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ABSTRACT

Transformer-based models have achieved remarkable performance in NLP
tasks. However, their structural characteristics—multiple layers and attention
heads—introduce efficiency challenges in inference and deployment. To address
these challenges, various pruning methods have recently been proposed. Notably,
gradient-based methods using Head Importance Scores (HIS) have gained traction
for interpretability, efficiency, and ability to identify redundant heads. However,
HIS alone has limitations as it captures only the gradient-driven contribution, over-
looking the diversity of attention patterns. To overcome these limitations, we
introduce a novel pruning criterion, HIES (Head Importance-Entropy Score),
which integrates head importance scores with attention entropy, providing com-
plementary evidence on per-head contribution. Empirically, HIES-based pruning
yields up to 15.2% improvement in model quality and 2.04× improvement in
stability over HIS-only methods, enabling substantial model compression without
sacrificing either accuracy or stability. Code will be released upon publication.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have led to remarkable performance. In pursuit of
better modeling of long-range dependencies, LLMs have scaled up both context lengths and attention
head counts, guided by empirical scaling laws that correlate model capacity with performance (Kaplan
et al., 2020; Chen et al., 2025b). This scaling, however, incurs substantial computational and memory
costs during inference, resulting in prohibitive latency and energy consumption (Yang et al., 2020;
Kim and Wu, 2020; Hoefler et al., 2021; Zhou et al., 2024). These constraints become critical barriers
when LLMs are deployed to resource-constrained environments such as consumer-grade mobile
devices or edge devices, for applications including real-time translation, intelligent voice assistants,
and personalized recommendation systems.

To improve deployability of LLMs for resource-constrained environments, various pruning methods
have been proposed (Ma et al., 2023; Yang et al., 2024). Typically, these methods selectively reduce
computations by removing less important weights, channels, or attention heads. Among them,
head pruning has gained considerable attention due to its structural simplicity, interpretability, and
ability to directly target redundancy within the attention mechanism. Existing head pruning methods
typically identifies less important heads based on Head Importance Score (HIS), which quantifies the
gradient-based contribution of each head to the loss function. By leveraging gradient-based sensitivity
to the loss, HIS prioritizes heads that have the most direct impact on accuracy of model inference.

However, HIS-based methods often exhibit limited stability in their performance. For clarity, prior
works (Bair et al., 2024; Blanchet et al., 2024) motivate treating stability as a practical surrogate for
robustness—namely, a model’s resilience to input perturbations and pruning-induced distributional
shifts. Such stability is crucial in real-world deployments where distribution shifts are common and
aggressive compression is often required. In our observations, this instability appears to stem from
two key factors. First, existing HIS-based methods solely rely on the loss gradient with respect to
each head’s output, which fails to capture token-level attention allocation or its alignment with the
task’s empirical distribution. Consequently, a concentrated head and a diffuse head can yield similar
important scores, concealing their functionally distinct roles on the task-specific data manifold.
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Second, a uniform, layer-agnostic criterion precludes layer-specific adaptation despite evidence
that different layers require distinct attention behaviors (Artzy and Schwartz, 2024). Lacking such
layer-specific characteristics often results in imbalanced pruning—preserving redundant heads in
some layers while removing functionally critical ones in others. This imbalance not only degrades
accuracy but also undermines stability, leading to unpredictable performance fluctuations across
inputs or compression levels, particularly under aggressive pruning ratios.

This work aims to address the aforementioned limitations by proposing an Entropy-Aware Pruning
Criterion, termed HIES (Head Importance-Entropy Score), which jointly considers a head’s
gradient-based contribution to the loss and the distributional structure of its attention—specifically,
the extent to which its attention is concentrated or dispersed across input tokens. We compute the
HIS to quantify a head’s loss relevance and Attention Entropy (AE) to measure how evenly a head
distributes attention over input tokens. Their principled combination in HIES enables layer-adaptive
pruning decisions and preserves functionally important heads. This allows for more balanced pruning
across layers, improving both accuracy and stability under aggressive compression. Empirically,
HIES yields up to a 15.2% improvement in model quality and 2.04× improvement in stability over
HIS-only methods. By preserving both accuracy and stability even under aggressive pruning ratios,
HIES represents a more practical and robust solution compared to existing pruning methods. It is
expected to offer more stable performance in resource-constrained environments.

2 BACKGROUND

Attention head pruning. To compress large language models efficiently, structured pruning meth-
ods (Han et al., 2015; Wang et al., 2019; Hou et al., 2020a; Ma et al., 2023; Ashkboos et al., 2024),
which remove specific architectural components from Transformer models, have been widely adopted.
Among these, attention head pruning has gained traction. This is largely because it directly reduces
attention FLOPs and KV-cache memory while preserving the layer topology, thereby simplifying
checkpoint compatibility and serving integration. Consequently, large-scale studies adopt head-level
pruning as a practical axis in LLM compression pipelines (Jaradat et al., 2024; Muralidharan et al.,
2024)1. Attention head pruning removes selected heads from a trained Transformer’s multi-head
attention with minimal impact on end-task performance (Vaswani et al., 2017). A widely adopted
criterion is the HIS of Michel et al. (2019), which introduces mask variables mh ∈ {0, 1}multiplying
the output of head h and defines importance as the expected first-order loss increase under masking:

HISh = Ex∼D

∣∣∣∣∂L(x)∂mh

∣∣∣∣ = Ex∼D

∣∣∣∣Ah(x)
⊤ ∂L(x)
∂Ah(x)

∣∣∣∣ , (1)

where D denotes an input sample drawn from the data distribution D, L(x) is the loss for sample
x, and Ah(x) is the output of head h. The second equality follows from the chain rule and the
observation that gating scales the head’s activation. Heads are then ranked by HISh and pruned in
ascending order of importance.

Attention Entropy and Stability. Zhai et al. (2023) quantify the concentration of each attention
head’s focus over input tokens via the entropy of its attention weight distribution AEh = (H

(
p(h)

)
=

−
∑n

i=1 p
(h)
i log p

(h)
i , where p

(h)
i is the normalized attention probability assigned by head h to the

i-th input token subject to
∑n

i=1 p
(h)
i = 1. Higher entropy indicates a diffuse focus over the sequence,

whereas lower entropy corresponds to highly concentrated attention patterns. Their empirical findings
reveal a strong correlation between persistently low entropy (i.e., entropy collapse) and instability
during training, including oscillations in the loss landscape and even divergence across various model
scales and tasks.

3 MOTIVATION

Pruning Transformer models is most commonly driven by gradient-based criteria, such as HIS and
variants used in recent pruning frameworks (e.g., LLM-Pruner) (Michel et al., 2019; Ma et al.,
2023). While gradient-based methods are often effective at moderate sparsity, they exhibit sharp
accuracy degradation once the pruning ratio exceeds a certain threshold, as shown in Fig. 1 (a). Such

1For more detailed discussions on related work, please refer to Appendix A.
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Figure 1: Analysis of accuracy degradation and head behaviors under HIS-based pruning. In our
diagnostic study, we analyze the phenomena of pruning by HIS on BERT, focusing on detailed
attention head behaviors during inference. (a) Accuracy curves of HIS-based pruning on CoLA
and SST-2. The bold color highlights the sharp-drop regime of HIS-based pruning. (b) Head-level
analysis on SST-2 with a validation example misclassified by the HIS-pruned model. The attention
score heatmap shows heads on each column, where pruned low-HIS heads are indicated with
colored layer–head labels and unpruned high-HIS heads with gray table. It then shows token-wise
distributions, where tokens deemed important for classification (e.g., sentiment-discriminative tokens
in SST-2) are marked with O, and non-critical tokens with X. The left plot shows the distribution of
heads by normalized HIS, and the right plot shows the distribution by normalized AE, where pruned
low-HIS heads are highlighted with red boxes and unpruned high-HIS heads with gray boxes . See
Appendix C for experimental setup details.

sharp-drops have been widely observed across various attention variants and tasks (Ma et al., 2023;
Mao et al., 2023; Ghattas et al., 2025), underscoring the generality of this phenomenon.

