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Abstract

It is widely known that it is possible to implant backdoors into neural networks, by1

which an attacker can choose an input to produce a particular undesirable output2

(e.g. misclassify an image). We propose to use meta-models, neural networks3

that take another network’s parameters as input, to detect backdoors directly from4

model weights. To this end we present a meta-model architecture and train it on a5

dataset of approx. 4000 clean and backdoored CNNs trained on CIFAR-10. Our6

approach is simple and scalable, and is able to detect the presence of a backdoor7

with > 99% accuracy when the test trigger pattern is i.i.d., with some success even8

on out-of-distribution backdoors.9

1 Introduction10

A line of work often referred to as mechanistic interpretability studies the internal workings of11

trained neural networks (Olah et al. 2020; Olsson et al. 2022; K. Wang et al. 2022; Meng et al.12

2023; McGrath et al. 2022; Elhage et al. 2022). The goal of mechanistic interpretability is to obtain13

a human-understandable description of the algorithm a neural network has learned. Despite the14

supposed black-box nature of neural networks, the field has had some noteworthy successes, fully15

understanding the exact algorithm implemented by a network (Nanda et al. 2023). However, current16

work in interpretability is reliant on human labor and thus not scalable even in principle, since even a17

large team of humans cannot reverse-engineer a network consisting of billions of neurons by hand.18

In order to scale to large models, it is likely that we need to automate interpretability methods.19

There have been a number of proposed approaches to automated interpretability, including using20

LLMs to annotate neurons based on dataset examples (Bills et al. 2023; Foote et al. 2023), automated21

circuit ablation (Conmy et al. 2023), and verification of circuit behavior (Chan et al. 2022). In22

this work, we propose to train a neural network to take the parameters of other neural networks as23

input in order to perform interpretability tasks.1 We refer to such models as meta-models and the24

networks they are trained on as base models. This simple approach permits us to train arbitrary tasks25

end-to-end, so long as it is possible to build a suitable training dataset.26

Main contributions.27

• We propose a meta-model architecture that can operate on arbitrary base model architectures28

and train it on datasets comprising base models of size ranging between approximately29

103 − 107 parameters.30

• We demonstrate that meta-models can be useful for understanding network internals on two31

distinct tasks. First, we translate synthetic (compiled, not trained) neural network weights32

into equivalent human-interpretable code (Figure 5, Section 3.3). Second, we detect the33

presence of backdoors in normally-trained convolutional networks (Figure 2, Section 3.1).34

1By interpretability task, we mean determining any property of interest of the base model.
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Figure 1: Our meta-model architecture. The inputs are the weights of a base model (in our experiments
either a CNN or transformer). The weights are flattened, then divided into chunks of size 8-1024
depending on the size of the base model. Each chunk is passed through a linear embedding layer and
then a transformer decoder. The output of the transformer depends on the task, and is either a single
array of logits for classification or a tensor of logits for next-token prediction as in the inverting Tracr
task (see Section 3.3 and Figure 5).

• We compare against previous work on meta-models and find that our approach outperforms a35

previous method on predicting base model hyperparameters from weights (Figure 4, Section36

3.2).37

2 Related Work38

Meta-models. While to our knowledge we are the first to use the term meta-models in a paper, the39

idea of using neural networks to operate on neural network parameters is not new. A line of work40

focuses on hyperrepresentations achieved by training an autoencoder on a dataset of neural network41

weights (Schürholt, Kostadinov, et al. 2021; Schürholt, Knyazev, et al. 2022). The trained encoder42

can be used as a feature extractor to predict model characteristics (such as hyperparameters), and the43

decoder can be used to sample new weights, functioning as an improved initialization scheme. In44

earlier work, Eilertsen et al. (2020) train a meta-model to predict base model hyperparameters such45

as learning rate and batch size. While a fully rigorous comparison is out of scope, our meta-model46

architecture is simpler and outperforms prior work on the comparison tasks we tested (Section 3.2).47

