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ABSTRACT

Due to the remarkable ability to capture long-term dependencies, Transformer-
based models have shown great potential in time series forecasting. However,
real-world time series usually present intricate temporal patterns, making fore-
casting still challenging in many practical applications. To better grasp inher-
ent dependencies, in this paper, we propose TwinsFormer, a novel Transformer-
based framework utilizing two interactive components for time series forecasting.
Unlike mainstream paradigms that employ plain decomposition, which train the
model with two independent branches, we design an interactive strategy centered
on the attention module and the feed-forward network to strengthen dependencies
through decomposed components. Specifically, we adopt a dual stream approach
to facilitate progressive and implicit information interactions for trend and sea-
sonal components. For the seasonal stream, we feed the seasonal component to
the attention module and feed-forward network with a subtraction mechanism.
Meanwhile, we construct an auxiliary highway (without the attention module)
for the trend stream, guided by seasonal signals. In this way, we can avoid the
model overlooking inherent dependencies between different components for accu-
rate forecasting. Our interactive strategy, although simple, can be easily adapted
as a plug-and-play module to existing Transformer-based methods with minimal
additional computational overhead. Experiments on various real-world datasets
demonstrate the superiority of TwinsFormer, which outperforms previous state-
of-the-art methods in both long-term and short-term forecasting performance.

1 INTRODUCTION

As a ubiquitous and paramount task in many real-world scenarios (e.g., weather (Wu et al., 2023b),
energy (Yin et al., 2021)), market (Granger & Newbold}2014), and transportation (Yin et al.,2021)),
time series forecasting has been explored with ongoing passion. Generally, time series forecasting
aims to predict future temporal variations based on historical observations of time series, where the
primary challenge is how to effectively capture temporal patterns from observed data (Fan et al.|
2019; Deng et al., [2021} Shao et al., |2022; [Ekambaram et al., [2023} Zhang et al., 2024b)). Benefiting
from the advancements in deep learning, various representative models with well-designed architec-
tures, such as MLP-based (Wang et al., |2024; |Zeng et al.| 2023} |Li et al.| |2023), CNN-based (Wang
et al.l [2023a; Wu et al., 2023a; |Liu et al.l [2022a)), and Transformer-based (Liu et al.| [2024} Zhang
& Yan, 2023} [Zhou et al., 2022; |Piao et al., [2024} Qiu et al.l 2025) methods, have been proposed
to tackle time series forecasting tasks and demonstrate impressive performance. Since the complex
and non-stationary (Liu et al.,|[2022c}; |2025) nature of the real world or systems, the observed series
usually involves multitudinous variations, such as increasing, decreasing, and fluctuating, making it
still hard to grasp reliable inherent dependencies for accurate forecasting.

To tackle intricate temporal patterns, series decomposition (Robert et al.l [1990), which utilizes a
moving average kernel to smooth out short-term fluctuations or noise in the time series, has been
incorporated into deep models as a basic module. Empowered with various decomposition designs,
existing methods (Wu et al., 2021; Zhou et al., [2022; |Wang et al.l 2023a; |Zeng et al., 2023} |Stitsyuk
& Chotil, 2025)) generally utilize two independent branches to highlight seasonal and trend properties
separately, then combine the seasonal and trend representations for the final prediction. In Fig-
ure (1} we visualize the time series and its decomposition components on the ECL dataset. In classic
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Figure 1: Visualization of different components and their combinations on the ECL dataset. (a)
presents the characteristics of different components obtained by STL (Robert et al.l [ 1990), which is
a classical statistics-based decomposition (i.e., X = T+ S + R). Due to the randomness of the
Residual (R), modern decomposition designs (i.e., @) decouple the original time series (X)) into the
Trend (T) and Seasonal (S’), where S’ = S + R. To intuitively understand the role of the Residual,
we divide R into two equal parts and add them to the Trend and Seasonal for interaction (i.e., @).

statistical-based decomposition, time series often contain trend, season, and residual components
(i.e., X=T+S+R), which respectively highlight different temporal patterns of the time series. Due to
the unpredictability of the residual components, the existing trend-seasonal decompositions ignore
the residual components, where the seasonal components obtained by subtracting the trend compo-
nents from the original time series include the residual components (i.e., S'=S+R). To understand
the role of residual components on trend and seasonal components, we divide the residuals into two
parts, allowing them to interact with both trend and seasonal components simultaneously. Compar-
atively, the trend and seasonal components of @ maintain worse cointegrations and fluctuations than
those of @ in Figure|l] Such inconsistencies lead to the learned trend and seasonal representations
by independent branches, which may not accurately capture the temporal patterns of the observed
series. Therefore, a more rational decomposition design should consider the interactions between
decomposed components to precisely unravel inherent dependencies for observed values.

To fill this gap, we propose TwinsFormer, a Transformer-based framework that explicitly explores
inherent dependencies via two interactive components for time series forecasting. First, we de-
compose the observed time series rather than the time series embeddings into trend and seasonal
components, to better capture the characteristics of the time series itself. Second, since the trend
components reflect the long-term fluctuations of the time series, we only feed the seasonal compo-
nents to the attention and feed-forward modules with a subtraction mechanism to alleviate redundant
coding. Most importantly, we regard the outputs of the attention and feed-forward modules as su-
pervision information to guide the model to capture the representation of the trend components. With
our interactive design, TwinsFormer can successfully aggregate seasonal and trend information to
learn inherent dependencies between different components. Experimentally, our proposed Twins-
Former achieves state-of-the-art performance on seven real-world forecasting scenarios, effectively
providing an interactive learning scheme for time series forecasting. Our primary contributions are
summarized as follows:

* We examine the existing decomposition designs for time series forecasting and find that
the interaction between different components is not explored: these designs simply learn
separate representations for trend and seasonal components, overlooking non-linear depen-
dencies or significant noise levels among time series.

* We propose TwinsFormer, a Transformer-based framework (to the best of our knowledge,
the first) that explicitly explores inherent dependencies by learning implicit and progressive
interactions between different components for time series forecasting.

* Extensive experimental results on 13 real-world benchmarks show the superiority of Twins-
Former against state-of-the-art methods. Specifically, TwinsFormer ranks in the top 1
among 11 models on 21 out of 22 average settings, including various prediction lengths
and metrics for both long-term and short-term forecasting tasks.
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2 RELATED WORK

2.1 DECOMPOSITIONS FOR TIME SERIES FORECASTING

Due to the capacity of the moving average kernel to smooth out short-term fluctuations or noise
in the time series, Autoformer (Wu et al.l [2021) initially proposed using the moving average ker-
nel to decompose complex temporal variations into seasonal and trend components. Since then,
trend-seasonal decomposition designs based on the moving average kernel have been frequently
introduced in time series forecasting works. For instance, SCINet (Liu et al., 2022a)) devises a
downsample-convolve-interact architecture to extract dynamic temporal features at multiple resolu-
tions with two sub-sequences. DLinear (Zeng et al., |2023) utilizes the series decomposition as the
pre-processing before linear regression. MICN (Wang et al.| [2023a)) adopts multi-scale branches to
model the local and global context by decomposing input series into seasonal and trend terms, while
TimesNet (Wu et al.| [2023a)) designs a modular architecture to obtain decomposed components with
the Fourier Transform. xPatch (Stitsyuk & Choil [2025) introduces an exponential trend-seasonal
decomposition to assign greater weight to more recent data points while smoothing out older data.
More recently, TimeMixer (Wang et al., |2024) mixes multi-scale decomposable components for
time series forecasting. Due to the non-linear or non-stationary properties of time series, however, a
rudimentary moving averaging kernel may inadequately capture precise trends, which impedes the
model from learning inherent dependencies through two independent branches.

2.2 TRANSFORMERS FOR TIME SERIES FORECASTING

Transformer-based methods have demonstrated significant success in time series forecasting, pri-
marily because they can effectively model long-term temporal patterns (Li et al., 2019; Zhou et al.,
2021} Liu et al. 2022b). However, the self-attention mechanism’s quadratic complexity and re-
dundant coding present challenges, leading many existing approaches to modify the attention mod-
ule to reduce computational overhead. Notable works in this area include Informer (Zhou et al.,
2021), which introduces ProbSparse self-attention and distillation techniques, Autoformer (Wu
et al.l |2021)), which incorporates series decomposition with an auto-correlation mechanism, and
FEDformer (Zhou et al., 2022)), which implements an attention module using a Fourier-enhanced
structure. Without modifications to the Transformer, some other attempts focus on the inherent
processing of time series, such as stationarity (Liu et al., 2022c; [2023)), patching (Du et al., 2023)),
channel independence (Nie et al.l 2023)), and inverting operations (Liu et al.l 2024)), consistently
yielding improved performance for time series forecasting. Besides, refurbishing the Transformer
in both aspects mentioned above, Crossformer|Zhang & Yan|(2023) introduces a two-stage attention
mechanism and dimension-segment-wise embedding strategy to capture time and variate dependen-
cies. More recently, Fredformer (Piao et al.|[2024) employs a frequency-based attention mechanism
to mitigate frequency bias, while DUET (Qiu et al., 2025) utilizes dual clustering on the temporal
and channel dimensions to enhance forecasting performance.

Building upon the designs in previous works, TwinsFormer introduces an interactive dual-stream ar-
chitecture that preserves the basic modules of the Transformer. Moreover, we replace the observed
series with trend and seasonal components, allowing the model to better learn the inherent depen-
dencies and their interactions. To the best of our knowledge, TwinsFormer is the first attempt to
consider interactions between decomposed components on Transformers for time series forecasting.

3 TWINSFORMER

Preliminary. Given the observation data X = {1, 2, -,z } € RM*N with M length look-
back window and NV variates, the goal of multivariate time series forecasting is to predict the future
time series Y = {zar41, -, Tarar ) € R7*N at next 7 time steps (7 > 1). Following the idea
of decomposition (Robert et al., [1990; |Wu et al., 2021)), time series can be divided into trend and
seasonal components using a moving average kernel. For length-M input series X € RM*N | the
decomposition process can be formulated as:

X1 = AvgPool(Padding(X)),
Xg=X—Xr,
where X7 and Xg are the trend and seasonal components.

(D
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Figure 2: Overall framework of TwinsFormer.
3.1 STRUCTURE OVERVIEW

Our TwinsFormer, illustrated on the left of Figure[2] adopts the encoder-only architecture, renovating
the Transformer to a dual-stream structure with two decomposed components. Before embedding
the time series, we decompose the observed series into trend (T) and seasonal (S) components in
the channel dimension. Then, we feed seasonal embeddings Es to the attention module and feed-
forward network (FFN) with a subtraction mechanism, while feeding trend embeddings Er to the
interactive module with the supervision of seasonal information (i.e., Ag and Fy). Finally, we
aggregate seasonal and trend representations for the prediction.

Embedding the decomposed series as tokens. For convenience, we denote X, . as the simulta-
neously recorded values for all the variates at the m time point, while X ,, as the whole time series
of each variate indexed by n. Based on Equation |1} the trend and seasonal components of the time
series can be formulated as X = AvgPool(Padding(X.,)) and Xg = X — X, respectively.
Then, we utilize straightforward linear and dropout layers to create trend and seasonal embeddings
with global covariates X,,,4,-1 as follows:

Er = Dropout(Linear(Concat( X1, Xmark)))s

2

Es = Dropout(Linear(Concat(Xs, Xmark)))- @
Note that Concat(-) is used on the dataset containing timestamp information (i.e., X,q4rr) and
different components (i.e., X7 and Xg) through separate linear layers in our experiments. In this
way, we map decomposed series data X7, X5 € RV>*M from the original space into a new space,
where Er, Eg € RV*P and D is the embedding dimension.

Learning interactions with our TwinsBlock. Unlike existing Transformer variants that attempt to
optimize the structure of attention mechanisms in time series forecasting tasks, our TwinsFormer
incorporates interactive learning into the Transformer block to explore the interactions between
decomposed components, thereby capturing better inherent dependencies.

3.2 DUAL-STREAM DESIGN WITH INTERACTIVE MODULE

Keeping the original modules (i.e., the self-attention and feed-forward network (FFN)) of Trans-
former unchanged, our key design lies in the computationally efficient interactive module, which
can guide the model to learn more effective trend and seasonal representations.