We focus on this “sharp-drop” regime and contrast two groups of heads. The first group consists
of low-HIS heads that are pruned during the sharp-drop of accuracy. The second group consists of
high-HIS heads that remain unpruned. The attention score heatmap in Fig. 1 (b) reveals that some
pruned heads (red table) assign high attention scores—i.e., the weights computed by the softmax
over token-token similarity that indicate how strongly a token attends to another—to sentiment-
discriminative tokens (tokens relevant for classification). Nonetheless, these heads are pruned due to
their low HIS values and end up causing the sharp accuracy drop observed in Fig. 1 (a). In contrast,
some unpruned heads (gray table) often allocate strong attention to non-informative tokens. These
heads, however, have high HIS values and thus remain unpruned, though they contribute little to
overall model quality. These analysis results demonstrate that the gradient-based HIS is insufficient
to capture the token-level attention score distributions (the detailed mathematical analysis is provided
in Section 4.2.1), thereby resulting in suboptimal pruning decisions for heads focusing on decisive
tokens.

The sharp-drop observed in pruning can be interpreted as a collapse of structural diversity in attention
behaviors, caused by the elimination of heads that concentrate on decisive tokens. To capture and
prevent such collapse of structural diversity in attention, we employ attention entropy, a measure
widely used to prevent policy collapse in reinforcement learning (Bharadhwaj et al., 2020; Liu et al.,
2021a; Wang et al., 2025). As shown in the bottom-right plots of Fig. 1 (b), incorporating AE
helps retain low-entropy heads by recognizing their concentrated focus on decisive tokens, thereby
preventing them from being pruned and mitigating the sharp-drop in accuracy.

Building on our analysis, we posit that attention entropy captures structural signals that reflect
unstable behavior during deployment, leading to the following hypothesis:

Attention entropy serves as an indicator of inference-time stability, mitigating accuracy sharp-drops

In particular, low-entropy heads may correlate with increased sensitivity to input perturbations,
leading to unstable predictions under distribution shifts. This perspective motivates our investigation
of entropy as a proxy for robustness and consistency during inference.

3
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Figure 2: Design overview of Head Importance-Entropy Score (HIES). Darker cells correspond to
values closer to 1, while lighter cells correspond to values closer to 0. Note the heatmap utilizes each
metric across attention heads in BERT on the CoLA dataset.

4 PROPOSED METHOD

Fig. 2 provides an overview of our proposed Head Importance–Entropy Score (HIES). Fig. 2 (a)
outlines the Transformer architecture, where HIS computes the importance score of each of the
h attention heads within a Transformer block. Fig. 2 (b) displays the heatmap of the first-order,
loss-based HIS. Combining the normalized HIS and AE yields the HIES heatmap in Fig. 2 (c), which
integrates complementary signals provide a more stable assessment of attention heads across layers.
This design captures the key intuition of HIES: HIS can be reinforced by AE, providing a more
robust basis for pruning head selections. Section 4.1 formalizes HIES, and Section 4.2 develops a
risk-decomposition analysis that clarifies the complementary roles of HIS and AE and motivates
HIES as a robust criterion for head selection in pruning.

4.1 HEAD IMPORTANCE ENTROPY SCORE

We define the Head Importance–Entropy Score (HIES) as a weighted combination:

HIESh = α ĤISh + (1− α)(1− ÂEh), α ∈ [0, 1), (1)

where α2 is a tunable hyperparameter.

Min-Max Normalization Directly comparing raw HIS and AE is inherently problematic, as the
two metrics reside on different scales and encode distinct types of signals. To enable meaningful
integration and ranking, we apply min–max normalization to both metrics, rescaling their values
to the interval [0, 1]: ĤISh = HISh−min(HIS)

max(HIS)−min(HIS) , ÂEh = AEh−min(AE)
max(AE)−min(AE) . This distribution-

agnostic normalization improves cross-criterion interpretability; lower normalized scores denote
higher pruning priority. Prior studies show min–max scaling outperforms z-score standardization in
stability and reproducibility across diverse tasks (de Amorim et al., 2022; Lima and Souza, 2023).

4.2 THEORETICAL ANALYSIS

We analyze pruning through a risk decomposition that combines a loss-increase term controlled by
HIS, with a generalization-gap term upper-bounded in terms of AE via its token-wise deficit. We
further show that the gradients of HIS and AE are orthogonal in expectation, indicating complementary
axes: magnitude of contribution (HIS) and dispersion of attention (AE). This perspective motivates
the composite importance measure HIES. By retaining heads with high HIES, we simultaneously
minimize our theoretical bound and enhance pruning stability. Conceptually, this analysis formalizes
importance-based selection into a principled framework and offers a rigorous rationale for HIES’s
safety and effectiveness.

2To determine the optimal combination of HIS and AE for each task, we adopt a task-specific tuning
procedure, where the trade-off hyperparameter α is systematically explored under each compression setting.
Sensitivity to α is analyzed in Appendix D.5.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.2.1 LOSS-INCREASE CONTROL VIA HEAD IMPORTANCE (HIS)

Setup. Let n be the sequence length, |H| the number of heads, dv the value dimension per head,
and d = |H| dv the model width (i.e., hidden size). For head h, let Ah ∈ Rn×dv denote the

head output, i.e., the value-projected attention representation Ah = softmax
(

QhK
⊤
h√

dk

)
Vh, where

Qh = XWQ
h ∈ Rn×dk , Kh = XWK

h ∈ Rn×dk , and Vh = XWV
h ∈ Rn×dv are the query,

key, and value projections of the input X ∈ Rn×dmodel , with parameter matrices WQ
h ∈ Rdmodel×dk ,

WK
h ∈ Rdmodel×dk , and WV

h ∈ Rdmodel×dv .

We then define y = Concat(A1, . . . , A|H|) ∈ Rn×d as the pre-projection representation, which
is subsequently projected through WO ∈ Rd×d. Head removal is modeled by mask variables
mh ∈ {0, 1}: δAh = −(1 −mh)Ah and δy = Concat(δA1, . . . , δA|H|). Formal definitions and
implementation notes are deferred to Appendix B.1.2.

Head Importance Score (HIS). We define

HISh := Ex∼D

∣∣∣∣∂L(x)∂mh

∣∣∣∣ = Ex∼D
∣∣ 〈∇Ah(x)L(x), Ah(x)

〉
F

∣∣ = ED
[
| ⟨∇Ah

L, Ah⟩F |
]
. (2)

This quantity is a first-order activation–gradient correlation whose absolute value prevents cross-
sample cancellation, yielding the additive upper bound

∑
h HISh on the loss (cf. Appendix B.1.6).

Lemma 1 (Loss-increase upper bound under head masking). Let βy := ∥∇2
yL∥2. For any mask

variables {mh}|H|h=1,∆L := ED
[
L(y+ δy)−L(y)

]
≤

∑|H|
h=1(1−mh)HISh +

βy

2

∑|H|
h=1(1−

mh) ∥Ah∥2F . Moreover, under binary (sigmoid) cross-entropy we have ∥∇2
zL∥2 ≤ 1

4 ; with the linear
projection z = yWO, this yields βy ≤ 1

4 ∥W
O∥22, hence

∆L ≤
|H|∑
h=1

(1−mh)HISh +
1

8
∥WO∥22

|H|∑
h=1

(1−mh) ∥Ah∥2F . (3)

Remark. For multiclass softmax cross-entropy, ∥∇2
zL∥2 ≤ 1

2 (cf. Appendix B.1.4); thus the quadratic
coefficient becomes 1

4 instead of 1
8 .

Implication for pruning. Eq. equation 3 shows that, for a fixed pruning fraction ρ = 1
|H|

∑
h(1−

mh), selecting heads with the smallest HISh minimizes the dominant first-order term, while the
quadratic term is controlled by ∥WO∥2 (or blockwise norms) and token-averaged activations. Under
standard normalization, the quadratic contribution is typically dominated by the first-order term (cf.
Appendix B.1.5), justifying the use of HISh as a practical surrogate importance for head pruning.

However, since Ah = AttnhVh, HISh in Eq. equation 2 depends solely on Ah and ∇Ah
L, without

explicitly incorporating the distribution Attnh. Consequently, two heads with very different attention
patterns (e.g., sharply focusing on tokens versus spreading over tokens) can yield similar HISh
whenever the resulting Ah is comparable. This is supported by our empirical analysis in Section 3.

4.2.2 GENERALIZATION GAP AND ATTENTION ENTROPY (AE)

Setup. Let S = {(xi, yi)}Ni=1∼D. We write ES and ED for empirical and population expectations.
We assume the per-example loss ℓ is Lℓ-Lipschitz in its first argument, a standard assumption that
yields stability-based generalization bounds (Bousquet and Elisseeff, 2002; Shalev-Shwartz and
Ben-David, 2014; Hardt et al., 2016).

