the network, characterized by a specific
feature resolution, SearchViG solves the following optimization problem:

G∗
s = argmax

G∈Cs

(λ1(A(G))− λ2(A(G))) (1)

where Cs is the set of candidate graph construction methods for that stage (e.g., k-NN, axial, static,
attention-based), A(G) is the adjacency matrix of a graph G, and λ1, λ2 are its largest and second-
largest eigenvalues, respectively. This principled, zero-shot approach allows for the creation of an
architecture where each stage is equipped with a graph structure optimized for stable and efficient
information flow.

B Connecting Graph Expansion to Signal-to-Noise Ratio
The theoretical analysis in the main paper justifies our spectral-aware search through the lens of GNN
stability (i.e., mitigating oversmoothing and oversquashing). Here, we provide an alternative but
complementary justification from a signal processing perspective. We argue that maximizing the
adjacency spectral gap can be interpreted as implicitly optimizing the graph structure to improve the
Signal-to-Noise Ratio (SNR) of the feature representations, which is linked to lower network loss.

SNR as a Proxy for Network Performance. The SNR of a network’s feature representations is
inversely related to the training loss (e.g., Mean Squared Error) [43]. Formally, the Signal-to-Noise
Ratio (SNR) is the ratio of the power of the desired signal to the power of the corrupting noise:

SNR =
E[signal2]
E[noise2]

(23)

A higher SNR indicates that the meaningful signal is strong relative to corrupting noise, implying
more effective learning and lower loss [43, 85, 86]. Therefore, architectural choices that intrinsically
promote a higher SNR are desirable.

Graph Propagation as a Low-Pass Filter. We can view the GNN propagation step as a filtering
operation on a signal. The node features H represent the signal, and the graph topology defines the
filter, captured by the propagation matrix P = D−1/2AD−1/2, where D is the diagonal degree matrix
with Dii =

∑
j Aij . In this context, we can decompose the feature signal into two components:

• Signal (Hsignal): The useful, low-frequency information that is smooth across neighboring
nodes. This signal primarily aligns with the eigenvectors of the adjacency matrix A correspond-
ing to its largest eigenvalues, especially the principal eigenvector associated with λ1.

• Noise (Hnoise): Random perturbations or irrelevant, high-frequency details that vary sharply
between nodes. This noise aligns with eigenvectors corresponding to smaller eigenvalues
(λ2, λ3, . . . ).

The propagation matrix P acts as a low-pass filter, where the message passing operation amplifies the
low-frequency signal components while attenuating high-frequency noise [44].

Maximizing the Spectral Gap as Implicit SNR Optimization. Our GCS is designed to find graphs
with a large adjacency spectral gap (λ1 −λ2). This is the defining characteristic of an expander graph.
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Such a graph has a dominant principal eigenvalue (λ1) that is well-separated from the rest of the
spectrum.

This large spectral gap creates a cleaner separation for the graph filter. The "pass-band" for the
low-frequency signal (associated with λ1) is kept distinct from the "stop-band" where the high-
frequency noise (associated with λ2 and below) resides. When features are propagated through this
graph structure, the signal component is preserved while the noise component is more effectively
suppressed. This increases the ratio of signal power to noise power in the resulting features.

Therefore, by searching for graphs with the largest possible spectral gap, our method is implicitly
discovering graph topologies that function as superior low-pass filters. This optimization of the
graph structure for signal and noise separation contributes to improving the SNR of the learned
representations, providing a signal processing-based justification for why our method leads to better-
performing models. We note, however, that this decomposition is a conceptual model, and we do not
formally prove a direct optimization of SNR.

C Additional Experimental Results
To further validate our results we perform image classification on the CIFAR-100 and CIFAR-10 [63]
datasets. To compare to other zero-shot NAS methods we compare to Zen-NAS [40] and TE-NAS
[87]. To show broader generalization to real-world tasks, we also provide results on OrganSMNIST
[64], DermaMNIST [64], DeepCrack [65], Crack500 [66], CityScapes [67], and COCO-Stuff [68]
benchmarks.

C.1 CIFAR-100 Image Classification Results

We conduct image classification experiments on the CIFAR-100 [63] dataset, training from scratch for
200 epochs. We report the top-1 accuracy on the test set and implement all models using PyTorch [70]
and the Timm library [71] with the AdamW [73] optimizer and a cosine annealing schedule.

Table 4: Classification results on CIFAR-100 for our SearchViG-S and other competing models.

Model Type Parameters (M) Accuracy (%)
ResNet-50 [1] CNN 23.7 80.9
ConvNeXt-T [58] CNN 28.0 82.5
MobileViG-Ti [20] CNN-GNN 4.3 80.2
MobileViG-B [20] CNN-GNN 25.4 83.8
Swin-T [25] ViT 28.0 74.9
SearchViG-S (Ours) CNN-GNN 11.0 84.3

As shown in Table 4, our SearchViG-S model achieves state-of-the-art performance among efficient
models on CIFAR-100. With only 11.0M parameters, it obtains 84.3% Top-1 accuracy, outperforming
MobileViG-B by 0.5% while using 56.7% fewer parameters, demonstrating its superior efficiency.

