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Abstract

Recommender systems have become ubiquitous in
personalized service platforms, yet their performance
suffers from selection bias—a systemic distortion aris-
ing from non-random missing ratings where users
preferentially engage with preferred items. While
Doubly Robust (DR) estimators have emerged as a
dominant solution by concurrently addressing bias
and variance, recent studies reveal that conventional
bias relaxation techniques adopt excessively coarse ap-
proximations, leading to significant overestimation of
model bias. This work introduces a novel conservative
bias relaxation framework that derives tighter error
bounds through theoretical analysis with Lagrange’s
Identity, and empirically validates lower bias overes-
timation on an ML100K-based semi-synthetic dataset.
The effectiveness of bias correction in practical algo-
rithms is systematically validated on two real-world
datasets.

1 Introduction

Recommender systems are now widely deployed to de-
liver personal recommendations across diverse domains in-
cluding e-Commerce and social media. In such systems,
users rate self-selected items, creating nonrandom missing
data due to preference-based selection. This induces distri-
butional shift between observed and complete ratings, in-
troducing selection bias to the models.

To address this issue, three three principled debiasing
methodologies have been developed in literature. Error-
imputation-based (EIB) [Steck2010] methods attempt to
impute missing ratings with a specific model, but heavily
rely on the correct model specification. Inverse propensity
scoring (IPS) [Saito e al.2020, Wang et al.2022] methods
reweight observed data with inverse propensity. They
propose unbiased estimators if the propensity model is
correctly specified but often exhibit substantial variance.
Doubly robust (DR) [Saito2020, Wang et al.2019] methods
combine EIB with IPS, guaranteeing unbiasedness when

either the imputation model or the propensity score model
is correct. The better robustness makes it the preferred ap-
proach recently.

However, conventional DR methods inherit the high
variance problem from the IPS component, especially
when dealing with small propensity scores, which indicates
that a slight misspecification of the models may lead to sub-
stantial error. [Kang and Schafer2007] To address the lim-
itation, more robust approaches are proposed such as more
robust doubly robust (MRDR) [Guo ef al.2021] and DR-
MSE [Dai et al.2022] methods. These methods jointly op-
timize bias-variance trade-offs through penalizing the loss
function of the imputation model. Alternatively, Zhou et al.
[Zhou et al.2023] pioneered a paradigm shift by proposed
a generalized propensity learning (GPL) framework to op-
timize the bias-variance term when learning the propensity
model instead of the imputation model. Their work is im-
pressive, though the upper bound of the bias becomes much
too loose when they apply the Cauchy-Schwarz Inequality.
This work is going to propse a tighter relaxation with La-
grange’s Identity. With the tighter upper bound, the bias
will be less overestimated.

2 Preliminaries

Let Y = {uy,...,un} be the set of users, T =
{i1,...,in} be the set of items, and D = U x Z be the
set of all pairs of user-items. The rating matrix is denoted
as R € R™*" with r, ;, which indicates the rating of the
user u on the item 4. Let 0,,; € {0,1} be the observation
indicator that indicates whether r,, ; is observed, and let
X,,; be the associated feature vector. We denote the predic-
tion model as fy(-) parameterized by 6, and the predicted
ratings as 7, ; = fo(Xu,i)-

The goal is to accurately predict 7, ; for all user-item



pairs, which can be achieved by minimizing the ideal loss:
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where L(-,-) is the training loss function, such as cross-

entropy loss.

However, we cannot observe the complete rating ma-
trix. Let O = {(u, 1)|oy,; = 1} denote the set of user-item
pairs with observed ratings. Thus, the naive method mini-
mizes the average loss over the observed samples:

1
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Due to selection bias, we have E{Ly(0)} # Ligear(6).
Several methods have been proposed to unbiasedly esti-
mate the ideal loss, including EIB, IPS, DR, and their vari-
ants. Since EIB and IPS can be regarded as special cases
of DR, we focus on DR methods here. The loss function of
the vanilla DR method is formulated as:
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where p, ; is the estimated propensity score for the true
exposure probability p, ; = Pr(o,,; = 1|xy;), and é,; is
the error from the imputation model m(x,, ;; @), i.e., &,,; =
£<m(xu,i; ¢)7 ’Fuﬂ')'

The DR estimator still has high variance due to the form
of inverse propensity. Many researchers are dedicated to
reducing the variance through various regularization meth-
ods. Other researchers notice that the bias of DR estimator
also needs to be controlled. Whatever the detailed methods
are, they are related to the two terms: The squared bias of
the DR estimator:

. 1 ﬁu,i — Pu,i ~
B1as2[£DR(9)] = W Z (Ai)(eu,i - eu,i)

(wipep ~ Puwi
4)
And the variance of the DR estimator is:
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In this paper we will focus on the bias. The conven-
tional relaxation for the squared bias is based on Cauchy-

Schwarz Inequality:

Bias2 [L:DR (0)]
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Denote g, ; = Lui=Puil (o 5 ) the equation is
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satisfied if and only if g, ; is all the same, which is nearly
impossible in real data, which leads to great gap between
the upper bound and the real bias.

