

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TWINSFORMER: REVISITING INHERENT DEPENDENCIES VIA TWO INTERACTIVE COMPONENTS FOR TIME SERIES FORECASTING

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Due to the remarkable ability to capture long-term dependencies, Transformer-based models have shown great potential in time series forecasting. However, real-world time series usually present intricate temporal patterns, making forecasting still challenging in many practical applications. To better grasp inherent dependencies, in this paper, we propose **TwinsFormer**, a novel Transformer-based framework utilizing two interactive components for time series forecasting. Unlike mainstream paradigms that employ plain decomposition, which train the model with two independent branches, we design an interactive strategy centered on the attention module and the feed-forward network to strengthen dependencies through decomposed components. Specifically, we adopt a dual stream approach to facilitate progressive and implicit information interactions for trend and seasonal components. For the seasonal stream, we feed the seasonal component to the attention module and feed-forward network with a subtraction mechanism. Meanwhile, we construct an auxiliary highway (without the attention module) for the trend stream, guided by seasonal signals. In this way, we can avoid the model overlooking inherent dependencies between different components for accurate forecasting. Our interactive strategy, although simple, can be easily adapted as a plug-and-play module to existing Transformer-based methods with minimal additional computational overhead. Experiments on various real-world datasets demonstrate the superiority of TwinsFormer, which outperforms previous state-of-the-art methods in both long-term and short-term forecasting performance.

1 INTRODUCTION

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
As a ubiquitous and paramount task in many real-world scenarios (e.g., weather (Wu et al., 2023b), energy (Yin et al., 2021), market (Granger & Newbold, 2014), and transportation (Yin et al., 2021)), time series forecasting has been explored with ongoing passion. Generally, time series forecasting aims to predict future temporal variations based on historical observations of time series, where the primary challenge is how to effectively capture temporal patterns from observed data (Fan et al., 2019; Deng et al., 2021; Shao et al., 2022; Ekambaram et al., 2023; Zhang et al., 2024b). Benefiting from the advancements in deep learning, various representative models with well-designed architectures, such as MLP-based (Wang et al., 2024; Zeng et al., 2023; Li et al., 2023), CNN-based (Wang et al., 2023a; Wu et al., 2023a; Liu et al., 2022a), and Transformer-based (Liu et al., 2024; Zhang & Yan, 2023; Zhou et al., 2022; Piao et al., 2024; Qiu et al., 2025) methods, have been proposed to tackle time series forecasting tasks and demonstrate impressive performance. Since the complex and non-stationary (Liu et al., 2022c; 2025) nature of the real world or systems, the observed series usually involves multitudinous variations, such as increasing, decreasing, and fluctuating, making it still hard to grasp reliable inherent dependencies for accurate forecasting.

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
To tackle intricate temporal patterns, series decomposition (Robert et al., 1990), which utilizes a moving average kernel to smooth out short-term fluctuations or noise in the time series, has been incorporated into deep models as a basic module. Empowered with various decomposition designs, existing methods (Wu et al., 2021; Zhou et al., 2022; Wang et al., 2023a; Zeng et al., 2023; Stetsyuk & Choi, 2025) generally utilize two independent branches to highlight seasonal and trend properties separately, then combine the seasonal and trend representations for the final prediction. In Figure 1, we visualize the time series and its decomposition components on the ECL dataset. In classic

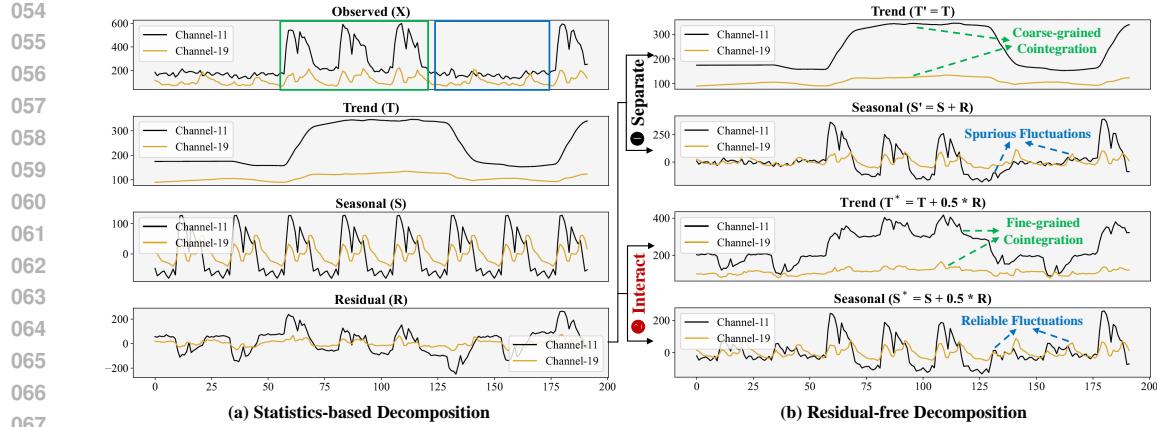


Figure 1: Visualization of different components and their combinations on the ECL dataset. (a) presents the characteristics of different components obtained by STL (Robert et al., 1990), which is a classical statistics-based decomposition (i.e., $X = T + S + R$). Due to the randomness of the Residual (R), modern decomposition designs (i.e., ①) decouple the original time series (X) into the Trend (T) and Seasonal (S'), where $S' = S + R$. To intuitively understand the role of the Residual, we divide R into two equal parts and add them to the Trend and Seasonal for interaction (i.e., ②).

statistical-based decomposition, time series often contain trend, season, and residual components (i.e., $X = T + S + R$), which respectively highlight different temporal patterns of the time series. Due to the unpredictability of the residual components, the existing trend-seasonal decompositions ignore the residual components, where the seasonal components obtained by subtracting the trend components from the original time series include the residual components (i.e., $S' = S + R$). To understand the role of residual components on trend and seasonal components, we divide the residuals into two parts, allowing them to interact with both trend and seasonal components simultaneously. Comparatively, the trend and seasonal components of ① maintain worse cointegrations and fluctuations than those of ② in Figure 1. Such inconsistencies lead to the learned trend and seasonal representations by independent branches, which may not accurately capture the temporal patterns of the observed series. Therefore, a more rational decomposition design should consider *the interactions between decomposed components to precisely unravel inherent dependencies for observed values*.

To fill this gap, we propose **TwinsFormer**, a Transformer-based framework that explicitly explores inherent dependencies via two interactive components for time series forecasting. **First**, we decompose the observed time series rather than the time series embeddings into trend and seasonal components, to better capture the characteristics of the time series itself. **Second**, since the trend components reflect the long-term fluctuations of the time series, we only feed the seasonal components to the attention and feed-forward modules with a subtraction mechanism to alleviate redundant coding. **Most importantly**, we regard the outputs of the attention and feed-forward modules as supervision information to guide the model to capture the representation of the trend components. With our interactive design, TwinsFormer can successfully aggregate seasonal and trend information to learn inherent dependencies between different components. Experimentally, our proposed TwinsFormer achieves state-of-the-art performance on seven real-world forecasting scenarios, effectively providing an interactive learning scheme for time series forecasting. Our primary contributions are summarized as follows:

- We examine the existing decomposition designs for time series forecasting and find that the interaction between different components is not explored: these designs simply learn separate representations for trend and seasonal components, overlooking non-linear dependencies or significant noise levels among time series.
- We propose TwinsFormer, a Transformer-based framework (to the best of our knowledge, the first) that explicitly explores inherent dependencies by learning implicit and progressive interactions between different components for time series forecasting.
- Extensive experimental results on 13 real-world benchmarks show the superiority of TwinsFormer against state-of-the-art methods. Specifically, TwinsFormer ranks in the top 1 among 11 models on 21 out of 22 average settings, including various prediction lengths and metrics for both long-term and short-term forecasting tasks.

2 RELATED WORK

2.1 DECOMPOSITIONS FOR TIME SERIES FORECASTING

Due to the capacity of the moving average kernel to smooth out short-term fluctuations or noise in the time series, Autoformer (Wu et al., 2021) initially proposed using the moving average kernel to decompose complex temporal variations into seasonal and trend components. Since then, trend-seasonal decomposition designs based on the moving average kernel have been frequently introduced in time series forecasting works. For instance, SCINet (Liu et al., 2022a) devises a downsample-convolve-interact architecture to extract dynamic temporal features at multiple resolutions with two sub-sequences. DLinear (Zeng et al., 2023) utilizes the series decomposition as the pre-processing before linear regression. MICN (Wang et al., 2023a) adopts multi-scale branches to model the local and global context by decomposing input series into seasonal and trend terms, while TimesNet (Wu et al., 2023a) designs a modular architecture to obtain decomposed components with the Fourier Transform. xPatch (Stitsyuk & Choi, 2025) introduces an exponential trend-seasonal decomposition to assign greater weight to more recent data points while smoothing out older data. More recently, TimeMixer (Wang et al., 2024) mixes multi-scale decomposable components for time series forecasting. Due to the non-linear or non-stationary properties of time series, however, a rudimentary moving averaging kernel may inadequately capture precise trends, which impedes the model from learning inherent dependencies through two independent branches.

2.2 TRANSFORMERS FOR TIME SERIES FORECASTING

Transformer-based methods have demonstrated significant success in time series forecasting, primarily because they can effectively model long-term temporal patterns (Li et al., 2019; Zhou et al., 2021; Liu et al., 2022b). However, the self-attention mechanism's quadratic complexity and redundant coding present challenges, leading many existing approaches to modify the attention module to reduce computational overhead. Notable works in this area include Informer (Zhou et al., 2021), which introduces ProbSparse self-attention and distillation techniques, Autoformer (Wu et al., 2021), which incorporates series decomposition with an auto-correlation mechanism, and FEDformer (Zhou et al., 2022), which implements an attention module using a Fourier-enhanced structure. Without modifications to the Transformer, some other attempts focus on the inherent processing of time series, such as stationarity (Liu et al., 2022c; 2023), patching (Du et al., 2023), channel independence (Nie et al., 2023), and inverting operations (Liu et al., 2024), consistently yielding improved performance for time series forecasting. Besides, refurbishing the Transformer in both aspects mentioned above, Crossformer Zhang & Yan (2023) introduces a two-stage attention mechanism and dimension-segment-wise embedding strategy to capture time and variate dependencies. More recently, Fredformer (Piao et al., 2024) employs a frequency-based attention mechanism to mitigate frequency bias, while DUET (Qiu et al., 2025) utilizes dual clustering on the temporal and channel dimensions to enhance forecasting performance.

Building upon the designs in previous works, TwinsFormer introduces an interactive dual-stream architecture that preserves the basic modules of the Transformer. Moreover, we replace the observed series with trend and seasonal components, allowing the model to better learn the inherent dependencies and their interactions. To the best of our knowledge, TwinsFormer is the first attempt to consider interactions between decomposed components on Transformers for time series forecasting.

3 TWINSFORMER

Preliminary. Given the observation data $X = \{x_1, x_2, \dots, x_M\} \in \mathbb{R}^{M \times N}$ with M length look-back window and N variates, the goal of multivariate time series forecasting is to predict the future time series $Y = \{x_{M+1}, \dots, x_{M+\tau}\} \in \mathbb{R}^{\tau \times N}$ at next τ time steps ($\tau > 1$). Following the idea of decomposition (Robert et al., 1990; Wu et al., 2021), time series can be divided into trend and seasonal components using a moving average kernel. For length- M input series $X \in \mathbb{R}^{M \times N}$, the decomposition process can be formulated as:

$$X_T = \text{AvgPool}(\text{Padding}(X)), \quad (1)$$

$$X_S = X - X_T,$$

where X_T and X_S are the trend and seasonal components.

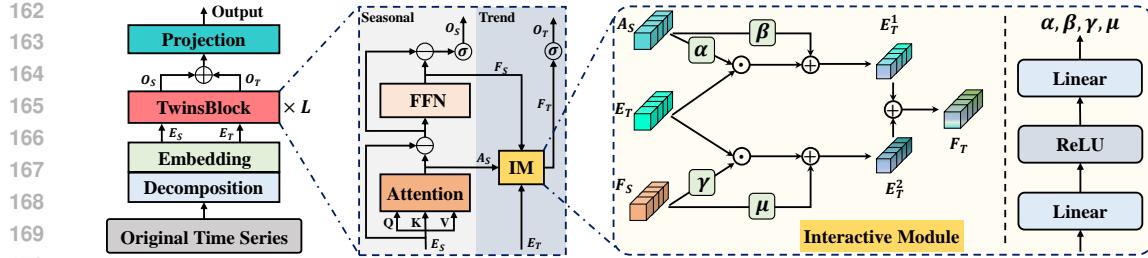


Figure 2: Overall framework of TwinsFormer.

3.1 STRUCTURE OVERVIEW

Our TwinsFormer, illustrated on the left of Figure 2, adopts the encoder-only architecture, renovating the Transformer to a dual-stream structure with two decomposed components. Before embedding the time series, we decompose the observed series into trend (T) and seasonal (S) components in the channel dimension. Then, we feed seasonal embeddings E_S to the attention module and feed-forward network (FFN) with a subtraction mechanism, while feeding trend embeddings E_T to the interactive module with the supervision of seasonal information (i.e., A_S and F_s). Finally, we aggregate seasonal and trend representations for the prediction.

Embedding the decomposed series as tokens. For convenience, we denote $X_{m,:}$ as the simultaneously recorded values for all the variates at the m time point, while $X_{:,n}$ as the whole time series of each variate indexed by n . Based on Equation 1, the trend and seasonal components of the time series can be formulated as $X_T = \text{AvgPool}(\text{Padding}(X_{:,n}))$ and $X_S = X - X_T$, respectively. Then, we utilize straightforward linear and dropout layers to create trend and seasonal embeddings with global covariates X_{mark} as follows:

$$\begin{aligned} E_T &= \text{Dropout}(\text{Linear}(\text{Concat}(X_T, X_{mark}))), \\ E_S &= \text{Dropout}(\text{Linear}(\text{Concat}(X_S, X_{mark}))). \end{aligned} \quad (2)$$

Note that $\text{Concat}(\cdot)$ is used on the dataset containing timestamp information (i.e., X_{mark}) and different components (i.e., X_T and X_S) through separate linear layers in our experiments. In this way, we map decomposed series data $X_T, X_S \in \mathbb{R}^{N \times M}$ from the original space into a new space, where $E_T, E_S \in \mathbb{R}^{N \times D}$ and D is the embedding dimension.

