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Abstract

Complex games have long been an important benchmark for testing the progress of
artificial intelligence algorithms. AlphaGo, AlphaZero, and MuZero have defeated
top human players in Go and Chess, garnering widespread societal attention towards
artificial intelligence. Concurrently, large language models (LLMs) have exhibited
remarkable capabilities across various tasks, raising the question of whether LLMs
can achieve similar success in complex games. In this paper, we explore the
potential of LLMs in mastering complex card games. We systematically assess
the learning capabilities of LLMs across eight diverse card games, evaluating the
impact of fine-tuning on high-quality gameplay data, and examining the models’
ability to retain general capabilities while mastering these games. Our findings
indicate that: (1) LLMs can approach the performance of strong game AIs through
supervised fine-tuning on high-quality data, (2) LLMs can achieve a certain level
of proficiency in multiple complex card games simultaneously, with performance
augmentation for games with similar rules and conflicts for dissimilar ones, and
(3) LLMs experience a decline in general capabilities when mastering complex
games, but this decline can be mitigated by integrating a certain amount of general
instruction data. The evaluation results demonstrate strong learning ability and
versatility of LLMs. The code is available at https://github.com/THUDM/
LLM4CardGame

1 Introduction

A long-term goal of artificial intelligence is to achieve superhuman performance in highly challenging
domains [1–3]. Games, particularly complex ones such as Chess and Go, have become the best
testing grounds for artificial intelligence algorithms [4–7]. In recent years, artificial intelligence
algorithms have made significant breakthroughs in the realm of games. AlphaGo is the first to
defeat human professional players in Go by using supervised learning from expert human data and
reinforcement learning [4]. Following this, a general reinforcement learning algorithm, AlphaZero,
achieves superhuman performance in three challenging games: Chess, Shogi (Japanese chess), and
Go [6]. MuZero even achieves performance equivalent to AlphaZero without needing to know the
rules of the game [7].

Recently, large language models (LLMs) [8–11] have achieved remarkable performance, even
surpassing human levels, across a wide range of tasks including general knowledge question answer-
ing [12, 13], mathematics [14, 15], coding [16, 17], and agent [18, 19]. This naturally raises the
question: can language models achieve superhuman performance in complex games, or at least reach
the same level as the best reinforcement learning algorithms? In this paper, we focus on card games.
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Currently, there is a vast amount of research evaluating LLMs across various tasks. Among these
studies, some research also evaluates the decision-making capability of LLMs in both board games
and card games, such as Texas Hold’em [20, 21], Blackjack [22], and Guandan [23, 24]. However,
these studies still have some limitations. First, many evaluation studies assess LLMs through
prompting without involving fine-tuning [25, 26]. These prompt-based evaluation studies can only
assess whether LLMs are capable of applying their existing knowledge to new environments. But, they
do not evaluate the learning ability of LLMs. Second, some evaluation studies include assessments
of LLMs after fine-tuning and demonstrate that fine-tuning improves the performance of LLMs in
new environments. But, the tasks evaluated in these studies lack sufficient complexity, making them
inadequate to comprehensively assess the learning capabilities of LLMs.
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Figure 1: Complexity of the games. InfoSet Num-
ber: the number of the information sets; Avg. In-
foSet Size: the average number of states in a single
information set.

As mentioned at the beginning, complex games
are often used to explore the upper bound of
artificial intelligence algorithms’ learning capa-
bilities. Therefore, in this paper, we investigate
whether language models can master complex
card games. To address the shortcomings of
previous work, we systematically evaluate the
performance of language models on eight care-
fully selected card games. First, most games
exhibit a high level of complexity as shown in
Figure 1. The high complexity of these games
presents a greater challenge to the learning abil-
ities of large models. Evaluations across the
eight games provide a more comprehensive un-
derstanding of LLMs. Second, we evaluate the
performance ceiling that LLMs can achieve by
fine-tuning the model on high-quality gameplay
interaction data. Compared to prompt-based
methods, fine-tuning methods focus on evaluat-
ing the learning ability of language models. We generate high-quality gameplay interaction data
using strong game AIs or directly utilize publicly available high-quality interaction data. Specifically,
we focus on the following three research questions:

1. Can LLMs master complex card games? And how much data is required to master these games?

2. Can LLMs simultaneously master multiple games? Do different games mutually enhance each
other or do conflicts arise between them?

3. Can LLMs maintain their general capabilities while mastering complex games?

To answer these questions, we first fine-tune language models on each of the eight games separately to
evaluate the extent to which the models can master individual games. Next, we fine-tune the models
on a mixture of all the game data to assess their ability to master all the games simultaneously. Finally,
we evaluate whether the models’ general capabilities decline using MMLU-Pro [12], Math-500 [27],
and HumanEval [28] benchmarks for knowledge question answering, math, and coding skills. Addi-
tionally, we analyze the performance variations of language models with different parameter sizes
and types (Qwen2.5 [29], Llama3.1 [30], and GLM4 [9]). In summary, the contributions of this work
are:

• We are the first to propose a comprehensive evaluation of the learning capabilities of LLMs
across multiple high-complexity games, which present greater challenges to the learning
abilities of LLMs.

• We obtain a large amount of high-quality data for LLMs to learn by utilizing strong game
AIs and game prompt templates, avoiding the problem of high computational resource
consumption when LLMs learn from scratch in the environment.

• We thoroughly assess the learning ability of the models through experiments in three aspects.
The evaluation results demonstrate strong learning ability and versatility of LLMs, as they
can simultaneously master multiple complex games without altering the model structure.
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2 Related Works

The integration of LLM-based agents into card and board game has garnered significant attention,
focusing on enhancing strategic reasoning and adaptability [31–33]. Previous research has mainly
focused on improving LLM-based agents in card games with incomplete information and adversarial
settings, such as Texas Hold’em [20–22, 34], Blackjack [22], and Guandan [23, 24]. For example,
Yim et al. [23] introduced a Theory of Mind (ToM) planning technique for Guandan, enabling LLM
agents to adapt strategies based on game rules, state, and history. Their approach also integrates
an external tool to manage the game’s large action space. While effective in a single game, the
generalizability of such prompt-based strategies across multiple games remains an open question.
Guo et al. [21] proposed Suspicion-Agent, a prompt-based approach that leverages GPT-4’s reasoning
and high-order ToM capabilities to adapt strategies in imperfect information card games. It enables
GPT-4 to play against different opponents using only game rules and observations as input. Their
experiments demonstrate its effectiveness across multiple games. However, as a prompt-based
method, it relies solely on the model’s inherent knowledge, which limits its overall performance.

3 Method

From AlphaGo, to AlphaZero, and then to MuZero, we can see that these methods have achieved
significant breakthroughs in complex games by continuously exploring the environment and leverag-
ing successful experiences. This paper aims to explore whether LLMs can master complex games
similarly. Considering the time and resource consumption involved in the exploration process, we
utilize existing strong game AIs to generate high-quality trajectory data. This study investigates
whether LLMs can master complex games by learning from this high-quality trajectory data. Next,
we introduce the selected games and the process of generating training data for each game.

3.1 Games

For game selection, we primarily consider the popularity, complexity, and availability of high-quality
models or data. Based on these three aspects, we select eight games: DouDizhu, Guandan, Riichi
Mahjong, Uno, Gin Rummy, Leduc Hold’em, Limit Texas Hold’em, and No-Limit Texas Hold’em.