Notation (attention entropy deficit). For head h and query token t ∈ [n(x)], let α(h)
t (x) ∈

∆n(x)−1 denote the attention over keys and H(p) := −
∑

j pj log pj . We define the token-averaged,
length-normalized deficit (AD)

ADh(x) :=
1

n(x) log n(x)

n(x)∑
t=1

(
log n(x)−H

(
α

(h)
t (x)

))
= 1−AEh(x) ∈ [0, 1]. (4)

5
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Main bound (loss–entropy link). Let M := maxh maxj ∥Vh(j, :)∥2 and CAE :=√
8M

√
|H|ρ log n for a representative effective length n. For the pruned model fS,m, the ex-

pected generalization gap (G) satisfies
G := ED

[
ℓ(fS,m(x), y)

]
− ES

[
ℓ(fS,m(x), y)

]
≤ 2Lℓ CAE

√√√√ |H|∑
h=1

(1−mh) ES
[
ADh(x)

]
+

B

N
.

(5)

Interpretation. For a fixed pruning ratio ρ, pruning heads with smaller deficit (i.e., higher entropy)
minimizes the bound’s increase; pruning low-entropy (high-deficit) heads worsens it. Proof details,
operator-norm assumptions, and variable-length handling are deferred to Appendix B.2.

4.2.3 RISK UPPER BOUND AND HIES MINIMIZATION

Composite Risk Bound. Given the HIES defined above, the overall risk upper bound is

R(m) :=

|H|∑
h=1

(1−mh)HIESh (6)

Pruning Objective (fixed budget). Let k := (1− ρ)|H| be the number of heads to retain. We solve
the cardinality-constrained selection problem

min
m∈{0,1}|H|

|H|∑
h=1

(1−mh)HIESh s.t.
|H|∑
h=1

mh = k. (7)

Lemma 2 (Optimality). Selecting the k heads with the largest HIES values (equivalently, prun-
ing the |H| − k heads with the smallest HIES values) yields the globally optimal mask m∗ that
minimizes equation 6 subject to equation 7.

4.2.4 ORTHOGONALITY AND COMPLEMENTARITY

Lemma 3 (Orthogonality). Let

uh := sign
(
α(h)⊤gh

)
gh, vh := 1+ logα(h), ũh := P uh, ṽh := P vh,

where P := I− 1
n11

⊤ projects onto {w : 1⊤w = 0}. Assume Cov(ũh, ṽh) = 0 (the cross-covariance
matrix is zero). If, in addition, either ES [ũh] = 0 or more generally ⟨ES [ũh], ES [ṽh]⟩ = 0, then

ES
[〈
∇̃α(h)HISh, ∇̃α(h)AEh

〉]
= 0, (8)

i.e., the two gradient directions are orthogonal in expectation.3

Complementarity. Because the gradients point along statistically orthogonal directions, HIS
captures the magnitude of loss sensitivity whereas AE captures the dispersion of attention. Thus, they
serve complementary roles: HIS emphasizes the magnitude of contribution, while AE characterizes
distributional concentration. Combined, they balance pruning minimally influential heads and
preserving heads important for generalization, underpinning HIES’s effectiveness.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETUP

Model. We use publicly available BERTbase checkpoints that have been fine-tuned and released by
prior work (Devlin et al., 2019), and LLaMA-27B checkpoint from Hugging Face (Meta AI, 2023). To
examine the generalizability to attention variants and tasks, we further employ ViTLarge (Dosovitskiy
et al., 2020) and LLaVA-1.57B (Liu et al., 2023).

3Detailed derivations and preliminaries are deferred to Appendix B.4.
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Table 1: Experimental results with BERTbase on natural language understanding task. We report
percentage improvements in blue.
Pruning Method SST-2 CoLA MRPC QQP STS-B QNLI MNLI RTE Average
Ratio Accuracy Matthews corr F1 Score Accuracy Pearson corr Accuracy Accuracy Accuracy

0% BERTbase 92.43 76.69 91.35 91.27 94.02 91.54 84.57 72.56 86.80

10%

Random 92.09 75.25 89.90 91.00 93.88 89.87 82.62 70.76 85.67 0.00%

AD 92.55 75.48 90.56 91.10 93.65 90.87 83.50 70.40 86.01 +0.40%

HIS 91.74 77.21 90.65 91.23 94.04 90.63 84.04 71.84 86.42 +0.88%

L2 90.37 74.00 83.78 69.23 83.12 60.81 67.75 49.82 72.36 -15.54%

LLM-Pruner (Channel) 91.97 76.05 79.19 83.53 93.06 87.39 80.46 67.51 82.40 -3.82%

LLM-Pruner (Block) 91.06 76.69 89.83 84.96 93.77 87.42 82.03 64.62 83.80 -2.19%

SliceGPT (w/o tune) 51.38 49.86 81.46 63.18 58.92 53.91 36.84 49.46 55.63 -35.07%

SliceGPT (w/ tune) 86.47 61.87 82.30 88.28 62.47 83.45 77.34 54.51 74.59 -12.94%

HIES (ours) 92.66 75.48 91.04 91.93 94.00 91.03 84.04 71.84 86.50 +0.97%

30%

Random 90.29 69.02 85.27 84.00 92.90 79.80 75.15 60.29 79.59 0.00%

AD 86.58 50.00 84.53 84.57 81.94 67.82 77.00 56.68 73.64 -7.47%

HIS 89.56 73.17 89.37 89.95 93.82 89.04 82.25 68.59 84.47 +6.13%

L2 86.58 67.52 81.58 64.83 76.52 51.09 56.00 50.90 66.75 -16.10%

LLM-Pruner (Channel) 88.53 70.36 86.89 81.23 92.50 67.38 66.67 64.26 77.23 -2.97%

LLM-Pruner (Block) 88.99 73.93 84.76 80.09 93.40 82.68 78.33 66.79 81.12 +1.92%

SliceGPT (w/o tune) 50.80 53.29 78.05 63.18 54.64 53.18 34.90 51.99 55.00 -30.90%

SliceGPT (w/ tune) 83.49 60.14 81.80 85.80 60.89 67.36 75.50 54.87 71.23 -10.49%

HIES (ours) 91.86 74.97 88.81 90.37 93.89 89.13 82.50 70.04 85.20 +7.04%

50%

Random 78.74 61.02 72.53 66.25 91.40 67.53 67.32 53.79 69.82 0.00%

AD 82.91 50.00 54.50 76.18 75.00 68.94 68.00 55.96 66.44 -4.84%

HIS 87.27 59.48 86.52 85.91 92.61 82.68 78.67 62.82 79.50 +13.84%

L2 82.80 60.98 85.30 64.83 69.76 50.54 44.42 47.29 63.24 -9.39%

LLM-Pruner (Channel) 86.47 61.64 83.92 81.47 89.74 60.66 67.42 62.82 74.14 +6.18%

LLM-Pruner (Block) 87.84 70.09 83.84 78.80 92.69 72.60 73.60 61.73 77.65 +11.20%

SliceGPT (w/o tune) 50.92 52.79 81.22 63.19 47.70 50.98 34.93 50.90 54.08 -22.54%

SliceGPT (w/ tune) 83.49 57.45 81.37 82.16 55.05 65.79 71.70 51.62 68.58 -1.78%

HIES (ours) 90.71 68.52 86.80 85.73 92.65 82.68 79.00 65.34 81.43 +16.63%

Datasets. We evaluate on various widely-adopted benchmarks: GLUE (Wang et al., 2018),
HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2020), the AI2 Reasoning
Challenge—ARC-e/ARC-c (Clark et al., 2018), OBQA (Mihaylov et al., 2018), ImageNet1k (Deng
et al., 2009), CIFAR-100 (Krizhevsky, 2009), Food-101 (Bossard et al., 2014), Fashion MNIST (Xiao
et al., 2017), VizWiz-VQA (Gurari et al., 2018), and MM-Vet (Yu et al., 2024).

Baselines.