Learning interactions with our TwinsBlock. Unlike existing Transformer variants that attempt to optimize the structure of attention mechanisms in time series forecasting tasks, our TwinsFormer incorporates interactive learning into the Transformer block to explore the interactions between decomposed components, thereby capturing better inherent dependencies.

3.2 DUAL-STREAM DESIGN WITH INTERACTIVE MODULE

Keeping the original modules (i.e., the self-attention and feed-forward network (FFN)) of Transformer unchanged, our key design lies in the computationally efficient interactive module, which can guide the model to learn more effective trend and seasonal representations.

Seasonal Branch. Since the seasonal components exhibit more fluctuations in the time series data, we feed the seasonal embeddings to the attention and FFN modules to effectively capture the dependencies among the multivariates. Following the attention process of iTransformer (Liu et al., 2024), we regard $E_S \in \mathbb{R}^{N \times D}$ as N D -dimension tokens and utilize queries, keys, and values $Q, K, V \in \mathbb{R}^{N \times d_k}$ to obtain the attention-weighted seasonal representations $A_S \in \mathbb{R}^{N \times D}$, where d_k is the projected dimension:

$$\begin{aligned} Q &= E_S W_1 + b_1, \quad K = E_S W_2 + b_2, \quad V = E_S W_3 + b_3, \quad W_i \in \mathcal{R}^{d_k \times d_k}, \quad b_i \in \mathcal{R}^{1 \times d_k}, \\ A_S &= \text{Softmax}\left(\frac{Q K^T}{\sqrt{d_k}}\right) V. \end{aligned} \quad (3)$$

According to Equation 1, the seasonal components can be regarded as the residual part of the observed time series data. Intuitively, we adopt the idea of residual learning to implement a corrective

216 strategy by subtracting the outputs of the Attention and FFN modules from the corresponding inputs.
 217 The learning process can be formulated as follows:

$$\begin{aligned} 219 \quad H_1 &= \text{LayerNorm}(E_S - A_S), \\ 220 \quad H_2 &= H_1 - \text{FFN}(H_1). \end{aligned} \quad (4)$$

221 **Trend Branch.** Considering that untrainable moving average kernels lead to unreliable trend pat-
 222 terns, we fuse seasonal information to assist the learning of the trend branch through our interactive
 223 module (IM). On the one hand, attention-weighted A_S well reflects the dependencies among multi-
 224 variate, which can be converted into a coefficient matrix to update the trend embeddings. On the
 225 other hand, the signals F_s discarded by the seasonal branch can be regarded as meaningful informa-
 226 tion to guide the representation of the trend embeddings. Our interactive module is illustrated on the
 227 right of Figure 2, and we only use simple structures to train and update the trend branch network:

$$\begin{aligned} 228 \quad E_T^1 &= E_T \odot \exp(\alpha(A_s)) + \beta(A_s), \\ 229 \quad E_T^2 &= E_T \odot \exp(\gamma(F_s)) + \mu(F_s), \end{aligned} \quad (5)$$

231 where \odot denotes element-wise multiplication, $\alpha, \beta, \gamma, \mu$ are four MLPs with ReLU activations, and
 232 we obtain the transformed trend F_T by adding E_T^1 and E_T^2 together.

233 **Gate Mechanism.** Inspired by the inherent control of cells in RNNs (Zhao et al., 2017; Dey &
 234 Salem, 2017), we devise a gate mechanism σ at the end of each block for both streams to au-
 235 tonomously regulate the pace of information transmission. The gate mechanism for both seasonal
 236 and trend streams can be formulated as:

$$\begin{aligned} 237 \quad O_S &= \sigma(\text{Conv}_1(H_2)) \cdot \text{Conv}_2(H_2), \\ 238 \quad O_T &= \sigma(\text{Conv}_3(F_T)) \cdot \text{Conv}_4(F_T), \end{aligned} \quad (6)$$

240 where $\text{Conv}_1, \text{Conv}_2, \text{Conv}_3$ and Conv_4 are four 1×1 convolution operations with different pa-
 241 rameters. Taking the output of the former TwinsBlock as the input of the latter TwinsBlock, we stack
 242 L TwinsBlocks to learn seasonal and trend representations, and then add them together through a
 243 linear projection for the ultimate predictive outcomes, i.e., $\{\hat{Y} = \text{Projection}(O_S + O_T)\} \in \mathbb{R}^{\tau \times N}$.

244 3.3 THEORETICAL ANALYSIS OF TWINSFORMER

246 **Structural Constraints.** Given historical time series data X , we can obtain its trend and seasonal
 247 components (i.e., X_t and X_s) by the moving average kernel. For existing time series forecasting
 248 methods, we regard the models as $F(\cdot)$, while regarding the independent branches with decomposi-
 249 tion designs as $f_t(\cdot)$ and $f_s(\cdot)$, then we can formulate the predictive outputs \hat{Y} as

$$251 \quad \hat{Y} = F(f_t(X_t) + f_s(X_s)), \quad \text{where } X = X_t + X_s. \quad (7)$$

252 Similarly, we define the attention module, FFN, interactive module, and gate mechanism of Twins-
 253 Former as $g(\cdot)$, $h(\cdot)$, $\phi(\cdot)$, and σ respectively. Then, the outcomes are:

$$\begin{aligned} 255 \quad \hat{Y} &= F(\underbrace{\sigma_t(\phi(X_t, g(X_s), h(X_s - g(X_s)))}_{X'_t}) \\ 256 \quad &+ \underbrace{\sigma_s(X_s - g(X_s) - h(X_s - g(X_s)))}_{X'_s}), \end{aligned} \quad (8)$$

257 where $\phi(\cdot)$ updates the trend components by Equation 5. By omitting the constraints from various
 258 functions on variables, our interactive components can be simplified as

$$259 \quad X'_s = X_s - X_1 - X_2, \quad X'_t = X_t + X_1 + X_2. \quad (9)$$

260 Then, the sum of our two interactive components is

$$\begin{aligned} 261 \quad X &= X'_s + X'_t = X_s - \mathbf{X}_1 - \mathbf{X}_2 + X_t + \mathbf{X}_1 + \mathbf{X}_2 \\ 262 \quad &= X_s + X_t. \end{aligned} \quad (10)$$

Based on Equation 10, we can find that our interaction strategy perfectly fits the requirements of the decomposition design without bringing in redundant signals. Furthermore, we can elaborate on the practical implications of our TwinsFormer in mitigating the limitations of the trend-seasonal decomposition. According to Figure 1, observed values contain residual components, which means that the decomposed trend and seasonal components are not completely disentangled. TwinsFormer adopts a dual-stream interaction strategy to implicitly and progressively promote the decoupling of both components by using residual learning and interactive learning. Specifically, we filter out the coupled information (i.e., X_1 and X_2) from the seasonal components and compensate for them with the trend components through transformation mechanisms, allowing us to learn more robust and reliable decomposed representations for accurate time series forecasting. As seen in Figure 3, our interactive module can obtain decomposed components with more consistent variations than the moving average kernel.

Generalization Bound. According to the above structural constraints, we can further theoretically justify that such an interactive design makes a tighter generalization error bound. Let \mathcal{H}_{iTrans} denote the hypothesis space of iTransformer, and \mathcal{H}_{Twins} denote the hypothesis space of TwinsFormer. Our TwinsFormer enforces a structural decomposition and interaction mechanism that constrains the functions it can represent. Formally, we have the following:

$$\begin{aligned} \mathcal{H}_{Twins} : \mathcal{F}(X_t, X_s) &= \{\mathcal{F}(f_t(X_t) + f_s(X_s)) \mid \mathcal{F} \in \mathcal{W}, f_t \in \mathcal{T}, f_s \in \mathcal{S}\}, \\ \mathcal{H}_{iTrans} : \mathcal{F}(X) &= \{\mathcal{F}(X) \mid \mathcal{F} \in \mathcal{W}, X = X_t + X_s\}, \end{aligned} \quad (11)$$

where \mathcal{W} is the family of all possible Transformer-parameterized functions, \mathcal{T} and \mathcal{S} are function families for trend and seasonal components, respectively. Since the decomposition-interaction mechanism can be viewed as imposing a temporal smoothness prior, the hypothesis space of TwinsFormer can be rewritten as:

$$\mathcal{H}_{Twins} = \{\mathcal{F}(f_t(X_t) + f_s(X_s))\} \approx \{\mathcal{F} \circ (f_t \oplus f_s)(X)\}, \quad (12)$$

where \circ denotes the composition of the function and \oplus denotes the addition of components. This means $\mathcal{H}_{Twins} \subseteq \mathcal{H}_{iTrans}$, as it imposes additional structural constraints, where the model must first decompose the input, process the components separately, and then combine them.

According to the properties of Rademacher complexity (Giorgio & Marcello, 2008), for any class of functions \mathcal{A} and \mathcal{B} , $\mathfrak{R}(\mathcal{A} \circ \mathcal{B}) \leq \text{Lip}(\mathcal{A}) \cdot \mathfrak{R}(\mathcal{B})$, where $\text{Lip}(\mathcal{A})$ is the Lipschitz constant (Fazlyab et al., 2019) of \mathcal{A} . Therefore, we derive the following inequality chain:

$$\mathfrak{R}(\mathcal{H}_{Twins}) \approx \{\mathcal{F} \circ (\mathcal{T} \oplus \mathcal{S})\} \leq \text{Lip}(\mathcal{F}) \cdot [\mathfrak{R}(\mathcal{T}) + \mathfrak{R}(\mathcal{S})] < \text{Lip}(\mathcal{F}) \cdot \mathfrak{R}(\mathcal{F}) \approx \mathfrak{R}(\mathcal{H}_{iTrans}). \quad (13)$$

Since Rademacher complexity is a key quantity in deriving upper bounds for generalization error and $\mathfrak{R}(\mathcal{H}_{Twins}) < \mathfrak{R}(\mathcal{H}_{iTrans})$, we can find that TwinsFormer has a tighter generalization error bound than iTransformer. The detailed analysis is given in Appendix A. To further highlight the generalization of the model, we visualize the MSE curves of TwinsFormer and iTransformer in Figure 4, which indicates that our visualization is consistent with the theoretical analysis.

4 EXPERIMENTS

Benchmarks. For long-term forecasting, we experiment on 9 public benchmarks, which include ETT (Zhou et al., 2021), ECL (Wu et al., 2021), Exchange (Wu et al., 2021), Traffic (Wu et al., 2021), Weather (Wu et al., 2021) and Solar-energy (Lai et al., 2018) datasets. Moreover, we use PEMS (Liu et al., 2022a) for short-term forecasting.

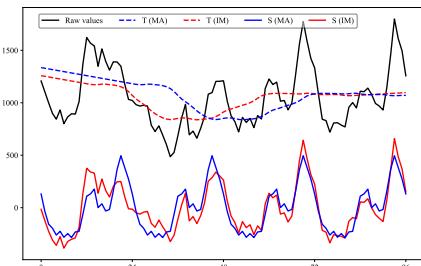


Figure 3: Comparison of the trends (T) and seasonals (S) learned by the existing moving average kernel (MA) and our interactive module (IM).

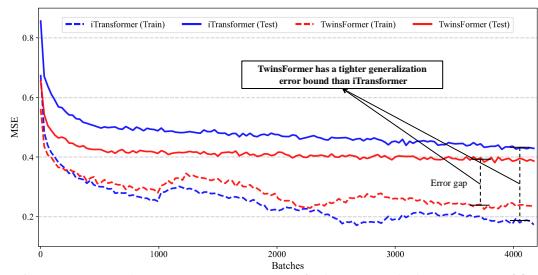


Figure 4: The MSE curve of the models on Traffic.

324 Table 1: Long-term forecasting results. The lookback length is set to $T = 96$ and all the results are
 325 averaged from all predictions $S \in \{96, 192, 336, 720\}$. Avg means further averaged by subsets. A
 326 lower MSE or MAE indicates a better forecasting performance.

Models	TwinsFormer (Ours)	WPMixer (2025)	Fredformer (2024)	iTransformer (2024)	TimeMixer (2024)	FilterNet (2024)	FITS (2024)	PatchTST (2023)	DLinear (2023)	Crossformer (2023)	TimesNet (2023a)	
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETT (Avg)	0.365 0.384	0.372 0.390	<u>0.368</u> <u>0.387</u>	0.383 0.399	0.381 0.396	0.381 0.398	0.402 0.404	0.381 0.397	0.442 0.444	0.685 0.578	0.391 0.404	
ECL	0.163 0.253	<u>0.166</u> <u>0.255</u>	0.176 0.269	0.178 0.270	0.183 0.272	0.205 0.290	0.384 0.434	0.205 0.290	0.212 0.300	0.244 0.334	0.192 0.295	
Exchange	0.329 0.387	0.354 0.399	<u>0.333</u> <u>0.391</u>	0.360 0.403	0.380 0.417	0.389 0.419	0.365 0.408	0.367 0.404	0.354 0.414	0.940 0.707	0.416 0.443	
Traffic	0.403 0.271	0.437 <u>0.279</u>	0.443 0.291	<u>0.428</u> 0.282	0.496 0.298	0.463 0.310	0.615 0.370	0.481 0.304	0.625 0.383	0.550 0.304	0.620 0.336	
Weather	0.242 0.266	0.246 <u>0.269</u>	0.246 0.273	0.258 0.278	<u>0.245</u> 0.274	0.259 0.281	0.273 0.292	0.259 0.281	0.265 0.317	0.259 0.315	0.259 0.287	
Solar-energy	<u>0.221</u> 0.251	0.223 <u>0.258</u>	0.226 0.262	0.233 0.262	0.216 0.280	0.235 0.266	0.376 0.385	0.270 0.307	0.330 0.401	0.641 0.639	0.301 0.319	

336 **Baselines.** We compare TwinsFormer with 13 representative baselines, including 1) Transformer-
 337 based methods: TimeBridge (Liu et al., 2025), TQNet (Lin et al., 2025), Leddam (Yu et al.,
 338 2024), Fredformer (Piao et al., 2024) iTransformer (Liu et al., 2024), PatchTST(Nie et al., 2023),
 339 Crossformer (Zhang & Yan, 2023); 2) Linear-based methods: WPMixer (Murad et al., 2025),
 340 TimeMixer (Wang et al., 2024), DLinear (Zeng et al., 2023), FilterNet (Yi et al., 2024), and FITS (Xu
 341 et al., 2024); and 3) TCN-based methods: TimesNet Wu et al. (2023a).