DouDiZhu. DouDizhu1 (a.k.a. Fighting the Landlord) is the most popular card game in China.
The game is played by three players with a standard 54-card deck. There are two roles in the
game: a landlord and two farmers. Some studies have explored building strong DouDizhu AIs
using techniques such as handcrafted heuristic rules, reinforcement learning based methods, and
search algorithms [35–37]. Among these methods, DouZero [37] is a simple and effective approach
that requires no human knowledge or state/action abstraction. It is currently the strongest publicly
accessible DouDizhu AI.

GuanDan. Guandan2 is another popular card game in China. The game requires four players, with
the two players sitting opposite each other forming a team. Its gameplay is similar to Dou Dizhu.
However, Guandan is more complex in comparison. There is relatively less research on Guandan
AI [38, 39]. Among the existing work, DanZero [38], which employs a neural network-enhanced
Monte-Carlo method, has outperformed other algorithms. Therefore, we choose DanZero as our
teacher model.

Mahjong. Mahjong3 is a widely popular multiplayer tile-based game across the world. Mahjong has
many variants, and this paper focuses on Riichi Mahjong (a.k.a. Japanese Mahjong). Suphx is the
first Mahjong AI to defeat most top human players [40]. Then LuckJ developed by Tencent reached
10 Dan on Tenhou4 and surpasses all human players and other AIs. However, the model weights for
both of these AIs have not been made publicly available. Nevertheless, Tenhou provides gameplay
data from expert players.

1https://en.wikipedia.org/wiki/Dou_dizhu
2https://en.wikipedia.org/wiki/Guandan
3https://en.wikipedia.org/wiki/Mahjong
4https://tenhou.net/
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Game # Players # Teams Teacher model/Data Opponent # Games Avg. Steps
per Game

Avg. Steps
per Player
per Game

Total Steps
(Filtered)

Avg. Legal
Actions
per Step

Training data

DouDizhu 3 2 DouZero Rule model 200k 37.31 12.44 2,950k 10.06 1,000k
GuanDan 4 2 DanZero Rule model 6k 311.25 155.63 1,220k 48.67 1,000k
Riichi Mahjong 4 4 Data from experts Mortal 7k 656.92 164.23 1,090k 8.79 1,000k
Uno 2 2 Rule model Random 50k 42.33 21.16 410k 3.14 400k
Gin Rummy 2 2 Rule model Random 50k 52.14 26.07 1,280k 6.22 400k
Leduc Hold’em 2 2 DQN model Random 400k 3.61 1.81 580k 2.86 400k
Limit Texas Hold’em 2 2 DQN model Random 200k 5.01 2.50 450k 2.96 400k
No-limit Texas Hold’em 2 2 DQN model Random 400k 3.78 1.89 700k 4.31 400k

Table 1: Data generation information of games.

Uno. Uno5 is a proprietary American shedding-type card game. The game is played with a specially
designed 108-card deck. There are 2 players in the game. Each player starts with seven cards
dealt face down. Players take turns matching the card in the Discard Pile by number, color, or
symbol/action. The objective is to be the first player to get rid of all the cards in hand.

Gin Rummy. Gin Rummy6 is a two-player card game. The game is played by two players using a
standard 52-card deck. The dealer deals 11 cards to the opponent and 10 cards to himself. During
each turn, you can pick up the discard or draw from the face-down stock, then discard a card. Players
try to form melds of 3 or more cards of the same rank or 3 or more cards of the same suit in sequence.

Leduc Hold’em. Leduc Hold’em, introduced in Southey et al. [41], is a simplified variant of Limit
Texas Hold’em. This version uses a deck comprising only six cards, with two pairs each of King,
Queen, and Jack. The game involves two players, spans two rounds, and has a maximum of two bets
per round, with the raise amounts fixed at 2 in the first round and 4 in the second round.

Limit Texas Hold’em. Limit Texas Hold’em7 is a well-known betting game with 52-card deck.
Each player receives two face-down cards, known as hole cards. Subsequently, five community
cards are dealt in three stages: the flop, the turn, and the river. Players aim to form the best possible
five-card hand using any combination of their hole cards and the community cards.

No-limit Texas Hold’em. No-limit Texas Hold’em follows similar rules to Limit Texas Hold’em but
with key differences in betting. No-limit Texas Hold’em allows players to raise by at least the amount
of the previous raise in the same round and up to the entirety of their remaining stack. Additionally,
there is no limit on the number of raises in No-limit Texas Hold’em.

3.2 Data Preparation

Trajectory Generation. We generate gameplay interaction data by having the teacher model
compete against opponents. The teacher model and opponent information for each game are shown
in Table 1. For DouDizhu, we use DouZero [37] as the teacher model and a rule-based model [42]
as the opponent model. For GuanDan, we use DanZero [38] as the teacher model and a rule-
based [38] model as the opponent model. For Riichi Mahjong, we download the match data of
human professional players from the Tenhou8 platform for the year 2020. The opponent model is
Mortal9, a strong Mahjong AI, which is used only during evaluation. For Uno and Gin Rummy, we
use rule model from Zha et al. [42] as the teacher model and use random as the opponent. For Leduc
Hold’em, Limit Texas Hold’em, No-limit Texas Hold’em, we train DQN model as the teacher model
with RLCard framework10.

Based on the complexity of different games, we play each game a varying number of times. The
important information of the generated data is shown in Table 1. From the table, it can be seen that
the average number of steps in the games Doudizhu, Guandan, and Mahjong is significantly higher
than the other games. Particularly, Guandan and Mahjong have longer steps because each game
consists of multiple rounds. For example, in Guandan, the game progresses from 2 to Ace.

Trajectory Filtering. In this paper, we consider each observation-action pair of one step as a sample.
We filter the generated data based on two criteria to obtain high-quality data. First, we only retain the

5https://en.wikipedia.org/wiki/Uno_(card_game)
6https://en.wikipedia.org/wiki/Gin_rummy
7https://en.wikipedia.org/wiki/Texas_hold_%27em
8https://tenhou.net/
9https://github.com/Equim-chan/Mortal

10https://github.com/datamllab/rlcard
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observation and action data of the winning player. Additionally, we consider each observation-action
pair from the player as a single data instance. Second, for all eight games, the environment provides
the legal action options per action, and we only retain data samples where the number of legal action
options is greater than one. The amount of data obtained after filtering is presented in Table 1. It
can also be seen from the table that the number of legal candidate actions per sample for Doudizhu,
Guandan, and Mahjong exceeds that of the other five games, making these three games relatively
more complex.

Supervised Fine-Tuning Data Generation. To perform instruction fine-tuning on the model, we
design prompts for each game to convert observation-action pairs into instructions and corresponding
outputs. The instruction primarily consists of three parts: game introduction, state data, and output
format instructions. The game introduction includes the game rules and the player’s objectives.
The state data comprises information such as the player’s hand, community cards, the sequence of
historical actions, and legal actions. The output format specifies that the model should output actions
in JSON format. Complete instructions for each game can be found in Appendix A.3.

4 Experiments

4.1 Experiment Setup

Data. Through the data synthesis process described in Section 3.2, we obtain the training data for
each game. For DouDizhu, GuanDan, and Riichi Mahjong, we sample 1,000k instances as training
data. For Uno, Gin Rummy, Leduc Hold’em, Limit Texas Hold’em, and No-limit Texas Hold’em, we
sample 400k instances as training data.