Seasonal Branch. Since the seasonal components exhibit more fluctuations in the time series data,
we feed the seasonal embeddings to the attention and FFN modules to effectively capture the de-
pendencies among the multivariates. Following the attention process of iTransformer (Liu et al.,
2024), we regard Eg € RV*P as N D-dimension tokens and utilize queries, keys, and values
Q, K,V € RNV*% to obtain the attention-weighted seasonal representations Ag € RY*P where
dy, is the projected dimension:

Q=EWi+bi, K=EWy+by, V=EWs+bs, W;eRM " b eRX
KT 3)
Ag = Softmax(L)V
Vg
According to Equation [T} the seasonal components can be regarded as the residual part of the ob-
served time series data. Intuitively, we adopt the idea of residual learning to implement a corrective
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strategy by subtracting the outputs of the Attention and FFN modules from the corresponding inputs.
The learning process can be formulated as follows:

Hy, = LayerNorm(Es — Ag),

Hy = H, — FFN(H,). @

Trend Branch. Considering that untrainable moving average kernels lead to unreliable trend pat-
terns, we fuse seasonal information to assist the learning of the trend branch through our interactive
module (IM). On the one hand, attention-weighted Ag well reflects the dependencies among mul-
tivariate, which can be converted into a coefficient matrix to update the trend embeddings. On the
other hand, the signals F; discarded by the seasonal branch can be regarded as meaningful informa-
tion to guide the representation of the trend embeddings. Our interactive module is illustrated on the
right of Figure 2] and we only use simple structures to train and update the trend branch network:

Ep = Ep © exp(a(Ay)) + B(As),
E} = BEr ® exp(y(Fy)) + p(Fy),

where ® denotes element-wise multiplication, c, 3, -y, i are four MLPs with ReLU activations, and
we obtain the transformed trend Fr by adding E} and EZ together.

(&)

Gate Mechanism. Inspired by the inherent control of cells in RNNs (Zhao et al., 2017} Dey &
Salem) 2017), we devise a gate mechanism o at the end of each block for both streams to au-
tonomously regulate the pace of information transmission. The gate mechanism for both seasonal
and trend streams can be formulated as:
Og = o (Convy(Hy)) - Conve(Hs),
Or = o (Convz(Fr)) - Convy(Fr),

where Convy, Convs, Convs and Conv, are four 1 x 1 convolution operations with different pa-
rameters. Taking the output of the former TwinsBlock as the input of the latter TwinsBlock, we stack
L TwinsBlocks to learn seasonal and trend representations, and then add them together through a

linear projection for the ultimate predictive outcomes, i.e., {Y = Projection(Os+Or)} € R™*N,

(6)

3.3 THEORETICAL ANALYSIS OF TWINSFORMER

Structural Constraints. Given historical time series data X, we can obtain its trend and seasonal
components (i.e., X; and X,) by the moving average kernel. For existing time series forecasting
methods, we regard the models as F'(+), while regarding the independent branches with decomposi-

tion designs as f;(-) and f5(-), then we can formulate the predictive outputs Y as
Y = F(f(Xy) + fs(Xy)), where X = X, + X,. 7

Similarly, we define the attention module, FFN, interactive module, and gate mechanism of Twins-
Former as g(-), h(+), ¢(-), and o respectively. Then, the outcomes are:

interactive learning
Y = F(Ut<¢(Xtag(Xs)a h(Xs - g(Xs)))

Xt

®)

residual learning

+ Us(Xs - g(Xs) - h(Xs - g(Xs))))>

X!

where ¢(-) updates the trend components by Equation [5} By omitting the constraints from various
functions on variables, our interactive components can be simplified as

X =X,— X1 - Xo, X;=X,+X1+ Xo. 9
Then, the sum of our two interactive components is

X=X+ X=X, =X — Ko + X + X+ X 10

- X, + X,
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Based on Equation [I0] we can find that our interac-

tion strategy perfectly fits the requirements of the de- .«
composition design without bringing in redundant sig-
nals. Furthermore, we can elaborate on the practical
implications of our TwinsFormer in mitigating the lim-
itations of the trend-seasonal decomposition. Accord-
ing to Figure[I] observed values contain residual com-
ponents, which means that the decomposed trend and
seasonal components are not completely disentangled.
TwinsFormer adopts a dual-stream interaction strategy
to implicitly and progressively promote the decoupling
;)f bot.h components by using residual learning and in- ing average kernel (MA) and our interac-
eractive learning. Specifically, we filter out the cou- . dule (IM

pled information (i.e., X7 and X5) from the seasonal tive module (IM).

components and compensate for them with the trend components through transformation mecha-
nisms, allowing us to learn more robust and reliable decomposed representations for accurate time
series forecasting. As seen in Figure 3| our interactive module can obtain decomposed components
with more consistent variations than the moving average kernel.

Figure 3: Comparison of the trends (T) and
seasonals (S) learned by the existing mov-

Generalization Bound. According to the

above structural constraints, we can further
theoretically justify that such an interactive
design makes a tighter generalization error
bound. Let Hirans denote the hypothesis
space of iTransformer, and Hryiys denote AN
the hypothesis space of TwinsFormer. Our

==+ iTransformer (Train) === iTransformer (Test) ==+ TwinsFormer (Train) === TwinsFormer (Test)

TwinsFormer has a tighter generalization
error bound than iTransformer

MSE

\\\\\\\\\\\\\\\\\\\\\\

TwinsFormer enforces a structural decom- 0 NeoteeT NI

position and interaction mechanism that
constrains the functions it can represent.
Formally, we have the following:

Hrwins + F(Xp, Xs) = {F (fe(Xe) + fs(Xs)) [ FEW, fr €T, fs € S},

HiTrans : ]:(X) = {]:(X) ‘ FeWw X=X, —I—XS},
where W is the family of all possible Transformer-parameterized functions, 7 and S are func-
tion families for trend and seasonal components, respectively. Since the decomposition-interaction

mechanism can be viewed as imposing a temporal smoothness prior, the hypothesis space of Twins-
Former can be rewritten as:

Hrwins = {F (fe(Xt) + fo(Xo))} = {F o (fi @ f:)(X)}, (12)

where o denotes the composition of the function and & denotes the addition of components. This
means Hrwins S Hitrans, as it imposes additional structural constraints, where the model must first
decompose the input, process the components separately, and then combine them.

Batc

Figure 4: The MSE curve of the models on Traffic.

(an

According to the properties of Rademacher complexity (Giorgio & Marcellol [2008), for any class of
functions A and B, R(A o B) < Lip(A) - R(B), where Lip(.A) is the Lipschitz constant (Fazlyab
et al.,[2019) of A. Therefore, we derive the following inequality chain:

m(HTwins) ~ {‘FO (T@ 8)} S Llp(f) . [9‘{(7') + 9:{(8)] < Llp(f) . %(J—'.) =~ %(HiTrans)~ (13)

Since Rademacher complexity is a key quantity in deriving upper bounds for generalization error and
R(Hrwins) < R(HiTrans)» we can find that Twinsformer has a tighter generalization error bound than
iTransformer. The detailed analysis is given in Appendix [A] To further highlight the generalization
of the model, we visualize the MSE curves of TwinsFormer and iTransformer in Figure @ which
indicates that our visualization is consistent with the theoretical analysis.

4 EXPERIMENTS

Benchmarks. For long-term forecasting, we experiment on 9 public benchmarks, which include
ETT (Zhou et al. [2021), ECL (Wu et al.| [2021), Exchange (Wu et al.l 2021)), Traffic (Wu et al.,
2021)), Weather (Wu et al., [2021) and Solar-energy (Lai et al.| [2018) datasets. Moreover, we use
PEMS (Liu et al.} 2022a) for short-term forecasting.
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Table 1: Long-term forecasting results. The lookback length is set to T" = 96 and all the results are
averaged from all predictions S € {96, 192,336, 720}. Avg means further averaged by subsets. A
lower MSE or MAE indicates a better forecasting performance.

TwinsFormer WPMixer Fredformer iTransformer TimeMixer  FilterNet FITS PatchTST DLinear Crossformer TimesNet

Models (Ours) (2025) (2024) (2024) (2024) (2024) (2024) (2023) (2023) [@023)  (20234)

Metic |MSE MAE |MSE MAE|MSE MAE|MSE MAE |MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE

ETT (Avg) |0.365 0.384 0372 0.390]0.368 0.387[0.383 0.3990.381 0.396]0.381 0.398|0.402 0.404|0.381 0.397]0.442 0.444]0.685 0.578]0.391 0.404

ECL  [0.163 0.253 |0.166 0.2550.176 0.269]0.178 0.270 |0.183 0.272]0.205 0.290]0.384 0.434]0.205 0.290]0.212 0.300|0.244 0.334|0.192 0.295

Exchange [0.329 0.387 0.354 0.399]0.333 0.391]0.360 0.403 |0.380 0.417]0.389 0.419]0.365 0.408]0.367 0.404|0.354 0.414]0.940 0.707]0.416 0.443

Traffic  |0.403 0.271 |0.437 0.279]0.443 0.291]0.428 0.2820.496 0.298]0.463 0.310[0.615 0.370]0.481 0.304]0.625 0.383]0.550 0.304]0.620 0.336

Weather [0.242 0.266 |0.246 0.269]0.246 0.273]0.258 0.278 |0.245 0.274]0.259 0.281]0.273 0.292]0.259 0.281]0.265 0.317|0.259 0.315[0.259 0.287

Solar-energy [0.221  0.251 |0.223 0.258]0.226 0.262[0.233 0.262 |0.216 0.2800.235 0.266]0.376 0.385]0.270 0.307]0.330 0.401|0.641 0.639|0.301 0319

Baselines. We compare TwinsFormer with 13 representative baselines, including 1) Transformer-
based methods: TimeBridge (Liu et al., 2025), TQNet (Lin et al., 2025), Leddam (Yu et al.,
2024)), Fredformer (Piao et al., [2024) iTransformer (Liu et al.l 2024), PatchTST(Nie et al., [2023),
Crossformer (Zhang & Yan, [2023); 2) Linear-based methods: WPMixer (Murad et al., [2025)),
TimeMixer (Wang et al.,[2024)), DLinear (Zeng et al.,2023), FilterNet (Y1 et al., 2024)), and FITS (Xu
et al.} 2024)); and 3) TCN-based methods: TimesNet Wu et al.|(2023a).

Implementation details. All the experiments are implemented in PyTorch (Paszke et al., 2019) and
conducted on one NVIDIA 4090 24GB GPU. We use the L2 loss to train the model with the Adam
optimizer (Kingma & Ba} 2015), where the training process is stopped early within 30 epochs. Our
interactive module can apply to various time series frameworks without introducing any additional
hyperparameters. Following iTransformer (Liu et al., 2024)), we use the Mean Squared Error (MSE)
and Mean Absolute Error (MAE) as the core metrics for the evaluation.

4.1 MAIN RESULTS

Long-term Forecasting. Comprehensive results for long-term forecasting are presented in Table
[Il with the best results highlighted in bold and the second-best underlined. TwinsFormer consis-
tently outperforms state-of-the-art models, covering various time series benchmarks with different
frequencies, variates, and real-world scenarios. Compared to sophisticated models like WPMixer
and Fredformer, TwinsFormer achieves superior performance. Its interactive architecture effectively
leverages the inherent trend-seasonal dependencies in time-series data. Specifically, TwinsFormer
outperforms WPMixer and Fredformer by a considerable margin, with a 7.5% and 6.9% reduction
in MSE among all the datasets for WPMixer and Fredformer, respectively. Although TimeMixer has
a subtle reduction in MSE of 0.5% over TwinsFormer in Solar-energy, TwinsFormer achieves lower
MAE scores than TimeMixer by 2.9%.

Short-term Forecasting. TwinsFormer also performs well in short-term forecasting on PEMS
datasets. Due to the complex spatiotemporal dependencies among city-wide traffic networks in
PEMS benchmarks, many advanced models significantly deteriorate in this task. For instance,
TimeMixer employs a multiscale mixing architecture to model complex temporal variations; how-
ever, its performance is not as good as that of iTransformer, which simply tokenizes the embedding
of time series in the variate dimension. By contrast, TwinsFormer learns the inherent dependencies
from the interactions between decomposed components, which can better capture accurate patterns
for multivariate time series. As shown in Table [2} TwinsFormer achieves the best performance,
confirming the effectiveness of our interactive strategy in modeling complex temporal dynamics.