In a different line of work, Weiss et al. (2018) algorithmically extract a representation of an RNN as a48

finite state automaton. This is similar to our work because we are also interested in extracting a full49

description of the computation performed by a transformer (Section 3.3).50

Interpretability. The field of interpretability studies the internal workings of neural networks, with51

the goal of making the outputs and behaviour of neural networks more understandable to humans52

(Doshi-Velez and Kim 2017; Lipton 2018). While there is no universally agreed-upon definition53

of interpretability, in the context of this work we will focus on the sub-problem of mechanistic54

interpretability, which aims to understand the learned mechanisms implemented by a neural network.55

Recent work on mechanistic interpretability includes the full reverse engineering of a transformer56

trained on a modular addition task (Nanda et al. 2023), tracking chess knowledge in AlphaZero57

(McGrath et al. 2022), locating a circuit responsible for a specific grammatical task in GPT-2 (K.58

Wang et al. 2022), and the study of superposition in transformers (Elhage et al. 2022). These tasks59

are impressive, especially as they allow humans to understand neural networks in purely conceptual60

terms.61

Data poisoning and backdoors. Data poisoning is the act of tampering with the training data to62

be fed to a model, in such a way that a model trained on this data exhibits undesired or malicious63

behaviour. Some data poisoning attacks attempt to install a backdoor in the model—a way in which64

an attacker can choose an input to produce a particular, undesirable output. Many basic backdoor65

attacks modify a small fraction of the training inputs (1% or less) with a trigger pattern (Gu et al. 2017;66

X. Chen et al. 2017), and change the corresponding labels to the target class. At test time, the attacker67
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Figure 2: Left: ROC curves for our meta-model on the backdoor detection task, by poison trigger
type. Triggers marked OOD mean our meta-model is trained on a different distribution than the
trigger type. Right: Area under the ROC curve. A: BadNets Border; B: BadNets Center; C: BadNets
Corner (OOD); D: Random Noise (OOD); E: ULP Test (OOD). Notably, we match Kolouri et al.
(2020) on their custom trigger patterns, despite only training a randomly positioned BadNets trigger
pattern (which is different in size).

can modify any input to the model with the trigger pattern, causing the model to misclassify the68

image. Casper et al. (2023) propose backdoor detection as a benchmark for interpretability methods.69

Similarly, we use backdoor detection to benchmark our meta-model (Section 3.1). Backdoor detection70

with meta-models depends on recognizing the subset of weights responsible for a backdoor in a set of71

trained model weights and thus is a promising choice for a benchmark.72

Backdoor defenses. A variety of backdoor defense methods have been developed to defend against73

attacks. Common methods prune neurons from a given network (B. Wang et al. 2019), remove74

backdoor examples and retrain the base model (B. Chen et al. 2018), or even introduce custom75

training procedures to produce a cleaned model (Li et al. 2021). However, meta-models can only76

operate on a model-by-model scale, and few methods are directly comparable. In terms of coarsely77

detecting whether a model is backdoored or not, two prior works exist that are directly comparable78

to meta-models. Universal litmus patterns (Kolouri et al. 2020) and meta neural analysis (Xu et al.79

2020) are similar methods—they train a spread of base models, then, using gradient descent, jointly80

train dummy inputs and a classifier, such that when the dummy inputs are fed through the base model81

to produce output logits, the classifier predicts the likelihood that a base model is poisoned. We82

compare against their results, using a meta-model to directly take the weights as inputs and produce a83

classification.84

3 Experiments85

In this section we present empirical results on three main meta-modeling tasks: predicting data86

properties, mapping transformer parameters to equivalent programs written in human-readable code,87

and detecting and removing backdoors. All code and datasets are available under an open-source88

license.2 Throughout this section, we briefly describe the architectures and training methods used;89

more detail is available in the Appendix.90

3.1 Detecting Backdoors91

Base model dataset. We train base models on CIFAR-10 (Krizhevsky, Hinton, et al. 2009), using92

a simple CNN architecture with 70,000 parameters. We train a set of clean models and a set of93

poisoned models for every poison type. Depending on poison type, the number of base models we94

train ranges from 2, 000− 3, 000. The exact model architecture is described in the Appendix. We95

open-source this dataset for future work.396

2URL redacted for anonymity.
3Redacted for anonymity.
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3.2 Comparison with prior meta-model work