Model. We fine-tune three different types of language models—Qwen2.5-7B-Instruct [29], Llama3.1-
8B-Instruct [30], and GLM4-9B-Chat [9]—to analyze the impact of model type on performance.
Additionally, we fine-tune Qwen2.5 models with different parameter sizes, ranging from 0.5B to
14B parameters, to evaluate the effect of model size on performance. We fine-tune all models with
LLaMA-Factory Framework [43] and use LoRA fine-tuning [44]. The LoRA rank and LoRA alpha
are set to 8 and 16, respectively. We fine-tune all models with 1 epoch. We apply a peak of 1e-4
learning rate with a cosine scheduler. The batch size is 128. We conduct experiments on a server
with 8 H100 GPUs.

Metric. For DouDizhu, we use the win rate. For GuanDan, we use the round win rate. For Riichi
Mahjong, Uno and Gin Rummy, Leduc Hold’em, Limit Texas Hold’em, No-limit Texas Hold’em,
we use reward score. The reward score in Mahjong is determined based on the average rank over
multiple games, with the rewards for ranks 1, 2, 3, and 4 being 3, 2, 1, and 0, respectively. The reward
scores for the other five games can be found in the RLCard framework11. We evaluate the LLM
by having it play multiple games against opponents. The number of games for the eight games are
1000, 20, 50, 500, 100, 1000, 1000, and 1000, respectively. For DouDizhu, following DouZero [37],
we have the LLM play 500 times as the Landlord and 500 times as the Farmers, then calculate the
average win rate for both roles.

4.2 RQ1. Can LLMs master complex card games? And how much data is required for them to
master these games?

Experimental Design. We fine-tune the language model separately on each game’s data and then
evaluate its performance on the respective game. The training data information for each game is
presented in Table 1. For each game, we train on all training data for one epoch, saving a checkpoint
every 400 steps. This allows us to analyze the model’s performance changes with different amounts
of training data. Additionally, we fine-tune three different types of LLMs and five different sizes of
LLMs to explore the impact of model type and size on performance.

Results and Analysis. The results of DouDizhu, GuanDan, and Mahjong are shown in Figure 2a-
Figure 2c. As shown in the figure, with the increasing amount of training data, the performance of
the LLM in Doudizhu and Guandan gradually approaches that of the teacher model. In Mahjong,
even though there is no available teacher model, the LLM has achieved performance comparable to

11https://rlcard.org/
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Figure 2: Performance of different training data.

that of a very strong Mahjong AI. Figure 1 and Table 1 have already shown that these three games
have high complexity (long average decision steps and a large number of valid actions per step).
These results indicate that, given sufficient high-quality data, LLMs can master complex card
games. As training progresses, the model acquires more and more game strategic knowledge, leading
to a continuous improvement in win rate. It is worth noting that DouZero actually consists of three
models, with one model trained for the Landlord and two models for the two Farmers. In contrast,
LLMs can play all three roles with a single model, further demonstrating their powerful learning
capability and versatility.
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Figure 3: Performance of different roles.
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Different Games and Model Types. As shown in
Figure 2b and Figure 2c, in Guandan and Mahjong,
there is no significant difference in performance
among the three models, indicating that the learn-
ing capabilities of the three models are comparable.
However, in DouDizhu, the performance of GLM is
significantly worse than Qwen and Llama. To ana-
lyze the performance differences of different models
in DouDizhu, we further plot the win rates of the
models when playing different roles, as shown in Fig-
ure 3a and Figure 3b. As observed from Figure 3a
and Figure 3b, GLM performs better than Qwen and
Llama in DouDizhu-Landlord, while performing sig-
nificantly worse than the two models in DouDizhu-
Farmer. This suggests that GLM did not effectively
balance the learning between the two roles and fo-
cused more on the landlord role, leading to weaker performance for the farmer role.

However, comparing Figure 3a and Figure 3b, we discovered another strange phenomenon: for
DouDizhu, why is there such a difference between Landlord and Farmer performance? And why
are all of the models so much lower than ceiling performance for the Farmer role? Upon analyzing
the training data, we suspect that this is caused by the filtering rules applied to the game data. In
DouDizhu, there is one landlord and two farmers, with each game resulting in either a victory for the
landlord or for the farmers. During filtering, we retained only the data for the winning side. When
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the farmers win, the data for both farmers is retained. However, in many cases, the victory may have
been primarily driven by the actions of one farmer, while the data for the other farmer may be of
lower quality. Consequently, the training data includes some low-quality data for the farmer role,
leading to performance for the farmer role that falls significantly below its ceiling performance.

Model Landlord Farmer Average

Qwen2.5-7B-Instruct 0.828 0.784 0.806
Qwen2.5-14B-Instruct 0.858 0.570 0.714

Table 2: Win rate of 7B and 14B models.

Different Model Sizes. We train and evaluate five
different sizes of Qwen2.5 models on Doudizhu and
the results are shown in Figure 4. From 0.5B to 7B,
the performance of the models gradually improves
as the number of model parameters increases, indi-
cating a positive correlation between model size and
performance. However, we notice that despite the
14B model having the largest number of parameters, its performance is the worst.

In order to analysis this, we further plot the win rates of the models when playing different roles in
Table 2. From the table, 14B model performs better as the landlord (approaching the performance of
the teacher model) but significantly worse as the farmer. This results in the average win rate of the
14B model being lower than that of the 7B model. This is similar to why the GLM model performs
worse on DouDizhu compared to Qwen and Llama.

4.3 RQ2. Can LLMs simultaneously master multiple games? Do different games mutually
enhance each other or do conflicts arise between them?

Experimental Design. Based on the above experimental results, we roughly determine the amount
of data required for each game to converge. We then sample data from the training datasets of each
game according to this amount and merge them to obtain a mixed training set that includes data from
all games. Specifically, the combined dataset contains 3.1 million data points, with the quantities
of the eight games being: 700k, 950k, 650k, 200k, 50k, 250k, 200k, and 100k, respectively. We
empirically determine the quantity of instances for each game based on game complexity and the
results of Experiment 4.2. For example, games with higher complexity necessitate a larger volume
of training data. We fine-tune the language model on this mixed training set to evaluate whether it
can simultaneously master multiple games. We compare the fine-tuned models with the API-based
models and the base models.

Model DouDizhu GuanDan Riichi Uno Gin Rummy Leduc Limit Nolimit

API-based models

GPT-4o-mini 0.195 0.019 0.15 0.128 -0.176 0.30 0.45 2.47
GPT-4o 0.180 0.019 0.25 0.072 0.405 0.84 0.60 2.73
GLM-4-air 0.330 0.000 0.10 -0.068 -0.415 -0.12 1.13 -0.89
GLM-4-plus 0.345 0.019 0.00 0.020 -0.344 0.80 0.63 3.21
DeepSeek-V3 0.320 0.000 0.15 0.128 0.147 0.77 0.22 0.18
DeepSeek-R1 0.185 0.020 0.05 0.148 0.228 0.88 0.24 1.88

Base models

Qwen2.5-7B-Instruct 0.087 0.000 0.04 0.032 -0.530 0.63 1.05 1.25
Llama3.1-8B-Instruct 0.155 0.000 0.08 0.120 -0.463 0.62 -0.04 -2.10
GLM4-9B-Chat 0.131 0.000 0.08 0.000 -0.362 0.52 0.85 -0.44

Fine-tuned models

Qwen2.5-7B-Instruct-mix 0.852 0.634 1.08 0.108 0.177 1.24 2.66 4.86
Llama3.1-8B-Instruct-mix 0.870 0.661 1.38 0.164 0.186 1.24 2.77 6.02
GLM4-9B-Chat-mix 0.882 0.698 1.31 0.252 0.191 1.24 2.89 5.77

Table 3: Performance of different models on all games. Bold font indicates the maximum value in
each category, and underline indicates the second-highest value. Mix refers to models fine-tuned on
the mixed training set composed of data from all games.