Table 2: Short-term forecasting results on PEMS datasets. The lookback length is set to 7' = 96 and
all the results are averaged from all predictions S € {12, 24,48,96}.

Models TwinsFormer WPMixer Fredformer iTransformer TimeMixer  FilterNet FITS PatchTST DLinear  Crossformer TimesNet
odels (Ours) (2025) 2024) (2024) (2024) 2024) (2024) (2023) (2023) (2023) (2023a)

Metric |[MSE MAE |MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE

PEMS03[0.107 0214 [0.167 0.267]0.135 0.243|0.116 0.226]0.145 0.253]0.145 0.251]0.489 0.465|0.180 0.291]0.278 0.375|0.169 0.281]0.147 0.248

PEMS04[0.109 0.217 [0.185 0.287]0.162 0.261]0.121 0.232]0.162 0.2680.146 0.258]0.531 0.4890.195 0.307|0.295 0.388]0.209 0.3140.129 0.241

PEMS07[0.084 0.180 [0.181 0.271]0.121 0.222]0.100 0.204]0.152 0.248[0.123 0.229]0.500 0.472[0.211 0.303]0.329 0.395[0.235 0.315]0.124 0.225

PEMS08[0.122 0211 [0.226 0.299]0.161 0.250]0.151 0.2340.209 0.296]0.172 0.260|0.534 0.487]0.280 0.321]0.379 0.416]0.268 0.307]0.193 0.271

Avg [0.106 0.206 [0.190 0.2810.145 0.244]0.122 0.224 0.167 0.266]0.147 0.250]0.514 0.478]0.217 0.306[0.320 0.394]0.220 0.3040.148 0.246




Under review as a conference paper at ICLR 2026

4.2 ABLATION STUDIES

To verify the effectiveness of each main component of TwinsFormer, we provide indispensable ab-
lation studies for every possible design on decomposition and interactions. Specifically, we disable
or replace certain designs as model variants and experiment on two long-term (i.e., ECL and Traf-
fic) and two short-term forecasting (i.e., PEMS03 and PEMS07) datasets. As shown in Table [3] we
conduct an insightful analysis of decomposition and interactions based on the following observation.

Table 3: Ablation studies for TwinsFormer. We disable or replace each component of both decom-
position and interactions over four datasets. v/ and X indicate with and without certain components,
respectively. The average results of all predicted lengths are listed here.

Desi | I Interactions | ECL | Traffic | PEMS03 | PEMS07
esign Decomposition
| | - Fr As Fs o | M MAE | MSE MAE | MSE MAE | MSE MAE
TwinsFormer | 4 |v v 4 v /| 0163 0.403  0.271 | 0.107 0.214 | 0.084 0.180
@ X v 7 4 v /| 0178 0275 | 0413 0288 | 0.126 0.236 | 0.112  0.208
® swap v/ v/ v/ v/ |0165 0258|0406 0276 | 0110 0218 | 0.091 0.184
® 4 + v v v /| 0179 0271 | 0421 0283 | 0.115 0.224 | 0.106 0.197
@ v v X 4 v v/ | 0177 0272 | 0410 0.285 | 0.123 0.232 | 0.105 0.200
® 4 v 7 X v /| 0172 0267 | 0408 0278 | 0.118 0.219 | 0.093 0.188
©® 4 v 7 4 X v/ | 0166 0261 | 0408 0.277 | 0.111 0220 | 0.098 0.192
@ 4 v 7 4 v X | 0175 0269 | 0424 0283 | 0.119 0.232 | 0.117 0.205

Ablation on decomposition. Considering that the trend and seasonal components in the decom-
position design are fed to different network branches, we disable the decomposition by using two
original observed series as inputs (i.e., @) and swap trend and seasonal components (i.e., @) for
ablation analysis. In ablation @ and @, we observe significant decreases in forecasting performance
for both long-term and short-term predictions, which demonstrates that our integration of the de-
composition into the Transformer architecture is reasonable and effective.

Ablation on interactions. For the interactions, we verify effectiveness by gradually removing or
replacing components. In ablation @, we replace the subtraction mechanism (i.e., —) with original
addition skip connections (i.e., +), and the results on @ show a decline in forecasting accuracy.
This illustrates that decomposed components can better satisfy the requirements of the Transformer
architecture by using the subtraction mechanism. Meanwhile, the results in @ further highlight the
rationality of the decomposition design, which is consistent with the theoretical analysis in Section
In ablations @, ®, ®, and @, we eliminate the impact of Frr, Ag, Fg, and gate mechanism o for
interactive learning, respectively. These four ablations all result in significant drops in forecasting
performance, indicating that all inputs for interactive learning can effectively enhance the perfor-
mance of TwinsFormer. The above observations highlight the substantial influence of our strategy,
which utilizes residual and interactive learning in the Transformer architecture.

4.3 MODEL ANALYSIS

Compatibility Study. To verify the compatibility and promoting effect of our framework, we
adopt different decomposition initializations and apply the interactive module (IM) to three excel-

Table 4: Compatibility study for TwinsFormer. We adopt the moving average kernel (MA), Fourier-
based transformation (FB), and learnable decomposition (LD) initializations and integrate our inter-
active module (IM) into three Transformer-based forecasters.

Model ‘ TwinsFormer (Ours) ‘ TimeBridge ‘ TQNet ‘ Leddam
Decomposition Initializations (2025) (2025) (2024)
Setup MA LD FD Original +IM Original +IM Original +IM

Metric MSE MAE | MSE MAE | MSE MAE || MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

96 | 0.134 0.223 | 0.136 0.228 | 0.135 0.226 || 0.120 0.214 | 0.115 0.210 | 0.134 0.229 | 0.132 0.228 | 0.141 0.235 | 0.138 0.233
192 | 0.154 0.240 | 0.155 0.242 | 0.156 0.243 || 0.142 0.237 | 0.138 0.235 | 0.154 0.247 | 0.150 0.242 | 0.159 0.252 | 0.158 0.252
ECL | 336 | 0.165 0.257 | 0.163 0.254 | 0.167 0.258 || 0.156 0.252 | 0.154 0.251 | 0.169 0.264 | 0.163 0.261 | 0.173 0.268 | 0.172 0.267
720 | 0.198 0.290 | 0.200 0.293 | 0.201 0.293 || 0.179 0.278 | 0.178 0.276 | 0.201 0.294 | 0.199 0.292 | 0.201 0.295 | 0.200 0.293

Avg | 0.163 0.253 | 0.164 0.254 | 0.165 0.255 || 0.149 0.245 | 0.146 0.243 | 0.164 0.259 | 0.161 0.256 | 0.169 0.263 | 0.167 0.261

96 | 0.379 0.258 | 0.381 0.260 | 0.378 0.259 || 0.340 0.240 | 0.338 0.239 [ 0.413 0.261 | 0.406 0.258 | 0.426 0.276 | 0.416 0.265
192 1 0.388 0.265 | 0.387 0.266 | 0.390 0.268 || 0.343 0.250 | 0.340 0.248 | 0.432 0.271 | 0.418 0.267 | 0.458 0.289 | 0.429 0.272
Traffic | 336 | 0.407 0.272 | 0.410 0.275 | 0.411 0.279 || 0.363 0.257 | 0.361 0.255 | 0.450 0.277 | 0.433 0.272 | 0.486 0.297 | 0.435 0.284
720 | 0439 0.289 | 0.442 0.292 | 0.438 0.286 || 0.393 0.271 | 0.392 0.270 | 0.486 0.295 | 0.448 0.295 | 0.498 0.313 | 0.452 0.292

‘ Avg ‘ 0.403  0.271 ‘ 0.405 0.273 ‘ 0.404 0.273 H 0.360 0.255 ‘ 0.358 0.253 ‘ 0.445 0.276 ‘ 0.426 0.273 ‘ 0.467 0.294 ‘ 0.433 0.278
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lent Transformer-based forecasters. On the one hand, we replace the moving average (MA) with
frequency-based (FB) or learnable decomposition (LD) strategies. On the other hand, we integrate
our interactive design into the TimeBridge [2025), TQNet 2025), and Led-
dam 2024) without modifying their hyperparameters. As seen in Table [4] the average
performance gap achieved by TwinsFormer does not exceed 0.02 under different decomposition ini-
tializations, which illustrates the favorable decomposition compatibility of TwinsFormer. Moreover,
our interactive technique consistently improves the original baselines’ performance, indicating its
portability and superiority across different Trenasformer-based architectures.

Dependency Study. To provide an intuitive understanding of the learned representations by our
dual-stream framework, we visualize the multivariate correlations in Figure |§l It can be observed
that the multivariate correlations learned by iTransformer are redundant compared to the ground
truth. In contrast, feeding the attention branch with seasonal components can better capture mul-
tivariate correlations than feeding it with trend components, which is consistent with the results
of @ in Table |3} Those observations indicate that our interactive design can learn more accurate
dependencies than iTransformer and achieve better forecasting performance.

10
08
06
Loa

iTransformer Correlation (Horizon: 96) 10 True Correlation (Horizon: 96)

Figure 5: Analysis of multivariate correlations on ECL. Zoom in for more details.

Lookback Sensitivity. As argued in (Zeng et al} 2023) and (Nie et al. [2023), most of the
Transformer-based models will not improve the forecasting performance with an increasing look-

back length due to the distracted attention on the longer input 2024). However, our
TwinsFormer reduces the MSE scores with enlarged historical information available, which is con-
sistent with the theoretical analysis using statistical methods (Box & Jenkins|, [1968). As seen in
Figure [f] the forecasting results keep improving in most cases where the prediction length S be-
longs to {96, 192, 336, 720} as the receptive field increases. These improvements confirm that our
TwinsFormer can effectively capture inherent dependencies from a longer lookback window.

ECL Traffic PEMS
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Figure 6: Forecasting performance with different lookback lengths on three datasets.

5 CONCLUSION AND FUTURE WORK

Leveraging the strengths of decomposition for mining temporal patterns and attention for capturing
multivariate correlations, we propose TwinsFormer, which models inherent dependencies in time
series through two interactive branches. Empowered by a novel interactive design, TwinsFormer
seamlessly integrates decomposition into the Transformer architecture, enabling effective learning
of time series representations. Experiments show that TwinsFormer achieves state-of-the-art perfor-
mance on both long-term and short-term forecasting tasks. Detailed visualizations, ablation studies,
and analyses further demonstrate the effectiveness and generalization of our framework. For future
work, we plan to explore more efficient interaction designs for non-Transformer architectures and
extend our evaluation to a broader range of time series tasks.
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A THEORETICAL FOUNDATION FOR GENERALIZATION BOUNDS

Time series forecasting presents unique challenges due to the inherent temporal dependencies and
non-stationary characteristics of sequential data. TwinsFormer addresses these challenges through
explicit decomposition of the input series X = {x1, o, ...,2r} into trend (X;) and seasonal (X§)
components, with X = X; + X,. Its predictive mechanism incorporates specialized interactive
modules, which can be defined as follows:

Y = ‘F(Ut(¢(Xt7g(Xs)v h(Xb - g(Xé))) + 05<Xs - g(Xs) - h(Xa - g(Xb)))) ) (14)

where g(-), h(-), ¢(-) represent attention, FFN, and interaction modules, and o denotes gating mech-
anisms. The simplified interaction ensures information preservation:

X' =X,- X1 - Xo, X/ =X, +X1+Xo, X=X +X]. (15)

This structural design imposes temporal-aware regularization, which we theoretically show leads to
tighter generalization bounds in time series settings.

A.1 PROBLEM FORMULATION AND DEFINITIONS

Definition A.1 (Time Series Generation Process) Let {Z;}72, be a stochastic process represent-
ing the underlying time series, where each Zy = (Xy,Y:) consists of input features X; € X and
target values Y; € ). The data-generating process follows:

Zt = f(Zt—th—Za‘"7Zt—p7€t)7 (16)
where p is the order of temporal dependence and €, represents innovation noise.

Definition A.2 (Time Series Forecasting Task) For forecasting with lookback window L and fore-
cast horizon H, we define training samples as:

p={(x.r)}",

where each sample is constructed from consecutive time points:

X(L) = {thvathJrlw-')Zt*l}’ (18)

v = {Ztvzt+17 ey Rty H-1)

The samples exhibit inherent temporal dependence: (X9, Y () and (X 0+ Y (+1) are highly
correlated. We assume the time series process is stationary and satisfies the S-mixing condition.