3 Methods

3.1 Related works

As we have briefly reviewed above, many researchers
attempted to control the variance and the bias of DR esti-
mator by adding regularization terms while optimizing the
imputation model. In the work of more robust doubly ro-
bust methods, they proposed to add the variance term. The
bias term is also included in methods like DR-bias and DR-
MSE [Dai et al.2022].

Zhou et al.[Zhou et al.2023] reviewed the existing
methods and found that they basically focused on the im-
putation model and did not pay enough attention to the
propensity model which is an equally important factor
which influences the bias and variance of DR-estimator.
They proposed the generalized propensity learning frame-
work, which suggested the joint learning of the propensity
model and imputation and prediction model.

However, when they tried to estimate the bias of the DR
estimator, they all simply take the conventional form. For
instance, in GPL framework, they relax the Bias term as:
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In the following parts we are going to prove this ap-
proximation brings about large overestimation, which may



cause the optimizer to pay too much attention to the bias
term.

3.2 Main theory

Our work is aimed to reduce the overestimation of the
bias. Recall form of the squared bias:
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To analyze the gap of Cauchy-Schawarz Inequality, we
need Lagrange’s Identity:

Lemma 1 (Lagrange’s Identity).
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The vector form is:
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Proof. There are many proofs for the identity, we provide
one of them:
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Combining these:
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Using Lemma 1,
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The first term is exactly the conventional relaxation,
and the second term is the gap we want to discuss.
To deal with the squares of the difference, we need two
simple lemmas, which allows us to estimate both the upper
bound and the lower bound of the gap:

(gu,i

Lemma 2 (Square Inequality 1). a < b < ¢ € R, (a —
b)2 + (b—c)? < (a—c)?

Proof. The inequality is equivalent to (a — b)(b —¢) < 0,
which can be obtained by the condition. [

This inequality helps to determine the upper bound of
the gap.

Theorem 1 (Upper bound of the relaxation gap).
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Proof. : Here we rewrite the variables as gy 7|+i = Gu,i-

Now the variables become g1, - - - |D].

Without loss of generation, we may assume that m = g; <

g2 < -+ < gy = M. We are going to prove that

Z(Qk —g;)* <
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N2



We adopt the inductive method to prove this statement.
If N = 1, the inequality is trivial. If N = 2, (g1 — g2)? +
(92 — g1)% < 2(g2 — g1)? because they are equal in fact.

Suppose that the inequality holds for N < ¢, when N =
t+1,
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The last line holds because of Lemma 2. Since m =
g1 < g2 < - < g < ggy1 = M, according to our
inductive assumption,
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That completes the inductive proof. O

It might be questioned that the upper bound will never
be achieved but unfortunately if |D| is even and exact half
of g, s equal the minimum while the other half of them
equal the maximum, the equation always holds, which sug-
gests the relaxation here is surprisingly unreliable.

In the next part, we will analyze the lower bound of the
gap and propose a modification. We have another lemma:

Lemma 3 (Square Inequality 2). (a — b)? + (b — ¢)? >
%(a —¢)% Va,b,ce R

Proof. The inequality is equivalent to (a + ¢ — 2b)? > 0,
which is trivial. O

With Lemma 3, we may derive the lower bound as:

Theorem 2 (Lower bound of the relaxation gap).
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We call the latter term Bias correction. This inequality
provides a correction to consturct a tighter bound of bias.

Here we must explain why we should use the g, ;s
where (u,i) € O instead of all g, ;s. Recall that g,,; =
W(eu i — €ui)- Gu,i is related to p,, ; and e, ;. But
€4, 1s definitely unknown for o,, ; = 0, which makes us fo-

cus on the terms where errors can be observed in practice.

Now that we only consider (u, i) where o, ; = 1, it is
improper to treat o, ; as an estimator for p,, ;. Since o0, ;
is generated from Bernoulli sampling with probability p,, ;,
Du,i can be estimated by 0,, ;, the mean of K-nearest neigh-
bors based on the features of (u, 7).