Results and Analysis. The results are shown in Table 3. All API-based models score relatively low
on the two most complex games, GuanDan and Riichi, while their scores are relatively higher on
the other six games. DeepSeek-R1 performed the best among all API-based models, achieving the
highest scores in three games. This demonstrates the effectiveness of the reasoning mode. We observe
that models of the same type with larger parameter versions or reasoning versions perform better
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than those with smaller parameters or non-reasoning versions. For example, DeepSeek-R1 shows
improvements in most games compared to DeepSeek-V3. GLM and DeepSeek’s models score higher
in DouDizhu, likely because this game is quite popular in China. Compared to the API-based models,
the three base models perform worse in most of the games. Compared to the API-based models
and base models, the fine-tuned model achieve the best performance in most of the games. Notably,
in the complex games of Doudizhu, Guandan, and Riichi, their performance improve significantly.
These results indicate that, after being trained on multiple high-quality game datasets, LLMs can
simultaneously master multiple complex games.

Model/Game DouDizhu GuanDan Riichi Uno Gin Rummy Leduc Limit Nolimit

DouDizhu 0.806 0.010 0.08 0.032 -0.528 0.637 1.16 2.54
GuanDan 0.294 0.636 0.13 -0.004 0.030 0.637 1.10 2.62
Riichi 0.022 0.010 1.44 0.000 -0.233 0.637 0.91 -0.87
Uno 0.101 0.000 0.06 0.220 0.028 0.637 1.14 1.45
Gin Rummy 0.039 0.010 0.06 0.136 0.196 0.637 0.97 -0.34
Leduc 0.082 0.010 0.10 -0.032 -0.584 1.244 2.56 7.58
Limit 0.165 0.019 0.04 -0.008 -0.520 1.176 2.84 4.83
Nolimit 0.118 0.000 0.10 -0.056 -0.432 1.012 2.12 7.75
Mix 0.852 0.634 1.08 0.108 0.177 1.244 2.66 4.86

Table 4: Influence between different games using Qwen model. Each row represents the performance
of a model trained on one specific game across all games. Mix refers to models fine-tuned on
the mixed training set composed of data from all games. Bold indicates the maximum value, and
underline indicates the second-highest value, both excluding the mix model.

Model/Game DouDizhu GuanDan Riichi Uno Gin Rummy Leduc Limit Nolimit

DouDizhu 0.824 0.000 0.13 0.008 -0.496 0.637 1.14 3.21
GuanDan 0.463 0.598 0.15 0.112 -0.390 0.637 0.88 0.96
Riichi 0.142 0.000 1.42 0.060 -0.242 0.757 0.95 -1.07
Uno 0.234 0.000 0.04 0.160 -0.059 0.637 1.14 -0.47
Gin Rummy 0.073 0.000 0.06 0.112 0.208 0.637 -0.19 3.08
Leduc 0.172 0.000 0.10 0.052 -0.515 1.244 2.47 6.98
Limit 0.167 0.000 0.13 0.052 -0.469 1.105 2.84 6.86
Nolimit 0.170 0.000 0.04 0.056 -0.198 1.000 2.06 4.92

Mix 0.870 0.661 1.38 0.164 0.186 1.244 2.77 6.02

Table 5: Influence between different games using Llama model.

Model/Game DouDizhu GuanDan Riichi Uno Gin Rummy Leduc Limit Nolimit

DouDizhu 0.723 0.010 0.10 0.060 -0.460 0.637 1.14 -1.21
GuanDan 0.447 0.629 0.02 0.136 -0.362 -0.068 -0.14 2.34
Riichi 0.063 0.000 1.33 0.052 -0.298 0.282 0.50 -5.15
Uno 0.111 0.000 0.06 0.176 -0.302 0.637 1.14 2.20
Gin Rummy 0.075 0.000 0.06 0.016 0.196 0.637 1.12 2.88
Leduc 0.142 0.000 0.08 0.048 -0.416 1.244 2.41 6.02
Limit 0.125 0.000 0.04 0.096 -0.411 1.232 3.02 5.05
Nolimit 0.114 0.000 0.06 0.004 -0.499 0.648 1.53 6.24
Mix 0.882 0.698 1.31 0.252 0.191 1.244 2.89 5.77

Table 6: Influence between different games using GLM model.

Influence Between Different Games. To explore the mutual influence between different games,
we evaluate the model fine-tuned on one game across the other seven games. The results are shown
in Table 4,5,6. Compared to models trained on other games, the model trained on GuanDan also
performs well on DouDizhu. This indicates that GuanDan has a positive influence on DouDizhu.
Additionally, we can see that there are also positive influences among the three games, Leduc Hold’em,
Limit Texas Hold’em, and No-limit Texas Hold’em. We claim that if the rules of two games are
more similar, there tends to be greater knowledge transfer between them, for example, DouDizhu and
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GuanDan, which have similar rules. Similarly, the three poker games, Leduc Hold’em, Limit Texas
Hold’em, and No-limit Texas Hold’em, exhibit more knowledge transfer due to their similar game
rules. Compared to DouDizhu and GuanDan, the rules of these three games are more similar, leading
to a more significant transfer effect. Therefore, game rules primarily dictate knowledge transfer
between different games.
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Figure 5: Comparison between models fine-
tuned on a single game and models fine-tuned on
all games.

We also compare the models fine-tuned on a sin-
gle game with those fine-tuned on all games. The
comparison results for Doudizhu and Guandan
are shown in Figure 5. Because the card-playing
rules of Doudizhu and Guandan are very simi-
lar, the performance of the mixed fine-tuned mod-
els improves further on both games compared to
the models fine-tuned on each game individually.
This indicates that Doudizhu and Guandan can
mutually enhance each other’s performance. How-
ever, we also observe that the performance of the
mixed fine-tuned models declined on the other
six games compared to the individually fine-tuned
models. This suggests that there is a conflict be-
tween Doudizhu and Guandan and the other six
games.
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Figure 6: Performance of models with different
sizes on DouDizhu and GuanDan.

Different Model Sizes. We train mixed models
of different sizes on Qwen2.5. Figure 6 shows
the performance of these models on Doudizhu
and Guandan. The performance improves as the
number of model parameters increases.

4.4 RQ3. Can LLMs maintain their general
capabilities while mastering complex games?

Experimental Design. To test whether the mod-
els lose their general capabilities after mastering
the games, we evaluate the models’ performance
of general knowledge question answering, math-
ematics, and coding before and after fine-tuning,
using MMLU-Pro [12], Math-500 [27], and Hu-
manEval [28] benchmarks. If general capabilities decline after fine-tuning on games, can further
fine-tuning on knowledge, mathematics, and coding data help restore these general capabilities to
some extent?
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Figure 7: Evaluation results of different models
on general benchmarks.