Definition A.3 (3-mixing Coefficient) The 3-mixing coefficient of the process Z is defined as:

B(k) =sup E | sup ’IP(ALFﬁOO) - IP(A)| , (19)
t

AEF,

where F? is the o-algebra generated by (Z,, . . ., Zy). The process is said to be 3-mixing if (k) —
0 as k — co. We assume an exponential decay of dependence: B(k) < Boe™** for some By, X > 0.

A.2 HYPOTHESIS SPACES AND THEIR COMPLEXITIES

Let Hrans denote the hypothesis space of a standard Transformer model. The TwinsFormer hypoth-
esis class Hrwins 1S a subset of Hryans With an inductive bias for temporal decomposition:

HTwins = {h : h(X) = -F(ft(Xt) +fs()(s)) |X = Xt +Xsaft S T7fs € Svf S W}a (20)

where 7 and S are the function classes for trend and seasonal components, respectively, and W is
the class of final projection functions. The functions f; and f, are realized by the dedicated attention
and FFN modules in TwinsFormer.

This constraint is particularly effective for time series as it aligns with the inherent trend-seasonality
decomposition of temporal processes, reducing the effective hypothesis space.

14
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A.3 GENERALIZATION BOUNDS FOR 3-MIXING PROCESSES

For dependent data, the Rademacher complexity is adapted to account for temporal structure. For
a $-mixing process with mixing coefficient 5(k), the following generalization bound holds with
probability at least 1 — J for all h € H (Mohri & Rostamizadeh) 2012):

21log(1/0)

Lp(h) < Ls(h) + 2815 (H) + M -

+Mp(lm/2]), 1)

where M is a bound on the loss function, and 375 (H) is the time-series Rademacher complexity.

The time-series Rademacher complexity for a S-mixing process can be bounded by:
2log(2 —-1(1
m;s(%)ginf{2e+3 ()g(/e)}+c g /m) (22)
e>0 m m
where C'is a constant depending on the function class complexity.

A.4 COMPLEXITY REDUCTION THROUGH DECOMPOSITION

The key insight is that the decomposition operation effectively reduces the complexity of the func-
tion class. Instead of having a single complex function Hirans € Hrrans learn the entire mapping,
where Hitrans 1S @ representative Transformer-based model, TwinsFormer employs a decomposition
X = X; + X followed by two specialized functions f; and fs.

Assuming the combination function F is Lipschitz continuous with constant Lip(F), and leveraging
the fact that the Rademacher complexity of a sum of function classes is bounded by the sum of their
complexities (Bartlett & Mendelson, [2002), we have:

R(Hrwins) < Lip(F) - (R(T) + R(S))- (23)

The standard Transformer hypothesis class Hirrans can be viewed as learning the combined function
directly, i.e., Hitrans = {G(X)} where G is a highly complex function. Crucially, for the same level
of empirical performance, the decomposition prior in TwinsFormer implies that the sum R(7) +
MR(S) is smaller than the complexity required for a monolithic function 2(G) to achieve the same
decomposition effect implicitly. Therefore, we conclude:

RIS (Hrwins) < Lip(F) - (R (T) + R (S)) < RES (Hitrans)- (24)

This inequality holds because the structural prior of TwinsFormer allows it to use simpler functions
to achieve the same goal, thus reducing effective complexity.

A.5 TIGHTER GENERALIZATION BOUND FOR TWINSFORMER

Substituting the complexity reduction into the time-series generalization bound yields:

LD (hTwins) S i/S(hTwins) + 29:{[7;‘5 (HTwins) + M M + Mﬂ (Lm/2j)
n (25)
< i/S(hTwins) + 2%2;? (HiTrans) + M 21%(1/5) + Mﬂ (Lm/2j) .

Although the second line of the bound uses R'S (Hpns), the key point is that for TwinsFormer,
the effective complexity term %E(HTwins) is significantly smaller than %E(Hﬂm). This leads
to a tighter actual generalization bound for TwinsFormer when the empirical risk Lg is similar.
The structural prior of explicit decomposition translates into a reduced complexity measure and,
consequently, improved generalization guarantees in time-series forecasting.

Given that the interactive module is designed as a structural constraint with negligible computational
complexity, TwinsFormer achieves this superior generalization performance without substantially
increasing the computational burden.
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B IMPLEMENTATION DETAILS

Benchmarks details. We evaluate the performance of TwinsFormer compared with various base-
lines on 13 well-established benchmarks|'| which are detailed in Table

Metrics details. Regarding evaluation metrics, we utilize the mean square error (MSE) and mean
absolute error (MAE) for long-term and short-term forecasting:
L

L
1 5o .
MSE = — ;(Xi - Xi)?, MAE= ;m - Xil,
where X, X e REXN denote the ground truth and prediction results for NV variates in the future L
time steps. |-| means the absolute value operation.

Table 5: Detailed descriptions of benchmarks. Channel denotes the number of variates in each
dataset. The prediction length indicates four prediction settings. The dataset size is split into (Train,
Validation, Test). Frequency denotes the sampling interval of time points.

Tasks | Benchmarks | Channels | Prediction Length | Dataset Size | Frequency | Information
ETTml 7 (34465, 11521, 11521) 15min Electricity
ETTm2 7 (34465, 11521, 11521) I5min Electricity
ETThl 7 (8545, 2881, 2881) Hourly Electricity
Long-term ETTh2 7 (8545, 2881, 2881) Hourly Electricity
Forecasting ECL 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly Electricity
; Traffic 862 (12185, 1757, 3509) Hourly Transportation
Exchange 8 (5120, 665, 1422) Daily Economy
Weather 21 (36792, 5271, 10540) 10min Weather
Solar-energy 137 (36601, 5161, 10417) 10min Electricity
PEMSO03 358 (15617, 5135, 5135) Smin Transportation
Short-term PEMS04 307 {12, 24, 48, 96} (10172, 3375, 3375) Smin Transportation
Forecasting PEMSO07 883 T (16911, 5622, 5622) Smin Transportation
PEMSO08 170 (10690, 3548, 3548) Smin Transportation

Algorithm details. We provide the pseudo-code of TwinsFormer in Algorithm|[I]

Algorithm 1 Workflow of our TwinsFormer.

Input: Input lookback time series X € RT*Y; Input length T, prediction length L, and variates
number N; Token dimension D, TwinsBlock number M, and moving average kernel size k.
Output: The prediction results X e RLXN,

1: > Using the moving average kernel and padding operations to decompose time series.
2: Xp = AvgPool(Padding(X)),Xs =X — Xrp > Xp, Xg € RTXN
3: > Embedding series into variate tokens by Multi-layer Perceptron.
4: EY9 = Embedr(Xr.transpose), ES = Embeds(Xs.transpose) > EY, EY € RVN*P
5: formin{l,--- ,M} do
6: > Self-attention mechanism and feed-forward network are applied for the seasonal branch.
7. E@ ' =LayerNorm(EZ ™' — Atn(Eg 1)) > Eg! e RVXD
8 EI=Ey ' —FFN(EZ ) > BT € RVXD
9: > Interactive module (IM) is implemented with four MLPs (i.e., o, 8, y, p).
10:  ERU = BNl 6 expa(Atn(ER ) + B(Atn(ER ) > B e RNXP
11: B~ = BNl O expy(FEN(EZ ™)) + w(FEN(EZ ™)) > Ep 1?2 ¢ RNXD
12: > Adding gate mechanism to seasonal and trend branches.
13:  E% = Layer Norm(Sigmoid(Conv(E%)) * EG") > Em e RV*P
14 Ep = Sigmoid(Conv(Ej "' + B 1) « (Ef 1 + EI 12 > B e RV*DP
15: end for
16: X = Projector(E% + E) > X € RV*L
17: X = X .transpose > X € REXN
18: return X

"All the datasets are publicly available atlhttps://github.com/thuml/iTransformer
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C FULL MAIN RESULTS

Due to the space limitation, we provide the full multivariate forecasting results here. Specifically,
Table [6] contains the detailed results of all prediction lengths on 9 well-acknowledged benchmarks
for long-term forecasting, while Table [/ includes the full short-term forecasting results on 4 chal-
lenging citywide traffic datasets.

Table 6: Full results of the long-term forecasting task. We compare extensive competitive models
under different prediction lengths S € {96,192,336, 720}. The input sequence length is set to 96
for all baselines. Avg means the average results from all four prediction lengths.

TwinsFormer WPMixer Fredformer iTransformer TimeMixer  FilterNet FITS PatchTST DLinear  Crossformer TimesNet

Models | ours) (2025) (@024) (@024) ({024 (2024) (2024 (@023) (2023) (2023)  (20233)

Metric |MSE_MAE |MSE MAE|MSE MAE|MSE MAE |MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE

96 |0.315 0.354 |0.326 0.362|0.331 0.368(0.334 0.368 [0.320 0.355[0.327 0.372|0.355 0.376|0.329 0.367|0.345 0.372|0.404 0.426(0.338 0.375
192 0.362 0.384 |0.372 0.394|0.365 0.389(0.377 0.391 [0.362 0.382|0.367 0.387|0.486 0.445|0.367 0.385|0.380 0.389(0.540 0.451(0.374 0.387
336 10.396 0.402 (0.402 0.405(0.405 0.413]0.426 0.420[0.396 0.406|0.409 0.414)0.531 0.475|0.399 0.410|0.413 0.413]0.532 0.515{0.410 0.411
720 |0.457 0.439 |0.476 0.453]|0.463 0.448|0.491 0.459]0.458 0.445(0.477 0.452]|0.600 0.513|0.454 0.439|0.474 0.453]0.666 0.589|0.478 0.450

ETTml

Avg [0.383 0.395 |0.394 0.404]0.391 0.405[0.407 0.410]0.384 0.397|0.395 0.406]0.493 0.452|0.387 0.400|0.403 0.407]0.513 0.496|0.400 0.406

96 ]0.169 0.251 |0.182 0.263|0.177 0.259(0.180 0.264 [0.176 0.259(0.175 0.258]0.182 0.266|0.175 0.259|0.193 0.292|0.287 0.366(0.187 0.267
192 10.236 0.289 |0.238 0.294|0.243 0.301 {0.250 0.309 [0.242 0.303|0.240 0.301|0.253 0.312|0.241 0.302|0.284 0.362(0.414 0.492(0.249 0.309
336 10.292 0.330 |0.306 0.342(0.302 0.340(0.311 0.348 |0.303 0.339]0.311 0.347)0.313 0.349|0.305 0.343|0.369 0.427[0.597 0.542{0.321 0.351

720 |0.397 0.397 |0.409 0.407|0.397 0.396|0.412 0.407 |0.396 0.399|0.414 0.405|0.416 0.406|0.402 0.400|0.554 0.522|1.730 1.042|0.408 0.403

ETTm2

Avg 0.274 0317 |0.284 0.327[0.280 0.324]0.288 0.332]0.279 0.325]0.285 0.328]0.391 0.333]0.281 0326|0350 0.401]0.757 0.610[0.291 0.333

96 |0.375 0.391 [0.377 0.394]0.373 0.392]0.386 0.405|0.384 0.400|0.388 0.410|0.386 0.395|0.414 0.419]0.386 0.400(0.423 0.448]0.384 0.402
192 (0.439 0.431 [0.434 0.426]0.433 0.420(0.441 0.436|0.437 0.429(0.442 0.449|0.437 0.424(0.460 0.445|0.437 0.432]0.471 0.474|0.436 0.429
336 [0.469 0.436 |0.466 0.443)|0.470 0.437|0.487 0.458]0.472 0.446(0.491 0.456|0.476 0.446|0.501 0.466|0.481 0.459]0.570 0.546|0.491 0.469

720 (0473 0.472 |0.471 0.470|0.467 0.456|0.503 0.491|0.586 0.531|0.505 0.493|0.484 0.470[0.500 0.488|0.519 0.516|0.653 0.621|0.521 0.500

ETThl

Avg |0.439 0433 |0.437 0.433[0.436 0.426]0.454 0.447 [0.470 0.451]0.457 0.452]0.446 0.434]0.469 0.454|0.456 0.452]0.529 0.522|0.458 0.450