C.2 CIFAR-10 Image Classification Results

We conduct further image classification experiments on the CIFAR-10 [63] dataset, which consists of
10 object classes, training from scratch for 200 epochs.

Table 5: Classification results on CIFAR-10 for our SearchViG-S and other competing models.

Model Type Parameters (M) Accuracy (%)
ConvNeXt-T [58] CNN 28.0 97.1
MobileViG-Ti [20] CNN-GNN 4.3 95.6
MobileViG-B [20] CNN-GNN 25.3 96.7
Swin-T [25] ViT 28.0 91.1
SearchViG-S (Ours) CNN-GNN 11.0 97.1

As shown in Table 5, SearchViG-S demonstrates exceptional efficiency on CIFAR-10. It matches
the state-of-the-art accuracy of ConvNeXt-T (97.1%) while using ≈ 61% fewer parameters (11.0M
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vs. 28.0M). Compared to Swin-T, our model is both significantly more accurate (+6.0%) and more
efficient (reduction of ≈ 61% in parameters).

C.3 Comparison to Other Zero-Shot NAS Methods

We note that other zero-shot NAS methods (e.g., Zen-NAS [40], TE-NAS [87]) are complementary
to ours rather than direct competitors, as they address fundamentally different problems and search
spaces. Zen-NAS and TE-NAS focus on optimizing the depth, width, and operations within CNN
architectures. In contrast, our SearchViG is the first to tackle the unique challenge of finding
optimal graph construction rules within Vision GNNs, as summarized in Table 6.

Table 6: Comparison of Zero-Shot NAS Paradigms. SearchViG operates in a distinct search space from prior
works.

Aspect SearchViG (Ours) Zen-NAS [40] TE-NAS [87]

Primary Goal Vision GNN Architectures CNN Architectures CNN Architectures
Search Space Graph Construction CNN Blocks CNN Blocks
Zero-Shot Proxy Adjacency Spectral Gap Zen-Score NTK and Linear Regions

In terms of performance, SearchViG compares favorably. We achieve 84.0% accuracy with 34.2M
parameters (SearchViG-B) and 83.3% with 25.7M parameters (SearchViG-M). In contrast, the
largest Zen-NAS model [40] achieves 83.0% accuracy with 183M parameters. This means SearchViG-
B achieves 1.0% higher accuracy with an 81.3% reduction in parameters, and SearchViG-M achieves
0.3% higher accuracy with an 86% reduction in parameters.

Compared to TE-NAS, our method demonstrates superior final accuracy as well (81.3% for our
smallest architecture vs. 75.5% for TE-NAS [87] on ImageNet-1K).

C.4 Broader Generalization to Real-World Tasks

To further demonstrate the practical value and robust generalization of our method, we conducted new
experiments on six diverse, real-world datasets spanning medical imaging, pavement crack detection,
and challenging semantic segmentation benchmarks. The results confirm that SearchViG achieves
state-of-the-art performance across these distinct domains.

Medical Image Classification

We evaluated SearchViG-S on the DermaMNIST and OrganSMNIST medical classification tasks
from the MedMNISTv2 suite [64]. The first, OrganSMNIST, consists of 11 organ classes from 13,932
training and 2,452 validation abdominal CT images. The second, DermaMNIST, consists of 7 skin
lesion classes from 7,007 training and 1,003 validation Dermatoscope images. For both datasets, we
train models from scratch for 200 epochs using the AdamW optimizer [73] and a cosine annealing
schedule. All implementations use PyTorch [70] and the Timm library [71].

As shown in Table 7 and Table 8, SearchViG-S outperforms established CNNs and other Vision
GNNs on both medical benchmarks. Notably, on OrganSMNIST, SearchViG-S surpasses the much
larger ConvNeXt-T by 0.8% accuracy while using over 60% fewer parameters, demonstrating the
strong transferability of our architecture to specialized domains.

Table 7: Results on the OrganSMNIST medical image classification task.

Model Type Parameters (M) Accuracy (%)
ResNet-34 [1] CNN 20 91.1
ConvNeXt-T [58] CNN 28 91.6
MobileViG-S [20] CNN-GNN 6 91.0
SearchViG-S (Ours) CNN-GNN 11 92.4
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Table 8: Results on the DermaMNIST medical image classification task.