342 **Implementation details.** All the experiments are implemented in PyTorch (Paszke et al., 2019) and
 343 conducted on one NVIDIA 4090 24GB GPU. We use the L2 loss to train the model with the Adam
 344 optimizer (Kingma & Ba, 2015), where the training process is stopped early within 30 epochs. Our
 345 interactive module can apply to various time series frameworks without introducing any additional
 346 hyperparameters. Following iTransformer (Liu et al., 2024), we use the Mean Squared Error (MSE)
 347 and Mean Absolute Error (MAE) as the core metrics for the evaluation.

348 4.1 MAIN RESULTS

350 **Long-term Forecasting.** Comprehensive results for long-term forecasting are presented in Table
 351 1, with the best results highlighted in **bold** and the second-best underlined. TwinsFormer consis-
 352 tently outperforms state-of-the-art models, covering various time series benchmarks with different
 353 frequencies, variates, and real-world scenarios. Compared to sophisticated models like WPMixer
 354 and Fredformer, TwinsFormer achieves superior performance. Its interactive architecture effectively
 355 leverages the inherent trend-seasonal dependencies in time-series data. Specifically, TwinsFormer
 356 outperforms WPMixer and Fredformer by a considerable margin, with a 7.5% and 6.9% reduction
 357 in MSE among all the datasets for WPMixer and Fredformer, respectively. Although TimeMixer has
 358 a subtle reduction in MSE of 0.5% over TwinsFormer in Solar-energy, TwinsFormer achieves lower
 359 MAE scores than TimeMixer by 2.9%.

360 **Short-term Forecasting.** TwinsFormer also performs well in short-term forecasting on PEMS
 361 datasets. Due to the complex spatiotemporal dependencies among city-wide traffic networks in
 362 PEMS benchmarks, many advanced models significantly deteriorate in this task. For instance,
 363 TimeMixer employs a multiscale mixing architecture to model complex temporal variations; how-
 364 ever, its performance is not as good as that of iTransformer, which simply tokenizes the embedding
 365 of time series in the variate dimension. By contrast, TwinsFormer learns the inherent dependencies
 366 from the interactions between decomposed components, which can better capture accurate patterns
 367 for multivariate time series. As shown in Table 2, TwinsFormer achieves the best performance,
 368 confirming the effectiveness of our interactive strategy in modeling complex temporal dynamics.

369 Table 2: Short-term forecasting results on PEMS datasets. The lookback length is set to $T = 96$ and
 370 all the results are averaged from all predictions $S \in \{12, 24, 48, 96\}$.

Models	TwinsFormer (Ours)	WPMixer (2025)	Fredformer (2024)	iTransformer (2024)	TimeMixer (2024)	FilterNet (2024)	FITS (2024)	PatchTST (2023)	DLinear (2023)	Crossformer (2023)	TimesNet (2023a)	
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
PEMS03	0.107 0.214	0.167 0.267	0.135 0.243	<u>0.116</u> <u>0.226</u>	0.145 0.253	0.145 0.251	0.489 0.465	0.180 0.291	0.278 0.375	0.169 0.281	0.147 0.248	
PEMS04	0.109 0.217	0.185 0.287	0.162 0.261	<u>0.121</u> <u>0.232</u>	0.162 0.268	0.146 0.258	0.531 0.489	0.195 0.307	0.295 0.388	0.209 0.314	0.129 0.241	
PEMS07	0.084 0.180	0.181 0.271	0.121 0.222	<u>0.100</u> <u>0.204</u>	0.152 0.248	0.123 0.229	0.500 0.472	0.211 0.303	0.329 0.395	0.235 0.315	0.124 0.225	
PEMS08	0.122 0.211	0.226 0.299	0.161 0.250	<u>0.151</u> <u>0.234</u>	0.209 0.296	0.172 0.260	0.534 0.487	0.280 0.321	0.379 0.416	0.268 0.307	0.193 0.271	
Avg	0.106 0.206	0.190 0.281	0.145 0.244	<u>0.122</u> <u>0.224</u>	0.167 0.266	0.147 0.250	0.514 0.478	0.217 0.306	0.320 0.394	0.220 0.304	0.148 0.246	

378 4.2 ABLATION STUDIES
379

380 To verify the effectiveness of each main component of TwinsFormer, we provide indispensable ab-
381 lation studies for every possible design on decomposition and interactions. Specifically, we disable
382 or replace certain designs as model variants and experiment on two long-term (i.e., ECL and Traf-
383 fic) and two short-term forecasting (i.e., PEMS03 and PEMS07) datasets. As shown in Table 3, we
384 conduct an insightful analysis of decomposition and interactions based on the following observation.

385 Table 3: Ablation studies for TwinsFormer. We disable or replace each component of both decom-
386 position and interactions over four datasets. \checkmark and \times indicate with and without certain components,
387 respectively. The average results of all predicted lengths are listed here.

389 Design	390 Decomposition	391 Interactions				392 ECL		393 Traffic		394 PEMS03		395 PEMS07		
		$-$	F_T	A_S	F_S	σ		MSE	MAE	MSE	MAE	MSE	MAE	
391 TwinsFormer	392 \checkmark	393 \checkmark	394 \checkmark	395 \checkmark	396 \checkmark	397 \checkmark	398 0.163	399 0.253	400 0.403	401 0.271	402 0.107	403 0.214	404 0.084	405 0.180
392 ①	393 \times	394 \checkmark	395 \checkmark	396 \checkmark	397 \checkmark	398 \checkmark	399 0.178	400 0.275	401 0.413	402 0.288	403 0.126	404 0.236	405 0.112	406 0.208
393 ②	394 swap	395 \checkmark	396 \checkmark	397 \checkmark	398 \checkmark	399 \checkmark	400 0.165	401 0.258	402 0.406	403 0.276	404 0.110	405 0.218	406 0.091	407 0.184
394 ③	395 \checkmark	396 $+$	397 \checkmark	398 \checkmark	399 \checkmark	400 \checkmark	401 0.179	402 0.271	403 0.421	404 0.283	405 0.115	406 0.224	407 0.106	408 0.197
395 ④	396 \checkmark	397 \checkmark	398 \times	399 \checkmark	400 \checkmark	401 \checkmark	402 0.177	403 0.272	404 0.410	405 0.285	406 0.123	407 0.232	408 0.105	409 0.200
396 ⑤	397 \checkmark	398 \checkmark	399 \checkmark	400 \times	401 \checkmark	402 \checkmark	403 0.172	404 0.267	405 0.408	406 0.278	407 0.118	408 0.219	409 0.093	410 0.188
397 ⑥	398 \checkmark	399 \checkmark	400 \checkmark	401 \times	402 \checkmark	403 \times	404 0.166	405 0.261	406 0.408	407 0.277	408 0.111	409 0.220	410 0.098	411 0.192
398 ⑦	399 \checkmark	400 \checkmark	401 \checkmark	402 \checkmark	403 \checkmark	404 \times	405 0.175	406 0.269	407 0.424	408 0.283	409 0.119	410 0.232	411 0.117	412 0.205

397 **Ablation on decomposition.** Considering that the trend and seasonal components in the decom-
398 position design are fed to different network branches, we disable the decomposition by using two
399 original observed series as inputs (i.e., ①) and swap trend and seasonal components (i.e., ②) for
400 ablation analysis. In ablation ① and ②, we observe significant decreases in forecasting performance
401 for both long-term and short-term predictions, which demonstrates that our integration of the de-
402 composition into the Transformer architecture is reasonable and effective.

403 **Ablation on interactions.** For the interactions, we verify effectiveness by gradually removing or
404 replacing components. In ablation ③, we replace the subtraction mechanism (i.e., $-$) with original
405 addition skip connections (i.e., $+$), and the results on ③ show a decline in forecasting accuracy.
406 This illustrates that decomposed components can better satisfy the requirements of the Transformer
407 architecture by using the subtraction mechanism. Meanwhile, the results in ③ further highlight the
408 rationality of the decomposition design, which is consistent with the theoretical analysis in Section
409 3.3. In ablations ④, ⑤, ⑥, and ⑦, we eliminate the impact of F_T , A_S , F_S , and gate mechanism σ for
410 interactive learning, respectively. These four ablations all result in significant drops in forecasting
411 performance, indicating that all inputs for interactive learning can effectively enhance the perfor-
412 mance of TwinsFormer. The above observations highlight the substantial influence of our strategy,
413 which utilizes residual and interactive learning in the Transformer architecture.

414 4.3 MODEL ANALYSIS
415

416 **Compatibility Study.** To verify the compatibility and promoting effect of our framework, we
417 adopt different decomposition initializations and apply the interactive module (IM) to three excel-

418 Table 4: Compatibility study for TwinsFormer. We adopt the moving average kernel (MA), Fourier-
419 based transformation (FB), and learnable decomposition (LD) initializations and integrate our inter-
420 active module (IM) into three Transformer-based forecasters.

422 Model	423 TwinsFormer (Ours)						424 TimeBridge				425 TQNet				426 Leddam					
	427 Decomposition Initializations						(2025)				(2025)				(2024)					
428 Setup	429 MA		430 LD		431 FD		432 Original	433 + IM	434 Original	435 + IM	436 Original	437 + IM	438 Original	439 + IM						
	MSE	MAE	MSE	MAE	MSE	MAE					MSE	MAE	MSE	MAE	MSE	MAE				
430 ECL	96	0.134	0.223	0.136	0.228	0.135	0.226	0.120	0.214	0.115	0.210	0.134	0.229	0.132	0.228	0.141	0.235	0.138	0.233	
	192	0.154	0.240	0.155	0.242	0.156	0.243	0.142	0.237	0.138	0.235	0.154	0.247	0.150	0.242	0.159	0.252	0.158	0.252	
	336	0.165	0.257	0.163	0.254	0.167	0.258	0.156	0.252	0.154	0.251	0.169	0.264	0.163	0.261	0.173	0.268	0.172	0.267	
	720	0.198	0.290	0.200	0.293	0.201	0.293	0.179	0.278	0.178	0.276	0.201	0.294	0.199	0.292	0.201	0.295	0.200	0.293	
431 Traffic	432 Avg		0.163	0.253	0.164	0.254	0.165	0.255	0.149	0.245	0.146	0.243	0.164	0.259	0.161	0.256	0.169	0.263	0.167	0.261
	96	0.379	0.258	0.381	0.260	0.378	0.259	0.340	0.240	0.338	0.239	0.413	0.261	0.406	0.258	0.426	0.276	0.416	0.265	
	192	0.388	0.265	0.387	0.266	0.390	0.268	0.343	0.250	0.340	0.248	0.432	0.271	0.418	0.267	0.458	0.289	0.429	0.272	
	336	0.407	0.272	0.410	0.275	0.411	0.279	0.363	0.257	0.361	0.255	0.450	0.277	0.433	0.272	0.486	0.297	0.435	0.284	
	720	0.439	0.289	0.442	0.292	0.438	0.286	0.393	0.271	0.392	0.270	0.486	0.295	0.448	0.295	0.498	0.313	0.452	0.292	
432 Avg		0.403	0.271	0.405	0.273	0.404	0.273	0.360	0.255	0.358	0.253	0.445	0.276	0.426	0.273	0.467	0.294	0.433	0.278	

lent Transformer-based forecasters. On the one hand, we replace the moving average (MA) with frequency-based (FB) or learnable decomposition (LD) strategies. On the other hand, we integrate our interactive design into the TimeBridge (Liu et al., 2025), TQNet (Lin et al., 2025), and Leddam (Yu et al., 2024) without modifying their hyperparameters. As seen in Table 4, the average performance gap achieved by TwinsFormer does not exceed 0.02 under different decomposition initializations, which illustrates the favorable decomposition compatibility of TwinsFormer. Moreover, our interactive technique consistently improves the original baselines’ performance, indicating its portability and superiority across different Trenasformer-based architectures.

Dependency Study. To provide an intuitive understanding of the learned representations by our dual-stream framework, we visualize the multivariate correlations in Figure 5. It can be observed that the multivariate correlations learned by iTTransformer are redundant compared to the ground truth. In contrast, feeding the attention branch with seasonal components can better capture multivariate correlations than feeding it with trend components, which is consistent with the results of ② in Table 3. Those observations indicate that our interactive design can learn more accurate dependencies than iTTransformer and achieve better forecasting performance.

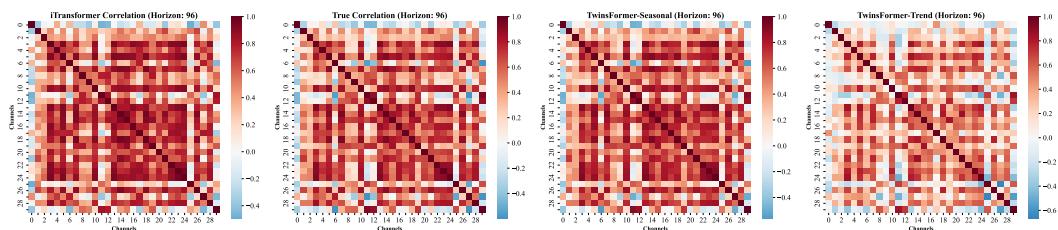


Figure 5: Analysis of multivariate correlations on ECL. Zoom in for more details.

Lookback Sensitivity. As argued in (Zeng et al., 2023) and (Nie et al., 2023), most of the Transformer-based models will not improve the forecasting performance with an increasing lookback length due to the distracted attention on the longer input (Liu et al., 2024). However, our TwinsFormer reduces the MSE scores with enlarged historical information available, which is consistent with the theoretical analysis using statistical methods (Box & Jenkins, 1968). As seen in Figure 6, the forecasting results keep improving in most cases where the prediction length S belongs to $\{96, 192, 336, 720\}$ as the receptive field increases. These improvements confirm that our TwinsFormer can effectively capture inherent dependencies from a longer lookback window.

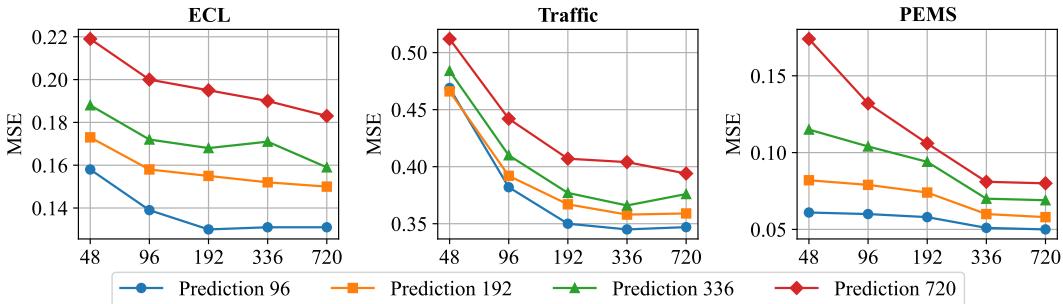


Figure 6: Forecasting performance with different lookback lengths on three datasets.