96 ]0.285 0.332 |0.287 0.336]0.293 0.342(0.297 0.349 [0.297 0.348|0.293 0.343|0.294 0.340|0.302 0.348|0.333 0.387|0.745 0.584(0.340 0.374
192 [0.364 0.385 [0.365 0.383]0.371 0.389(0.380 0.400|0.369 0.392(0.379 0.396|0.377 0.391{0.388 0.400|0.477 0.476|0.877 0.656|0.402 0.414
336 [0.397 0.419 [0.418 0.422]0.382 0.409|0.428 0.432]0.427 0.435(0.419 0.430|0.416 0.425[0.426 0.433|0.594 0.541[1.043 0.731]0.452 0.452
720 [0.406 0.430 |0.423 0.441]|0.415 0.434]0.427 0.445]0.462 0.463|0.449 0.460|0.418 0.437|0.431 0.446|0.831 0.657|1.104 0.763]0.462 0.468

ETTh2

Avg 0363 0.392 [0.373 0.396/0.365 0.394]0.383 0.407]0.389 0.409|0.385 0.407|0.376 0.398]0.387 0.407|0.559 0.515]0.942 0.684]0.414 0.427

96 |0.134 0.223 |0.135 0.225|0.147 0.241(0.148 0.240 [0.153 0.244(0.147 0.245|0.198 0.274|0.181 0.281|0.197 0.282(0.219 0.314(0.168 0.272
192 0.154 0.240 |0.159 0.242]0.165 0.258{0.162 0.253 [0.168 0.259[0.160 0.254|0.363 0.422|0.188 0.274|0.196 0.285(0.231 0.322(0.184 0.289
336 |0.165 0.257 |0.168 0.259(0.177 0.273]0.178 0.269 [0.185 0.275|0.173 0.283|0.444 0.490|0.204 0.293|0.209 0.301|0.246 0.337]0.198 0.300
720 10.198 0.290 |0.201 0.295/0.213 0.304|0.225 0.317 |0.227 0.312]0.210 0.309|0.532 0.551|0.246 0.324|0.245 0.333]0.280 0.363|0.220 0.320

ECL

‘ Avg ‘0.163 0.253 ‘0.166 0.255(0.176 0.269‘()‘178 0.270‘0.183 0.272(0.205 0.290|0.384 0.434|0.205 0.290‘0.212 0.300|0.244 0.334|0.192 0.295

96 0.079 0.198 [0.083 0.201]0.084 0.202|0.086 0.206 |0.099 0.218]|0.091 0.211]0.087 0.208|0.088 0.205|0.088 0.218|0.256 0.367|0.107 0.234
192 [0.170 0.293 [0.174 0.296|0.178 0.302[0.177 0.299|0.196 0.313|0.186 0.305|0.185 0.306(0.176 0.299|0.176 0.315[0.470 0.509|0.226 0.344
336 |0.317 0.402 (0.325 0.412(0.319 0.408|0.331 0.417 |0.359 0.432|0.380 0.449|0.343 0.425|0.301 0.397(0.313 0.427|1.268 0.883|0.367 0.448
720 |0.749 0.653 |0.833 0.687|0.749 0.651|0.847 0.691 |0.864 0.703|0.898 0.712)|0.846 0.694|0.901 0.714|0.839 0.695|1.767 1.068|0.964 0.746

Exchange

Avg 0.329 0.387 0.354 0.399]0.333 0.391]0.360 0.4030.380 0.417]0.389 0.419]0.365 0.408]0.367 0.404|0.354 0.414]0.940 0.707|0.416 0.443

96 10.379 0.258 [0.396 0.266|0.406 0.277[0.395 0.268 |0.473 0.2870.430 0.294]0.601 0.361|0.462 0.295]0.650 0.396(0.522 0.290|0.593 0.321
192 [0.388 0.265 [0.427 0.274|0.426 0.290(0.417 0.276 |0.486 0.294|0.452 0.307|0.603 0.365[0.466 0.296|0.598 0.370{0.530 0.293|0.617 0.336
336 [0.407 0.272 |0.444 0.281]0.437 0.292]0.433 0.283]0.488 0.298(0.470 0.316|0.609 0.366[0.482 0.304|0.605 0.373]0.558 0.305|0.629 0.336

720 [0.439 0.289 |0.480 0.294]0.462 0.305|0.467 0.302]0.536 0.314[0.498 0.323|0.648 0.387|0.514 0.322|0.645 0.394|0.589 0.328]0.640 0.350

Traffic

Avg [0.403 0.271 [0.437 0.279]0.433 0.291]0.428 0.282|0.496 0.298]0.463 0.310[0.615 0.370[0.481 0.304]0.625 0.383]0.550 0.304]0.620 0.336

96 |0.158 0.199 |0.164 0.204|0.163 0.207[0.174 0.214 [0.163 0.209(0.162 0.207|0.196 0.236|0.177 0.218|0.196 0.255|0.158 0.230(0.172 0.220
192 10.207 0.243 |0.212 0.246|0.211 0.251{0.221 0.254 {0.209 0.252]0.215 0.252]0.240 0.271]0.225 0.259|0.237 0.296(0.206 0.277{0.219 0.261
336 |0.263 0.285 |0.268 0.287(0.267 0.292]0.278 0.296 |0.264 0.293]0.273 0.295|0.292 0.307|0.278 0.297|0.283 0.335]0.272 0.335]0.280 0.306
720 10.339 0.336 |0.341 0.339/0.343 0.341|0.358 0.347 |0.345 0.345|0.351 0.346|0.365 0.354|0.354 0.348|0.345 0.381]0.398 0.418|0.365 0.359

Weather

Avg 0.242 0.266 0.246 0.269]0.246 0.273]0.258 0.278]0.245 0.274]0.259 0.281]0.273 0.292]0.259 0.281]0.265 0.317]0.259 0.315]0.259 0.287

96 |0.188 0.222 |0.189 0.237|0.185 0.233(0.203 0.237 [0.189 0.259(0.205 0.242|0.319 0.353|0.234 0.286|0.290 0.378|0.310 0.331(0.250 0.292
192 10.219 0.246 |0.223 0.248|0.227 0.253(0.233 0.261 [0.222 0.283]0.233 0.265|0.367 0.387|0.267 0.310|0.320 0.398 (0.734 0.725(0.296 0.318
336 |0.240 0.265 |0.239 0.273|0.246 0.284]0.248 0.273 0.231 0.292|0.249 0.278|0.408 0.403|0.290 0.315|0.353 0.415]0.750 0.735]0.319 0.330
720 10.236 0.269 |0.241 0.275|0.247 0.276|0.249 0.275|0.231 0.292|0.353 0.281|0.411 0.395|0.289 0.317|0.356 0.413]0.769 0.765|0.338 0.337

Solar-Energy

| Avg |0.221 0251 |0.223 0.258]0.226 0.262|0.233 0.262]0.216 0.280]0.235 0.266]0.376 0.385|0.270 0.307]0.330 0.401|0.641 0.639]0.301 0.319

1™count| 32 37 | 1 1|72 6]0 0|6

1o ofJo ofJo oo oo oo o

TwinsFormer achieves the best forecasting performance among 11 models on various prediction
horizons for both long-term and short-term forecasting tasks. To be concrete, TwinsFormer outper-
forms all baselines on 69 out of the 90 settings, including various prediction lengths and metrics
across 9 long-term benchmarks. Meanwhile, TwinsFormer outperforms all baselines on all settings
of varying prediction lengths and metrics across four short-term datasets.
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Table 7: Full results of the short-term forecasting task. We compare extensive competitive models
under different prediction lengths S € {12,24,48,96}. The input sequence length is set to 96 for
all baselines. Avg means the average results from all four prediction lengths.

Model TwinsFormer WPMixer Fredformer iTransformer TimeMixer  FilterNet FITS PatchTST DLinear  Crossformer TimesNet
S 1 (Ours) (025) (2024) (2024 (2024 (2024) (024 (2023) (2023) @o23)  [@023d)

Metric |[MSE MAE |MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE

12 10.063 0.165 [0.076 0.188]0.068 0.174[0.069 0.175]0.077 0.187|0.071 0.177]0.117 0.226|0.099 0.216{0.122 0.243|0.090 0.203]0.085 0.192
24 10.084 0.192 |0.113 0.226{0.093 0.202(0.097 0.208 [0.112 0.224|0.102 0.213]0.235 0.324|0.142 0.259{0.201 0.317|0.121 0.240{0.118 0.223
48 [0.119 0.231 [0.191 0.292]0.146 0.258]0.131 0.243|0.169 0.277(0.162 0.272]|0.541 0.521{0.211 0.319{0.333 0.425[0.202 0.317|0.155 0.260
96 10.161 0.267 |0.288 0.363]0.228 0.330|0.168 0.279 [0.220 0.322]0.244 0.340|1.062 0.790|0.269 0.370|0.457 0.515|0.262 0.367|0.228 0.317

PEMS03

| Avg [0.107 0.214 [0.167 0.267]0.135 0.243]0.116 0.226 |0.145 0.253]0.145 0.251|0.489 0.465]0.180 0.291]0.278 0.375]0.169 0.281]0.147 0.248

12 [0.072 0.179 [0.092 0.204[0.085 0.189]0.081 0.188|0.092 0.203|0.082 0.190(0.129 0.239(0.105 0.224(0.148 0.272|0.098 0.218|0.087 0.195
24 10.093 0.201 |0.128 0.243]0.117 0.224|0.099 0.211|0.127 0.239|0.110 0.224]0.246 0.337[0.153 0.275|0.224 0.340|0.131 0.256|0.103 0.215
48 0.121 0.228 |0.213 0.315|0.174 0.276(0.133 0.247 [0.188 0.294[0.160 0.276|0.568 0.539|0.229 0.339|0.355 0.437(0.205 0.326(0.136 0.250
96 [0.148 0.260 |0.307 0.384|0.273 0.354|0.172 0.283|0.240 0.337|0.234 0.343|1.181 0.843]0.291 0.389|0.452 0.504|0.402 0.457|0.190 0.303

PEMS04

| Avg [0.109 0.217 [0.185 0.287]0.162 0.261 [0.121 0.232|0.162 0.268]0.146 0.258|0.531 0.489]0.195 0.307]0.295 0.388]0.209 0.314]0.129 0.241

12 [0.055 0.145 [0.073 0.184]0.063 0.158]0.067 0.167 |0.069 0.172]0.064 0.163[0.109 0.222(0.095 0.207[0.115 0.242|0.094 0.200|0.082 0.181
24 10.070 0.164 [0.111 0.219]0.089 0.192|0.086 0.189|0.106 0.212]0.093 0.200{0.230 0.327{0.150 0.262[0.210 0.329]0.139 0.247|0.101 0.204
48 10.094 0.192 [0.237 0.328]0.136 0.241{0.110 0.214|0.185 0.2820.137 0.248|0.551 0.531{0.253 0.340{0.398 0.4580.311 0.369|0.134 0.238
96 |0.117 0.217 |0.303 0.254|0.197 0.298 |0.138 0.244 |0.246 0.327|0.198 0.306|1.112 0.809|0.346 0.404|0.594 0.553|0.396 0.442|0.181 0.279

PEMS07

| Avg [0.084 0.180

0.181 0.271]0.121 0.222]0.100 0.204]0.152 0.248]0.123 0.229]0.500 0.472]0.211 0.303|0.329 0.395]0.235 0.315]0.124 0.225

12 10.071 0.171 [0.091 0.201]0.081 0.185]0.080 0.183]0.097 0.205|0.080 0.182]0.122 0.233|0.168 0.232]0.154 0.276[0.165 0.214]0.112 0.212
24 10.091 0.189 |0.137 0.246{0.112 0.214(0.118 0.221 [0.156 0.262|0.114 0.219]0.236 0.330|0.224 0.281{0.248 0.353(0.215 0.260|0.141 0.238
48 10.128 0.219 |0.265 0.343|0.174 0.267[0.186 0.265 [0.269 0.345[0.184 0.284|0.562 0.540|0.321 0.354|0.440 0.470(0.315 0.355(0.198 0.283
96 ]0.198 0.266 |0.410 0.407|0.277 0.335|0.221 0.267|0.313 0.373|0.309 0.356|1.216 0.846|0.408 0.417|0.674 0.565|0.377 0.397|0.320 0.351

PEMS08

| Avg [0.122 0211 0226 0.299]0.161 0.250]0.151 0.234|0.209 0.296]0.172 0.260|0.534 0.487]0.280 0.321]0.379 0.416]0.268 0.307]0.193 0.271

1™comt| 20 20 O oo oo oo oo oo oo o]o oo oo o

D ERROR BARS

We obtain the standard deviation of TwinsFormer performance by training the model with 5 different
random seeds over 12 datasets. As seen in Table @, the error bars of all the results are tiny, which
exhibits that the performance of TwinsFormer is robust and reliable.