• Random: Prune attention heads uniformly at random.
• L2-Norm: Prune attention heads with smaller weight magnitudes under the ℓ2 norm. This criterion

leverages parameter norms as a direct measure of structural salience.
• HIS (Michel et al., 2019): Prune attention heads with the smallest head-importance first.
• Attention Deficit (AD; 1−Attention Entropy) (Zhai et al., 2023): Prune attention heads with

smaller attention entropy first, i.e., heads exhibiting more concentrated attention patterns.
• LLM-Pruner (Channel-wise) (Ma et al., 2023): Prune attention-layer channels based on first-

order Taylor expansion of the loss. Importance scores are computed per attention channel, and
pruning proceeds while preserving the most critical channels.

• LLM-Pruner (Block-wise) (Ma et al., 2023): Extend the channel-wise pruning strategy to whole
attention blocks, guided by global importance ranking. Following the best-performing configuration
reported in prior work, we retain the first three layers and the final layer, pruning the others. This
variant also restricts pruning to attention layers.

• SliceGPT: Project activations onto principal components estimated from calibration data, removing
directions corresponding to less important subspaces (Ashkboos et al., 2024). This preserves
semantic subspaces while reducing redundancy.

5.2 MAIN RESULTS

We evaluate HIES using two key metrics: model quality and stability.4 As reported in Table 1, HIES
improves model quality by 8.21% on average. Table 2 further demonstrates a 3.3% average stability
gain over HIS. Notably, at a pruning ratio of 50%, HIES achieves gains of up to 15.2% in model

4Experimental details are provided in Appendix 5.1.
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Table 2: Stability results with BERTbase on GLUE tasks. We report stability (%) against the unpruned
model. Percentage improvements (in blue) are relative to HIS within each pruning ratio.

Pruning Ratio Method SST-2 CoLA MRPC QQP STS-B QNLI MNLI RTE Average

10%

HIS 97.71 96.55 94.36 97.30 99.47 95.79 95.66 94.22 96.63 0.00%

L2 95.18 76.41 26.72 68.63 21.87 60.33 72.44 39.71 57.41 -40.58%

AD 98.51 96.36 93.63 97.80 89.07 97.25 96.15 94.95 95.71 -0.95%

LLM-Pruner 97.02 85.81 75.25 85.40 39.53 90.39 84.98 86.28 80.71 -16.50%

HIES (ours) 98.17 96.36 94.12 97.80 96.67 97.25 95.74 93.50 96.45 -0.19%

30%

HIS 94.38 90.03 90.03 94.77 78.93 92.95 91.56 87.36 90.25 0.00%

L2 90.94 83.13 26.72 63.90 20.73 50.39 59.23 42.24 54.66 -39.45%

AD 88.53 81.21 78.68 87.90 24.53 63.04 79.07 69.68 71.58 -20.70%

LLM-Pruner 92.66 63.09 84.80 82.37 62.13 68.70 68.29 70.04 74.76 -17.21%

HIES (ours) 97.13 93.38 89.46 94.97 86.67 93.23 91.56 88.81 91.90 +1.83%

50%

HIS 90.02 40.84 83.33 88.80 69.13 85.54 81.47 78.70 77.23 0.00%

L2 86.47 82.26 26.72 63.90 20.40 49.81 45.58 34.30 51.93 -32.76%

AD 52.18 81.21 51.72 72.33 21.87 73.49 68.49 62.82 60.76 -21.32%

LLM-Pruner 89.68 41.32 78.19 83.27 44.13 61.58 67.52 75.81 67.19 -13.02%

HIES (ours) 95.07 83.13 84.56 88.27 75.20 85.54 78.29 81.23 83.66 +8.34%

quality and 2.04× in stability compared to the best-performing baseline. These results corroborate
our theoretical analysis, demonstrating that HIES preserves end-task performance while markedly
enhancing robustness, both critical for reliable and efficient deployment.

5.3 EXTENDED EXPERIMENTAL RESULTS

5.3.1 HEAD REMOVAL PATTERNS (HEATMAP)

Figure 3: Head-level pruning patterns on the CoLA
dataset across pruning ratios from 30% to 50%
pruning ratios. Pruned heads are shaded in gray.

In our main results, HIES exhibits more stable
performance gains than HIS at aggressive prun-
ing ratios (e.g., ≥,30%). At lower ratios (e.g.,
≤,10%), HIS and HIES perform comparably,
while HIS achieves marginally higher accuracy
in a few cases. We posit distinct prioritization.
HIS, a gradient-based metric tends to retain re-
dundant, low-risk heads at low sparsity, while
HIES adds attention entropy to capture stability,
thereby preserving specialized low-entropy heads
that enhance robustness.

Pruning heatmap analysis provides empirical sup-
port for this distinction. As shown in Fig. 3,
HIS (left panels) tends to remove heads primar-
ily from the lower layers, producing an approxi-
mately bottom-up pattern. This behavior is guided by a one-step gradient saliency, which estimates
the importance of each attention head based on a single backward pass through the model— this
assigns higher importance to heads whose activations have a larger immediate effect on the loss.
Meanwhile, HIES (right panels) yields a more dispersed selection spanning lower, middle, and
upper layers. We attribute this to the entropy-aware term, which leverages structural properties of
the attention distribution (concentration vs. dispersion) in addition to gradient sensitivity, thereby
promoting diversity across layers in pruning decisions. Consequently, HIES exhibits more stable
performance across pruning ratios, yielding flatter accuracy–sparsity curves than HIS. Additional
results are provided in Appendix D.2.

5.3.2 SCALABILITY TO LARGER TRANSFORMER MODELS

On LLaMA-27B, we evaluate pruning on HellaSwag, Winogrande, ARC-Easy (ARC-e), ARC-
Challenge (ARC-c), and Open Book Question Answering (OBQA), comparing HIES with HIS
across pruning ratios of 10–60%. HIES improves accuracy by up to +10.54% and stability by up to
+6.21% relative to HIS, averaged over tasks. This advantage persists uniformly across pruning ratios,
indicating that the same pruning mechanism scales effectively to larger models with higher head
counts. Notably, ARC-c is the most difficult benchmark in this suite, as reflected by its lowest base
accuracy. Even under this challenging setting, HIES achieves consistent and often larger accuracy
gains relative to HIS, underscoring its robustness not only on easier tasks but also on the hardest ones.

8
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Figure 4: Comparison of HIES (Ours) and HIS on HellaSwag, Winogrande, ARC-e, ARC-c and
OBQA across pruning ratios from 10% to 60% (x-axis). The top row reports task accuracy, while the
bottom row reports stability. The rightmost panels summarize the mean over tasks.

Table 3: Experimental results with ViTLarge on image classification benchmarks and LLaVA-1.5Large
on multi-modal tasks. Relative improvements of HIES (Ours) over HIS are shown in blue.

Vision Transformer Model (ViTLarge) Vision-Langauge Model (LLaVA-1.57B)
Image Classification Visual Question Answering Complex Multimodal

ImageNet1k CIFAR-100 Avg. VizWiz-VQA MM-Vet Avg.
HIS HIES (Ours) HIS HIES (Ours) HIS HIES (Ours) HIS HIES (Ours) HIS HIES (Ours) HIS HIES (Ours)

10% 86.40% 84.40% 91.40% 92.40% 88.90% 88.40% -0.57% 10% 48.00% 47.33% 41.20% 39.40% 44.60% 43.37% -2.84%
20% 44.80% 80.20% 65.60% 85.20% 55.20% 82.70% 33.25% 30% 44.00% 47.00% 29.80% 34.00% 36.90% 40.50% 8.89%
30% 6.20% 55.40% 19.40% 40.00% 12.80% 47.70% 73.17% 50% 32.67% 39.67% 24.60% 25.20% 28.64% 32.43% 11.71%

5.3.3 GENERALIZABILITY TO ATTENTION VARIANTS AND TASKS

Table 3 evaluates the generalizability of HIES across attention variants and task domains, spanning
vision classification with ViTLarge and visual-language reasoning with LLaVA-1.57B.

First, across different attention-based variants, including ViT and LLaVA, HIES consistently shifts
the region of sharp accuracy drop to more aggressive sparsity levels compared to HIS. In particular,
at high pruning ratios where HIS accuracy collapses, HIES achieves 73.17% higher accuracy on
ViTLarge at 30% sparsity, compared to HIS (with 12.80% of accuracy). This indicates that HIES
effectively captures structural importance regardless of the specific model configuration, enabling
stable and reliable pruning.