5 CONCLUSION AND FUTURE WORK

Leveraging the strengths of decomposition for mining temporal patterns and attention for capturing multivariate correlations, we propose TwinsFormer, which models inherent dependencies in time series through two interactive branches. Empowered by a novel interactive design, TwinsFormer seamlessly integrates decomposition into the Transformer architecture, enabling effective learning of time series representations. Experiments show that TwinsFormer achieves state-of-the-art performance on both long-term and short-term forecasting tasks. Detailed visualizations, ablation studies, and analyses further demonstrate the effectiveness and generalization of our framework. For future work, we plan to explore more efficient interaction designs for non-Transformer architectures and extend our evaluation to a broader range of time series tasks.

486 REFERENCES
487

488 Taha Aksu, Gerald Woo, Juncheng Liu, Xu Liu, Chenghao Liu, Silvio Savarese, Caiming Xiong,
489 and Doyen Sahoo. Gift-eval: A benchmark for general time series forecasting model evaluation.
490 *CoRR*, abs/2410.10393, 2024.

491 Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
492 structural results. *Journal of machine learning research*, 3(Nov):463–482, 2002.

493 George EP Box and Gwilym M Jenkins. Some recent advances in forecasting and control. *Journal*
494 *of the Royal Statistical Society. Series C (Applied Statistics)*, 17(2):91–109, 1968.

495 Yuzhou Chen, Ignacio Segovia-Dominguez, Baris Coskunuzer, and Yulia R. Gel. Tamp-s2gcnets:
496 Coupling time-aware multipersistence knowledge representation with spatio-supra graph convo-
497 lutional networks for time-series forecasting. In *The Tenth International Conference on Learning*
498 *Representations (ICLR)*, 2022.

499 Jinliang Deng, Xiusi Chen, Renhe Jiang, Xuan Song, and Ivor W. Tsang. St-norm: Spatial and tem-
500 poral normalization for multi-variate time series forecasting. In *Proceedings of the 27th ACM*
501 *SIGKDD Conference on Knowledge Discovery and Data Mining, KDD*, pp. 269–278. ACM,
502 2021.

503 Rahul Dey and Fathi M Salem. Gate-variants of gated recurrent unit (gru) neural networks. In *IEEE*
504 *60th International Midwest Symposium on circuits and systems (MWSCAS)*, pp. 1597–1600, 2017.

505 Dazhao Du, Bing Su, and Zhewei Wei. Preformer: predictive transformer with multi-scale segment-
506 wise correlations for long-term time series forecasting. In *IEEE International Conference on*
507 *Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5, 2023.

508 Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam.
509 Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting. In *Proceed-
510 ings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD*, pp.
511 459–469. ACM, 2023.

512 Chenyou Fan, Yuze Zhang, Yi Pan, Xiaoyue Li, Chi Zhang, Rong Yuan, Di Wu, Wensheng Wang,
513 Jian Pei, and Heng Huang. Multi-horizon time series forecasting with temporal attention learning.
514 In *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and*
515 *Data Mining, KDD*, pp. 2527–2535. ACM, 2019.

516 Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient
517 and accurate estimation of lipschitz constants for deep neural networks. In *Advances in neural*
518 *information processing systems, NeurIPS*, volume 32, 2019.

519 Gnecco Giorgio and Sanguineti Marcello. Approximation error bounds via rademacher complexity.
520 *Applied Mathematical Sciences*, 2:153–176, 2008.

521 Clive William John Granger and Paul Newbold. *Forecasting economic time series*. Academic press,
522 2014.

523 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *3rd Interna-
524 tional Conference on Learning Representations, ICLR*, 2015.

525 Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
526 temporal patterns with deep neural networks. In *The 41st international ACM SIGIR conference*
527 *on research & development in information retrieval*, pp. 95–104, 2018.

528 Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhui Chen, Yu-Xiang Wang, and Xifeng
529 Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
530 forecasting. In *Advances in Neural Information Processing Systems, NeurIPS*, pp. 5244–5254,
531 2019.

532 Yan Li, Xinjiang Lu, Yaqing Wang, and Dejing Dou. Generative time series forecasting with dif-
533 fusion, denoise, and disentanglement. In *Advances in Neural Information Processing Systems*
534 *(NeurIPS)*, 2022.

540 Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An
 541 investigation on linear mapping. *arXiv preprint arXiv:2305.10721*, 2023.
 542

543 Shengsheng Lin, Haojun Chen, Haijie Wu, Chunyun Qiu, and Weiwei Lin. Temporal query net-
 544 work for efficient multivariate time series forecasting. In *International Conference on Machine
 545 Learning, ICML*, 2025.

546 Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
 547 Time series modeling and forecasting with sample convolution and interaction. In *Advances in
 548 Neural Information Processing Systems, NeurIPS*, 2022a.

549

550 Peiyuan Liu, Beiliang Wu, Yifan Hu, Naiqi Li, Tao Dai, Jigang Bao, and Shu-Tao Xia. Timebridge:
 551 Non-stationarity matters for long-term time series forecasting. In *International Conference on
 552 Machine Learning, ICML*, 2025.

553

554 Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X. Liu, and Schahram Dustdar.
 555 Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and fore-
 556 casting. In *The Tenth International Conference on Learning Representations, ICLR*, 2022b.

557

558 Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
 559 the stationarity in time series forecasting. *Advances in Neural Information Processing Systems,
 560 NeurIPS*, 35:9881–9893, 2022c.

561

562 Yong Liu, Chenyu Li, Jianmin Wang, and Mingsheng Long. Koopa: Learning non-stationary time
 563 series dynamics with koopman predictors. In *Advances in Neural Information Processing Sys-
 564 tems, NeurIPS*, 2023.

565

566 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 567 itransformer: Inverted transformers are effective for time series forecasting. In *The Twelfth Inter-
 568 national Conference on Learning Representations, ICLR*, 2024.

569

570 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine
 571 learning research*, 9(Nov):2579–2605, 2008.

572

573 Mehryar Mohri and Afshin Rostamizadeh. Stability and generalization of learning algorithms for
 574 non-i.i.d. processes. In *IEEE 51st IEEE Conference on Decision and Control, CDC*, pp. 3873–
 575 3878, 2012.

576

577 Md Mahmuddun Nabi Murad, Mehmet Aktukmak, and Yasin Yilmaz. Wpmixer: Efficient multi-
 578 resolution mixing for long-term time series forecasting. In *Proceedings of the AAAI Conference
 579 on Artificial Intelligence, AAAI*, volume 39, pp. 19581–19588, 2025.

580

581 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
 582 64 words: Long-term forecasting with transformers. In *The Eleventh International Conference
 583 on Learning Representations, ICLR*, 2023.

584

585 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 586 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
 587 ward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
 588 Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
 589 performance deep learning library. In *Advances in Neural Information Processing Systems,
 590 NeurIPS*, pp. 8024–8035, 2019.

591

592 Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
 593 reasoning with a general conditioning layer. In *Proceedings of the AAAI conference on artificial
 594 intelligence (AAAI)*, volume 32, 2018.

595

596 Xihao Piao, Zheng Chen, Taichi Murayama, Yasuko Matsubara, and Yasushi Sakurai. Fredformer:
 597 Frequency debiased transformer for time series forecasting. In *Proceedings of the 30th ACM
 598 SIGKDD Conference on Knowledge Discovery and Data Mining, KDD*, 2024.

594 Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoy-
 595 ing Zhou, Christian S. Jensen, Zhenli Sheng, and Bin Yang. TFB: towards comprehensive and
 596 fair benchmarking of time series forecasting methods. *Proc. VLDB Endow.*, 17(9):2363–2377,
 597 2024.

598 Xiangfei Qiu, Xingjian Wu, Yan Lin, Chenjuan Guo, Jilin Hu, and Bin Yang. Duet: Dual clus-
 599 tering enhanced multivariate time series forecasting. In *Proceedings of the 31st ACM SIGKDD*
 600 *Conference on Knowledge Discovery and Data Mining, KDD*, 2025.

602 Cleveland Robert, C William, and Terpenning Irma. Stl: A seasonal-trend decomposition procedure
 603 based on loess. *J Off Stat*, 6:3–73, 1990.

605 Zezhi Shao, Zhao Zhang, Fei Wang, and Yongjun Xu. Pre-training enhanced spatial-temporal graph
 606 neural network for multivariate time series forecasting. In *Proceedings of the 28th ACM SIGKDD*
 607 *Conference on Knowledge Discovery and Data Mining*, pp. 1567–1577. ACM, 2022.

608 Oleksandr Shchur, Abdul Fatir Ansari, Caner Turkmen, Lorenzo Stella, Nick Erickson, Pablo Guer-
 609 ron, Michael Bohlke-Schneider, and Yuyang Wang. fev-bench: A realistic benchmark for time
 610 series forecasting. *CoRR*, abs/2509.26468, 2025.

612 Artyom Stetsyuk and Jaesik Choi. xpatch: Dual-stream time series forecasting with exponential
 613 seasonal-trend decomposition. In *Proceedings of the AAAI Conference on Artificial Intelligence,*
 614 *AAAI*, 2025.

616 Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. Micn: Multi-
 617 scale local and global context modeling for long-term series forecasting. In *The Twelfth Interna-*
618 tional Conference on Learning Representations, ICLR, 2023a.

619 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang,
 620 and Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. In *The*
621 Twelfth International Conference on Learning Representations, ICLR, 2024.

622 Yajun Wang, Jianping Zhu, and Renke Kang. Destformer: A transformer based on explicit seasonal-
 623 trend decomposition for long-term series forecasting. *Applied Sciences*, 13(18):10505, 2023b.

625 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
 626 formers with auto-correlation for long-term series forecasting. In *Advances in Neural Information*
627 Processing Systems, NeurIPS, pp. 22419–22430, 2021.

629 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
 630 Temporal 2d-variation modeling for general time series analysis. In *The Eleventh Interna-*
631 tional Conference on Learning Representations, ICLR, 2023a.

632 Haixu Wu, Hang Zhou, Mingsheng Long, and Jianmin Wang. Interpretable weather forecasting
 633 for worldwide stations with a unified deep model. *Nature Machine Intelligence*, 5(6):602–611,
 634 2023b.

636 Zhijian Xu, Ailing Zeng, and Qiang Xu. FITS: Modeling time series with \$10k\$ parameters. In *The*
637 Twelfth International Conference on Learning Representations, ICLR, 2024.

639 Kun Yi, Jingru Fei, Qi Zhang, Hui He, Shufeng Hao, Defu Lian, and Wei Fan. Filternet: Harness-
 640 ing frequency filters for time series forecasting. In *Advances in Neural Information Processing*
641 Systems, NeurIPS, volume 37, pp. 55115–55140, 2024.

644 Xueyan Yin, Genze Wu, Jinze Wei, Yanming Shen, Heng Qi, and Baocai Yin. Deep learning on
 645 traffic prediction: Methods, analysis, and future directions. *IEEE Transactions on Intelligent*
646 Transportation Systems, 23(6):4927–4943, 2021.

648 Guoqi Yu, Jing Zou, Xiaowei Hu, Angelica I Aviles-Rivero, Jing Qin, and Shujun Wang. Revitaliz-
 649 ing multivariate time series forecasting: Learnable decomposition with inter-series dependencies
 650 and intra-series variations modeling. In *Forty-first International Conference on Machine Learn-*
651 ing, ICML, 2024.

648 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
649 forecasting? In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp.
650 11121–11128, 2023.

651 Weijia Zhang, Chenlong Yin, Hao Liu, Xiaofang Zhou, and Hui Xiong. Irregular multivariate time
652 series forecasting: A transformable patching graph neural networks approach. In *Forty-first In-*
653 *ternational Conference on Machine Learning (ICML)*, 2024a.

654 Xinyu Zhang, Shanshan Feng, Jianghong Ma, Huiwei Lin, Xutao Li, Yunming Ye, Fan Li, and
655 Yew Soon Ong. Frnet: Frequency-based rotation network for long-term time series forecasting.
656 In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,*
657 *KDD*, pp. 3586–3597. ACM, 2024b.

658 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
659 for multivariate time series forecasting. In *The Eleventh International Conference on Learning*
660 *Representations, ICLR*, 2023.

661 Zheng Zhao, Weihai Chen, Xingming Wu, Peter CY Chen, and Jingmeng Liu. Lstm network: a
662 deep learning approach for short-term traffic forecast. *IET intelligent transport systems*, 11(2):
663 68–75, 2017.

664 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
665 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings*
666 *of the AAAI conference on artificial intelligence*, volume 35, pp. 11106–11115, 2021.

667 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
668 enhanced decomposed transformer for long-term series forecasting. In *International Conference*
669 *on Machine Learning, ICML*, volume 162, pp. 27268–27286, 2022.

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A THEORETICAL FOUNDATION FOR GENERALIZATION BOUNDS 703

704 Time series forecasting presents unique challenges due to the inherent temporal dependencies and
705 non-stationary characteristics of sequential data. TwinsFormer addresses these challenges through
706 explicit decomposition of the input series $X = \{x_1, x_2, \dots, x_T\}$ into trend (X_t) and seasonal (X_s)
707 components, with $X = X_t + X_s$. Its predictive mechanism incorporates specialized interactive
708 modules, which can be defined as follows:

$$709 \quad Y = \mathcal{F}(\sigma_t(\phi(X_t, g(X_s)), h(X_s - g(X_s))) + \sigma_s(X_s - g(X_s) - h(X_s - g(X_s)))) , \quad (14)$$

710 where $g(\cdot)$, $h(\cdot)$, $\phi(\cdot)$ represent attention, FFN, and interaction modules, and σ denotes gating mech-
711 anisms. The simplified interaction ensures information preservation:

$$713 \quad X'_s = X_s - X_1 - X_2, \quad X'_t = X_t + X_1 + X_2, \quad X = X'_s + X'_t. \quad (15)$$

714 This structural design imposes temporal-aware regularization, which we theoretically show leads to
715 tighter generalization bounds in time series settings.

717 A.1 PROBLEM FORMULATION AND DEFINITIONS 718

719 **Definition A.1 (Time Series Generation Process)** *Let $\{Z_t\}_{t=1}^{\infty}$ be a stochastic process represent-
720 ing the underlying time series, where each $Z_t = (X_t, Y_t)$ consists of input features $X_t \in \mathcal{X}$ and
721 target values $Y_t \in \mathcal{Y}$. The data-generating process follows:*

$$723 \quad Z_t = f(Z_{t-1}, Z_{t-2}, \dots, Z_{t-p}, \epsilon_t), \quad (16)$$

724 where p is the order of temporal dependence and ϵ_t represents innovation noise.