Table 8: Robustness of TwinsFormer performance obtained from 5 random seeds on 12 benchmarks.

Dataset | ETTml \ ETTm2 \ ETTh2 \ ECL

Metrics‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE

96 0.315 £+ 0.001 0.354 4+ 0.001|0.169 4+ 0.001 0.251 + 0.001]0.285 + 0.001 0.332 £ 0.001|0.134 £ 0.002 0.223 4 0.001
192 |0.362 4+ 0.001 0.384 + 0.002|0.236 + 0.001 0.289 =+ 0.001|0.364 £ 0.002 0.385 + 0.003[0.154 4+ 0.001 0.240 + 0.001
336 [0.396 4+ 0.002 0.402 + 0.003|0.292 + 0.001 0.330 £ 0.002|0.397 4 0.004 0.419 + 0.002|0.165 + 0.002 0.257 £ 0.002
720 [0.457 4+ 0.002 0.439 £ 0.003|0.397 &£ 0.002 0.397 £ 0.001|0.406 4 0.003 0.430 % 0.001|0.198 + 0.002 0.290 £ 0.003
Dataset | Traffic | Exchange | Solar-Energy | Weather
Metrics| ~ MSE MAE |  MSE MAE |  MSE MAE |  MSE MAE

96 ]0.379 4+ 0.001 0.258 + 0.000|0.079 £ 0.001 0.198 & 0.001|0.188 + 0.002 0.222 4 0.002|0.158 £ 0.001 0.199 + 0.002
192 0.388 4+ 0.001 0.265 + 0.002|0.170 + 0.002 0.293 £ 0.002|0.219 + 0.002 0.246 4 0.002|0.207 4 0.001 0.243 + 0.002
336 [0.407 4 0.003 0.272 + 0.002|0.317 £ 0.002 0.402 £ 0.001{0.240 £ 0.001 0.265 4= 0.002|0.263 4 0.002 0.285 4 0.002
720 |0.439 4 0.001 0.289 + 0.002|0.749 + 0.012 0.653 £ 0.004|0.236 £ 0.002 0.269 4 0.001|0.339 4 0.001 0.336 4 0.001
Dataset | PEMS03 | PEMS04 | PEMS07 | PEMS08
Metrics | MSE MAE \ MSE MAE \ MSE MAE \ MSE MAE

12 |0.063 4+ 0.001 0.165 4 0.001|0.072 £ 0.001 0.179 4 0.001|0.055 £ 0.002 0.145 4 0.001
24 [0.084 4+ 0.001 0.192 + 0.001|0.093 4+ 0.002 0.201 + 0.001|0.070 4 0.001 0.164 + 0.002
48 [0.119 4+ 0.001 0.231 #+ 0.002|0.121 4+ 0.001 0.228 + 0.001|0.094 4+ 0.002 0.192 + 0.001
96 [0.161 4+ 0.002 0.267 + 0.002|0.148 4+ 0.002 0.260 + 0.001|0.117 4+ 0.002 0.217 + 0.001

071 £ 0.001 0.171 £ 0.001
091 + 0.002 0.189 + 0.001
128 4+ 0.002 0.219 + 0.001
198 4+ 0.002 0.266 + 0.001

[eRelele]

E MORE EXTRA RESULTS

Efficiency analysis. Our TwinsFormer is a Transformer-based architecture with dual-stream in-
teractions, where the trend branch is composed of linear layers and sigmoid activation functions.
Therefore, like other Transformer models, the main complexity of TwinsFormer is O (N 2), which
comes from the seasonal branch with the attention module. Note that the N for TwinsFormer is
related to the number of variates, while the /N for most Transformer-based models is affected by the
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lookback length. Furthermore, the efficiency of TwinsFormer surpasses that of most Transformer
variants in datasets with a relatively small number of variates (i.e., N < 96). By learning multivari-
ate correlations through variate tokens following iTransformer 2024), TwinsFormer can
consistently exhibit superior computational efficiency on high-dimensional channel datasets.

Hyperparameter Sensitivity. We evaluate the hyperparameter sensitivity of TwinsFormer in terms
of the learning rate, the number of Twinsblock, and the hidden dimension of variate tokens. As
shown in Figure [7} the performance fluctuates under different hyperparameter settings. We can
observe that the learning rate, as the most common hyperparameter, should be carefully selected
for different datasets. In most cases, increasing the number of Twinsblock tends to strengthen the
model performance, especially in datasets with numerous varieties. For scenarios involving many
attributes, the forecasting performance decreases when the hidden dimension of variate tokens ex-
ceeds 1024.

Learning Rate Block Number Hidden Dimension
0'4‘\/—/ oA 0.4“\A—/‘

0.31 m 0.3 um.} 0.3
=

i e =—
—s—3%—3 E.‘E?
T — —1

T T T T

0.001  0.0005 0.0003 0.0001 1 2 3 4 256 512 1024 2048
—e— ETT —=— ECL —A— Traffic —&— Weather

Figure 7: Hyperparameter sensitivity concerning the learning rate, the number of Twinsblock, and
the hidden dimension of variate tokens. The results are recorded with an input length of T' = 96 and
a prediction length of S = 96 on four benchmarks.

Showcases. We present supplementary forecasting showcases in the Traffic dataset, comparing
them with five representative models. As seen in [8] TwinsFormer exhibits superior forecasting
performance with the most precise future series variations.
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| |
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Figure 8: Traffic prediction cases among different models under the input-96-predict-96 setting.
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Table 9: Full results on more benchmarks under different settings, where input-96-predict-
{96,192, 336, 720} is used for Wind, ZafNoo, and CzeLan, while input-36-predict-{24, 36,48, 60}
is used for Covid-19 and Wiki. Avg means the average results from all four prediction lengths.

Models | TwinsFormer | WPMixer | Fredformer | iTransformer | TimeMixer | FilterNet | PatchTST | Dlinear
(Ours) (2025) (2024) (2024) (2024) (2024) (2023) (2023)
Metrics MSE MAE| MSE MAE| MSE MAE| MSE MAE| MSE MAE| MSE MAE| MSE MAE| MSE MAE

96 | 0.825 0.608| 0.884 0.642| 0.921 0.655| 0.848 0.625| 0.855 0.620| 0.953 0.674| 0.889 0.652| 0.881 0.632
1921 0.974 0.672| 0.992 0.712| 1.078 0.748| 1.028 0.692| 1.032 0.712| 1.147 0.764| 1.076 0.769| 1.034 0.715
Wind |336| 1.069 0.747| 1.173 0.802| 1.215 0.819| 1.150 0.776| 1.153 0.776| 1.311 0.825| 1.209 0.809| 1.159 0.779
720| 1.183 0.804| 1.402 0.891| 1.323 0.858| 1.245 0.829| 1.233 0.809| 1.323 0.864| 1.304 0.851| 1.233 0.815

avg| 1.013 0.708| 1.113 0.762| 1.134 0.770| 1.068 0.731| 1.068 0.729| 1.184 0.782| 1.120 0.770| 1.077 0.735

96 | 0.422 0.403| 0.442 0.426| 0.434 0.428| 0432 0.411| 0.432 0.419| 0.541 0.473| 0.444 0.426| 0.434 0.411
192] 0.472 0.438| 0.525 0.469| 0.498 0.456| 0.487 0.448| 0.479 0.449| 0.708 0.575| 0.498 0.456| 0.484 0.444
ZafNoo |336] 0.506 0.456| 0.578 0.509| 0.530 0.480| 0.521 0.469| 0.521 0.469| 0.851 0.661| 0.530 0.480| 0.518 0.464
720| 0.542 0.476| 0.624 0.581| 0.574 0.499| 0.553 0.491| 0.543 0.483| 0.876 0.699| 0.574 0.499| 0.548 0.486

avg| 0.486 0.443| 0.542 0.496| 0.512 0.466| 0.498 0.455| 0.494 0.455| 0.744 0.602| 0.512 0.465| 0.496 0.451

96 | 0.178 0.229| 0.231 0.310| 0.176 0.237| 0.185 0.253| 0.180 0.232| 0.184 0.262| 0.183 0.251| 0.211 0.289
1921 0.210 0.252| 0.268 0.337| 0.215 0.279| 0.214 0.286| 0.214 0.258| 0.232 0.300| 0.208 0.271| 0.252 0.323
CzeLan |336] 0.243 0.280| 0.298 0.361| 0.224 0.288| 0.248 0.311| 0.248 0.289| 0.287 0.357| 0.243 0.302| 0.317 0.366
720| 0.276 0.317| 0.410 0.401| 0.282 0.337| 0.279 0.339| 0.278 0.329| 0.405 0.445| 0.273 0.335| 0.358 0.392

avg| 0.227 0.270| 0.302 0.352| 0.224 0.285| 0.232 0.297| 0.230 0.277| 0.277 0.341| 0.227 0.290| 0.285 0.343

24 | 4458 1.230| 4.869 1.394| 4.799 1.347| 4.715 1.321| 6.335 1.554| 5.643 1.424| 5.528 1.450| 9.780 1.851
36 | 6.842 1.624| 7.376 1.708| 7.536 1.727| 7.299 1.681| 8.222 1.787| 9.141 1.848| 8.351 1.830|12.804 2.083
COVID-19| 48 |10.213 2.009 [10.051 1.999 |10.131 2.130|10.141 2.012|11.669 2.157|10.904 2.303 |11.259 2.114|14.244 2.189
60 |12.237 2.198 [11.764 2.119|12.582 2.272|11.871 2.156|12.188 2.173 |12.688 2.168|12.666 2.225|15.472 2.275

avg| 8.438 1.765| 8.515 1.805| 8.762 1.808| 8.506 1.793| 9.604 1.918| 9.594 1.936| 9.451 1.905|13.075 2.099

24 ] 6.532 0.440| 6.811 0.464| 6.624 0.432| 6.886 0.437| 6.900 0.446| 7.023 0.512| 6.858 0.430| 6.883 0.520
36 | 5.948 0.442| 6.341 0.479| 6.038 0.453| 6.431 0.452| 6.520 0.467| 6.922 0.495| 6.400 0.445| 6.393 0.538
Wiki 48 | 5.784 0.459| 5.895 0.509| 5.874 0.464| 6.101 0.483| 6.108 0.484| 6.841 0.514| 5959 0.449| 5.940 0.547
60 | 5.489 0.462| 5.546 0.514| 5.493 0.463| 5.681 0.466| 5.732 0.476| 5.850 0.546| 5.633 0.452| 5.605 0.552

|avg| 5.938 0.451] 6.148 0.492| 6.007 0.453| 6.275 0.460| 6.315 0.468| 6.659 0.517| 6.212 0.444| 6.205 0.539
1% Count 18 19 2 2 3 0 0 0 0 0 0 0 2 4 0 0

Performance on Extra Benchmarks. We evaluate the performance of Twinsformer on more new
real-world datasets from fev-bench (Shchur et al., 2025) or GIFT-Eval (Aksu et al., [2024):

* Wind (Li et al.,2022) provides predicted wind speeds for a specific location, with a tempo-
ral resolution of 15 minutes. Each data point represents a one-hour-ahead forecast, and the
dataset covers the period from January 1 to February 1, 2020.

» ZafNoo (Qiu et al.|[2024) comprises solar irradiance measurements with a half-hourly tem-
poral resolution, covering the period between mid-May and late June of 2008.

* CzeLan (Qiu et al.l [2024) contains time-series monitoring data from the Czech Republic
(CZE), recorded at a consistent 30-minute interval between May and June 2016.

* COVID-19 (Chen et al., 2022), provided by Johns Hopkins University, maintains daily
records of COVID-19 hospitalizations in California from February to December 2020.

» Wiki [| contains daily page views for 60,000 Wikipedia articles in eight languages over
2018-2019, where we subsequently selected the first 99 articles as our experimental subset.