Data poisoning. We poison the training data by adding a trigger pattern to 1% of the images and97

setting all associated labels to an attack target class determined randomly at the start of training. We98

use a suite of basic attacks in this work: the 4-pixel patch and single pixel attacks from Gu et al.99

(2017), a random noise blending attack from X. Chen et al. (2017), a strided checkerboard blending100

attack from Liao et al. (2018). We set α = 0.1 for all blending attacks, and always use a poisoning101

fraction of 1% of the overall training dataset.102

Meta-model training. We train a meta-model to detect backdoors by treating the problem as a103

classification task, between clean models trained on ordinary data, and poisoned models trained on104

poisoned data as described above. To use the base model weights as input to our meta-model, we first105

flatten the weights, then divide them into chunks of size 1024. Each chunk is passed through a linear106

embedding layer and then a transformer decoder as in Figure 1. We augment every training batch by107

permuting neurons in every layer except the last, as the function parametrized by a neural network108

is invariant under some permutations (Navon et al. 2023). Augmentations substantially improve109

validation accuracy.110

Results. In the iid setting that is typically considered (that is, we test on attacks similar to the one111

we train the meta-model on), we achieve >99% accuracy on all attacks. Additionally, we compare112

against other model-scale detection methods: Meta Neural Analysis (Xu et al. 2020), and Universal113

Litmus Patterns (Kolouri et al. 2020) (Figure 2).114

Xu et al. (2020) evaluate their method on base models poisoned with the 4-pixel patch and the115

random-blended backdoor attacks. The Random Noise and BadNets Corner settings are our direct116

comparison to Xu et al. (ibid.)’s results. We train base networks on their training distribution, then117

evaluate on nets poisoned with the the 4-pixel patch and random noise blending. As we see, the118

meta-model demonstrates substantially better performance on these tasks than their method, which119

is indicative that the weights of the network alone hold substantial information when it comes to120

detecting backdoors. Kolouri et al. (2020) evaluate on base models poisoned with a custom set121

of backdoor patches, and we match their evaluation regime. In this setting, we only train on the122

4-pixel patches. While Kolouri et al. (ibid.) introduce their own new set of attack patterns, our trained123

meta-model generalizes near-perfectly to their (OOD) attacks without adjustment and matches their124

performance (Figure 2).125

3.2 Comparison with prior meta-model work126

To sanity check our choice of meta-model architecture and implementation, we compare against127

(Eilertsen et al. 2020), who train a meta-model to predict hyperparameters used to train base models:128

the dataset, batch size, augmentation method, optimizer, activation function, and initialization scheme.129

They have two settings: one where the architecture (and thus the size) of the base models are fixed,130

and another where they are allowed to have variable size. We focus on the second, more general131

setting. We replicated their dataset generation procedure, training CNNs with random variance in132

the hyperparameters listed above. Full details on the replication of Eilertsen et al. (ibid.)’s training133

procedure is deferred to the Appendix.134

Eilertsen et al. (ibid.) use a 1-dimensional CNN on a 5,000-long randomly chosen segment of the135

flattened weights, training on 10,000 networks from the dataset as described. We instead use the136

meta-model described above, taking each of the 40,000 nets we generated following their procedure,137

Figure 3: Left to right: 4-pixel patch and 1-pixel patch attacks from Gu et al. (2017), random noise
blending from X. Chen et al. (2017), checkerboard blending from Liao et al. (2018), hand-crafted
patch from Kolouri et al. (2020).
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3.3 Inverting Tracr
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Figure 4: Comparison with a CNN meta-model from Eilertsen et al. (2020). The task is to predict
training hyperparameters from model weights on a large distribution of base models with diverse
architectures and training datasets. Despite not specializing our method to the task at all, we find that
we can readily exceed their performance on the same data distribution.

truncating flattened weights past 800,000 (or zero-padding to that length if the base network has138

fewer parameters), and training a meta-model with one of the variable hyperparameters as a target.139

The results are visible in Figure 4. We outperform their method in every category, sometimes140

substantially. While these problems are not clearly valuable from an interpretability standpoint, they141

are a promising indicator that our meta-models method is useful, in that it readily solves extant tasks.142