726 **Definition A.2 (Time Series Forecasting Task)** *For forecasting with lookback window L and fore-
727 cast horizon H , we define training samples as:*

$$728 \quad D = \left\{ \left(X^{(i)}, Y^{(i)} \right) \right\}_{i=1}^m, \quad (17)$$

731 where each sample is constructed from consecutive time points:

$$732 \quad X^{(i)} = \{z_{t-L}, z_{t-L+1}, \dots, z_{t-1}\}, \\ 733 \quad Y^{(i)} = \{z_t, z_{t+1}, \dots, z_{t+H-1}\}. \quad (18)$$

735 The samples exhibit inherent temporal dependence: $(X^{(i)}, Y^{(i)})$ and $(X^{(i+1)}, Y^{(i+1)})$ are highly
736 correlated. We assume the time series process is stationary and satisfies the β -mixing condition.

738 **Definition A.3 (β -mixing Coefficient)** *The β -mixing coefficient of the process Z is defined as:*

$$740 \quad \beta(k) = \sup_t \mathbb{E} \left[\sup_{A \in \mathcal{F}_{t+k}^{\infty}} |\mathbb{P}(A | \mathcal{F}_{-\infty}^t) - \mathbb{P}(A)| \right], \quad (19)$$

743 where \mathcal{F}_a^b is the σ -algebra generated by (Z_a, \dots, Z_b) . The process is said to be β -mixing if $\beta(k) \rightarrow$
744 0 as $k \rightarrow \infty$. We assume an exponential decay of dependence: $\beta(k) \leq \beta_0 e^{-\lambda k}$ for some $\beta_0, \lambda > 0$.

746 A.2 HYPOTHESIS SPACES AND THEIR COMPLEXITIES 747

748 Let $\mathcal{H}_{\text{Trans}}$ denote the hypothesis space of a standard Transformer model. The TwinsFormer hypoth-
749 esis class $\mathcal{H}_{\text{Twins}}$ is a subset of $\mathcal{H}_{\text{Trans}}$ with an inductive bias for temporal decomposition:

$$750 \quad \mathcal{H}_{\text{Twins}} = \{h : h(X) = \mathcal{F}(f_t(X_t) + f_s(X_s)) \mid X = X_t + X_s, f_t \in \mathcal{T}, f_s \in \mathcal{S}, \mathcal{F} \in \mathcal{W}\}, \quad (20)$$

751 where \mathcal{T} and \mathcal{S} are the function classes for trend and seasonal components, respectively, and \mathcal{W} is
752 the class of final projection functions. The functions f_t and f_s are realized by the dedicated attention
753 and FFN modules in TwinsFormer.

755 This constraint is particularly effective for time series as it aligns with the inherent trend-seasonality
decomposition of temporal processes, reducing the effective hypothesis space.

756 A.3 GENERALIZATION BOUNDS FOR β -MIXING PROCESSES
757

758 For dependent data, the Rademacher complexity is adapted to account for temporal structure. For
759 a β -mixing process with mixing coefficient $\beta(k)$, the following generalization bound holds with
760 probability at least $1 - \delta$ for all $h \in \mathcal{H}$ (Mohri & Rostamizadeh, 2012):

$$761 \quad 762 \quad L_{\mathcal{D}}(h) \leq \hat{L}_S(h) + 2\mathfrak{R}_m^{\text{TS}}(\mathcal{H}) + M\sqrt{\frac{2\log(1/\delta)}{m}} + M\beta(\lfloor m/2 \rfloor), \quad (21)$$

764 where M is a bound on the loss function, and $\mathfrak{R}_m^{\text{TS}}(\mathcal{H})$ is the time-series Rademacher complexity.
765

766 The time-series Rademacher complexity for a β -mixing process can be bounded by:
767

$$767 \quad 768 \quad \mathfrak{R}_m^{\text{TS}}(\mathcal{H}) \leq \inf_{\epsilon > 0} \left\{ 2\epsilon + 3\sqrt{\frac{2\log(2/\epsilon)}{m}} \right\} + C\sqrt{\frac{\beta^{-1}(1/m)}{m}}, \quad (22)$$

770 where C is a constant depending on the function class complexity.
771

772 A.4 COMPLEXITY REDUCTION THROUGH DECOMPOSITION
773

774 The key insight is that the decomposition operation effectively reduces the complexity of the func-
775 tion class. Instead of having a single complex function $\mathcal{H}_{\text{iTrans}} \in \mathcal{H}_{\text{Trans}}$ learn the entire mapping,
776 where $\mathcal{H}_{\text{iTrans}}$ is a representative Transformer-based model, TwinsFormer employs a decomposition
777 $X = X_t + X_s$ followed by two specialized functions f_t and f_s .

778 Assuming the combination function \mathcal{F} is Lipschitz continuous with constant $\text{Lip}(\mathcal{F})$, and leveraging
779 the fact that the Rademacher complexity of a sum of function classes is bounded by the sum of their
780 complexities (Bartlett & Mendelson, 2002), we have:
781

$$782 \quad \mathfrak{R}(\mathcal{H}_{\text{Twins}}) \leq \text{Lip}(\mathcal{F}) \cdot (\mathfrak{R}(\mathcal{T}) + \mathfrak{R}(\mathcal{S})). \quad (23)$$

784 The standard Transformer hypothesis class $\mathcal{H}_{\text{iTrans}}$ can be viewed as learning the combined function
785 directly, i.e., $\mathcal{H}_{\text{iTrans}} \approx \{\mathcal{G}(X)\}$ where \mathcal{G} is a highly complex function. Crucially, for the same level
786 of empirical performance, the decomposition prior in TwinsFormer implies that the sum $\mathfrak{R}(\mathcal{T}) +$
787 $\mathfrak{R}(\mathcal{S})$ is smaller than the complexity required for a monolithic function $\mathfrak{R}(\mathcal{G})$ to achieve the same
788 decomposition effect implicitly. Therefore, we conclude:
789

$$790 \quad \mathfrak{R}_m^{\text{TS}}(\mathcal{H}_{\text{Twins}}) \leq \text{Lip}(\mathcal{F}) \cdot (\mathfrak{R}_m^{\text{TS}}(\mathcal{T}) + \mathfrak{R}_m^{\text{TS}}(\mathcal{S})) < \mathfrak{R}_m^{\text{TS}}(\mathcal{H}_{\text{iTrans}}). \quad (24)$$

791 This inequality holds because the structural prior of TwinsFormer allows it to use simpler functions
792 to achieve the same goal, thus reducing effective complexity.
793

794 A.5 TIGHTER GENERALIZATION BOUND FOR TWINSFORMER
795

796 Substituting the complexity reduction into the time-series generalization bound yields:
797

$$797 \quad 798 \quad L_{\mathcal{D}}(h_{\text{Twins}}) \leq \hat{L}_S(h_{\text{Twins}}) + 2\mathfrak{R}_m^{\text{TS}}(\mathcal{H}_{\text{Twins}}) + M\sqrt{\frac{2\log(1/\delta)}{m}} + M\beta(\lfloor m/2 \rfloor) \\ 799 \quad 800 \quad < \hat{L}_S(h_{\text{Twins}}) + 2\mathfrak{R}_m^{\text{TS}}(\mathcal{H}_{\text{iTrans}}) + M\sqrt{\frac{2\log(1/\delta)}{m}} + M\beta(\lfloor m/2 \rfloor). \quad (25)$$

802 Although the second line of the bound uses $\mathfrak{R}_m^{\text{TS}}(\mathcal{H}_{\text{Trans}})$, the key point is that for TwinsFormer,
803 the *effective* complexity term $\mathfrak{R}_m^{\text{TS}}(\mathcal{H}_{\text{Twins}})$ is significantly smaller than $\mathfrak{R}_m^{\text{TS}}(\mathcal{H}_{\text{Trans}})$. This leads
804 to a tighter *actual* generalization bound for TwinsFormer when the empirical risk \hat{L}_S is similar.
805 The structural prior of explicit decomposition translates into a reduced complexity measure and,
806 consequently, improved generalization guarantees in time-series forecasting.
807

808 Given that the interactive module is designed as a structural constraint with negligible computational
809 complexity, TwinsFormer achieves this superior generalization performance without substantially
increasing the computational burden.
810

810 B IMPLEMENTATION DETAILS

812 **Benchmarks details.** We evaluate the performance of TwinsFormer compared with various base-
 813 lines on 13 well-established benchmarks ¹, which are detailed in Table 5.

814 **Metrics details.** Regarding evaluation metrics, we utilize the mean square error (MSE) and mean
 815 absolute error (MAE) for long-term and short-term forecasting:

$$817 \text{MSE} = \frac{1}{L} \sum_{i=1}^L (X_i - \hat{X}_i)^2, \quad \text{MAE} = \sum_{i=1}^L |X_i - \hat{X}_i|,$$

819 where $X, \hat{X} \in \mathbb{R}^{L \times N}$ denote the ground truth and prediction results for N variates in the future L
 820 time steps. $|\cdot|$ means the absolute value operation.

821 Table 5: Detailed descriptions of benchmarks. Channel denotes the number of variates in each
 822 dataset. The prediction length indicates four prediction settings. The dataset size is split into (Train,
 823 Validation, Test). Frequency denotes the sampling interval of time points.

825 Tasks	826 Benchmarks	827 Channels	828 Prediction Length	829 Dataset Size	830 Frequency	831 Information
826 Long-term 827 Forecasting	ETTm1	7	{96, 192, 336, 720}	(34465, 11521, 11521)	15min	Electricity
	ETTm2	7		(34465, 11521, 11521)	15min	Electricity
	ETTh1	7		(8545, 2881, 2881)	Hourly	Electricity
	ETTh2	7		(8545, 2881, 2881)	Hourly	Electricity
	ECL	321		(18317, 2633, 5261)	Hourly	Electricity
	Traffic	862		(12185, 1757, 3509)	Hourly	Transportation
	Exchange	8		(5120, 665, 1422)	Daily	Economy
	Weather	21		(36792, 5271, 10540)	10min	Weather
	Solar-energy	137		(36601, 5161, 10417)	10min	Electricity
832 Short-term 833 Forecasting	PEMS03	358	{12, 24, 48, 96}	(15617, 5135, 5135)	5min	Transportation
	PEMS04	307		(10172, 3375, 3375)	5min	Transportation
	PEMS07	883		(16911, 5622, 5622)	5min	Transportation
	PEMS08	170		(10690, 3548, 3548)	5min	Transportation

835 **Algorithm details.** We provide the pseudo-code of TwinsFormer in Algorithm 1.

836 **Algorithm 1** Workflow of our TwinsFormer.

838 **Input:** Input lookback time series $X \in \mathbb{R}^{T \times N}$; Input length T , prediction length L , and variates
 839 number N ; Token dimension D , TwinsBlock number M , and moving average kernel size k .

840 **Output:** The prediction results $\hat{X} \in \mathbb{R}^{L \times N}$.

```

841 1:  $\triangleright$  Using the moving average kernel and padding operations to decompose time series.
842 2:  $X_T = \text{AvgPool}(\text{Padding}(X))$ ,  $X_S = X - X_T$   $\triangleright X_T, X_S \in \mathbb{R}^{T \times N}$ 
843 3:  $\triangleright$  Embedding series into variate tokens by Multi-layer Perceptron.
844 4:  $E_T^0 = \text{Embed}_T(X_T.\text{transpose})$ ,  $E_S^0 = \text{Embed}_S(X_S.\text{transpose})$   $\triangleright E_T^0, E_S^0 \in \mathbb{R}^{N \times D}$ 
845 5: for  $m$  in  $\{1, \dots, M\}$  do
846 6:    $\triangleright$  Self-attention mechanism and feed-forward network are applied for the seasonal branch.
847 7:    $E_S^{m-1} = \text{LayerNorm}(E_S^{m-1} - \text{Attn}(E_S^{m-1}))$   $\triangleright E_S^{m-1} \in \mathbb{R}^{N \times D}$ 
848 8:    $E_S^m = E_S^{m-1} - \text{FFN}(E_S^{m-1})$   $\triangleright E_S^m \in \mathbb{R}^{N \times D}$ 
849 9:    $\triangleright$  Interactive module (IM) is implemented with four MLPs (i.e.,  $\alpha, \beta, \gamma, \mu$ ).
850 10:   $E_T^{m-1,1} = E_T^{m-1} \odot \exp \alpha(\text{Attn}(E_S^{m-1})) + \beta(\text{Attn}(E_S^{m-1}))$   $\triangleright E_T^{m-1,1} \in \mathbb{R}^{N \times D}$ 
851 11:   $E_T^{m-1,2} = E_T^{m-1} \odot \exp \gamma(\text{FFN}(E_S^{m-1})) + \mu(\text{FFN}(E_S^{m-1}))$   $\triangleright E_T^{m-1,2} \in \mathbb{R}^{N \times D}$ 
852 12:   $\triangleright$  Adding gate mechanism to seasonal and trend branches.
853 13:   $E_S^m = \text{LayerNorm}(\text{Sigmoid}(\text{Conv}(E_S^m)) * E_S^m)$   $\triangleright E_S^m \in \mathbb{R}^{N \times D}$ 
854 14:   $E_T^m = \text{Sigmoid}(\text{Conv}(E_T^{m-1,1} + E_T^{m-1,2})) * (E_T^{m-1,1} + E_T^{m-1,2})$   $\triangleright E_T^m \in \mathbb{R}^{N \times D}$ 
855 15: end for
856 16:  $\hat{X} = \text{Projector}(E_S^m + E_T^m)$   $\triangleright \hat{X} \in \mathbb{R}^{N \times L}$ 
857 17:  $\hat{X} = \hat{X}.\text{transpose}$   $\triangleright \hat{X} \in \mathbb{R}^{L \times N}$ 
858 18: return  $\hat{X}$ 

```

859 ¹All the datasets are publicly available at <https://github.com/thuml/iTransformer>

864 **C FULL MAIN RESULTS**
865866 Due to the space limitation, we provide the full multivariate forecasting results here. Specifically,
867 Table 6 contains the detailed results of all prediction lengths on 9 well-acknowledged benchmarks
868 for long-term forecasting, while Table 7 includes the full short-term forecasting results on 4 chal-
869 lenging citywide traffic datasets.
870871 Table 6: Full results of the long-term forecasting task. We compare extensive competitive models
872 under different prediction lengths $S \in \{96, 192, 336, 720\}$. The input sequence length is set to 96
873 for all baselines. Avg means the average results from all four prediction lengths.