Results and Analysis of General Benchmarks.
The results are shown in Figure 7. The mixed
models fine-tuned on all games show significant
declines in their abilities in knowledge-based ques-
tion answering, mathematics, and coding. We
then further fine-tune the game model on a mixed
dataset composed of knowledge data, mathematics
data, coding data, and game data. The proportions
of these four types of data were 20k, 20k, 20k,
and 8k, respectively. The 8k game data consists
of 8 games, with 1k data points for each game.
The quantities and proportions are chosen by re-
ferring to previous work on general knowledge
recovery [45]. The knowledge data, mathematics
data, and coding data are taken from part of Tulu-
3’s post-training data [46], as this model has made
all its post-training data open source. The evaluation results of the model fine-tuned with the general
data are shown in Figure 7. As shown in the table, by further fine-tuning on specific types of data,

9



the model can restore its ability in specific areas to some extent, as demonstrated in the paper with
knowledge-based question answering, mathematics, and coding capabilities.

Model DouDizhu GuanDan Riichi Uno Gin Rummy Leduc Limit Nolimit

Llama3.1-8B-Instruct-mix 0.870 0.661 1.38 0.164 0.186 1.24 2.77 6.02
Llama3.1-8B-Instruct-mix-general 0.864 0.647 1.08 0.208 0.208 1.24 2.77 6.91

GLM4-9B-Chat-mix 0.882 0.698 1.31 0.252 0.191 1.24 2.89 5.77
GLM4-9B-Chat-mix-general 0.874 0.645 1.38 0.152 0.205 1.24 2.89 6.65

Table 7: Performance of fine-tuned models on games. Mix refers to models fine-tuned on the mixed
training set composed of data from all games. General refers to models fine-tuned on the mixed
training set composed of the knowledge data, mathematics data, and coding data.

Results and Analysis of Games. To evaluate the impact of general data fine-tuning on game
performance, we provid the performance of the models on all games before and after fine-tuning with
general data in Table 7. From the table, it can be seen that the model’s performance on games has
remained mostly unchanged (slight improvements or stability in 5 games, and slight decreases in 3
games), indicating that the model regains a certain level of general capability while maintaining its
gaming ability.

Different Model Types. In the three non-gaming benchmarks (MMLU-Pro, Math-500, and
HumanEval), after fine-tuning on game data, GLM exhibites greater performance degradation
compared to LLaMA. Furthermore, after fine-tuning on general-purpose data, GLM showes a lower
degree of recovery on all three benchmarks relative to LLaMA, particularly on MMLU-Pro. This
indicates that LLaMA is better than GLM at maintaining general capabilities, especially in retaining
general knowledge. This may be related to the differences in training data and training methods used
by the two models.

4.5 Discussion on the advantages of LLMs compared to specialized game AI

Comparison of computation and data. We want to compare the amount of computation and
data required for fine-tuning versus training a game AI system from scratch. However, due to
the insufficient information disclosed about these game AI systems and differences in hardware
environments, conducting a fair comparison is infeasible. Nevertheless, we have tried to list some
comparative information in Appendix A.1. This information does not directly demonstrate the
advantages of LLMs in terms of computation and data requirements during training.

However, the key aspect we aim to highlight is that the greatest advantage of LLMs lies in their nature
as general-purpose learners. To achieve strong performance in games, both traditional reinforcement
learning approaches and LLMs require the selection of appropriate game features. In this regard, both
approaches are similar. Nevertheless, traditional reinforcement learning methods require the design
of network architectures that are tailored to the chosen features. Different games employ different
features, meaning that each game necessitates a specially designed network architecture—a step that
is often the most labor-intensive. LLMs, on the other hand, eliminate the need for this step of network
structure design and can be applied across all games without modification. We only need to design
templates for each game. This flexibility is the foremost advantage of LLMs. For example, DouZero,
DanZero, and Mortal have network architectures specifically designed for individual games. DouZero
even requires separate designs for the two roles in the game. In contrast, LLMs can perform well in
three different games using the same architecture. Thus, we argue that the general learning ability of
LLMs represents their most significant advantage.

5 Conclusion

In this paper, we explore the potential of large language models (LLMs) to master complex card
games, evaluating their performance through fine-tuning on carefully selected high-quality gameplay
interaction data. We explore three key research questions concerning LLMs’ ability to master complex
card games, their capacity to learn multiple games simultaneously, and the impact of game mastery
on their general capabilities. Our study reveals that LLMs have the potential to achieve strong
performance in complex card games, while also handling multiple games at once and retaining
significant portions of their general capabilities.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided the GitHub link to the code in the Abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have included all necessary information for reproducing the paper in the
Experiment Setup 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Error bars are not reported because it would be too computationally expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We listed the computational resources used in the Experiment Setup 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss societal impacts in Broader Impact C.
Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work evaluates the learning capabilities of large models through games
and poses no risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: In our code repository, we referenced the creators’ code repository and used it
appropriately according to its license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have provided detailed usage instructions in the code repository.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We detailed how to evaluate LLMs in the Experimental section 4.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

A.1 Comparison of computation and data

Among the three strong game AI models, Mortal, a Mahjong AI, does not have corresponding
published papers, nor does its Git repository specify the computation and data required for training.
Both DouZero and DanZero have published papers. Below is a comparison of our fine-tuned models
with these two models in terms of hardware environment, training time, and data volume:

DouZero: According to their paper, DouZero was trained on a single server with 2 Intel(R) Xeon(R)
Silver 4214R CPUs and 4 1080 Ti GPUs for 30 days; the data volume was not specified.

LLM-Dou: For the model in Figure 2a of our paper, we fine-tuned using a single server equipped
with 2 Intel(R) Xeon(R) Platinum 8476C CPUs and 8 H800 GPUs on a dataset with 1 million samples.
The fine-tuning times for the three models are as follows: Qwen2.5-7B: 11 hours; Llama3.1-8B: 12
hours; GLM4-9B: 14 hours.

DanZero: According to their paper, DanZero was trained on a server with 4 Intel(R) Xeon(R) Gold
6252 CPUs and a GeForce RTX 3070 GPU for 30 days; the data volume was not specified.

LLM-Dan: For the model in Figure 2b of our paper, we fine-tuned using a single server equipped
with 2 Intel(R) Xeon(R) Platinum 8476C CPUs and 8 H800 GPUs on a dataset with 1 million samples.
The fine-tuning times for the three models are as follows: Qwen2.5-7B: 21 hours; Llama3.1-8B: 25
hours; GLM4-9B: 29 hours.

A.2 Evaluation on more general benchmarks

We provide the results of the models on four other common benchmarks (GQPA-Diamond,
AIME2024, LiveCodeBench, IFEval) before and after fine-tuning on general mixed data in Ta-
ble 8. From the table, it can be seen that if the general mixed data does not include a specific type
of data, the model’s corresponding capability will not be restored (after fine-tuning on the general
mixed data, the performance of both models declined on the instruction-following benchmark).

Model MMLU-Pro Math-500 HumanEval GQPA-Diamond AIME2024 LiveCodeBench IFEval Average
First_Three

Average
ALL

Llama-3.1-8B-Instruct 47.95 46.60 70.73 21.21 6.67 20.25 74.68 55.09 41.16
Llama-3.1-8B-Instruct-mix 44.74 35.20 60.98 26.77 6.67 17.75 74.31 46.97 38.06
Llama-3.1-8B-Instruct-mix-general 45.18 47.20 65.24 27.27 10.00 13.50 68.95 52.54 39.62

GLM-4-9B-Chat 48.04 52.40 76.22 26.26 0.00 18.00 69.13 58.89 41.44
GLM-4-9B-Chat-mix 35.12 37.20 39.63 26.26 0.00 13.75 63.40 37.32 30.77
GLM-4-9B-Chat-mix-general 31.75 41.00 68.90 20.20 0.00 16.25 56.01 47.22 33.44

Table 8: Evaluation results of different models on more general benchmarks.