Model Type Parameters (M) Accuracy (%)
ResNet-34 [1] CNN 20 75.5
ConvNeXt-T [58] CNN 28 78.1
MobileViG-S [20] CNN-GNN 6 75.9
SearchViG-S (Ours) CNN-GNN 11 78.2

Pavement Crack Segmentation

We benchmarked our SearchViG-B model on the DeepCrack [65] and Crack500 [66] datasets. The
DeepCrack [65] dataset consists of 537 images, each with a size of 544 × 384 pixels, featuring
complex backgrounds and various crack patterns. Following the setup of [88], 300 images are
allocated for training, and 237 for testing. The Crack500 [66] dataset contains 3,368 pavement crack
images, each with a resolution of 640 × 360 pixels, captured under various lighting and weather
conditions. Following the setup of [88] we used 2,244 images for training and 1,124 for testing.

We evaluate model performance using precision, recall, and F1-score following the experimental
setup of [88]. Where TP, FP, and FN represent true positives, false positives, and false negatives,
respectively, the metrics are defined as:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(24)

F1-score = 2 · Precision · Recall
Precision + Recall

(25)

Table 9: Comparison of crack segmentation performance on the DeepCrack and Crack500 datasets.

Methods DeepCrack Crack500

Precision Recall F1-score Precision Recall F1-score

CrackSegNet [89] 83.8% 82.5% 80.3% 64.2% 80.7% 68.4%
SegCrack [90] 83.4% 82.2% 80.3% 67.8% 77.8% 70.0%
SETR [91] 79.5% 83.3% 79.5% 67.3% 73.3% 66.6%
SVGACrack [88] 85.0% 83.8% 81.8% 69.3% 80.2% 72.0%

SearchViG-B (Ours) 85.5% 84.3% 82.3% 70.1% 80.8% 72.8%

As detailed in Table 9, our model outperforms competing model on both Crack500 [66] and Deep-
Crack [65] datasets, demonstrating its strong capability for fine-grained segmentation tasks crucial
for infrastructure maintenance. On the challenging Crack500 [66] dataset, SearchViG-B achieves a
72.8% F1-score, outperforming the next best method, SVGACrack [88], by a significant margin of
0.8%. This robust performance on both benchmarks underscores the effectiveness of our discovered
topologies for precise, real-world segmentation.

Dense Semantic Segmentation

Finally, we evaluated our models on the challenging Cityscapes [67] and COCO-Stuff [68] bench-
marks. Cityscapes [67] is a driving dataset for semantic segmentation consisting of 5000 fine-
annotated high resolution images with 19 categories. COCO-Stuff [68] covers 172 labels and consists
of 164k images: 118k for training, 5k for validation, and 40k for testing. We use the MMSegmentation
[92] framework and the encoder is pre-trained on ImageNet-1K [69] and the decoder is randomly
initialized. We apply data augmentation including random resizing, random horizontal flipping, and
random cropping following the experimental setup of [93]. We train the models using the AdamW
[73] optimizer for 160K iterations on Cityscapes and 80K iterations on COCO-Stuff, respectively.
The learning rate starts at 6 × 10−5 and follows a polynomial decay schedule. Our experimental
setup matches that of [93] for fair comparison.

As shown in Table 10, our SearchViG-S and SearchViG-B models outperform the state-of-the-art
MiT [93] backbone on these challenging benchmarks. SearchViG-S surpasses the similarly sized
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MiT-B1 by +1.2% mIoU on Cityscapes and +1.3% on COCO-Stuff. Furthermore, our SearchViG-B
model achieves 82.1% mIoU on Cityscapes, outperforming the larger MiT-B3 while using 27% fewer
parameters, which confirms the robust generalization of our architecture to complex scene parsing.

Table 10: SearchViG performance on downstream semantic segmentation tasks on Cityscapes and COCO-
Stuff datasets.

Dataset Backbone Params (M) mIoU (%)

Cityscapes

MiT-B1 [93] 13.7 78.5
MiT-B2 [93] 27.5 81.0
MiT-B3 [93] 47.3 81.7

SearchViG-S (Ours) 12.4 79.7
SearchViG-B (Ours) 34.2 82.1

COCO-Stuff

MiT-B1 [93] 13.7 40.2
MiT-B2 [93] 27.5 44.6
MiT-B3 [93] 47.3 45.5

SearchViG-S (Ours) 12.4 41.5
SearchViG-B (Ours) 34.2 45.6

D Complexity and Cost Analysis

Theoretical Complexity Analysis

The scaling complexity of our Graph Construction Search (GCS) is dictated by its core analytical
step: the eigenvalue computation. While the search evaluates a fixed set of S graph configurations,
the total complexity is best understood as O(S · Cλ), where Cλ represents the cost of computing the
top two eigenvalues of an N ×N adjacency matrix.

The scaling of this process is therefore primarily dependent on Cλ with respect to the number of
nodes, N . Because the graphs generated in our search space are sparse, this computation is highly
efficient. By employing an iterative solver the cost Cλ is near-linear in the number of nodes (i.e.,
approximately O(N)). This low-cost scaling of the core analytical step ensures our entire search
process is computationally tractable, with a total complexity of approximately O(N).