RASP and Tracr. In analogy to how finite state machines provide a computational model for143

RNNs (Weiss et al. 2018), in recent work Weiss et al. (2021a) develop RASP, a computational model144

for a transformer encoder. RASP is a domain-specific programming language designed to describe145

the computations that a transformer is able to perform. Each line in a RASP program maps to a146

single attention head and/or two-layer MLP. The RASP language is implemented in Tracr (Lindner,147

Kramár, Rahtz, et al. 2023), a compiler that (deterministically) translates RASP programs into148

corresponding transformer weights. See more about RASP in appendix Section B, with an example149

of Tracr compilation in Section C.150

Base model dataset. We generate a dataset of 8 million RASP programs and use Tracr to compile151

every program to a set of transformer weights, resulting in a dataset consisting of tuples (P, r), where152

P is a dictionary containing the parameters of the compiled transformer and r is the corresponding153

RASP program. We then deduplicate the generated programs, resulting in a dataset of 6 million154

parameter-program pairs. We constrain RASP programs to contain between 5 and 15 instructions,155

each of which may handle up to 3 arguments, other variables, predicates or lambdas (Figure 17,156

Table 2).157

Transformer Parameter and Program Tokenization. We convert RASP programs into com-158

putational graphs, ordering the instructions in every program based on their computational depth,159

argument type (Lambdas > Predicates > Variables), and alphanumeric order, providing a unique160

representation for a every program (Figure 19). We flatten the base model parameters into 512 chunks161

(using padding for smaller models). For every block we add a layer-encoding by concatenating an162

array to describe the layer type.163

Meta-model training. We train a transformer decoder on a next-token prediction loss to map base164

model parameters to the corresponding RASP programs (Figures 5 and 15). Inputs are divided into165

three segments: transformer parameters, padding, and a start token at timestep T − 15, followed by166

the tokenized RASP program. Targets consist of offset labels starting from timestep T − 15. At test167

time, we generate an entire RASP program autoregressively: we condition the trained model on a set168

of base model parameters and perform 15 consecutive model calls to generate the RASP program.169
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Figure 5: Left: We train a transformer meta-model to predict the next instruction in a RASP program
(red), conditioning on the flattened and chunked array of parameters from the corresponding compiled
transformer (blue). We tokenize RASP programs and define a unique ordering of instructions for
every program. Right: Next-token accuracy (blue) and fraction of programs where more than X% of
instructions are recovered (accuracyX, yellow, green, and red). Notably, the meta-model is able
to perfectly recover around 6% of RASP programs, and mostly recover (90%) programs 32.0% of
the time. GT: accuracy obtained via conditioning on previous ground truth RASP instructions. AR:
accuracy obtained via autoregressive generation, conditioning only on base model parameters.

3.3 Inverting Tracr170

4 Limitations171

The tasks we train on are simple compared to the full problem of reverse-engineering a large neural172

network. While we are able to automatically reverse-engineer most RASP instructions from model173

weights, the models involved are relatively small (less than 50, 000 parameters, on average 3, 000),174

and the Tracr-compiled model weights are dissimilar from the distribution of weights obtained via175

SGD-training.176

More generally, we have chosen tasks for which we are able to train thousands of base models, and177

for which a loss function is easily evaluated. It may be hard to generate training data for real-world178

interpretability tasks. In addition, our meta-models tend to be larger than the base models they are179

trained on by about a factor of 10-1000, which would be prohibitive for very large base models.180

We also only show how meta-models might be used to propose mechanistic interpretations of a base181

model, but we do not address the problem of verifying a mechanistic interpretation of a model is182

accurate. Without a means of verification, this approach can only provide limited assurance. While183

there might be ways to apply meta-models for verifying interpretations (or other properties) of a base184

model, this is beyond the scope of our work.185

5 Conclusion186

Interpretability is currently bottlenecked on scaling, which is challenging given the current state187

of the art which requires substantial direct human labor by researchers to understand a model. We188

propose to use transformers, which are famously scalable, as meta-models that can be trained to189

perform interpretability tasks. The method is general: we apply it to diverse tasks such detecting190

hyperparameters, generating human-readable code, and detecting backdoors. Despite its generality, it191

performs well, beating prior work on both backdoor detection and hyperparameter prediction and192

successfully recovering the majority of RASP instructions from Tracr-compiled transformer weights.193