To ensure fair comparisons, we applied a fixed chronological split ratio of either 7:1:2 or 6:2:2 for
training, validation, and testing across all datasets. However, due to the limited total length of the
Wiki and COVID-19 datasets, we adopted a specific forecasting setting with an input length of 36
and prediction lengths of {24, 36, 48, 60}. For the other, longer datasets, we used an input length of
96 and forecasting lengths of {96,192, 336, 720}. As shown in Table @ the comprehensive results
indicate that our TwinsFormer consistently outperforms state-of-the-art models.

Comparison with DESTformer. DESTformer (Wang et all [2023b) is a trend-seasonal
decomposition-based Transformer framework, which leverages a multi-scale attention and a multi-
view attention mechanism to capture fine-grained temporal patterns. In Table [I0} we compare the

“https://www.kaggle.com/datasets/sandeshbhat/wikipedia-webtraffic-201819.
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Table 10: Comparison with DESTformer on three datasets.

Datasets Weather ECL Traffic
Metrics 96 192 336 720 | Avg 96 192 336 720 Avg 96 192 336 720 | Avg
TwinsFormer ‘ MSE | 0.158 0.207 0.263 0.339 | 0.242 | 0.134 0.154 0.165 0.198 0.163 | 0.379 0.388 0.407 0.439 | 0.403
(Ours) MAE | 0.199 0.243 0.285 0.336 | 0.266 | 0.223 0.240 0.257 0.290 0.253 | 0.258 0.265 0.272 0.289 | 0.271
DESTformer | MSE | 0.184 0.237 0.289 0.3650.269 | 0.165 0.176 0.188 0.219 0.187 | 0.427 0.453 0.468 0.488 | 0.459

(Reproduced) | MAE | 0.225 0.264 0.316 0.379|0.296 | 0.258 0.263 0.274 0.313 0.277 | 0.274 0.298 0.315 0.323 | 0.303
DESTformer | MSE | 0.202 0.254 0.307 0.395]0.290 | 0.187 0.195 0.203 0.229 0.204 | 0.562 0.593 0.603 0.599 | 0.589

(Original) | MAE | 0276 0.318 0369 0.417]0.345]0.296 0.307 0.325 0.338 0.317 | 0.354 0.355 0.377 0.356 | 0.361

performance of TwinsFormer and DESTformer across Weather, ECL, and Traffic datasets. Since the
author of DESTformer did not provide the open-source code repository, we reimplemented DEST-
former based on the algorithm in the original paper and reproduced the results with the same training
strategies as TwinsFormer. Meanwhile, we incorporated the original results of DESTformer as a ref-
erence. As can be observed in Table[I0} although the reproduced results of DESTformer are much
better than those in the original paper, the performance is still inferior to our method, which fully
demonstrates the effectiveness and superiority of TwinsFormer. The following points are worth
noting when interpreting the results:

* DESTformer designs two specialized, complex attention mechanisms to process trend and
seasonal components separately, which overlooks the real-world complexity where sea-
sonal and trend information are often entangled.

* The FFT-based decomposition in DESTformer is primarily a denoising operation, which
might discard meaningful, non-periodic signals that are not captured by the simple trend
component, potentially losing valuable information.

» TwinsFormer allows the model to utilize more information from the original signal. The
“noise” is not just removed but is repurposed to refine the representations of both compo-
nents, leading to a more accurate performance for time series forecasting.

Table 11: Zero-shot forecasting results on ETT datasets.

Model | TwinsFormer | WPMixer | Fredformer | TimeMixer | iTransformer | PatchTST
(Ours) 2025 2024 2024 2024 2023
Metric MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

96 | 0.301 0.342 | 0.318 0.351 | 0.317 0.374 | 0.313 0.368 | 0.314 0.366 | 0.313 0.362
192 | 0.375 0.394 | 0.382 0.402 | 0.392 0.406 | 0401 0.406 | 0.392 0.417 | 0.396 0.412
ETThl1—ETTh2 | 336 | 0.418 0.427 | 0.435 0453 | 0421 0435 | 0428 0.440 | 0.435 0436 | 0433 0.439
720 | 0.425 0.438 | 0454 0472 | 0436 0449 | 0439 0.464 | 0444 0457 | 0.442 0.453

Avg | 0.380 0.400 | 0.397 0.420 | 0.392 0416 | 0.395 0420 | 0.396 0.419 | 0.396 0.417

96 | 0.184 0.264 | 0.178 0.285 | 0.213 0.270 | 0.192 0.267 | 0.186 0.268 | 0.195 0.271
192 | 0256 0.298 | 0.253 0.331 | 0.274 0315 | 0.268 0.312 | 0.263 0.317 | 0.258 0.311
ETTml—ETTm2 | 336 | 0.313 0.336 | 0.307 0.374 | 0326 0.363 | 0.317 0.347 | 0.311 0352 | 0317 0.348
720 | 0.408 0.409 | 0410 0433 | 0.421 0422 | 0416 0412 | 0421 0417 | 0416 0414

Avg | 0.290 0.327 | 0.287 0.356 | 0.309 0.343 | 0.298 0.335 | 0.295 0.339 | 0.297 0.336

96 | 0.219 0.248 | 0.239 0.278 | 0.235 0275 | 0.218 0.263 | 0.229 0.255 | 0.225 0.257
192 | 0.264 0.327 | 0.286 0.327 | 0.283 0.323 | 0.265 0.343 | 0.274 0.321 | 0.268 0.323
ETThl1—ETTm2 | 336 | 0.343 0.379 | 0.331 0.402 | 0.325 0.395 | 0.326 0.382 | 0.330 0.376 | 0.332 0.385
720 | 0.429 0.445 | 0474 0501 | 0.464 0473 | 0442 0.494 | 0453 0.486 | 0.447 0.481

Avg | 0314 0.350 | 0.333 0.377 | 0.327 0367 | 0.313 0.371 | 0.322 0.360 | 0.318 0.362

96 | 0.353 0.368 | 0.376 0.384 | 0.362 0.388 | 0.364 0.377 | 0.359 0.380 | 0.381 0.389
192 | 0.392 0.409 | 0413 0421 | 0.415 0429 | 0411 0412 | 0408 0.419 | 0.419 0423
ETTm1—ETTh2 | 336 | 0.467 0.472 | 0.478 0.496 | 0473 0.511 | 0473 0.479 | 0455 0482 | 0.488 0.494
720 | 0.504 0.521 | 0.544 0.558 | 0.539 0.559 | 0.522 0.543 | 0.531 0.545 | 0.554 0.569

| Avg | 0.429 0443 | 0453 0465 | 0.447 0472 | 0.443 0453 | 0438 0457 | 0.461 0.469

Extra Generalization and Robustness Analysis. To further evaluate the generalization and robust-
ness ability of TwinsFormer, we conduct extensive experiments under zero-shot, noisy, and missing
data settings. For the zero-short setting, we utilize the models trained on one dataset to evaluate on
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another without retraining directly. Furthermore, we evaluate model robustness under covariate shift
by corrupting testing inputs with additive noise and random missing values. Specifically, we inject
white Gaussian noise into the test series X5 to generate a corrupted version:

Xcorrupted - Xtest +e€ €~ N(ngz)a o=0.1x Oz, (26)

where o, is the standard deviation of the training set, ensuring the noise level is scaled appropriately
for each dataset. Meanwhile, we randomly set values in the testing sequence to NaN with a prob-
ability of p = 10%. A simple forward-fill imputation is applied to maintain the input dimensions.
Crucially, all models are evaluated on the corrupted test sets without any retraining or fine-tuning,
testing their inherent robustness to imperfect data.

As shown in Table[TT} our method notably outperforms other models, which indicates the superority
of TwinsFormer in the cross-domain learning capability. Moreover, TwinsFormer exhibits smaller
performance degradation compared to baselines in Table suggesting our interactive design can
effectively filter out noise and recover from localized missingness when the fundamental trend-
seasonality decomposition remains valid.

Table 12: Robustness analysis with noise and missing data on ECL and Traffic datasets.

Setups | ECL | Traffic
etups

Clean Noise (¢ = 0.1) | Missing (p = 10%) Clean Noise (o = 0.1) | Missing (p = 10%)
Metric MSE MAE | MSE MAE MSE MAE MSE MAE | MSE MAE MSE MAE

96 | 0.147 0.241 | 0.157  0.253 | 0.162 0.260 0.406 0.277 | 0.435  0.292 | 0.447 0.302
192 | 0.165 0.258 | 0.176  0.271 0.181 0.278 0.426 0.290 | 0.457  0.306 | 0.469 0.316
Fredformer | 336 | 0.177 0.273 | 0.189  0.287 | 0.195 0.295 0.437 0.292 | 0469  0.309 | 0.482 0.319
720 | 0.213 0.304 | 0.227  0.319 | 0.234 0.328 0.462 0.305 | 0.496  0.323 | 0.509 0.334

Avg | 0.176 0.269 | 0.187  0.283 | 0.193 0.290 0.433 0.291 | 0.464  0.308 | 0.477 0.318

96 |0.148 0.240 | 0.159  0.254 | 0.164 0.261 0.395 0.268 | 0.427  0.285 | 0.440 0.295
192 | 0.162 0.253 | 0.174  0.268 | 0.179 0.275 0417 0.276 | 0451  0.294 | 0.464 0.304
iTransformer | 336 | 0.178 0.269 | 0.191 0.285 | 0.197 0.293 0.433 0.283 | 0.468  0.302 | 0.482 0.312
720 | 0.225 0.317 | 0.241 0.334 | 0.248 0.343 0.467 0.302]0.505 0.323 | 0.520 0.334

Avg | 0.178 0.270 | 0.191  0.285 | 0.197 0.293 0.428 0.282] 0463  0.301 0.477 0.311

96 | 0.153 0.244 | 0.164  0.258 | 0.169 0.265 0.473 0.287 | 0.510  0.306 | 0.525 0.316
192 | 0.168 0.259 | 0.180  0.274 | 0.186 0.282 0.486 0.294 | 0525 0.314 | 0.540 0.324
TimeMixer | 336 | 0.185 0.275]0.198  0.291 0.204 0.299 0.488 0.298 | 0.527  0.318 | 0.543 0.328
720 | 0.227 0.312]0.243  0.330 | 0.250 0.339 0.536 0.314 | 0579  0.336 | 0.596 0.347

Avg | 0.183 0.272 | 0.196  0.288 | 0.202 0.296 0.496 0.298 | 0.535  0.319 | 0.551 0.329

96 | 0.134 0223|0141 0232 | 0.145 0.238 0.379 0.258 | 0.402  0.270 | 0.411 0.278
192 | 0.154 0.240 | 0.162  0.250 | 0.166 0.256 0.388 0.265 | 0.412  0.278 | 0.421 0.286
TwinsFormer | 336 | 0.165 0.257 | 0.173  0.267 | 0.178 0.274 0.407 0.272| 0432  0.286 | 0.442 0.294
720 | 0.198 0.290 | 0.208  0.302 | 0.214 0.310 0.439 0.289 | 0.466  0.304 | 0.477 0.313

‘ Avg ‘ 0.163  0.253 ‘ 0.171  0.263 ‘ 0.176 0.270 ‘ 0.403 0.271 ‘ 0.428  0.285 ‘ 0.438 0.293

Clarification on Moving Average Decomposition. We use a fixed kernel size of k£ = 25 for the
moving average pooling, which is consistent across all datasets and settings. This value was chosen
based on empirical validation and aligns with common practices in time series decomposition (e.g.,
Autoformer, FEDformer). To prevent data leakage and preserve temporal alignment, we perform
padding using only values from within the historical input window, where the front padding and
back padding are applied with the first and last values of the inputs, respectively. In abrupt trend
changes or irregular sampling cases, the residual component R (as shown in Figure 1) captures
these irregularities, and our interactive module is designed to adaptively reassign such information
between the trend and seasonal branches.

Actually, the moving average operation serves primarily as an initialization to provide a preliminary
separation of trend and seasonal components. This is a starting point, not the final decomposition:

* The complex, non-stationary nature of real-world time series means that a fixed, linear
decomposition is indeed insufficient. Our key innovation lies in the subsequent interac-
tive modules, which enable the model to dynamically refine and recalibrate these initial
components throughout the Transformer blocks.