Second, the advantages of HIES are further extended on complex multi-modal tasks. HIES shows
improvement of 11.71% at 50% sparsity compared to HIS on VizWiz-VQA and MM-Vet. HIS
frequently suffers from sharp accuracy drops on these tasks, as it relies solely on gradient-based head
importance and fails to account for the structural diversity of attention heads. As a result, pruning
based on HIS alone may remove heads that are essential for preserving cross-modal alignment and
semantic grounding. In contrast, HIES leverages AE to capture these structural signals, resulting in
more stable performance across challenging vision-language benchmarks. HIES also demonstrates
robust and stable performance on downstream tasks (i.e., CIFAR-100, Food-101, and Fashion MNIST)
— detailed results are provided in Appendix D.4.

Overall, these results confirm that combining HIS with AE produces pruning signals that generalize
across architectures and modalities, preserving accuracy and stability. This underscores the potential
of HIES as a broadly applicable criterion for efficient and reliable pruning of Transformer models.

6 CONCLUSION

In this paper, we present HIES, a novel pruning criterion that jointly leverages gradient-based head
importance and attention entropy to better characterize per-head contributions. By combining comple-
mentary structural and behavioral signals, HIES outperforms HIS and other baselines, delivering both
higher accuracy and greater inference-time stability. Beyond empirical gains, our analysis highlights
the critical role of entropy. We believe HIES offers a principled direction for stable and efficient
pruning of Transformer-based models, with potential to extend toward broader structured sparsity
and large-scale model deployment.
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A RELATED WORK

Model Compression. Language models (Devlin et al., 2018; Liu et al., 2019; Lewis et al., 2019) have
rapidly advanced in scale and capability, intensifying the demand to reduce their parameter sizes and
inference latency (Molchanov et al., 2017; Gordon et al., 2020). To compress large language models
efficiently, various approaches have been explored, including pruning (Liu et al., 2021b; Kurtic et al.,
2022; Xu et al., 2021), knowledge distillation (Sun et al., 2019; 2020; Pan et al., 2020), quantization
(Bai et al., 2020; Yao et al., 2022; Zafrir et al., 2019; Chen et al., 2025a), and other techniques, like
low-rank approximation methods (Saha et al., 2024; Li et al., 2023; Wong et al., 2025) or weight
space decomposition methods such as (Ashkboos et al., 2024).

Structured Pruning. Among these, structured pruning—which removes entire architectural com-
ponents rather than individual weights— can be performed at various granularities, such as whole
layers (Fan et al., 2020), multi-head attention modules (Michel et al., 2019; Voita et al., 2019), or
feed-forward networks (Lagunas et al., 2021; Hou et al., 2020b). Recently, attention head pruning
has gained particular traction in the context of large language models. It directly reduces attention
FLOPs and KV-cache size by lowering the number of active heads while preserving the layer topol-
ogy, thereby simplifying checkpoint compatibility and serving integration. Consequently, several
large-scale studies adopt head-level pruning as a practical axis in LLM compression pipelines (Ma
et al., 2023; Jaradat et al., 2024; Muralidharan et al., 2024). Ma et al. (2023) propose a unified
framework that integrates structured head pruning into the training pipeline of large language models,
achieving substantial sparsity without accuracy degradation.

Entropy in Reinforcement Learning and Transformers. Entropy has long been employed in
reinforcement learning (RL) as a means of encouraging exploration and preserving policy diversity.
By introducing an entropy term into the policy objective, RL methods prevent premature convergence
to deterministic strategies and mitigate policy collapse (Bharadhwaj et al., 2020; Liu et al., 2021a;
Wang et al., 2025). Extensions of this idea include parameter-space entropy regularization to explicitly
control diversity (Han et al., 2023), large-deviation interpretations of entropy-regularized RL (Arriojas
et al., 2023), and state-distribution entropy regularization for improved robustness and generalization
(Ashlag et al., 2025).

In Transformer architectures, attention entropy (AE) has been introduced to quantify the concentration
of each head’s focus across input tokens. Zhai et al. (2023) report that persistently low AE—an
“entropy collapse” state—correlates strongly with training instabilities such as oscillations in the loss
surface and divergence across model scales. Their theoretical analysis ties AE to the spectral norm
of attention logits, and they propose σReparam to prevent collapse by enforcing a lower bound on
entropy. More recent work identifies variance sensitivity in the softmax transformation as another
source of entropy collapse (Anonymous, 2025). Together, these findings highlight attention entropy
as a critical factor for stability, motivating its integration as a complementary signal in pruning
frameworks.
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B PROOFS AND DETAILS

Overview. This appendix collects the formal analyses that underpin Section 4.2 and fixes notation and
technical conventions used throughout. We first develop loss-increase control for head pruning via
gradient-based head importance (HIS), derive operator-norm curvature bounds for the cross-entropy
objective, and justify the first-order approximation by quantifying when quadratic terms are negligible
(Appendix B.1).

We then turn to generalization: starting from token-averaged notation and a neighboring-dataset
construction, we link perturbations of attention distributions to output deviations and establish an
entropy–total variation inequality that couples attention entropy with stability, culminating in a
stability–generalization connection and practical constraints (Appendix B.2).

Building on these components, we present a risk upper bound whose surrogate minimization yields
the proposed HIES objective and clarifies its role as a principled pruning criterion (Appendix B.3).
Finally, we prove an orthogonality result between the centered HIS and entropy directions, showing
their complementarity and explaining why combining the two signals improves robustness across
pruning regimes (Appendix B.4).

Collectively, these results provide (i) tight loss-control guarantees under operator-norm curvature, (ii)
an entropy-based route from stability to generalization, and (iii) a unified risk-motivated justification
for HIES.

B.1 LOSS-INCREASE CONTROL VIA HEAD IMPORTANCE (SECTION 4.2.1)

B.1.1 LOSS BOUND WITH OPERATOR-NORM CONTROL

We write βy := ∥∇2
yL∥2 for the operator-norm curvature at the representation y.

Consider the second-order Taylor expansion in y:

L(y + δy) ≤ L(y) + ⟨∇yL, δy⟩F +
1

2
δy⊤∇2

yL δy.

Taking expectations and using the operator-norm bound yields

∆L := ED
[
L(y + δy)− L(y)

]
≤ E

[
⟨∇yL, δy⟩F

]
+

βy

2
E
[
∥δy∥2F

]
.

Since δy = Concat(δA1, . . . , δA|H|), ∥δy∥2F =
∑

h ∥δAh∥2F and δAh = −(1 − mh)Ah, the
quadratic term equals βy

2

∑
h(1−mh)∥Ah∥2F . For the first-order term, using the absolute value in

the HIS definition and head-wise triangle inequality,

E
[
⟨∇yL, δy⟩F

]
= −

∑
h

(1−mh)E
[
⟨∇Ah

L, Ah⟩F
]
≤

∑
h

(1−mh)HISh,

hence

∆L ≤
|H|∑
h=1

(1−mh)HISh +
βy

2

|H|∑
h=1

(1−mh) ∥Ah∥2F . (9)

Plug-ins (default: binary).

Binary (Sigmoid) CE. βy ≤ 1
4∥W

O∥22,

⇒ ∆L ≤
∑
h

(1−mh)HISh +
1

8
∥WO∥22

∑
h

(1−mh) ∥Ah∥2F .

Multiclass softmax CE. βy ≤ 1
2∥W

O∥22,

⇒ ∆L ≤
∑
h

(1−mh)HISh +
1

4
∥WO∥22

∑
h

(1−mh) ∥Ah∥2F .
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B.1.2 NORMS AND INNER PRODUCTS

We use token-averaged Frobenius norms and inner products: ∥Ah∥2F = 1
n

∑n
i=1 ∥Ah(i)∥22 and

⟨U, V ⟩F = 1
n

∑n
i=1⟨U(i), V (i)⟩ (with batching: replace 1

n by 1
Bn ).

B.1.3 ESTIMATING ∥WO∥2 AND BLOCKWISE NORMS VIA POWER ITERATION

The spectral norm of a matrix M ∈ Rm×n is defined as
∥M∥2 := max

∥x∥2=1
∥Mx∥2,

which measures the maximum ℓ2-amplification factor over all unit vectors. By the singular value
decomposition (SVD), M = UΣV ⊤, where Σ = diag(σ1, σ2, . . . ) with σ1 ≥ σ2 ≥ · · · ≥ 0, we
have

∥M∥2 = σmax(M),

i.e., the spectral norm equals the largest singular value. This follows since U and V are orthogonal
and preserve the ℓ2-norm, so the maximization reduces to aligning x with the right singular vector
corresponding to σmax. Exact computation via full SVD costs O(min{m2n,mn2}), which is
prohibitive for large M . Instead, we approximate σmax(M) using the power iteration method:
starting from a random unit vector v0, iterate

ut ←
Mvt
∥Mvt∥2

,

vt+1 ←
M⊤ut

∥M⊤ut∥2
.