To our knowledge, this is the first work that recovers a program from a transformer neural network.194

We believe this demonstrates the potentially broad applicability of meta-models in the circumstances195

where it is possible to construct an appropriate dataset. We hope that future work extends meta-models196

to more complex and more immediately useful tasks, in the hopes of developing methods to readily197

interpret arbitrary black-box neural networks.198
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A Backdoor Detection303

import jax.numpy as jnp
from flax import linen as nn

def conv_block(x, features):
x = nn.Conv(features=features, kernel_size=(3, 3), padding="SAME")(x)
x = nn.LayerNorm()(x)
x = nn.relu(x)

x = nn.Conv(features=features, kernel_size=(3, 3), padding="SAME")(x)
x = nn.max_pool(x, window_shape=(2, 2), strides=(2, 2))
x = nn.LayerNorm()(x)
x = nn.relu(x)

return x

class CNN(nn.Module):
@nn.compact
def __call__(self, x):

x = conv_block(x, features=16)
x = conv_block(x, features=32)
x = conv_block(x, features=64)
x = jnp.max(x, axis=(-3, -2)) # Global MaxPool
x = nn.Dense(features=10)(x)
return x

Figure 6: CNN model architecture for the base models trained on CIFAR-10 in the backdoor detection
task.

B RASP304

RASP (Weiss et al. 2021b) is a programming language where each line is guaranteed to map exactly305

into an attention head and/or two-layer MLP, forming a Transformer Program. RASP is extended by306

Tracr into the following key operators.307

• Select - A confusion matrix obtained by applying a predicate to the pairwise product of 2308

vectors309

• Selector Width - Sums the columns in a Select operation - together requiring an attention310

head and MLP311

• Aggregate - Takes the weighted average of columns in a Select operation given a vector -312

again requiring an attention head and MLP313

• Map - apply an arbitrary lambda to a vector, by mapping from the known input domain to314

the functions output domain315

• Sequence Map - applies a lambda with two parameters to two vectors in a similar manner316

Lets walk through each of these operators and how they’re compiled into CRAFT modules to form a317

CRAFT model. Selectors are CRAFT modules that are compiled from the select operator, they form318

the first half of an attention head, where the two s-op’s provide the keys and queries.319

The value matrix depends on the operator applied to the selector: aggregate or selector width.320

Selector width (Fig 7) simplifies with column summation, resulting in a new s-op where each value321

corresponds to the predicate for the key-vector element applied to each query-vector element.322

In contrast, the aggregate operator (Fig 7) incorporates an additional s-op ‘s’ which acts as a weight to323

be applied to the keys. Instead of computing the sum of each key applied to every query, it calculates324
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the mean across queries. In summary, selector width functions like a histogram, while aggregate325

resembles a weighted average. Both methods require a 2-layer MLP after the attention head to326

perform additional computations and map outputs to the desired location in the residual stream.327

The Map and sequence map operations, introduced by Lindner, Kramár, Farquhar, et al. (2023),328

employ the MLP architecture (as described in equation 1) to implement arbitrary lambdas over one or329

two s-ops, “simply because MLPs can approximate any function with accuracy depending on the330

width and depth of the MLP, Hornik et al. (1989)”.331

FFN(x) = max(0, xW1 + b1)W2 + b2 (1)

While we’re on the topic it’s also worth noting that transformers as a whole are provably universal332

approximations provided a fixed sequence length (Yun et al. 2019). A major limitation of Transformers333

and by extension the RASP programming language when compared to other programming languages,334

is their inability for input dependent loops. You may also question the computational efficiency of335

RASP programs implemented using a transformer architecture but at the very least they can perform a336

sort with O(n2) complexity (Weiss et al. 2021b) which is somewhat reassuring, although still slower337

than O(n log n).338

Examples of how each operator work can be seen in figures 8 and 7.339

Transformers, with a fixed sequence length, are provably universal approximators Yun et al. 2019.340