A.3 Prompt Template

Figure 1: Prompt Template of DouDizhu

You are now a player in a game of Dou Dizhu (Fight the Landlord). The game rules
are as follows:↪→

1. The game is played by three players with a standard 54-card deck including a
red joker and a black joker.↪→

2. There are three roles in the game: landlord, landlord_down (farmer down of
landlord), and landlord_up (farmer up of landlord).↪→

3. After bidding, one player becomes the “landlord” who receives an extra three
cards. The other two players are the “peasants” who work together to defeat
the landlord.

↪→

↪→
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4. In each round, the starting player must play a card or a valid combination of
cards.↪→

5. The other two players can choose to either follow with a higher-ranked card or
combination, or pass.↪→

6. If two consecutive players pass, the round ends and the player with the
highest rank in that round starts the next round.↪→

7. The objective is to be the first player to get rid of all the cards in hand.

The cards and comparison are as follows:
1. Individual cards are ranked. Colored Joker > Black & White Joker > 2 > Ace (A)

> King (K) > Queen (Q) > Jack (J) > 10 > 9 > 8 > 7 > 6 > 5 > 4 > 3.↪→

2. The Rocket (Red Joker and Black Joker) and the Bomb are groups of cards that
work differently in terms of game play.↪→

3. Compare only the same Category. Compare only the Chains with the same length.
Compare the rank in the Primal cards only. Jokers and 2 are non-consecutive
cards.

↪→

↪→

4. The type of card combination: Solo, Solo Chain (5), Pair, Pair Chain (3),
Trio, Trio Chain (2), Trio with Solo, Trio Chain with Solo, Trio with Pair,
Trio Chain with Pair, Bomb, Four with Dual solo, Four with Dual pair.

↪→

↪→

Your task is to make the best decision in each playing round. I will provide you
with the following information:↪→

Turn number:
%s

1. Your role:
%s

2. Your current hand cards:
%s

3. The union of the hand cards of the other two players:
%s

4. The most recent valid move:
%s

5. The played cards so far:
%s

6. The number of cards left for each player:
%s

7. The number of bombs played so far:
%s

8. The historical moves:
%s
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9. The legal actions for the current move:
%s

Please tell me what cards you want to play in JSON format based on the provided
information. The JSON should contain an "action" key with a value chose from
legal actions.

↪→

↪→

If you choose to play cards, the value should contain the array of cards you want
to play; if you choose to pass, the value should be empty array.↪→

Output format examples:
Playing cards: {"action": [3, 3, 3]}
Passing: {"action": []}

Please provide the corresponding JSON action based on the given information.

Figure 2: Prompt Template of GuanDan

You are now a player in a game of Guandan. The game rules are as follows:

1. The game is played by four players in partnerships, sitting opposite each
other.↪→

2. The deck consists of two standard international decks with Jokers, totaling
108 cards.↪→

3. The objective is to play higher combinations of cards to empty your hand
before your opponents.↪→

4. If your team completes the game first, you will advance in levels; the
ultimate goal is to win on Level A.↪→

5. Card ranks in increasing order are: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A.
6. There are four suits (Spades, Hearts, Diamonds, Clubs) and four Jokers (two

red, two black).↪→

7. Players take turns in counterclockwise order, starting from a player who plays
any combination of cards.↪→

8. Other players must play higher cards of the same type or a higher combination,
or they must pass.↪→

9. The game continues until three players have finished their cards.
10. Players are given titles based on the order they finish: Banker, Follower,

Third, and Dweller.↪→

The special cards and comparison are as follows:
1. Level Cards: The level number of the leading team determines the level cards.

The level cards rank above aces but below jokers. For example, if the leading
team is at level 6, then sixes are the level cards and rank above A.

↪→

↪→

2. Wild Cards: The two level cards in hearts are wild. During the round, they can
be played as any card, except jokers, to form a combination with other cards.
However, they only count as normal, non-wild cards when played as a single
card. For example, when the level in the round is 7, the 7 of hearts can make
a 4-bomb when combined with three 8s.

↪→

↪→

↪→

↪→
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3. Normal Comparison: The normal comparison of the cards is from high to low in
the order of red joker, black joker, A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2.
It applies when comparing with a single card, pair, triple, tube, plate,
straight, bomb, and straight flush. Specially, full house compares the triple
in the combination only.

↪→

↪→

↪→

↪→

4. Bomb Comparison: Bomb depends on its number of cards. The smallest is a 4-bomb
of 2s and the largest is an 8-bomb of aces. However, a 5-bomb of 2s is larger
than a 4-bomb of aces. A bomb ranks above: single card, pair, triple, tube,
plate, full house, straight. A straight flush is regarded as a bomb that
ranks above a 4 or 5-card bomb, except the joker bomb. A bomb with 6 or more
cards ranks above a straight flush. Straight flushes rank according to their
largest card regardless of suits. The joker bomb is the largest bomb in the
game.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

The representation of cards and card types is as follows:
1. **Cards**: Represented by a two-character string, such as 'S2' which means

Spade 2. Detailed description below:↪→

- **Suits**: Spades, Hearts, Clubs, and Diamonds are represented by the
characters S, H, C, and D respectively. Specifically, the suit for the
small Joker is S, and for the big Joker, it is H.

↪→

↪→

- **Ranks**: A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K are represented by A, 2,
3, 4, 5, 6, 7, 8, 9, T, J, Q, K respectively. That is, the rank 10 is
represented by the character T. Specifically, the rank for the small Joker
is represented by the character B, and for the big Joker, it is
represented by the character R.

↪→

↪→

↪→

↪→

For example, 'S2' represents Spade 2, 'HQ' represents Heart Q; 'SB' represents
the small Joker, 'HR' represents the big Joker, 'PASS' indicates a pass.↪→

2. **Card Types**: [Type, Rank, Cards]
A card type is represented by a list of three fixed parts: Type, Rank, and

Cards.↪→

- **Type**: The type of card combination, represented as a string with
possible values of ['Single', 'Pair', 'Trips', 'ThreePair',
'ThreeWithTwo', 'TripsPair', 'Straight', 'Boom', 'PASS', 'tribute',
'back'].

↪→

↪→

↪→

- **Rank**: The rank of the highest card or representative rank in the
combination, with possible values of ['A', '2', '3', '4', '5', '6', '7',
'8', '9', 'T', 'J', 'Q', 'K', 'B', 'R', 'PASS'].

↪→

↪→

- **Cards**: The actual cards involved in the combination, represented as a
list.↪→

Examples:
- A single Diamond 5 is represented as: ['Single', '5', ['D5']].
- A pair of 4s is represented as: ['Pair', '4', ['H4', 'C4']].
- PASS: ['PASS', 'PASS', 'PASS'].