After T iterations, ∥MvT ∥2 converges to σmax(M), and vT approximates the corresponding right
singular vector. We apply this procedure to WO and, for a tighter quadratic term in our bound, to its
head-wise column blocks WO

(:,Ih), forming∑
h

(1−mh)∥WO
(:,Ih)∥

2
2 ∥Ah∥2F .

Here, Ih ⊂ {1, . . . , d} denotes the set of column indices in WO corresponding to the dv output
dimensions of head h. Thus, WO

(:,Ih) ∈ Rd×dv is the column block of WO mapping the dv-
dimensional output of head h to the d-dimensional model space.

B.1.4 CROSS-ENTROPY CURVATURE AND PROPAGATION TO y

Logit-space Hessian (binary vs. multiclass). Binary (sigmoid) CE. For a single logit z with
p = σ(z),

d2L
dz2

= p(1− p) ≤ 1
4 ,

hence ∥∇2
zL∥2 ≤ 1

4 .

Multiclass softmax CE. For logits z ∈ RC and p = softmax(z),

∇2
zL = diag(p)− pp⊤, ∥∇2

zL∥2 ≤ 1
2 .

Proof sketch. For any unit vector v, v⊤(diag(p)− pp⊤)v =
∑

i piv
2
i − (

∑
i pivi)

2 = Varp(v). By

Popoviciu’s inequality, Varp(v) ≤ (maxi vi−mini vi)
2

4 ≤ 1
2 for ∥v∥2 = 1. Tightness holds at C = 2,

p = ( 12 ,
1
2 ).

Mapping through WO. With the immediate linear projection z = yWO,

∇2
yL = (WO)⊤∇2

zLWO, βy := ∥∇2
yL∥2 ≤

{
1
4 ∥W

O∥22, binary CE,
1
2 ∥W

O∥22, multiclass softmax CE.

(A blockwise refinement replaces ∥WO∥2 by ∥WO
(:,Ih)∥2 head-wise.)
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B.1.5 WHY THE QUADRATIC TERM IS TYPICALLY NEGLIGIBLE

We first note

HISh = E
[
|⟨∇Ah

L, Ah⟩F |
]
= E

[
| cosϕh| ∥∇Ah

L∥F ∥Ah∥F
]
,

where the expectation is over x∼D with token-averaging as in Appendix B.1.2. Assume there exists
g > 0 such that, for all heads under consideration,

HISh ≥ g E
[
∥Ah∥F

]
,

e.g., define
g := min

h∈{1,...,—H—}
E
[
| cosϕh| ∥∇Ah

L∥F
]
,

where cosϕh
⟨∇Ah

L, Ah⟩F
∥∇Ah

L∥F ∥Ah∥F denotes the cosine alignment between the head’s gradient and activa-
tion.

Then

quadratic
first-order

≤
βy

2

∑
h(1−mh)E[∥Ah∥2F ]∑
h(1−mh)HISh

≤ βy

2
· maxh E[∥Ah∥F ]

g
,

where the second inequality uses
∑

h(1 − mh)E[∥Ah∥2F ] ≤
(
maxh E[∥Ah∥F ]

)∑
h(1 −

mh)E[∥Ah∥F ] and the per-head lower bound HISh ≥ g E[∥Ah∥F ].

Recalling βy ≤ c ∥WO∥22 with c = 1
4 for binary CE and c = 1

2 for multiclass softmax CE (cf.
Appendix B.1.4), we obtain

quadratic
first-order

≤ c

2
∥WO∥22 ·

maxh E[∥Ah∥F ]
g

.

A blockwise refinement further tightens this by replacing ∥WO∥22 with maxh ∥WO
(:,Ih)∥

2
2. Since

(i) LayerNorm controls token-wise activation scales (thus maxh E[∥Ah∥F ]), and (ii) g is bounded
away from zero under non-degenerate alignment, the ratio is typically small. Hence the first-order
term dominates in practice, while the second-order term remains explicitly controlled by the plug-in
bounds in Appendix B.1.1.

B.1.6 REMARKS ON HIS WITH ABSOLUTE VALUES

The absolute value in equation 2 is part of the definition to prevent cancellation across samples;
consequently, the triangle inequality turns the first-order term into an additive upper bound

∑
h(1−

mh)HISh (cf. Appendix B.1.1). If ⟨∇Ah
L, Ah⟩F < 0 on some samples, masking that head could

locally decrease the loss; the metric remains conservative by construction.

B.2 GENERALIZATION GAP AND ATTENTION ENTROPY (SECTION 4.2.2)

B.2.1 NOTATION AND TOKEN AVERAGING

For head h and query token t ∈ {1, . . . , n(x)}, let α(h)
t (x) ∈ ∆n(x)−1 denote the attention dis-

tribution over keys, and H(p) := −
∑

j pj log pj the entropy. Define the token-averaged, length-
normalized entropy and deficit by

AEh(x) :=
1

n(x) log n(x)

n(x)∑
t=1

H
(
α

(h)
t (x)

)
∈ [0, 1],

ADh(x) :=
1

n(x) log n(x)

n(x)∑
t=1

(
log n(x)−H

(
α

(h)
t (x)

))
= 1−AEh(x) ∈ [0, 1].
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For neighboring datasets (S,S ′), write the symmetric aggregation

ADh(x) := 1
2

(
ADh(x) + AD′h(x)

)
.

All token averages exclude padding positions and use the effective context length for causal mask-
ing(cf. Appendix B.2.1). Here (S,S ′) are neighboring datasets that differ in one example.

B.2.2 NEIGHBORING DATASETS AND WHY THEY APPEAR

We call two datasets S = (z1, . . . , zN ) and S′ = (z1, . . . , zi−1, z
′
i, zi+1, . . . , zN ) neighboring if

they differ in exactly one example.

Why neighboring datasets?

• Symmetrization. Introduce an i.i.d. ghost sample S′∼DN to rewrite the expected gen-
eralization gap as an average of sample-wise differences, e.g., ES,S′

[
1
N

∑N
i=1

(
ℓ(fS ; zi)−

ℓ(fS′ ; z
′
i)
)]

, which is amenable to concentration and stability arguments.
• Replace-one stability. Measure sensitivity to a single replacement by comparing fS with
fS(i←z′) , where S(i←z′) replaces zi by z′i; under γ-uniform stability and bounded loss B,
this yields ES [G(S)] ≤ 2γ + B

N .
• Symmetric inequalities. Our entropy–total variation (TV) control is symmetric in two

distributions (α, α′); we thus aggregate via ADh(x) := 1
2

(
ADh(x) + AD′h(x)

)
, which

streamlines notation and tightens constants in the perturbation bound.

B.2.3 FROM ATTENTION PERTURBATION TO OUTPUT PERTURBATION

For token t, the head output is ah(t) =
(
α

(h)
t

)⊤
Vh ∈ Rdv , hence for neighboring datasets,

∆h(t) := ah(t)− a′h(t) =
(
α

(h)
t −α

′(h)
t

)⊤
Vh.

With ∥Vh∥∞→2 := maxj ∥Vh(j, :)∥2 and ∥Vh∥∞→2 ≤M ,

∥∆h(t)∥2 ≤ ∥α(h)
t −α

′(h)
t ∥1 · ∥Vh∥∞→2 ≤ M ∥α(h)

t −α
′(h)
t ∥1. (10)

Averaging over tokens and applying the mask mh,

∥∆(x)∥2 :=
1

n(x)

n(x)∑
t=1

|H|∑
h=1

(1−mh) ∥∆h(t)∥2.

B.2.4 ENTROPY–TOTAL VARIATION (TV) CONTROL

Lemma 4 (Entropy–TV inequality). For p,q ∈ ∆n−1 and u uniform, ∥p − q∥21 ≤ 4
[
H(u) −

H(p) +H(u)−H(q)
]
.