Models	TwinsFormer (Ours)	WPmixer (2025)	Fredformer (2024)	iTransformer (2024)	TimeMixer (2024)	FilterNet (2024)	FITS (2024)	PatchTST (2023)	DLinear (2023)	Crossformer (2023)	TimesNet (2023a)	
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTm1	96 0.315 0.354 0.326 0.362 0.331 0.368 0.334 0.368 0.320 0.355 0.327 0.372 0.355 0.376 0.329 0.367 0.345 0.372 0.404 0.426 0.338 0.375											
	192 0.362 0.384 0.372 0.394 0.365 0.389 0.377 0.391 0.362 0.382 0.367 0.387 0.486 0.445 0.367 0.385 0.380 0.389 0.540 0.451 0.374 0.387											
	336 0.396 0.402 0.402 0.405 0.405 0.413 0.426 0.420 0.396 0.406 0.409 0.414 0.531 0.475 0.399 0.410 0.413 0.413 0.532 0.515 0.410 0.411											
	720 0.457 0.439 0.476 0.453 0.463 0.448 0.491 0.459 0.458 0.445 0.477 0.452 0.600 0.513 0.454 0.439 0.474 0.453 0.666 0.589 0.478 0.450											
	Avg 0.383 0.395 0.394 0.404 0.391 0.405 0.407 0.410 0.384 0.397 0.395 0.406 0.493 0.452 0.387 0.400 0.403 0.407 0.513 0.496 0.400 0.406											
ETTm2	96 0.169 0.251 0.182 0.263 0.177 0.259 0.180 0.264 0.176 0.259 0.175 0.258 0.182 0.266 0.175 0.259 0.193 0.292 0.287 0.366 0.187 0.267											
	192 0.236 0.289 0.238 0.294 0.243 0.301 0.250 0.309 0.242 0.303 0.240 0.301 0.253 0.312 0.241 0.302 0.284 0.362 0.414 0.492 0.249 0.309											
	336 0.292 0.330 0.300 0.342 0.302 0.340 0.311 0.348 0.303 0.339 0.311 0.347 0.313 0.349 0.303 0.343 0.369 0.427 0.597 0.542 0.321 0.351											
	720 0.397 0.397 0.409 0.407 0.397 0.396 0.412 0.407 0.396 0.399 0.414 0.405 0.416 0.406 0.402 0.400 0.554 0.522 1.730 1.042 0.408 0.403											
	Avg 0.274 0.317 0.284 0.327 0.280 0.324 0.288 0.332 0.279 0.325 0.285 0.328 0.391 0.333 0.281 0.326 0.350 0.401 0.757 0.610 0.291 0.333											
ETTh1	96 0.373 0.391 0.377 0.394 0.373 0.392 0.386 0.405 0.384 0.400 0.388 0.410 0.386 0.395 0.414 0.419 0.386 0.400 0.423 0.448 0.384 0.402											
	192 0.439 0.431 0.434 0.426 0.433 0.420 0.441 0.436 0.437 0.429 0.442 0.449 0.437 0.424 0.460 0.445 0.437 0.432 0.471 0.474 0.436 0.429											
	336 0.469 0.436 0.466 0.443 0.470 0.437 0.487 0.458 0.472 0.446 0.491 0.456 0.476 0.446 0.501 0.466 0.481 0.459 0.570 0.546 0.491 0.469											
	720 0.473 0.472 0.471 0.470 0.467 0.456 0.503 0.491 0.586 0.531 0.505 0.493 0.484 0.470 0.500 0.488 0.519 0.516 0.653 0.621 0.521 0.500											
	Avg 0.439 0.433 0.437 0.433 0.436 0.426 0.454 0.447 0.470 0.451 0.457 0.452 0.446 0.434 0.469 0.454 0.456 0.452 0.529 0.522 0.458 0.450											
ETTh2	96 0.285 0.332 0.287 0.336 0.293 0.342 0.297 0.349 0.297 0.348 0.293 0.343 0.294 0.340 0.302 0.348 0.333 0.387 0.745 0.584 0.340 0.374											
	192 0.364 0.385 0.365 0.383 0.371 0.389 0.380 0.400 0.369 0.392 0.379 0.396 0.377 0.391 0.388 0.400 0.477 0.476 0.877 0.656 0.402 0.414											
	336 0.397 0.419 0.418 0.422 0.382 0.409 0.428 0.432 0.427 0.435 0.419 0.430 0.416 0.425 0.426 0.433 0.594 0.541 1.043 0.731 0.452 0.452											
	720 0.406 0.430 0.423 0.441 0.415 0.434 0.427 0.445 0.462 0.463 0.449 0.460 0.418 0.437 0.431 0.446 0.831 0.657 1.104 0.763 0.462 0.468											
	Avg 0.363 0.392 0.373 0.396 0.365 0.394 0.383 0.407 0.389 0.409 0.385 0.407 0.376 0.398 0.387 0.407 0.559 0.515 0.942 0.684 0.414 0.427											
ECL	96 0.134 0.223 0.135 0.225 0.147 0.241 0.148 0.240 0.153 0.244 0.147 0.245 0.198 0.274 0.181 0.281 0.197 0.282 0.219 0.314 0.168 0.272											
	192 0.154 0.240 0.159 0.242 0.165 0.258 0.162 0.253 0.168 0.259 0.160 0.254 0.363 0.422 0.188 0.274 0.196 0.285 0.231 0.322 0.184 0.289											
	336 0.165 0.257 0.168 0.259 0.177 0.273 0.178 0.269 0.185 0.275 0.173 0.283 0.444 0.490 0.204 0.293 0.209 0.301 0.246 0.337 0.198 0.300											
	720 0.198 0.290 0.201 0.295 0.213 0.304 0.225 0.317 0.227 0.312 0.210 0.309 0.532 0.551 0.246 0.324 0.245 0.333 0.280 0.363 0.220 0.320											
	Avg 0.163 0.253 0.166 0.255 0.176 0.269 0.178 0.270 0.183 0.272 0.205 0.290 0.384 0.434 0.205 0.290 0.212 0.300 0.244 0.334 0.192 0.295											
Exchange	96 0.079 0.198 0.083 0.201 0.084 0.202 0.086 0.206 0.099 0.218 0.091 0.211 0.087 0.208 0.088 0.205 0.088 0.218 0.256 0.367 0.107 0.234											
	192 0.170 0.293 0.174 0.296 0.178 0.302 0.177 0.299 0.196 0.313 0.186 0.305 0.185 0.306 0.176 0.299 0.176 0.315 0.470 0.509 0.226 0.344											
	336 0.317 0.402 0.325 0.412 0.319 0.408 0.331 0.417 0.359 0.432 0.380 0.449 0.343 0.425 0.301 0.397 0.313 0.427 1.268 0.883 0.367 0.448											
	720 0.749 0.653 0.833 0.687 0.749 0.651 0.847 0.691 0.864 0.703 0.898 0.712 0.846 0.694 0.901 0.714 0.839 0.695 1.767 1.068 0.964 0.746											
	Avg 0.329 0.387 0.354 0.399 0.333 0.391 0.360 0.403 0.380 0.417 0.389 0.419 0.365 0.408 0.367 0.404 0.354 0.414 0.940 0.707 0.416 0.443											
Traffic	96 0.379 0.258 0.396 0.266 0.406 0.277 0.395 0.268 0.473 0.287 0.430 0.294 0.601 0.361 0.462 0.295 0.650 0.396 0.522 0.290 0.593 0.321											
	192 0.388 0.265 0.427 0.274 0.426 0.290 0.417 0.276 0.486 0.294 0.452 0.307 0.603 0.365 0.466 0.296 0.598 0.370 0.530 0.293 0.617 0.336											
	336 0.407 0.272 0.444 0.281 0.437 0.292 0.433 0.283 0.488 0.298 0.470 0.316 0.609 0.366 0.482 0.304 0.605 0.373 0.558 0.305 0.629 0.336											
	720 0.439 0.289 0.480 0.294 0.462 0.305 0.467 0.302 0.536 0.314 0.498 0.323 0.648 0.387 0.514 0.322 0.645 0.394 0.589 0.328 0.640 0.350											
	Avg 0.403 0.271 0.433 0.291 0.428 0.282 0.496 0.298 0.463 0.310 0.615 0.370 0.481 0.304 0.625 0.383 0.550 0.304 0.620 0.336											
Weather	96 0.158 0.199 0.164 0.204 0.163 0.207 0.174 0.214 0.163 0.209 0.162 0.207 0.196 0.236 0.177 0.218 0.196 0.255 0.158 0.230 0.172 0.220											
	192 0.207 0.243 0.212 0.246 0.211 0.251 0.221 0.254 0.209 0.252 0.215 0.252 0.240 0.271 0.225 0.259 0.237 0.296 0.206 0.277 0.219 0.261											
	336 0.263 0.285 0.268 0.287 0.267 0.292 0.278 0.296 0.264 0.293 0.273 0.295 0.292 0.307 0.278 0.297 0.283 0.335 0.272 0.335 0.280 0.306											
	720 0.339 0.336 0.341 0.339 0.343 0.341 0.358 0.347 0.345 0.345 0.351 0.346 0.365 0.354 0.354 0.348 0.345 0.381 0.398 0.418 0.365 0.359											
	Avg 0.242 0.266 0.246 0.269 0.247 0.273 0.258 0.278 0.245 0.274 0.259 0.281 0.273 0.292 0.259 0.281 0.265 0.317 0.259 0.315 0.259 0.287											
Solar-Energy	96 0.188 0.222 0.189 0.237 0.185 0.233 0.203 0.237 0.189 0.259 0.205 0.242 0.319 0.353 0.234 0.286 0.290 0.378 0.310 0.331 0.250 0.292											
	192 0.219 0.246 0.223 0.248 0.227 0.253 0.233 0.261 0.222 0.283 0.233 0.265 0.367 0.387 0.267 0.310 0.320 0.398 0.734 0.725 0.296 0.318											
	336 0.240 0.265 0.239 0.273 0.246 0.284 0.248 0.273 0.231 0.292 0.249 0.278 0.408 0.403 0.290 0.315 0.353 0.415 0.750 0.735 0.319 0.330											
	720 0.236											

918
919 Table 7: Full results of the short-term forecasting task. We compare extensive competitive models
920 under different prediction lengths $S \in \{12, 24, 48, 96\}$. The input sequence length is set to 96 for
921 all baselines. Avg means the average results from all four prediction lengths.

Models	TwinsFormer (Ours)		WPMixer (2025)		Fredformer (2024)		iTransformer (2024)		TimeMixer (2024)		FilterNet (2024)		FITS (2024)		PatchTST (2023)		DLinear (2023)		Crossformer (2023)		TimesNet (2023a)		
	Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE		
PEMS03	12	0.063	0.165	0.076	0.188	0.068	0.174	0.069	0.175	0.077	0.187	0.071	0.177	0.117	0.226	0.099	0.216	0.122	0.243	0.090	0.203	0.085	0.192
	24	0.084	0.192	0.113	0.226	0.093	0.202	0.097	0.208	0.112	0.224	0.102	0.213	0.235	0.324	0.142	0.259	0.201	0.317	0.121	0.240	0.118	0.223
	48	0.119	0.231	0.191	0.292	0.146	0.258	0.131	0.243	0.169	0.277	0.162	0.272	0.541	0.521	0.211	0.319	0.333	0.425	0.202	0.317	0.155	0.260
	96	0.161	0.267	0.288	0.363	0.228	0.330	0.168	0.279	0.220	0.322	0.244	0.340	1.062	0.790	0.269	0.370	0.457	0.515	0.262	0.367	0.228	0.317
	Avg	0.107	0.214	0.167	0.267	0.135	0.243	0.116	0.226	0.145	0.253	0.145	0.251	0.489	0.465	0.180	0.291	0.278	0.375	0.169	0.281	0.147	0.248
PEMS04	12	0.072	0.179	0.092	0.204	0.085	0.189	0.081	0.188	0.092	0.203	0.082	0.190	0.129	0.239	0.105	0.224	0.148	0.272	0.098	0.218	0.087	0.195
	24	0.093	0.201	0.128	0.243	0.117	0.224	0.099	0.211	0.127	0.239	0.110	0.224	0.246	0.337	0.153	0.275	0.224	0.340	0.131	0.256	0.103	0.215
	48	0.121	0.228	0.213	0.315	0.174	0.276	0.133	0.247	0.188	0.294	0.160	0.276	0.568	0.539	0.229	0.339	0.355	0.437	0.205	0.326	0.136	0.250
	96	0.148	0.260	0.307	0.384	0.273	0.354	0.172	0.283	0.240	0.337	0.234	0.343	1.181	0.843	0.291	0.389	0.452	0.504	0.402	0.457	0.190	0.303
	Avg	0.109	0.217	0.185	0.287	0.162	0.261	0.121	0.232	0.162	0.268	0.146	0.258	0.531	0.489	0.195	0.307	0.295	0.388	0.209	0.314	0.129	0.241
PEMS07	12	0.055	0.145	0.073	0.184	0.063	0.158	0.067	0.167	0.069	0.172	0.064	0.163	0.109	0.222	0.095	0.207	0.115	0.242	0.094	0.200	0.082	0.181
	24	0.070	0.164	0.111	0.219	0.089	0.192	0.086	0.189	0.106	0.212	0.093	0.200	0.230	0.327	0.150	0.262	0.210	0.329	0.139	0.247	0.101	0.204
	48	0.094	0.192	0.237	0.328	0.136	0.241	0.110	0.214	0.185	0.282	0.137	0.248	0.551	0.531	0.253	0.340	0.398	0.458	0.311	0.369	0.134	0.238
	96	0.117	0.217	0.303	0.254	0.197	0.298	0.138	0.244	0.246	0.327	0.198	0.306	1.112	0.809	0.346	0.404	0.594	0.553	0.396	0.442	0.181	0.279
	Avg	0.084	0.180	0.181	0.271	0.121	0.222	0.100	0.204	0.152	0.248	0.123	0.229	0.500	0.472	0.211	0.303	0.329	0.395	0.235	0.315	0.124	0.225
PEMS08	12	0.071	0.171	0.091	0.201	0.081	0.185	0.080	0.183	0.097	0.205	0.080	0.182	0.122	0.233	0.168	0.232	0.154	0.276	0.165	0.214	0.112	0.212
	24	0.091	0.189	0.137	0.246	0.112	0.214	0.118	0.221	0.156	0.262	0.114	0.219	0.236	0.330	0.224	0.281	0.248	0.353	0.215	0.260	0.141	0.238
	48	0.128	0.219	0.265	0.343	0.174	0.267	0.186	0.265	0.269	0.345	0.184	0.284	0.562	0.540	0.321	0.354	0.440	0.470	0.315	0.355	0.198	0.283
	96	0.198	0.266	0.410	0.407	0.277	0.335	0.221	0.267	0.313	0.373	0.309	0.356	1.216	0.846	0.408	0.417	0.674	0.565	0.377	0.397	0.320	0.351
	Avg	0.122	0.211	0.226	0.299	0.161	0.250	0.151	0.234	0.209	0.296	0.172	0.260	0.534	0.487	0.280	0.321	0.379	0.416	0.268	0.307	0.193	0.271
1 st Count	20	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

D ERROR BARS

We obtain the standard deviation of TwinsFormer performance by training the model with 5 different random seeds over 12 datasets. As seen in Table 8, the error bars of all the results are tiny, which exhibits that the performance of TwinsFormer is robust and reliable.