However, they, and the RASP programming language by extension, have a notable limitation when341

compared to other languages: the absence of input-dependent loops. Additionally, the computational342

efficiency of RASP programs implemented using a transformer architecture may raise concerns, even343

though they can perform sorting with O(n2) complexity Weiss et al. 2021b, which is less efficient344

than O(n log n).345

Examples illustrating the operation of each operator can be found in figures 8 and 7.346

Select Aggregate Selector Width Map Sequence Map
Attention-Head ✓ ✓ ✓

MLP ✓ ✓ ✓ ✓
Table 1: Computational blocks required for each RASP operation

Figure 7: Select, Selector Width and Aggregate RASP Operators. The Select operation performs
some predicate over 2 variables, using an attention head, here is an example of the equality predicate
given two sequences ‘122’ and ‘121’. The Selector Width operation computes the sum of columns
of a selection matrix, here is an example applied to the confusion matrix we just generated. The
Aggregate operation computes the weighted average of rows. Here the weights ‘123’ are used, but
anything could be used. The averages of the rows are then 1, 2.5 and 1.
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Figure 8: Map and Sequence Map RASP Operators. In each case, the first diagram expresses the
mapping between inputs and outputs that the layer uses to memorize the lambda. The second diagram
is an example of this mapping being used for a sequence of inputs.

C Worked Example - Histogram347

To illustrate the compilation process, let’s explore a straightforward example where we aim to348

calculate a histogram of input tokens. In this scenario, we determine the frequency of each input349

token and produce an output array with the token counts, for instance, "hello" would result in350

[1, 1, 2, 2, 1]. If we were to implement this in Python, the code would resemble the following:351

1 tokens = list('hello')
2 def hist(tokens: str):
3 same_tok = np.zeros((5,5))
4 for i, xi in enumerate(tokens):
5 for j, xj in enumerate(tokens):
6 if xi == xj:
7 same_tok[i][j] = 1
8 return np.sum(same_tok, axis=1)
9 # e.g. hist('hello') = [1,1,2,2,1]

10 # hist('aab') = [2, 2, 1]
11 # hist('abbcccdddd') = [1, 2, 2, 3, 3, 3, 4, 4, 4, 4]

Figure 9: Python Histogram Program that computes the frequency of tokens present in the input

The corresponding RASP program is much simpler:352

1 def hist(tokens):
2 same_tok = Select(tokens, tokens,

Comparison.EQ).named("same_tok")↪→

3 return SelectorWidth(same_tok).named("hist")
4 # e.g. hist(list('aab')): same_tok = [[1, 1, 0], => hist = [2, 2,

1]↪→

5 # [1, 1, 0],
6 # [0, 0, 1]]

Figure 10: RASP Histogram Program that performs the same algorithm as the python implementation
in Figure 9. we first compute a confusion matrix of the pairwise equality product over the tokens,
then by summing each column in this matrix the frequency of each token is obtained.

The computational graph, also known as the ‘RASP model’, consists of nodes assigned to each353

RASP operator and directed edges connecting these operators to their respective operands within354

the program. In our example, this graph is straightforward, with the select operation having a single355

unique operand (tokens), and the selector width operator relying solely on the select operation.356
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tokens −→ same_tok −→ hist (2)

Next, we determine the basis directions for each node in the computational graph. Each operator357

is applied to every element in its input space, and the resulting function’s range is stored to serve358

as the domain for subsequent operations. By propagating the range of potential values throughout359

the program, we can associate an element in the residual stream with the binary encoding of each360

value in the domain and range of every operation. Each axis receives a name corresponding to the361

operator (e.g., tokens, same_tok, hist) and its corresponding value. For example, the basis362

directions for the tokens S-op include tokens=h, tokens=e, tokens=l, and tokens=o.363

The complete set of named basis directions in the residual stream can be found in figure 11.364

Figure 11: Initial state of the residual stream encoding the inputs "hello" for the histogram program.
The input space with named basis directions is labeled on the x-axis. In the y-axis are the input time
steps. The ‘indices’ directions are a onehot encoding of the index of each input timestep, the ‘one’
direction is unit functioning similarly to inputting a ones axis to an MLP to remove the need for
explicit bias terms. The ‘tokens’ directions encode which token is input at each timestep, [blank,
BOS, h, e, l, l, o]. The remaining directions will be written to during program execution
and store the outputs of the program.