Proof. Triangle inequality and (a+ b)2 ≤ 2(a2 + b2) give ∥p− q∥21 ≤ 2(∥p− u∥21 + ∥q− u∥21).
Pinsker w.r.t. u yields ∥p− u∥21 ≤ 2(log n−H(p)) and likewise for q.

Applying Lemma 4 to equation 10 token-wise and averaging,

1

n(x)

n(x)∑
t=1

∥α(h)
t −α

′(h)
t ∥1 ≤

√√√√ 1

n(x)

n(x)∑
t=1

∥α(h)
t −α

′(h)
t ∥21 ≤

√
8 log n(x)

√
ADh(x).

Therefore,

∥∆(x)∥2 ≤ M
√
8 log n(x)

|H|∑
h=1

(1−mh)

√
ADh(x).

By Cauchy–Schwarz and
∑

h(1−mh) = |H|ρ,

∥∆(x)∥2 ≤
√
8M

√
|H|ρ log n(x)︸ ︷︷ ︸

=: CAE(x)

·

√√√√ |H|∑
h=1

(1−mh)ADh(x). (11)
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B.2.5 STABILITY AND GENERALIZATION

Let γ := Lℓ ES [∥∆(x)∥2]. By on-average replace-one stability (Bousquet and Elisseeff, 2002,
Def. 6),

ES
[
G(S)

]
≤ 2γ, G(S) ≤ 2γ + B

N .

Using equation 11 and Jensen for
√
·,

γ ≤ Lℓ ES
[
CAE(x)

]
·

√√√√ |H|∑
h=1

(1−mh)ES
[
ADh(x)

]
.

Taking a representative n (e.g., average/max effective length) yields the main-text constant CAE =√
8M

√
|H|ρ log n and Eq. equation 5.

B.2.6 CONSTANTS AND PRACTICAL REMARKS

• Operator norm. ∥Vh∥∞→2 := maxj ∥Vh(j, :)∥2; take M := maxh ∥Vh∥∞→2 (controlled
by LayerNorm/weight norms).

• Sequence length. For padding/causal masking, replace n(x) by the effective context length;
averages exclude padded positions.

• Deficit aggregation. On-average: ADh = 1
2 (ADh + AD′h); Uniform: ADh =

max{ADh,AD′h}.
• Do not pool entropies. Since using H( 1n

∑
t αt) can underestimate deficit (Jensen) and

weaken control, token-wise entropies are required.

B.3 RISK UPPER BOUND AND HIES MINIMIZATION (SECTION 4.2.3)

Proof. Let supp(m) := {h : mh = 1} denote the set of retained heads. Suppose an admissible
mask m′ with | supp(m′)| = k is not optimal. Then there exist i ∈ supp(m′) and j /∈ supp(m′)
such that HIESj > HIESi. Consider the mask m̃ that swaps i and j (retain j, prune i); the constraint
in equation 7 is preserved. The objective in equation 6 changes by

∆R =
[
HIESi

]
−
[
HIESj

]
< 0,

since j was contributing to the sum (pruned) and i was not (retained). Hence m̃ has a strictly smaller
objective, contradicting the minimality of m′. Therefore retaining the k heads with the largest HIES
is optimal; equivalently, pruning the |H| − k smallest HIES is optimal.

B.4 ORTHOGONALITY AND COMPLEMENTARITY (SECTION 4.2.4)

Preliminaries. For head h, let α(h) ∈∆n−1 be the attention probability vector, Vh ∈Rn×dv the
value matrix, and

Ah = α(h)Vh ∈ R1×dv .

Define

gh := Vh

(
∇Ah
L
)⊤ ∈ Rn, HISh =

∣∣α(h)⊤gh
∣∣, AEh = −

n∑
j=1

α
(h)
j logα

(h)
j .

Gradients w.r.t. attention (interior points). For α(h)
j > 0,

∇α(h)HISh = sign
(
α(h)⊤gh

)
gh, ∇α(h)AEh = −

(
1+ logα(h)

)
,

where log is applied elementwise. (At α(h)⊤gh = 0, any subgradient in {s gh : s ∈ [−1, 1]} is valid;
this does not affect the result in expectation.)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Simplex projection. Since α(h)∈∆n−1, we project onto the tangent space with P := I − 1
n11

⊤

and define
∇̃HISh := P ∇HISh, ∇̃AEh := P ∇AEh.

Proof. By definition, uh := sign(α(h)⊤gh) gh, vh := 1 + logα(h), and ũh := Puh, ṽh := Pvh.
Then

∇̃α(h)HISh = P ∇α(h)HISh = ũh, ∇̃α(h)AEh = P ∇α(h)AEh = −ṽh.
Hence

ES
[
⟨∇̃HISh, ∇̃AEh⟩

]
= ES

[
⟨ũh, −ṽh⟩

]
= − tr

(
ES

[
ũhṽ
⊤
h

])
.

Decomposing the second moment,

ES
[
ũhṽ
⊤
h

]
= Cov(ũh, ṽh) + ES [ũh]ES [ṽh]⊤.

Under Cov(ũh, ṽh) = 0 and ⟨ES [ũh], ES [ṽh]⟩ = 0 (or the stronger ES [ũh] = 0), we obtain

ES
[
⟨∇̃HISh, ∇̃AEh⟩

]
= 0.

Technical remarks. (i) At α(h)⊤gh = 0, use any subgradient of | · | for ∇α(h)HISh. (ii) Since
α(h) = softmax(·), we have α(h)

j > 0, so logα(h) (elementwise) is well-defined. (iii) “Cov(x, y) =
0” denotes the cross-covariance matrix being zero, not merely componentwise uncorrelatedness.
(iv) If one omits the projection P , the same argument applies with uh, vh replacing ũh, ṽh under the
analogous conditions Cov(uh, vh) = 0 and ⟨ES [uh], ES [vh]⟩ = 0.
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C EXPERIMENTAL SETUP

C.1 EXPERIMENTAL SETUP FOR MOTIVATION STUDY

We analyze accuracy degradation and head behaviors under HIS-based pruning. In our diagnostic
study, we analyze the phenomena of pruning by HIS on BERT, focusing on detailed attention
head behaviors during inference. Following prior work analyzing BERT’s attention geometry and
mechanisms (Clark et al., 2019; Rogers et al., 2020; Wang et al., 2024), we further explore attention
head pruning dynamics.

C.2 MODEL

Table 4: Summary of model parameters and architectures.

Model Parameters # Layers # Attention Heads Architecture / Key Details

BERTbase 110M 12 12 Transformer encoder; pre-trained on masked lan-
guage modeling and next sentence prediction
tasks.

LLaMA-27B 7B 32 32 Transformer decoder-only; trained on large-scale
text corpora for general-purpose language model-
ing.

ViTLarge 307M 24 16 Vision Transformer; patch-based image tokeniza-
tion (16×16), pre-trained on ImageNet for image
classification tasks.

LLaVA-1.57B 7B 32 32 Multi-modal LLaMA variant integrating a visual
encoder; capable of joint image-text understand-
ing and generation.

C.3 COMPUTING RESOURCES

Our experimental setup leverages two RTX 4090 GPUs with 24GB memory for NLU tasks using
BERT and for image classification tasks using ViT. Experiments involving LLMs such as LLaMA
and multi-modal VLMs such as LLaVA were conducted on H100 GPU with 80GB memory. For the
MM-Vet benchmark, we evaluated model responses using the OpenAI API to handle open-ended
answer scoring.

C.4 DATASET STATISTICS

C.4.1 NATURAL LANGUAGE UNDERSTANDING TASK

We present the dataset statistics of GLUE (Wang et al., 2018) in Table 5.

C.4.2 IMAGE CLASSIFICATION TASK

Table 6 lists dataset statistics for the image classification task in the Computer Vision (CV) domain.

C.4.3 MULTI-MODAL VISION-LANGUAGE TASK

To evaluate the effectiveness of our pruning method on multi-modal vision-language models (VLMs),
we used two benchmark datasets: VizWiz-VQA (Gurari et al., 2018) and MM-Vet (Yu et al., 2024).
The evaluation was conducted using the LLaVA1.57B model.

VizWiz-VQA: is designed for Visual Question Answering (VQA) in the context of assisting people
who are blind. Each visual question originates from a real-world setting where blind users captured
images and recorded spoken questions, and is accompanied by ten crowdsourced answers. The
dataset poses two evaluation tasks: predicting the correct answer given an image and question, and
detecting whether a question cannot be answered.
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Table 5: Summary of the NLG benchmark.