* In essence, the moving average provides a strong inductive bias. TwinsFormer then learns
to decompose more effectively by allowing the trend and seasonal branches to interact
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and exchange information, progressively disentangling the two patterns in a data-driven
manner. This process is far more powerful than a single, static decomposition.

Table 13: Ablation study on the kernel size k of the moving-average initialization.

TwinsFormer ECL Traffic Weather Solar ETTml ETTm2
Kernel Size | Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

96 |0.137 0.226|0.382 0.262|0.160 0.200 [0.189 0.224|0.319 0.355]0.170 0.252
192 |0.163 0.243]0.396 0.270|0.210 0.244|0.220 0.245]0.365 0.385|0.237 0.290
5 336 |0.172 0.265|0.410 0.276 |0.268 0.286|0.242 0.268 | 0.397 0.403|0.293 0.334
720 |0.203 0.297|0.441 0.294 |0.342 0.337|0.240 0.270 | 0.458 0.440|0.400 0.398

Avg [0.169 0.258|0.407 0.276 | 0.245 0.267 | 0.223 0.252|0.385 0.396 | 0.275 0.319

96 |0.134 0.223|0.380 0.258|0.158 0.199(0.188 0.222|0.314 0.353]0.168 0.250
192 |0.154 0.240(0.389 0.266|0.209 0.244 |0.219 0.247|0.361 0.383|0.235 0.288
15 336 |0.166 0.258|0.408 0.273 0.265 0.286|0.240 0.265]0.395 0.401|0.291 0.329
720 |0.200 0.291|0.442 0.291|0.338 0.338|0.239 0.269 |0.456 0.438|0.396 0.396

Avg |0.164 0.253|0.405 0.272|0.241 0.266 | 0.222 0.251|0.382 0.394 | 0.273 0.316

96 |0.134 0.223|0.379 0.258|0.158 0.199|0.188 0.222]0.315 0.354|0.169 0.251
192 |0.154 0.240|0.388 0.265|0.207 0.243]0.219 0.246|0.362 0.384|0.236 0.289
25 336 |0.165 0.257|0.407 0.272|0.263 0.285|0.240 0.265|0.396 0.402|0.292 0.330
720 |0.198 0.2900.439 0.289(0.339 0.336|0.236 0.269 |0.457 0.439|0.397 0.397

Avg |0.163 0.253]0.403 0.271|0.242 0.266 | 0.221 0.251 | 0.383 0.395|0.274 0.317

96 |0.133 0.222|0.380 0.259{0.159 0.200|0.189 0.223|0.316 0.355]0.170 0.252
192 |0.158 0.244|0.389 0.266 | 0.208 0.245|0.220 0.245]0.363 0.385|0.237 0.290
35 336 |0.168 0.263|0.408 0.273 0.265 0.286|0.242 0.264 10.397 0.403|0.293 0.331
720 |0.203 0.292|0.441 0.290|0.342 0.338|0.237 0.270|0.458 0.440|0.398 0.398

Avg |0.166 0.255|0.405 0.272|0.243 0.267 | 0.222 0.251|0.384 0.396 | 0.274 0.318

96 ]0.138 0.229|0.387 0.266|0.161 0.203 [0.192 0.225|0.320 0.357 |0.172 0.254
192 10.162 0.2480.396 0.273 |0.212 0.248 |0.223 0.252|0.367 0.388|0.238 0.294
45 336 |0.170 0.265|0.415 0.280|0.271 0.293|0.241 0.267 |0.401 0.402|0.294 0.336
720 |0.208 0.298 | 0.447 0.297|0.347 0.344|0.243 0.271 |0.458 0.442|0.401 0.400

| Avg [0.170 0.260|0.411 0.279|0.248 0.272|0.225 0.254|0.387 0.397|0.276 0.321

To directly address the concern about the reliance on a specific initialization, we conducted a sys-
tematic ablation on the kernel size k. The results, presented in Table show that TwinsFormer’s
performance remains stable and superior across a wide range of kernel sizes, from a very local con-
text (k = 13) to a much smoother one (k = 45). The negligible performance variance (Avg MSE
range of 0.002) clearly indicates that:

* The interactive modules in TwinsBlocks are the primary drivers of performance, as they
can effectively refine a wide range of initial decompositions.

* Our method is highly robust and generalizable, as it does not require careful tuning of the
decomposition kernel for different datasets.

Justification of Interactive Module Design. The interaction module acts as a “correction mecha-
nism”. The seasonal branch, being processed by the powerful Attention and FFN modules, learns
rich representations of dependencies and fine-grained temporal variations. The four MLPs are
trained end-to-end with the entire model via backpropagation, which transforms these signals into
“guidance” (scaling and shifting factors) for the trend branch. This allows the trend embedding to be
adaptively updated, absorbing or discarding information that was initially mis-assigned by the sim-
ple moving average. To rigorously validate this design choice, we conducted a fine-grained ablation
study on Table We systematically compared our full model against several variants:

e Variant A: Only using learnable bias MLPs (3, ), and scaling MLPS («, ) are fixed to 1.
* Variant B: Only using learnable scaling MLPS («, ), and bias MLPs (3, u) are fixed to 0.
* Variant C: Ag and Fg share the same MLPs, i.e.a = 7, 5 = p.
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* Variant D: Only using Ag for interaction and ignoring Fs.

 Variant E: Replacing four MLPs with a single FiLM-layer (Perez et al., 2018)) conditioned
only on Ag.

 Variant F: Two separate FiLM-layers for Ag and FJ.

Table 14: Fine-grained ablation study on our interactive module.

| ETTml | ETTh2 | ECL | Traffic | Weather | Solar | PEMS03 | PEMSO07

MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
TwinsFormer | 0.315 0.354 | 0.285 0.332 | 0.134 0.223 | 0.379 0.258 | 0.158 0.199 | 0.188 0.222 | 0.063 0.165 | 0.055 0.145

A 0.327 0.368 | 0.296 0.345 | 0.141 0.231]0.395 0.272 | 0.165 0.207 | 0.201 0.234 | 0.070 0.170 | 0.062 0.152
0.321 0.359|0.290 0.339|0.139 0.228 | 0.388 0.264 | 0.163 0.205 | 0.194 0.229 | 0.079 0.179 | 0.060 0.149
0.320 0.360 | 0.288 0.340 | 0.137 0.226 | 0.384 0.261 | 0.161 0.202 | 0.192 0.225 | 0.068 0.168 | 0.058 0.147
0.334 0.375]0.309 0.353 | 0.148 0.242 | 0.406 0.281 | 0.172 0.215 | 0.215 0.242 | 0.083 0.184 | 0.074 0.166
0.329 0.3720.302 0.349 | 0.143 0.235]0.398 0.275 | 0.166 0.208 | 0.206 0.236 | 0.078 0.177 | 0.070 0.160
0.324 0.363 | 0.299 0.347 | 0.142 0.233 | 0.389 0.265 | 0.164 0.206 | 0.200 0.232 | 0.075 0.172 | 0.068 0.155

Variant

| m| Ol 0| w

As shown in Table [T4] our interactive module design is optimal, and removing components (e.g.,
scaling or bias terms) in Variants A, B, C, and D leads to performance degradation, demonstrating
that our four-MLP design with dedicated processing pathways provides significantly better represen-
tation capacity for handling complex temporal interactions. Crucially, even the FiLM-conditioning
Variants E and F cannot match our performance, validating our architectural innovation in using spe-
cialized MLPs for distinct signal types. Although both FiLM and our interactive module use affine
transformations, our interactive module represents a significant architectural innovation specifically
designed for time series decomposition:

* Novel Dual-Source Conditioning: We process two distinct signals (Ag for cross-variate
dependencies and Fls for temporal details) through separate pathways, unlike single-input-
based FiLM.

* Specialized Transformation Networks: We use dedicated MLPs for each type of signal,
enabling specialized processing of different information characteristics.

* Decomposition-Specific Design: Our module is integral to a novel dual-stream architec-
ture for component interaction, representing a new application domain for feature-wise
modulation.

Performance on the Irregular Multivariate Time Series Forecasting. To evaluate the perfor-
mance on irregularly sampled time series, we use four datasets and follow the setting of (Zhang
et al.,[2024a). Here is the detailed information for these datasets:

* Human Activityconsists of 12 irregularly measured 3D positional variables from sensors
worn on the ankles, belts, and chests of five individuals performing various activities.

e USHCN [*|includes over 150 years of climate data from multiple U.S. stations, covering 5
climate variables.

» PhysioNet E] includes 12000 IMTS from different patients, each with 41 clinical signals
collected irregularly during the first 48 hours of ICU admission.

* MIMIC-III E] is a widely accessible clinical database that houses electronic health records
of patients in critical care.

As shown in Table [T5] the results indicate that Twinsformer is inferior to some baselines. The
performance drop on irregularly-sampled data stems from a fundamental architectural premise: both
the moving average and Fourier decomposition modules necessitate a regular time grid to produce
well-defined trend and seasonal components. The subsequent interactive mechanism, designed to

3https://archive.ics.uci.edu/dataset/196/localization+data+for+person-+activity
*https://www.osti.gov/biblio/ 1394920
Shttps://archive.physionet.org/challenge/2012

Shttps://mimic.mit.edu/

24



Under review as a conference paper at ICLR 2026

refine these semantically meaningful representations, cannot recover from the inherently flawed
inputs generated under irregular sampling, causing the model’s core advantage to diminish.

Table 15: Performance comparison for irregular multivariate time series forecasting.

| Human Activity | USHCN | PhysioNet | MIMIC-III

Setups | 2000ms—+2000ms | 24months—s6months | 36h—+12h | 36h—+12h
Metic |MSE ~ MAE |MSE  MAE |MSE MAE|MSE MAE
PatchTST [0.008  0.064 |0.615 0409  [0.028 0.115]0.098 0.243
iTransformer | 0.012  0.082  |0.608  0.398  |0.065 0.214]0.073 0.216
TimeMixer [0.006 0054 [0.596 0370  [0.013 0.129]0.046 0.137
Fredformer [0.007  0.064 |0.605 __ 0.389 | 0.011 0.0600.022 0.088
WPMixer |0.005  0.050 [0.568 0368  |0.028 0.072[0.057 0.117
TwinsFormer [0.006  0.066 ]0.602 0385  [0.032 0.084[0.078 0.210

Extra Visualization for the Interaction Mechanism. To better understand our interactive mod-
ule, we compare the intrinsic representations among: (1) raw time series, (2) moving average de-
composition, and (3) the enhanced output of our interactive module. Specifically, we employ the
t-SNE (Maaten & Hintonl [2008)) tool to qualitatively compare the intrinsic structure of different
feature representations. While t-SNE provides nonlinear projections that may distort absolute dis-
tances, the consistent experimental setup across all three conditions allows for meaningful relative
comparisons of representation quality and temporal coherence.

(a) Raw Time Series Features (b) MA-based Decomposition Features) (c) Interaction-based Decomposition Features
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Figure 9: Visualization of the learned features using t-SNE on ETTh2.

As shown in Figure [0] the raw time series features exhibit a scattered distribution with intermixed
points from different time windows, indicating ambiguous intrinsic structure and poorly defined tem-
poral patterns. In comparison, the moving average (MA)-based decomposition features demonstrate
improved clustering over the raw representation, suggesting that MA decomposition can partially
extract meaningful temporal structures. Notably, the interaction-based decomposition features re-
veal significantly clearer and more organized clustering patterns. The coherent progression of points
corresponding to sequential time windows provides visual evidence that our interactive module ef-
fectively captures intrinsic temporal dependencies and produces more structured representations.

Limitations and Future Works. Despite its compelling performance on regularly-sampled time
series, our work has a clear boundary for the current model’s applicability: it is highly effective for
forecasting in domains with strong periodicity and regular sampling (e.g., energy, traffic, weather)
but is not yet suited for inherently irregular time series. Future work will be directed toward tran-
scending this boundary to create a more universal forecasting framework. We plan to explore contin-
uous decomposition strategies with neural ordinary differential equations or continuous-time state-
space models, which can inherently model the latent trend and seasonal dynamics directly from
irregular observations and provide a robust foundation for the dual streams. Furthermore, although
the interaction module is designed to be lightweight, the computational complexity inherent in the
attention mechanism remains prohibitive for high-dimensional variable datasets. Thus, the devel-
opment of an interaction framework based on non-attention mechanisms represents a promising
direction for future research.
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