Next, each node in the computational graph is compiled into an attention head and/or MLP using365

an intermediate representation called CRAFT, which precisely handles variable sizes of attention366

heads and MLPs while preserving named basis directions. While the detailed process of compiling367

the computational graph into a CRAFT model is beyond this review’s scope, in summary, the CRAFT368

compiler specifies how each operator applied to a given input type (numerical or categorical) maps to369

the parameters of an attention head and/or MLP. For operations like Map or Sequence Map, these370

compiled parameters primarily map values between inputs and outputs (see Figure 8), as the domain371

and range of each operation have been established earlier.372

In our example program, the first operator is the select operation, producing a confusion matrix with373

inputs Q and K both equal to “hello” and using the equality predicate. The resulting confusion matrix374

from the attention head with parameters WQK is Q×WQK ×K⊤. In Figure 12, the diagonal is 1 for375

x >= 2 (matching tokens with themselves), while entries (4, 5) and (5, 4) are also 1 due to the two376

occurrences of ‘l’ in the input. After the Select operation, we move on to the selector width operation,377

where the SoftMax activation is applied, and the WOV × V matrix selects the ‘ones’ column as the378

output. Here, SoftMax computes the sum of the original confusion matrix along the row axis in this379

context.380
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Figure 12: Select operation, using an attention head to compute the predicate ‘equals’ between the
tokens, resulting in a confusion matrix. The Query, Key parameter is applied to the token inputs
giving the 2nd figure. Applying softmax causes the ones column to act as an inverted accumulator,
where 1

2 corresponds to a token frequency of 1, and 1
3 corresponds to a token frequency of 2. The

Value parameter times the inputs, causes just the ones column with the inverse accumulated outputs
to be kept

The outputs now contain a scalar encoding of the histogram values over our input tokens, however,381

we wish for them to be one hot encoded, which is the job of the MLP.382

The first MLP layer matrix has a bar of 100’s and below that a scale that exponentially decreases383

from -15 to -75. The result is the same scale multiplied by the attention outputs, such that the two384

rows corresponding to ‘l’ are 2x the rows corresponding to ‘h’, ‘e’ and ‘o’.385

Figure 13: Inputs to first MLP layer on left, the first layer applies a gradient, resulting in the gradients
in the ouptuts h

Next, we apply a ReLU activation to the outputs and then multiply by the second layer parameters,386

whose alternating checkerboard pattern cause the signals from incorrect indices to cancel leaving just387

a one-hot encoding of the frequencies of the input tokens.388
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C.1 Tracr Compilation

Figure 14: First ReLU is applied to the outputs of the first layer, then the alternating checkerboard
pattern causes signals in the gradient to cancel out, resulting in the one-hot encoding of the token
frequencies on the right

In summary, we’ve discussed the process of transforming a basic RASP program into a functional389

transformer program that accomplishes the same task. We’ve also examined the compiled parameters390

required to achieve this transformation. Additionally, another compiler step introduced by Tracr391

involves compiling the previously mentioned CRAFT parameters into a JAX transformer. This step392

is relatively straightforward and involves copying the parameters while padding them with zeros to393

ensure that all key, query, and value weight matrices have the same shape.394

C.1 Tracr Compilation395

The CRAFT compiler in Tracr incorporates a technique for combining attention heads and MLPs396

within the same block efficiently. In Figure 18, the program branches into two separate computations,397

namely Select → SelectorWidth and Select → Aggregate, each requiring an attention head and398

a 2-layer MLP. Since these computations are independent, they can run in parallel. Combining the399

attention heads is straightforward, resulting in a multi-head attention layer with two distinct attention400

heads, leading to doubled matrices (WQK and WOV ) width. Managing MLP layers is a bit more401

complex, but thanks to the residual stream’s structure, each MLP writes to mutually exclusive residual402

stream sections. By introducing an additional projection matrix to align their outputs with the correct403

residual stream section, the MLP parameters can be concatenated. This projection matrix can then be404

multiplied into the second layer’s parameters, resulting in a single two-layer MLP that handles both405

the selector width and aggregate operations and correctly writes the output to the respective regions406

of the residual stream.407
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D.1 Program Generation