NLU Benchmark

Dataset # Train # Valid # Test # Label Task Evaluation Metric

Single-Sentence Classification (GLUE)

CoLA 8,551 521 522 2 Acceptability Matthews corr
SST-2 66,349 1,000 872 2 Sentiment Accuracy

Pairwise Text Classification (GLUE)

MNLI 392,702 9,832 9,815 3 NLI Accuracy
RTE 2,490 138 139 2 NLI Accuracy
QQP 362,846 1,000 40,431 2 Paraphrase Accuracy
MRPC 3,668 204 204 2 Paraphrase F1 score
QNLI 103,743 1,000 5,463 2 QA/NLI Accuracy

Pairwise Text Classification (GLUE)

STS-B 5,749 750 750 1 Similarity Pearson corr

Table 6: Summary of the CV benchmark.

CV Benchmark

Dataset # Train # Valid # Test # Label Task Evaluation Metric

ImageNet1k 1,281,167 50,000 100,000 1,000 Classification Accuracy
CIFAR-100 45,000 5,000 10,000 100 Classification Accuracy
Fashion MNIST 54,000 6,000 10,000 10 Classification Accuracy
Oxford Flowers 1,020 1,020 6,150 102 Classification Accuracy

MM-Vet: is a benchmark intended to evaluate large multimodal models on complex tasks that require
the integration of multiple vision-language capabilities. It defines six core VL skills and sixteen
combinations of these skills, and employs an LLM-based evaluator to provide a unified scoring
metric across diverse question types and answer formats. MM-Vet enables a systematic assessment
of models’ generalization, reasoning, and open-ended answer generation abilities.

By using both VizWiz-VQA and MM-Vet, we comprehensively evaluate our pruning method across
real-world visual questions, complex multimodal reasoning, and diverse answer styles, providing a
thorough assessment of its impact on the overall quality of the pruned model. Note that our evaluation
is conducted on a subset of the datasets. To illustrate the nature of the datasets used in our evaluation,
we provide example entries from both VizWiz-VQA and MM-Vet.
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Figure 5: Examples from VizWiz-VQA showing visual questions asked by blind users and the
corresponding answers from crowd workers. The examples include both questions that can be
answered from the image and questions that cannot.
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Figure 6: Eight example queries from the MM-Vet benchmark, each requiring different integrations
of core vision–language capabilities to solve complicated multimodal tasks.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ORTHOGONALITY ANALYSIS

We provide an empirical sanity check supporting the assumptions above. Experiments use TinyBERT
on SST-2 (Vishnou/TinyBERT SST2). For each head we compute layerwise-normalized HIS
and attention-entropy (AE) scores, stack them into vectors u and v, and form the centered versions
ũ and ṽ by subtracting each vector’s mean (a finite-sample proxy for projection onto the zero-sum
subspace). The following sample statistics were obtained:

Ĉov(ũ, ṽ) = 0.030853, u = 3.73× 10−9, v = 1.61× 10−8.

Consequently,

Ê
[
⟨ũ, −ṽ⟩

]
= −0.030853 = −

(
Ĉov(ũ, ṽ) + u v

)
(up to numerical precision).

The covariance magnitude is small on this batch, indicating weak coupling between the two directions
and lending empirical support to the “(near) uncorrelatedness” assumption. We recommend reporting
the same diagnostics averaged over multiple batches to reduce sampling noise and to provide
confidence intervals.
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D.2 HEATMAP OF IMPORTANCE SCORES AND PRUNING RESULTS

Figure 7: Heatmaps of head-importance scores across four GLUE tasks (CoLA, MRPC, QNLI, QQP).
Left: HIS; Right: HIES (ours). Rows = layers (L0–L11); columns = heads (H0–H11).

We analyze the pruning patterns and performance dynamics of HIS- and HIES-based methods
across varying sparsity levels. This section highlights the fundamental distinctions in head selection
strategies and the underlying mechanisms responsible for the observed performance inversion.
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D.3 3D ANALYSIS OF ATTENTION HEAD IMPORTANCE SCORES

Figure 8: 3D Analysis of Attention Head Importance Scores
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D.3.1 DIFFERENCE IN PRUNING PATTERNS

Pruning heatmaps (Fig. 9) reveal systematic differences between the methods. HIS-based pruning
tends to remove heads primarily from the lower layers, producing an approximately bottom-up
pattern consistent with its one-step gradient saliency. In contrast, HIES yields a more dispersed
selection spanning lower, middle, and upper layers. We attribute this to the entropy-aware term,
which leverages structural properties of the attention distribution (concentration vs. dispersion) in
addition to gradient sensitivity, thereby promoting diversity across layers in pruning decisions.

D.3.2 PERFORMANCE INVERSION ACROSS SPARSITY REGIMES

We identify two distinct pruning regimes:

Redundancy Regime (≤ 10% pruning). In the early pruning phase, the model contains a sub-
stantial number of redundant heads. Here, gradient-based importance scores (HIS) are sufficient
to identify and remove low-sensitivity heads, as they reflect the immediate (one-step) loss change.
Consequently, HIS performs slightly better than HIES in both accuracy and stability under light
pruning.

Specialization Regime (≥ 30% pruning). As pruning becomes more aggressive, redundant heads
are mostly exhausted, and specialized heads begin to be targeted. In this regime, HIS alone struggles
to distinguish critical heads from less important ones, as gradient magnitudes no longer capture
long-term utility. In contrast, HIES leverages attention entropy to preferentially preserve highly
concentrated (low-entropy) heads—which are typically more specialized—and prune high-entropy,
less task-specific heads. This leads to superior accuracy and stability under higher pruning ratios.

Summary

• Pruning ≤ 10%: Redundancy regime⇒ HIS outperforms HIES.
• Pruning ≥ 30%: Specialization regime⇒ HIES outperforms HIS.

These findings demonstrate that HIS and HIES prioritize head preservation differently—HIS reflects
short-horizon gradient sensitivity, whereas HIES incorporates extended inference-time stability by
preserving low-entropy specialized heads.
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Figure 9: CoLA: heatmaps of head importance and pruning across sparsity levels. For each pruning
ratio (10%, 30%, 50%, 70%), we show HIS (left) and HIES (right). Rows = layers (L0–L11); columns
= heads (H0–H11). Dark/grey cells mark heads pruned at the target ratio.
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D.4 EXPERIMENTAL RESULTS ON DOWNSTREAM TASKS

Fig. 10 reports downstream evaluations of HIES versus the HIS baseline on CIFAR-100, Food-101,
and Fashion-MNIST. Across all three benchmarks, HIES consistently sustains higher accuracy under
aggressive pruning, whereas HIS exhibits rapid degradation once the pruning ratio exceeds 20%. On
CIFAR-100, HIS collapses beyond moderate sparsity, while HIES exhibits slower degradation and
retains substantially higher accuracy relative to HIS even at 40–50%. Food-101 reveals a similar
trend, with HIES delivering substantial and consistent gains over HIS across all pruning levels. On
Fashion-MNIST, HIS undergoes steep drops after 20% pruning, in contrast to the stable performance
of HIES up to 50%. These results demonstrate that HIES reliably mitigates sharp-drop phenomena
and delivers robust, stable improvements over HIS across heterogeneous downstream tasks.

Figure 10: Evaluation of HIES on the image classification benchmarks. HIES consistently outper-
forms baseline, demonstrating robust and stable performance across downstream tasks.

D.5 SENSITIVITY ANALYSIS - ABLATION ON α
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Figure 11: HIES sensitivity to the mixing coefficient α on GLUE. For each task, we sweep α and
report three choices—αbest, αmedian, αworst—selected by weighted AUC (wAUC) across pruning ratios.
Curves plot performance versus pruning ratio for these three settings.

We sweep the mixing coefficient α ∈ [0, 1) that interpolates the gradient-based head-importance
(HIS) and attention-entropy (AE) signals in HIES,

HIESh(α) = α ĤISh + (1− α) ÂEh.

As expected, larger α upweights HIS and preserves heads with strong task relevance, whereas smaller
α upweights AE and retains low-entropy, focused heads. We choose a single α⋆ on a held-out
validation split and fix it for all reported experiments; the resulting accuracy–sparsity profiles are
shown in Fig. 11.
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