Empirical Cost Analysis

A key advantage of our framework is its efficiency. The entire zero-shot GCS requires only 4 GPU
hours on a single NVIDIA A6000 GPU. As detailed in Table 11, this search cost is negligible
compared to the model training time, representing less than 0.5% of the total training cost for our
SearchViG-B model. This confirms that our spectral proxy is an effective and efficient method
for discovering optimal topologies without any training. For our experimental setup we used 1000
random samples of images, but if we reduce this to 250 random samples of images we can reduce the
search cost to 0.105% of the total training time.

Table 11: Computational cost analysis on an A6000 GPU in terms of GPU hours.

Component Cost (GPU Hours)

SearchViG-B Training 950
PViG-S Training 1200
ViHGNN-S Training 1300

Search Cost / Training Cost 0.42%
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D.1 Search Process Sensitivity and Stability

We performed a sensitivity analysis to validate the robustness of our search process. We ran our GCS
15 times on random subsets of ImageNet images, with the sample size (N ) varying for each set of
runs. The results, summarized in Table 12, demonstrate that our search is highly stable.

Table 12: GCS Stability Analysis. Results of 15 GCS runs per sample size.

Sample Size (N) Identical Topologies Discovered

N = 1000 images 15/15
N = 500 images 15/15
N = 250 images 15/15
N = 100 images 13/15
N = 50 images 11/15
N = 10 images 8/15

This high degree of stability, especially for N ≥ 250, is consistent with the well-established principle
that natural images follow specific statistical regularities [94–96], which our spectral proxy effectively
captures.

E Correlation of Spectral Proxy and Final Performance
To provide formal analysis on the correlation between our proxy and final performance, we computed
the rank correlation between our zero-shot spectral proxy and the final trained accuracy. The analysis
was conducted across 9 different graph construction methods (Ours, KNN, Clustered KNN, windowed
KNN, random, static, dynamic axial, logarithmic connections, and dynamic local and logarithmic
connections) while keeping the underlying network architecture fixed. This approach allows us to
isolate and measure the specific impact of the graph topology on performance. All models were
evaluated on ImageNet-1K. The results yield a Spearman’s rank correlation coefficient (ρ) of
0.85 and a Kendall’s Tau (τ ) of 0.722. Both of these values indicate a strong positive correlation,
providing formal quantitative evidence that a higher adjacency spectral gap for the graph construction
is a reliable predictor of higher final accuracy after training.
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F Hyperparameter Settings
The detailed hyperparameter settings used for our ImageNet-1K training are provided in Table 13.
The hyperparameter settings match those of Vision GNN [13], MobileViG [20], and EfficientFormer
[59] for fair comparison.

Table 13: Training hyperparameters for ImageNet-1K.

Hyperparameter Value

Epochs 300
Optimizer AdamW [73]
Batch Size 1024
Start Learning Rate (LR) 2e-3
LR Schedule Cosine
Warmup Epochs 20
Weight Decay 0.05
Repeated Augment [97] ✓
RandAugment [98] ✓
Mixup Prob. [99] 0.8
Cutmix Prob. [100] 1.0
Random Erasing Prob. [101] 0.25
Exponential Moving Average 0.99996

27



SearchViG: Optimal Vision GNNs via Ramanujan Spectral Optimization

G Future Work
The SearchViG framework introduces the first zero-shot method for discovering heterogeneous Vision
GNN architectures. This opens several promising avenues for future research.

G.1 Scalability to Larger Datasets

Dataset Scalability. Our current search is performed on a subset of ImageNet-1K. Future work
could investigate the scalability and robustness of the discovered topologies when the search is
performed on larger and more diverse datasets. While our sensitivity analysis suggests a small subset
is sufficient, validating this on larger-scale data is beneficial. Furthermore, the search cost, while low,
scales with the number of samples and graph construction methods. Exploring more advanced subset
selection strategies to capture maximum data diversity with minimal samples would be beneficial.

G.2 Extending the Search Framework

Layer-wise vs. Stage-wise Heterogeneity. Our framework’s search space includes dynamic,
content-aware graph construction mechanisms. However, SearchViG discovers an optimal graph
that is fixed for all layers within a given stage. A natural extension is to apply the Graph Construction
Search at a layer-wise granularity. This would allow the graph topology to evolve not just when
the resolution changes, but also as features are refined within a single stage. This would create a
finer-grained and potentially more powerful heterogeneous architecture, though it would also increase
the search cost.

Multi-Objective Search Proxies. Our search is guided by a single, theoretically-grounded proxy.
A compelling future direction is to move to a multi-objective search, where the spectral gap could
be combined with other proxies that capture different properties, such as trainability or efficiency.
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