Figure 16: Segmented cross entropy loss between program lines - Above there are example predictions
and targets where we are incorrectly predicting arg3 as tokens, below are their encoded representations
with 5 segments corresponding to one hot encodings of the operation, 3 arguments and return variable.
The cross entropy loss is then taken between each of these segments to measure the distance between
the predicted and target sequences.

D.1 Program Generation409

1 initial_scope = {tokens, indices}
2 operations = []
3 for n in range(0, n-1):
4 op = sample_rasp_operator(scope, RASP_OPS) #Sample a new

function to add to the program↪→

5 operations.append(op)
6

7 def sample_rasp_operator(scope, RASP_OPS):
8 op = sample(RASP_OPS)
9 switch op:

10 case Map:
11 lam = sample(Categoric_Lambda | Numeric_Lambda)
12 if lam is categoric:
13 return Map(var(SOp), gen_const(CAT_OR_NUM), lam)
14 elif lam is Numeric:
15 return Map(var(SOp), gen_const(NUM) + noise(),

lam)↪→

16 case SequenceMap:
17 lam = sample(Numeric_Lambda)
18 v1, v2 = vars(2, SAME_TYPE)
19 return SequenceMap(v1, v2, lam)
20 case Select:
21 pred = sample(Predicate)
22 v1, v2 = vars(2, SAME_TYPE)
23 return Select(v1, v2, pred)
24 case Aggregate:
25 v1 = var(SELECT)
26 v2 = var(Numeric)
27 return Aggregate(v1, v2)
28 case SelectorWidth:
29 return SelectorWidth(var(SELECT))
30

Figure 17: Simplified RASP Program Generation Algorithm. Var(X) samples a variable of type X
from the current scope. vars(2, SAME_TYPE) samples two variables of the same categoric/nu-
meric type within the current scope.
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D.1 Program Generation

Figure 19: Computational Depth Program Ordering - given a program we construct the computational
graph, compute the depths of each node in the graph w.r.t. the tokens and indices, allowing us to
order the program by computational depth, breaking ties alphabetically

RASP OP Categoric Lambda Numeric Lambda Predicate
Map x < y x + y EQ

Sequence Map x <= y x * y FALSE
Select x > y x - y TRUE

Aggregate x >= y x or y GEQ
Selector Width x! = y x and y GT

x == y LEQ
not x LT

NEQ
Table 2: Relevant primitives that the program generator samples from

Figure 18: Pruning process and terminal node selection after sampling operations
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D.1 Program Generation

D.1.1 Example programs410

1 def example_program_1(tokens, indices):
2 v1 = Select(PRED_NEQ, indices, tokens)
3 v2 = SelectorWidth(v1)
4 v3 = Select(PRED_LT, v2, v2)
5 v4 = SelectorWidth(v3)
6 v5 = Aggregate(v3, v4)
7 v6 = SequenceMap(LAM_ADD, v2, v5)
8 return Map(LAM_LE, v6)

Figure 20: A randomly sampled program generated using our algorithm, containing 2 attention heads
and 2 map operations requiring MLP’s

1 def example_program_2(tokens, indices):
2 v1 = Map(LAM_SUB, indices)
3 v2 = SequenceMap(LAM_SUB, tokens, tokens)
4 v3 = SequenceMap(LAM_MUL, v1, v1)
5 v4 = Map(LAM_OR, v2)
6 v5 = Select(PRED_TRUE, indices, v2)
7 v6 = Aggregate(indices, v5)
8 v7 = Select(PRED_LT, v3, v6)
9 return Aggregate(v4, v7)

Figure 21: Another randomly sampled program generated using our algorithm, containing 2 attention
heads and 4 map operations requiring MLPs
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