This work makes contributions to many works which
require an estimate for the bias of the DR estimator includ-
ing GPL, DR-bias and DR-MSE. With tighter bound for the
bias, these methods are able to balance the empirical loss
and the regularization.

- gu’,i/)2



4 Experiments

4.1 Semi-synthetic Experiments
4.1.1 Setups

We use ML100K to construct a semi-synthetic dataset
to explore the true effect of the tighter bound. To be de-
tailed, we first process the data as follows:

(1) Use matrix factorization to complete the rat-
ing matrix. Then we sort all ratings in ascend-
ing order and truncated based on the empirical rat-
ing distribution from observed data [p1,ps2, D3, P4, D5] =
[0.0611,0.1137,0.2715,0.3417,0.2120]. Set the lowest p;
fraction to 12, ; = 1, then the next p; fraction to 2, ; = 2
and so on.

(2)For R, ; € {1,2,3,4,5}, set the CTR p,,; € (0,1)
with p, ; = p*max(1,5 — R, ;). , where p is set to 1 and
o s initially set to 0.5 in our experiments.

(3) Transform the predicted ratings I?,, ; into true CVR
Ty,i by correspondingly replacing the rating 1, 2, 3, 4,
5 with the conversion rate 0.1, 0.3, 0.5, 0.7, 0.9, and
sample the binary click indicator and conversion label
with the Bernoulli sampling o,,; ~ Bern(py,), v
Bern(ry.;).

(4) Generate the CVR prediction #,, ; with the following
methods:

obs

S~
U,

1. Method ONE:

R 0.9
Tu,i =
Tu,i

2. Method THREE:

otherwise

for randomly selected {(u, 7)|r,; = 0.1}

6. Method CRS:

) 0.2 ifr,; <0.6
Tu,i = .
0.6 otherwise

(5) Other settings:

Set the prediction of the propensity p,, ; to derive from
1 1— 1
Pu,i = % + Pa,ﬁ’ where Da = D] Z(u,i)eD Ou i Define

the imputed error é,; = CE Z(u ieo Tﬁbfw'u,u?ﬁu,i),

1/Pui
2 (u,iyeo L/Puyi

where w, ; CE denotes the cross-

entropy loss.

4.1.2 Maetrics

In the semi-synthetic experiments, we can derive the
accurate Bias®. To validate the effect of our new bound,
we define two important metrics:

) Bias correction
Relative Improvement = —————,
Lyias — Bias

. Bias correction
To Bias Improvement = ————

Bias

The first metric indicates how much the correction term

helps correct the overestimation, while the second metric
reflects the correction in real value.

4.1.3 Results

We perform the experiments when o« = 0.3,0.5,0.7.
For each o we repeat the experiment 20 times and take the

for randomly selected {(u, Z)|7"uz = 0.3} average, the result is shown as follows:

R 0.9
Tu,i = .
Ty,i Otherwise

3. Method FIVE:

A 0.9
Tui =
Tu,i

4. Method ROTATE:

. Tu,i — 0.2
Tu,i =
0.9

5. Method SKEW:

otherwise

if Tu,i Z 0.3
if Tu,i = 0.1

f’u,i ~ N (Tu,i» 02)

where o = 1_% and clipped to [0.1,0.9].

for randomly selected {(u, ¢)|r,,; = 0.5}

Table 1: Relative Improvement Across Different o Values

(Averaged over 20 Runs)

Method a=0.3 a=0.5 a=0.7

ONE 0.012759 0.044000  0.149097
THREE 0.015808 0.069330  0.262 142
FIVE 0.021437 0.105818 0.385 252
ROTATE  0.005120 0.026176 0.097 384
SKEW 0.018 501  0.087 803 0.321 933
CRS 0.006162 0.041619  0.194400

From the two tables we find that the correction works.
And the more data is observed, as « increases, the more
powerful the correction functions, and vice versa.