Table 8: Robustness of TwinsFormer performance obtained from 5 random seeds on 12 benchmarks.

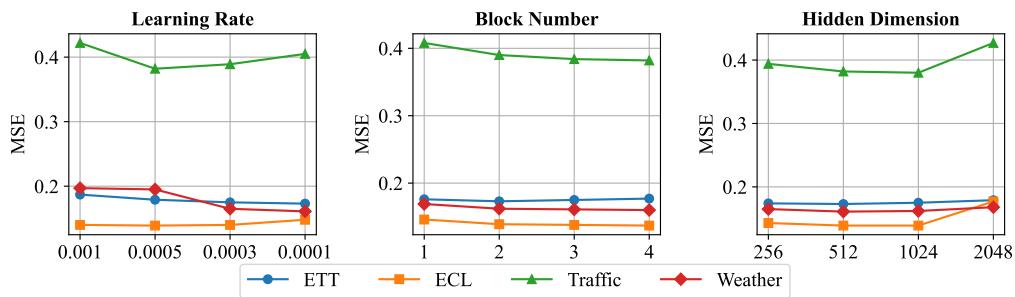
Dataset	ETTm1		ETTm2		ETTh2		ECL									
	Metrics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE							
96	0.315	± 0.001	0.354	± 0.001	0.169	± 0.001	0.251	± 0.001	0.285	± 0.001	0.332	± 0.001	0.134	± 0.002	0.223	± 0.001
192	0.362	± 0.001	0.384	± 0.002	0.236	± 0.001	0.289	± 0.001	0.364	± 0.002	0.385	± 0.003	0.154	± 0.001	0.240	± 0.001
336	0.396	± 0.002	0.402	± 0.003	0.292	± 0.001	0.330	± 0.002	0.397	± 0.004	0.419	± 0.002	0.165	± 0.002	0.257	± 0.002
720	0.457	± 0.002	0.439	± 0.003	0.397	± 0.002	0.397	± 0.001	0.406	± 0.003	0.430	± 0.001	0.198	± 0.002	0.290	± 0.003
Dataset	Traffic		Exchange		Solar-Energy		Weather									
Metrics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
96	0.379	± 0.001	0.258	± 0.000	0.079	± 0.001	0.198	± 0.001	0.188	± 0.002	0.222	± 0.002	0.158	± 0.001	0.199	± 0.002
192	0.388	± 0.001	0.265	± 0.002	0.170	± 0.002	0.293	± 0.002	0.219	± 0.002	0.246	± 0.002	0.207	± 0.001	0.243	± 0.002
336	0.407	± 0.003	0.272	± 0.002	0.317	± 0.002	0.402	± 0.001	0.240	± 0.001	0.265	± 0.002	0.263	± 0.002	0.285	± 0.002
720	0.439	± 0.001	0.289	± 0.002	0.749	± 0.012	0.653	± 0.004	0.236	± 0.002	0.269	± 0.001	0.339	± 0.001	0.336	± 0.001
Dataset	PEMS03		PEMS04		PEMS07		PEMS08									
Metrics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
12	0.063	± 0.001	0.165	± 0.001	0.072	± 0.001	0.179	± 0.001	0.055	± 0.002	0.145	± 0.001	0.071	± 0.001	0.171	± 0.001
24	0.084	± 0.001	0.192	± 0.001	0.093	± 0.002	0.201	± 0.001	0.070	± 0.001	0.164	± 0.002	0.091	± 0.002	0.189	± 0.001
48	0.119	± 0.001	0.231	± 0.002	0.121	± 0.001	0.228	± 0.001	0.094	± 0.002	0.192	± 0.001	0.128	± 0.002	0.219	± 0.001
96	0.161	± 0.002	0.267	± 0.002	0.148	± 0.002	0.260	± 0.001	0.117	± 0.002	0.217	± 0.001	0.198	± 0.002	0.266	± 0.001

E MORE EXTRA RESULTS

Efficiency analysis. Our TwinsFormer is a Transformer-based architecture with dual-stream interactions, where the trend branch is composed of linear layers and sigmoid activation functions. Therefore, like other Transformer models, the main complexity of TwinsFormer is $O(N^2)$, which comes from the seasonal branch with the attention module. Note that the N for TwinsFormer is related to the number of variates, while the N for most Transformer-based models is affected by the

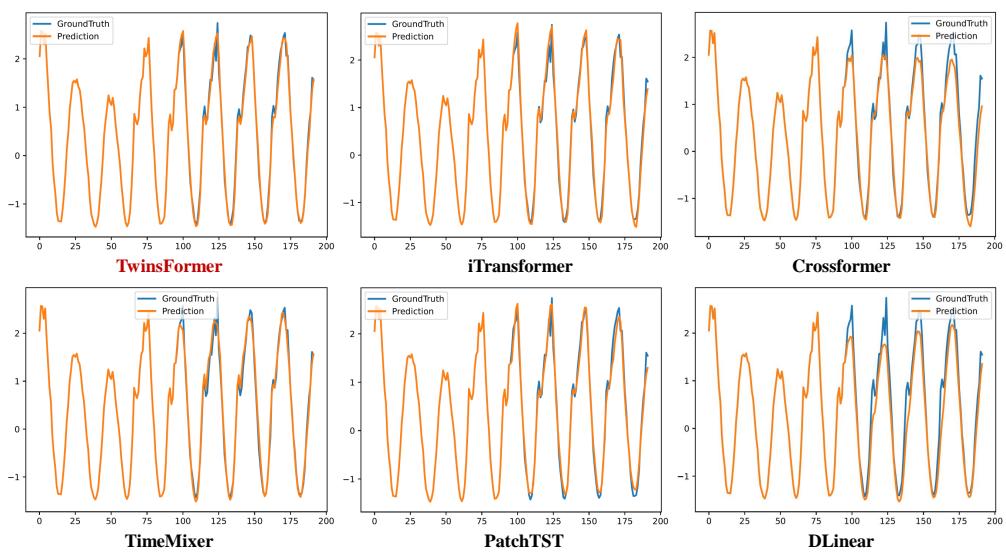
972 lookback length. Furthermore, the efficiency of TwinsFormer surpasses that of most Transformer
 973 variants in datasets with a relatively small number of variates (i.e., $N < 96$). By learning multivariate
 974 correlations through variate tokens following iTransformer (Liu et al., 2024), TwinsFormer can
 975 consistently exhibit superior computational efficiency on high-dimensional channel datasets.
 976

977 **Hyperparameter Sensitivity.** We evaluate the hyperparameter sensitivity of TwinsFormer in terms
 978 of the learning rate, the number of Twinsblock, and the hidden dimension of variate tokens. As
 979 shown in Figure 7, the performance fluctuates under different hyperparameter settings. We can
 980 observe that the learning rate, as the most common hyperparameter, should be carefully selected
 981 for different datasets. In most cases, increasing the number of Twinsblock tends to strengthen the
 982 model performance, especially in datasets with numerous varieties. For scenarios involving many
 983 attributes, the forecasting performance decreases when the hidden dimension of variate tokens ex-
 984 ceeds 1024.



994 Figure 7: Hyperparameter sensitivity concerning the learning rate, the number of Twinsblock, and
 995 the hidden dimension of variate tokens. The results are recorded with an input length of $T = 96$ and
 996 a prediction length of $S = 96$ on four benchmarks.
 997

998 **Showcases.** We present supplementary forecasting showcases in the Traffic dataset, comparing
 999 them with five representative models. As seen in 8, TwinsFormer exhibits superior forecasting
 1000 performance with the most precise future series variations.
 1001



1020 Figure 8: Traffic prediction cases among different models under the input-96-predict-96 setting.
 1021
 1022
 1023
 1024
 1025

1026 Table 9: Full results on more benchmarks under different settings, where input-96-predict-
1027 {96, 192, 336, 720} is used for Wind, ZafNoo, and CzeLan, while input-36-predict-{24, 36, 48, 60}
1028 is used for Covid-19 and Wiki. Avg means the average results from all four prediction lengths.

Models	TwinsFormer		WPMixer		Fredformer		iTransformer		TimeMixer		FilterNet		PatchTST		Dlinear		
	(Ours)		(2025)		(2024)		(2024)		(2024)		(2024)		(2023)		(2023)		
Metrics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
Wind	96	0.825 0.608	0.884	0.642	0.921	0.655	0.848	0.625	0.855	0.620	0.953	0.674	0.889	0.652	0.881	0.632	
	192	0.974 0.672	0.992	0.712	1.078	0.748	1.028	0.692	1.032	0.712	1.147	0.764	1.076	0.769	1.034	0.715	
	336	1.069 0.747	1.173	0.802	1.215	0.819	1.150	0.776	1.153	0.776	1.311	0.825	1.209	0.809	1.159	0.779	
	720	1.183 0.804	1.402	0.891	1.323	0.858	1.245	0.829	1.233	0.809	1.323	0.864	1.304	0.851	1.233	0.815	
	avg	1.013 0.708	1.113	0.762	1.134	0.770	1.068	0.731	1.068	0.729	1.184	0.782	1.120	0.770	1.077	0.735	
ZafNoo	96	0.422 0.403	0.442	0.426	0.434	0.428	0.432	0.411	0.432	0.419	0.541	0.473	0.444	0.426	0.434	0.411	
	192	0.472 0.438	0.525	0.469	0.498	0.456	0.487	0.448	0.479	0.449	0.708	0.575	0.498	0.456	0.484	0.444	
	336	0.506 0.456	0.578	0.509	0.530	0.480	0.521	0.469	0.521	0.469	0.851	0.661	0.530	0.480	0.518	0.464	
	720	0.542 0.476	0.624	0.581	0.574	0.499	0.553	0.491	0.543	0.483	0.876	0.699	0.574	0.499	0.548	0.486	
	avg	0.486 0.443	0.542	0.496	0.512	0.466	0.498	0.455	0.494	0.455	0.744	0.602	0.512	0.465	0.496	0.451	
CzeLan	96	0.178 0.229	0.231	0.310	0.176	0.237	0.185	0.253	0.180	0.232	0.184	0.262	0.183	0.251	0.211	0.289	
	192	0.210 0.252	0.268	0.337	0.215	0.279	0.214	0.286	0.214	0.258	0.232	0.300	0.208	0.271	0.252	0.323	
	336	0.243 0.280	0.298	0.361	0.224	0.288	0.248	0.311	0.248	0.289	0.287	0.357	0.243	0.302	0.317	0.366	
	720	0.276 0.317	0.410	0.401	0.282	0.337	0.279	0.339	0.278	0.329	0.405	0.445	0.273	0.335	0.358	0.392	
	avg	0.227 0.270	0.302	0.352	0.224	0.285	0.232	0.297	0.230	0.277	0.277	0.341	0.227	0.290	0.285	0.343	
COVID-19	24	4.458 1.230	4.869	1.394	4.799	1.347	4.715	1.321	6.335	1.554	5.643	1.424	5.528	1.450	9.780	1.851	
	36	6.842 1.624	7.376	1.708	7.536	1.727	7.299	1.681	8.222	1.787	9.141	1.848	8.351	1.830	12.804	2.083	
	48	10.213	2.009	10.051	1.999	10.131	2.130	10.141	2.012	11.669	2.157	10.904	2.303	11.259	2.114	14.244	2.189
	60	12.237	2.198	11.764	2.119	12.582	2.272	11.871	2.156	12.188	2.173	12.688	2.168	12.666	2.225	15.472	2.275
	avg	8.438 1.765	8.515	1.805	8.762	1.808	8.506	1.793	9.604	1.918	9.594	1.936	9.451	1.905	13.075	2.099	
Wiki	24	6.532	0.440	6.811	0.464	6.624	0.432	6.886	0.437	6.900	0.446	7.023	0.512	6.858	0.430	6.883	0.520
	36	5.948	0.442	6.341	0.479	6.038	0.453	6.431	0.452	6.520	0.467	6.922	0.495	6.400	0.445	6.393	0.538
	48	5.784	0.459	5.895	0.509	5.874	0.464	6.101	0.483	6.108	0.484	6.841	0.514	5.959	0.449	5.940	0.547
	60	5.489	0.462	5.546	0.514	5.493	0.463	5.681	0.466	5.732	0.476	5.850	0.546	5.633	0.452	5.605	0.552
	avg	5.938	0.451	6.148	0.492	6.007	0.453	6.275	0.460	6.315	0.468	6.659	0.517	6.212	0.444	6.205	0.539
1 st Count	18	19	2	2	3	0	0	0	0	0	0	0	0	2	4	0	0

1055 **Performance on Extra Benchmarks.** We evaluate the performance of Twinsformer on more new
1056 real-world datasets from fev-bench (Shchur et al., 2025) or GIFT-Eval (Aksu et al., 2024):

- 1057 Wind (Li et al., 2022) provides predicted wind speeds for a specific location, with a temporal
1058 resolution of 15 minutes. Each data point represents a one-hour-ahead forecast, and the
1059 dataset covers the period from January 1 to February 1, 2020.
- 1060 ZafNoo (Qiu et al., 2024) comprises solar irradiance measurements with a half-hourly temporal
1061 resolution, covering the period between mid-May and late June of 2008.
- 1062 CzeLan (Qiu et al., 2024) contains time-series monitoring data from the Czech Republic
1063 (CZE), recorded at a consistent 30-minute interval between May and June 2016.
- 1064 COVID-19 (Chen et al., 2022), provided by Johns Hopkins University, maintains daily
1065 records of COVID-19 hospitalizations in California from February to December 2020.
- 1066 Wiki ² contains daily page views for 60,000 Wikipedia articles in eight languages over
1067 2018-2019, where we subsequently selected the first 99 articles as our experimental subset.