Your task is to make the best decision in each playing round. I will provide you
with the following information:↪→

1. Your position:
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%s

2. Your current hand:
%s

3. Remaining cards of other players:
%s

4. Last action of other players:
%s

5. Last action of the teammate:
%s

6. Number of cards left for other players:
%s

7. Cards played by the down player:
%s

8. Cards played by the teammate:
%s

9. Cards played by the up player:
%s

10. Self rank:
%s

11. Opponent rank:
%s

12. Current rank:
%s

13. Legal actions:
%s

Please tell me your action in JSON format based on the provided information. The
JSON should contain an "action" key with a value chose from legal actions.↪→

Output format examples:
Playing a card: {"action": ["Single", "9", ["H9"]]}

Please provide the corresponding JSON action based on the given information.
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Figure 3: Prompt Template of Riichi Mahjong

You are now a player in a game of Riichi Mahjong. The game rules are as follows:

1. The game uses 136 tiles divided into three suits (Pin, Sou, Wan) and honor
tiles, which include wind and dragon tiles.↪→

2. The tiles are mixed and arranged into four walls, two tiles high and 17 tiles
wide.↪→

3. Players draw and discard tiles to form valid groups (mentsu) of triplets
(Pon), sequences (Chii), or quads (Kan).↪→

4. A hand can be completed to declare a win by forming four groups and a pair.
5. Special rules include Riichi (declaring ready with a closed hand) and Dora

indicators (bonus tiles).↪→

6. Players can call tiles discarded by others to make open sets, making their
hands open or closed.↪→

All possible actions are: 'dahai: x', 'reach', 'chi_low', 'chi_mid', 'chi_high',
'pon', 'kan', 'hora', 'ryukyoku', 'pass'.↪→

'dahai: x': discard tile x.
'reach': declare a ready hand (riichi).
'chi_low', 'chi_mid', 'chi_high': Create a meld by completing a sequence, using

the discarded tile.↪→

'pon': create a three-of-a-kind meld using the discarded tile.
'kan': create a four-of-a-kind meld. This can be done in several ways: by adding

a tile to an existing three-of-a-kind meld, using a discarded tile to
complete a four-of-a-kind, or declaring a concealed four-of-a-kind by having
four identical tiles in hand.

↪→

↪→

↪→

'hora': declare a win.
'ryukyoku': declare an aborted game or a draw.
'pass': Opt not to take any action or declaration. This can mean passing on a

chance to chi, pon, kan, or win (hora).↪→

Your task is to make the best decision in each playing round. I will provide you
with the following information:↪→

1. Your identifier:
%s

2. bakaze:
%s

3. jikaze:
%s

4. kyoku:
%s

5. honba:
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%s

6. kyotaku:
%s

7. oya:
%s

8. Scores:
%s

9. Your rank:
%s

10. at turn:
%s

11. title left:
%s

12. shanten:
%s

13. my hands:
%s

14. wait tiles:
%s

15. dora indicators:
%s

16. dora owned:
%s

17. akas in your hand:
%s

18. doras seen:
%s

19. akas seen:
%s

20. tiles seen:
%s

21. ankan candidates:
%s
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22. kakan candidates:
%s

23. kawa overview:
%s

24. fuuro overview:
%s

25. ankan overview:
%s

26. last tedashis:
%s

27. riichi sutehais:
%s

28. last self tsumo:
%s

29. last kawa tile:
%s

30. riichi declared:
%s

31. riichi accepted:
%s

32. can riichi:
%s

33. is riichi:
%s

34. at furiten:
%s

35. is menzen:
%s

36. Legal actions:
%s

Please tell me your action in JSON format based on the provided information. The
JSON should contain an "action" key with a value chose from legal actions.↪→
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Output format examples:
Playing a card: {"action": "dahai: x"}

Please provide the corresponding JSON action based on the given information.

Figure 4: Prompt Template of Uno

You are now a player in a game of UNO. The game rules are as follows:

1. The game is played with a specially designed deck.
2. There are 2 players in the game.
3. Each player starts with seven cards dealt face down.
4. The top card from the Draw Pile is placed in the Discard Pile to start the

game.↪→

5. Players take turns matching the card in the Discard Pile by number, color, or
symbol/action.↪→

6. If a player has no matching card, they must draw a card from the Draw Pile.
7. If the drawn card can be played, the player must play it; otherwise, they keep

the card.↪→

8. The objective is to be the first player to get rid of all the cards in hand.

The deck of UNO includes 108 cards:
25 in each of four color suits (red, yellow, green, blue), each suit consisting

of one zero, two each of 1 through 9, and two each of the action cards
"Skip", "Draw Two", and "Reverse".

↪→

↪→

The deck also contains four "Wild" cards and four "Wild Draw Four".

Action or Wild cards have the following effects:
- Skip: Next player in the sequence misses a turn.
- Draw Two: Next player in the sequence draws two cards and misses a turn.
- Reverse: Order of play switches directions.
- Wild: Player declares the next color to be matched.
- Wild Draw Four: Player declares the next color to be matched; next player in

sequence draws four cards and misses a turn.↪→

Your task is to make the best decision on your turn. I will provide you with the
following information:↪→

Current step:
%s

1. Your position:
%s

2. Your hand:
%s

3. The top card in the Discard Pile:
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%s

4. Played_cards:
%s

5. Number of cards left for each player:
%s

6. History actions of all players:
%s

7. Legal actions:
%s

Please tell me your action in JSON format based on the provided information. The
JSON should contain an "action" key with a value chose from legal actions.↪→

The value should be an card or "draw" if you want to draw a card.

Output format examples:
Drawing a card: {"action": "draw"}

Please provide the corresponding JSON action based on the given information.

Figure 5: Prompt Template of Gin Rummy

You are now a player in a game of Gin Rummy. The game rules are as follows:

1. The game is played by two players using a standard 52-card deck (ace is low).
2. The dealer deals 11 cards to the opponent and 10 cards to himself.
3. The non-dealer discards first. During each turn, you can pick up the discard

or draw from the face-down stock, then discard a card.↪→

4. Players try to form melds of 3 or more cards of the same rank or 3 or more
cards of the same suit in sequence.↪→

5. If the deadwood count (the value of non-melded cards) is 10 or less, a player
can knock. If all cards can be melded, the player can gin.↪→

6. If a player knocks or gins, the hand ends, and scores are determined. The
opponent can lay off deadwood cards to extend melds of the knocker.↪→

7. The score is the difference between the deadwood counts. If the score is
positive, the knocker receives it; if zero or negative, the opponent receives
the score plus a 25-point undercut bonus.

↪→

↪→

8. If neither player knocks or gins, they continue drawing and discarding cards.
If the stockpile is reduced to two cards, the hand is declared dead.↪→

All possible actions are: "draw_card", "pick_up_discard", "gin", "discard x",
"knock x", "declare_dead", "score N", or "score S".↪→

"draw_card": Draw a card from the stockpile.
"pick_up_discard": Pick up the top card from the discard pile.
"gin": Declare gin.
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"discard x": Discard a card from your hand.
"knock x": Knock a card from your hand.
"declare_dead": Declare dead.
"score N": Score player 0.
"score S": Score player 1.

Your task is to make the best decision in each phase of the game. I will provide
you with the following information:↪→

Current step:
%s

1. Your id:
%s

2. Your hand cards:
%s

3. Top card in the discard pile:
%s

4. Other cards in the discard pile:
%s

5. Opponent known cards:
%s

6. Left card number of stock pile:
%s

7. History actions of all players:
%s

8. Legal actions:
%s

Please tell me your action in JSON format based on the provided information. The
JSON should contain an "action" key with a value chose from legal actions.↪→

Output format examples:
Discarding a card: {"action": "discard 3S"}

Please provide the corresponding JSON action based on the given information.