Table 2: To Bias Improvement Across Different o« Values
(Averaged over 20 Runs)

Method a=0.3 a=0.5 a=0.7
ONE 0.206 766  0.598607  2.404 227
THREE  0.233665 0.805354 3.963 850
FIVE 0.277257 1.073554 6.967 757
ROTATE 0.079836 0.396874 1.888813
SKEW 0.444988 1.462412 8.638609
CRS 0.202168 1.348659 23.913068

4.2 Real-world Experiments
4.2.1 Setups

In this section, we test the performance of bias correc-
tion in real-world datasets Coat and Yahoo!R3. These two
datasets are widely used in debiased recommender systems
because they contain both biased and unbiased data. The
Coat dataset comprises evaluation data from 290 users on
300 products, including 6,960 biased ratings in the training
set and 4,640 unbiased ratings in the test set. The Yahoo!
R3 dataset represents a larger-scale collection, containing
311,704 potentially biased ratings from 15,400 users on
1,000 items in its training portion, along with 54,000 un-
biased test ratings sampled from the first 5,400 users. Both
datasets originally used a 5-point rating scale, which was
subsequently binarized for modeling purposes - ratings be-
low 3 were converted to 0, while others were mapped to
1. This transformation preserves the essential preference
relationships while simplifying the prediction task. The
datasets’ contrasting scales, density patterns, and bias char-
acteristics provide a robust testbed for evaluating model
performance across different scenarios.

We use DR-JL, which represents the joint learning of
the imputation model and the prediction model, and DR-
JL-GPL as baselines. DR-JL-GPL combines GPL frame-
work with DR-JL, which utilized the estimate of Ly;,s in
the learning of the propensity model. Our work helps cor-
rect the overestimation of Ly;,s, Which is denoted as DR-
JL-GPL with tighter bounds (DR-JL-GPL-TB).

We implement the three mentioned methods with Py-
torch, employing Adam. The learning rate is chosen from
[0.0001,0.1], and decay rate is chosen from [0.0001, 0.01].
The regularization coefficient A of DR-GPL and DR-
GPL-TB ranges from [0.01,0.1]. The balancing param-
eter between bias penalty and variance penalty is set
among {0.2,0.3,0.4,0.5,0.6,0.7,0.8} to adapt for the bias
penalty after correction.

4.2.2 Maetrics

To evaluate prediction performance, we adopt three
metrics: AUC, NDCGQK (denoted as NQK), and
RecallQK (denoted as RQK). NQK and RQK are par-
ticularly popular in recommender systems as they assess
the quality of ranking, which is central to recommendation
tasks. The expressions are given as follows:

i <
peg,ax = Y [Cu=h)
i€ Dtest 08(Zui +1)
1« DCG,aK
NDOGaK = — 3 et
Ly pe.or

ZieD;‘cst (2, < K)
min(K, | D))

RecallaK = %' Z Recall, QK.
uwelU

Recall ,QK =

where IDCG represents the best possible DCG, Dy, de-
notes the cardinality of all ratings of the user u in test data,
and Z,; represents the ranking of item 7 in the recom-
mended list for user u. We set K = 5.

Table 3: Performance on Yahoo! R3 Dataset

Method AUC N@5 R@5
DR-JL 0.6853 0.6613 0.4240
DR-JL-GPL 0.6988 0.6711 0.4322

DR-JL-GPL-TB  0.6990 0.6712 0.4315

Table 4: Performance on Coat Dataset

Method AUC N@5 R@5
DR-JL 0.7160 0.6752 0.4718
DR-JL-GPL 0.7380 0.6735 0.4643

DR-JL-GPL-TB  0.7403 0.6713 0.4655

The experimental results indicate that DR-JL-GPL-
TB demonstrates comparable performance to DR-JL-GPL
without showing significant improvement. Although a
marginal increase in AUC is observed, other evaluation
metrics exhibit inconsistent trends. This is reasonable be-
cause in these datasets, the observed data is very sparse,
making the bias correction extremely weak. Anyhow, it is
merely a modification of DR-GPL. One potential direction
to fully exploit its capabilities is to adaptively treat items
with minimal error terms as observable entries, thereby en-
hancing the correction intensity.



5 Conclusions

We have proposed a novel bias correction method that
demonstrably improves estimation accuracy across mul-
tiple experimental scenarios. Our results show consis-
tent performance gains under varying « parameters, with
particularly significant improvements observed in high-«
regimes. The proposed correction mechanism successfully
addresses the inherent bias in the original estimator while
maintaining computational efficiency.

This approach exhibits three key advantages: (1) math-
ematical tractability, (2) minimal computational overhead,
and (3) compatibility with existing evaluation frameworks.
Crucially, the methodology is algorithm-agnostic by de-
sign, suggesting immediate applicability to a broad spec-
trum of recommendation algorithms beyond those tested
here - including neural collaborative filtering, graph-based
methods, and hybrid systems.

Future work may investigate the correction’s effective-
ness in cold-start scenarios and its integration with deep
learning architectures. The consistent performance pat-
terns observed suggest this bias correction could become a
standard component in recommendation system evaluation
pipelines.
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