Figure 6: Prompt Template of Leduc Hold’em

You are now a player in a game of Leduc Hold'em. The game rules are as follows:
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1. The deck consists of only two pairs of King, Queen and Jack (6 cards in
total).↪→

2. There are two players in the game.
3. The game has two rounds with a two-bet maximum.
4. Raise amounts are 2 in the first round and 4 in the second round.
5. In the first round, each player puts 1 unit in the pot and is dealt one card.
6. In the second round, one public card is revealed.
7. The winner is determined by matching the player's card with the public card or

having the highest rank.↪→

All possible actions are: "fold", "call", "raise", or "check".

Your task is to make the best decision in each betting round. I will provide you
with the following information:↪→

Round number:
%s

1. Your position:
%s

2. Your hand:
%s

3. Public card (if in round 2):
%s

4. Your chips in the pot:
%s

5. All chips in the pot:
%s

6. Number of raises so far in two rounds:
%s

7. History actions of all players:
%s

8. Legal actions:
%s

Please tell me your action in JSON format based on the provided information. The
JSON should contain an "action" key with a value chose from legal actions.↪→

Output format examples:
Folding: {"action": "fold"}
Calling: {"action": "call"}
Raising: {"action": "raise"}
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Checking: {"action": "check"}

Please provide the corresponding JSON action based on the given information.

Figure 7: Prompt Template of Limit Texas Hold’em

You are now a player in a game of Limit Texas Hold'em. The game rules are as
follows:↪→

1. The deck consists of 52 cards.
2. There are multiple players in the game.
3. Each player is dealt two face-down cards (hole cards).
4. There are five community cards dealt in three stages: the flop (3 cards), the

turn (1 card), and the river (1 card).↪→

5. There are four betting rounds: pre-flop, flop, turn, and river.
6. In each round, players can choose to "call", "check", "raise", or "fold".
7. This is a fixed limit game, so raises are of a fixed amount.
8. The number of raises in each round is limited to 4.
9. The winner is determined by the best five-card hand using any combination of

hole cards and community cards.↪→

Texas Hold'em hands are ranked from highest to lowest as follows:
Royal Flush: A, K, Q, J, 10 all of the same suit.
Straight Flush: Five consecutive cards of the same suit. Higher top card wins.
Four of a Kind: Four cards of the same rank. Higher rank wins; if same, compare

fifth card.↪→

Full House: Three cards of one rank and two cards of another rank. Higher
three-card rank wins; if same, compare the two-card rank.↪→

Flush: Five non-consecutive cards of the same suit. Compare the highest card,
then the second-highest, and so on.↪→

Straight: Five consecutive cards of different suits. Higher top card wins.
Three of a Kind: Three cards of the same rank. Higher rank wins.
Two Pair: Two cards of one rank and two cards of another rank. Compare the higher

pair first, then the lower pair, and then the fifth card.↪→

One Pair: Two cards of the same rank. Compare the pair first, then the highest
non-paired card, then the second highest, and so on.↪→

High Card: If no hand can be formed, the highest card wins. If the highest cards
are the same, compare the second highest, and so on.↪→

If the hands are of equal rank, the pot is split.

All possible actions are: "fold", "call", "raise", or "check".

Your task is to make the best decision in each betting round. I will provide you
with the following information:↪→

Current betting round:
%s
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1. Your position:
%s

2. Your hole cards:
%s

3. Community cards:
%s

4. Your chips in the pot:
%s

5. All chips in the pot:
%s

6. Number of raises so far in four rounds:
%s

7. History actions of all players:
%s

8. Legal actions:
%s

Please tell me your action in JSON format based on the provided information. The
JSON should contain an "action" key with a value chose from legal actions.↪→

Output format examples:
Folding: {"action": "fold"}
Calling: {"action": "call"}
Raising: {"action": "raise"}
Checking: {"action": "check"}

Please provide the corresponding JSON action based on the given information.

Figure 8: Prompt Template of No-limit Texas Hold’em

You are now a player in a game of No-limit Texas Hold'em. The game rules are as
follows:↪→

1. The deck consists of 52 cards.
2. There are multiple players in the game.
3. Each player is dealt two face-down cards (hole cards).
4. There are five community cards dealt in three stages: the flop (3 cards), the

turn (1 card), and the river (1 card).↪→

5. There are four betting rounds: pre-flop, flop, turn, and river.
6. In each round, players can choose to "call", "check", "raise", or "fold".
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7. This is a no-limit game, so players can raise any amount from the minimum
raise up to their entire stack.↪→

8. The number of raises in each round is unlimited.
9. The winner is determined by the best five-card hand using any combination of

hole cards and community cards.↪→

Texas Hold'em hands are ranked from highest to lowest as follows:
Royal Flush: A, K, Q, J, 10 all of the same suit.
Straight Flush: Five consecutive cards of the same suit. Higher top card wins.
Four of a Kind: Four cards of the same rank. Higher rank wins; if same, compare

fifth card.↪→

Full House: Three cards of one rank and two cards of another rank. Higher
three-card rank wins; if same, compare the two-card rank.↪→

Flush: Five non-consecutive cards of the same suit. Compare the highest card,
then the second-highest, and so on.↪→

Straight: Five consecutive cards of different suits. Higher top card wins.
Three of a Kind: Three cards of the same rank. Higher rank wins.
Two Pair: Two cards of one rank and two cards of another rank. Compare the higher

pair first, then the lower pair, and then the fifth card.↪→

One Pair: Two cards of the same rank. Compare the pair first, then the highest
non-paired card, then the second highest, and so on.↪→

High Card: If no hand can be formed, the highest card wins. If the highest cards
are the same, compare the second highest, and so on.↪→

If the hands are of equal rank, the pot is split.

All possible actions are: "FOLD", "CHECK_CALL", "RAISE_HALF_POT", "RAISE_POT", or
"ALL_IN".↪→

Your task is to make the best decision in each betting round. I will provide you
with the following information:↪→

Current betting round:
%s

1. Your position:
%s

2. Your hole cards:
%s

3. Community cards:
%s

4. Your chips in the pot:
%s

5. All chips in the pot:
%s
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6. Total chips of the pot:
%s

7. Remaining chips of all players:
%s

8. History actions of all players:
%s

9. Legal actions:
%s

Please tell me your action in JSON format based on the provided information. The
JSON should contain an "action" key with a value chose from legal actions.↪→

Output format examples:
Folding: {"action": "FOLD"}
Checking and calling: {"action": "CHECK_CALL"}
Raising half pot: {"action": "RAISE_HALF_POT"}
Raising pot: {"action": "RAISE_POT"}
Raising all remaining chips: {"action": "ALL_IN"}

Please provide the corresponding JSON action based on the given information.

B Limitations

Although the language models achieved performance close to that of strong game AIs, we found that
the inference time of LLMs in games is relatively longer compared to these AIs. This is because these
game AIs often have a smaller number of parameters, while most language models in our experiments
have parameter sizes in the billions (e.g., 7B). Although we used LoRA fine-tuning to reduce the
number of trainable parameters, inference still requires calculating all the parameters, resulting in
longer inference times.

C Broader Impact

This paper presents work whose goal is to advance the field of LLMs. Our work evaluates the learning
capabilities of large models through games and does not have negative societal impacts.
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