1069 To ensure fair comparisons, we applied a fixed chronological split ratio of either 7:1:2 or 6:2:2 for
1070 training, validation, and testing across all datasets. However, due to the limited total length of the
1071 Wiki and COVID-19 datasets, we adopted a specific forecasting setting with an input length of 36
1072 and prediction lengths of {24, 36, 48, 60}. For the other, longer datasets, we used an input length of
1073 96 and forecasting lengths of {96, 192, 336, 720}. As shown in Table 9, the comprehensive results
1074 indicate that our TwinsFormer consistently outperforms state-of-the-art models.

1075 **Comparison with DESTformer.** DESTformer (Wang et al., 2023b) is a trend-seasonal
1076 decomposition-based Transformer framework, which leverages a multi-scale attention and a multi-
1077 view attention mechanism to capture fine-grained temporal patterns. In Table 10, we compare the

1079 ²<https://www.kaggle.com/datasets/sandeshbhat/wikipedia-webtraffic-201819>.

Table 10: Comparison with DESTformer on three datasets.

performance of TwinsFormer and DESTformer across Weather, ECL, and Traffic datasets. Since the author of DESTformer did not provide the open-source code repository, we reimplemented DESTformer based on the algorithm in the original paper and reproduced the results with the same training strategies as TwinsFormer. Meanwhile, we incorporated the original results of DESTformer as a reference. As can be observed in Table 10, although the reproduced results of DESTformer are much better than those in the original paper, the performance is still inferior to our method, which fully demonstrates the effectiveness and superiority of TwinsFormer. The following points are worth noting when interpreting the results:

- DESTformer designs two specialized, complex attention mechanisms to process trend and seasonal components separately, which overlooks the real-world complexity where seasonal and trend information are often entangled.
- The FFT-based decomposition in DESTformer is primarily a denoising operation, which might discard meaningful, non-periodic signals that are not captured by the simple trend component, potentially losing valuable information.
- TwinsFormer allows the model to utilize more information from the original signal. The “noise” is not just removed but is repurposed to refine the representations of both components, leading to a more accurate performance for time series forecasting.

Table 11: Zero-shot forecasting results on ETT datasets.

Model	TwinsFormer		WPMixer		Fredformer		TimeMixer		iTransformer		PatchTST		
	(Ours)		2025		2024		2024		2024		2023		
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
ETTh1 → ETTh2	96	0.301 0.342	0.318	<u>0.351</u>	0.317	0.374	0.313	0.368	0.314	0.366	0.313	0.362	
	192	0.375 0.394	<u>0.382</u>	<u>0.402</u>	0.392	0.406	0.401	0.406	0.392	0.417	0.396	0.412	
	336	0.418 0.427	0.435	0.453	<u>0.421</u>	<u>0.435</u>	0.428	0.440	0.435	0.436	0.433	0.439	
	720	0.425 0.438	0.454	0.472	<u>0.436</u>	<u>0.449</u>	0.439	0.464	0.444	0.457	0.442	0.453	
	Avg	0.380 0.400	0.397	0.420	<u>0.392</u>	<u>0.416</u>	0.395	0.420	0.396	0.419	0.396	0.417	
ETTm1 → ETTm2	96	<u>0.184</u> 0.264	0.178	0.285	0.213	0.270	0.192	<u>0.267</u>	0.186	0.268	0.195	0.271	
	192	<u>0.256</u> 0.298	0.253	0.331	0.274	0.315	0.268	0.312	0.263	0.317	0.258	<u>0.311</u>	
	336	0.313	0.336	0.307	0.374	0.326	0.363	0.317	0.347	<u>0.311</u>	0.352	0.317	<u>0.348</u>
	720	0.408 0.409	0.410	0.433	0.421	0.422	0.416	<u>0.412</u>	0.421	0.417	0.416	0.414	
	Avg	<u>0.290</u> 0.327	0.287	0.356	0.309	0.343	0.298	<u>0.335</u>	0.295	0.339	0.297	0.336	
ETTh1 → ETTm2	96	<u>0.219</u> 0.248	0.239	0.278	0.235	0.275	0.218	0.263	0.229	<u>0.255</u>	0.225	0.257	
	192	0.264	0.327	0.286	0.327	0.283	<u>0.323</u>	<u>0.265</u>	0.343	0.274	0.321	0.268	<u>0.323</u>
	336	0.343	<u>0.379</u>	0.331	0.402	0.325	0.395	<u>0.326</u>	0.382	0.330	0.376	0.332	0.385
	720	0.429 0.445	0.474	0.501	0.464	<u>0.473</u>	0.442	0.494	0.453	0.486	0.447	0.481	
	Avg	<u>0.314</u> 0.350	0.333	0.377	0.327	0.367	0.313	0.371	0.322	<u>0.360</u>	0.318	0.362	
ETTm1 → ETTh2	96	0.353 0.368	0.376	0.384	0.362	0.388	0.364	<u>0.377</u>	<u>0.359</u>	0.380	0.381	0.389	
	192	0.392 0.409	0.413	0.421	0.415	0.429	0.411	<u>0.412</u>	<u>0.408</u>	0.419	0.419	0.423	
	336	0.467 0.472	0.478	0.496	0.473	0.511	0.473	0.479	0.455	0.482	0.488	0.494	
	720	0.504 0.521	0.544	0.558	0.539	0.559	<u>0.522</u>	<u>0.543</u>	0.531	0.545	0.554	0.569	
	Avg	0.429 0.443	0.453	0.465	0.447	0.472	0.443	<u>0.453</u>	<u>0.438</u>	0.457	0.461	0.469	

Extra Generalization and Robustness Analysis. To further evaluate the generalization and robustness ability of TwinsFormer, we conduct extensive experiments under zero-shot, noisy, and missing data settings. For the zero-short setting, we utilize the models trained on one dataset to evaluate on

another without retraining directly. Furthermore, we evaluate model robustness under covariate shift by corrupting testing inputs with additive noise and random missing values. Specifically, we inject white Gaussian noise into the test series X_{test} to generate a corrupted version:

$$X_{corrupted} = X_{test} + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2), \quad \sigma = 0.1 \times \sigma_x, \quad (26)$$

where σ_x is the standard deviation of the training set, ensuring the noise level is scaled appropriately for each dataset. Meanwhile, we randomly set values in the testing sequence to NaN with a probability of $p = 10\%$. A simple forward-fill imputation is applied to maintain the input dimensions. Crucially, all models are evaluated on the corrupted test sets without any retraining or fine-tuning, testing their inherent robustness to imperfect data.

As shown in Table 11, our method notably outperforms other models, which indicates the superiority of TwinsFormer in the cross-domain learning capability. Moreover, TwinsFormer exhibits smaller performance degradation compared to baselines in Table 12, suggesting our interactive design can effectively filter out noise and recover from localized missingness when the fundamental trend-seasonality decomposition remains valid.

Table 12: Robustness analysis with noise and missing data on ECL and Traffic datasets.

Setups	ECL						Traffic						
	Clean		Noise ($\sigma = 0.1$)		Missing ($p = 10\%$)		Clean		Noise ($\sigma = 0.1$)		Missing ($p = 10\%$)		
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
Fredformer	96	0.147	0.241	0.157	0.253	0.162	0.260	0.406	0.277	0.435	0.292	0.447	0.302
	192	0.165	0.258	0.176	0.271	0.181	0.278	0.426	0.290	0.457	0.306	0.469	0.316
	336	0.177	0.273	0.189	0.287	0.195	0.295	0.437	0.292	0.469	0.309	0.482	0.319
	720	0.213	0.304	0.227	0.319	0.234	0.328	0.462	0.305	0.496	0.323	0.509	0.334
	Avg	0.176	0.269	0.187	0.283	0.193	0.290	0.433	0.291	0.464	0.308	0.477	0.318
iTransformer	96	0.148	0.240	0.159	0.254	0.164	0.261	0.395	0.268	0.427	0.285	0.440	0.295
	192	0.162	0.253	0.174	0.268	0.179	0.275	0.417	0.276	0.451	0.294	0.464	0.304
	336	0.178	0.269	0.191	0.285	0.197	0.293	0.433	0.283	0.468	0.302	0.482	0.312
	720	0.225	0.317	0.241	0.334	0.248	0.343	0.467	0.302	0.505	0.323	0.520	0.334
	Avg	0.178	0.270	0.191	0.285	0.197	0.293	0.428	0.282	0.463	0.301	0.477	0.311
TimeMixer	96	0.153	0.244	0.164	0.258	0.169	0.265	0.473	0.287	0.510	0.306	0.525	0.316
	192	0.168	0.259	0.180	0.274	0.186	0.282	0.486	0.294	0.525	0.314	0.540	0.324
	336	0.185	0.275	0.198	0.291	0.204	0.299	0.488	0.298	0.527	0.318	0.543	0.328
	720	0.227	0.312	0.243	0.330	0.250	0.339	0.536	0.314	0.579	0.336	0.596	0.347
	Avg	0.183	0.272	0.196	0.288	0.202	0.296	0.496	0.298	0.535	0.319	0.551	0.329
TwinsFormer	96	0.134	0.223	0.141	0.232	0.145	0.238	0.379	0.258	0.402	0.270	0.411	0.278
	192	0.154	0.240	0.162	0.250	0.166	0.256	0.388	0.265	0.412	0.278	0.421	0.286
	336	0.165	0.257	0.173	0.267	0.178	0.274	0.407	0.272	0.432	0.286	0.442	0.294
	720	0.198	0.290	0.208	0.302	0.214	0.310	0.439	0.289	0.466	0.304	0.477	0.313
	Avg	0.163	0.253	0.171	0.263	0.176	0.270	0.403	0.271	0.428	0.285	0.438	0.293

Clarification on Moving Average Decomposition. We use a fixed kernel size of $k = 25$ for the moving average pooling, which is consistent across all datasets and settings. This value was chosen based on empirical validation and aligns with common practices in time series decomposition (e.g., Autoformer, FEDformer). To prevent data leakage and preserve temporal alignment, we perform padding using only values from within the historical input window, where the front padding and back padding are applied with the first and last values of the inputs, respectively. In abrupt trend changes or irregular sampling cases, the residual component \hat{R} (as shown in Figure 1) captures these irregularities, and our interactive module is designed to adaptively reassign such information between the trend and seasonal branches.

Actually, the moving average operation serves primarily as an initialization to provide a preliminary separation of trend and seasonal components. This is a starting point, not the final decomposition:

- The complex, non-stationary nature of real-world time series means that a fixed, linear decomposition is indeed insufficient. Our key innovation lies in the subsequent interactive modules, which enable the model to dynamically refine and recalibrate these initial components throughout the Transformer blocks.
- In essence, the moving average provides a strong inductive bias. TwinsFormer then learns to decompose more effectively by allowing the trend and seasonal branches to interact

1188 and exchange information, progressively disentangling the two patterns in a data-driven
 1189 manner. This process is far more powerful than a single, static decomposition.
 1190

1191 Table 13: Ablation study on the kernel size k of the moving-average initialization.
 1192

TwinsFormer			ECL		Traffic		Weather		Solar		ETTm1		ETTm2	
Kernel Size	Metric		MSE	MAE										
5	96		0.137	0.226	0.382	0.262	0.160	0.200	0.189	0.224	0.319	0.355	0.170	0.252
	192		0.163	0.243	0.396	0.270	0.210	0.244	0.220	0.245	0.365	0.385	0.237	0.290
	336		0.172	0.265	0.410	0.276	0.268	0.286	0.242	0.268	0.397	0.403	0.293	0.334
	720		0.203	0.297	0.441	0.294	0.342	0.337	0.240	0.270	0.458	0.440	0.400	0.398
	Avg		0.169	0.258	0.407	0.276	0.245	0.267	0.223	0.252	0.385	0.396	0.275	0.319
15	96		0.134	0.223	0.380	0.258	0.158	0.199	0.188	0.222	0.314	0.353	0.168	0.250
	192		0.154	0.240	0.389	0.266	0.209	0.244	0.219	0.247	0.361	0.383	0.235	0.288
	336		0.166	0.258	0.408	0.273	0.265	0.286	0.240	0.265	0.395	0.401	0.291	0.329
	720		0.200	0.291	0.442	0.291	0.338	0.338	0.239	0.269	0.456	0.438	0.396	0.396
	Avg		0.164	0.253	0.405	0.272	0.241	0.266	0.222	0.251	0.382	0.394	0.273	0.316
25	96		0.134	0.223	0.379	0.258	0.158	0.199	0.188	0.222	0.315	0.354	0.169	0.251
	192		0.154	0.240	0.388	0.265	0.207	0.243	0.219	0.246	0.362	0.384	0.236	0.289
	336		0.165	0.257	0.407	0.272	0.263	0.285	0.240	0.265	0.396	0.402	0.292	0.330
	720		0.198	0.290	0.439	0.289	0.339	0.336	0.236	0.269	0.457	0.439	0.397	0.397
	Avg		0.163	0.253	0.403	0.271	0.242	0.266	0.221	0.251	0.383	0.395	0.274	0.317
35	96		0.133	0.222	0.380	0.259	0.159	0.200	0.189	0.223	0.316	0.355	0.170	0.252
	192		0.158	0.244	0.389	0.266	0.208	0.245	0.220	0.245	0.363	0.385	0.237	0.290
	336		0.168	0.263	0.408	0.273	0.265	0.286	0.242	0.264	0.397	0.403	0.293	0.331
	720		0.203	0.292	0.441	0.290	0.342	0.338	0.237	0.270	0.458	0.440	0.398	0.398
	Avg		0.166	0.255	0.405	0.272	0.243	0.267	0.222	0.251	0.384	0.396	0.274	0.318
45	96		0.138	0.229	0.387	0.266	0.161	0.203	0.192	0.225	0.320	0.357	0.172	0.254
	192		0.162	0.248	0.396	0.273	0.212	0.248	0.223	0.252	0.367	0.388	0.238	0.294
	336		0.170	0.265	0.415	0.280	0.271	0.293	0.241	0.267	0.401	0.402	0.294	0.336
	720		0.208	0.298	0.447	0.297	0.347	0.344	0.243	0.271	0.458	0.442	0.401	0.400
	Avg		0.170	0.260	0.411	0.279	0.248	0.272	0.225	0.254	0.387	0.397	0.276	0.321

1220 To directly address the concern about the reliance on a specific initialization, we conducted a systematic
 1221 ablation on the kernel size k . The results, presented in Table 13, show that TwinsFormer’s performance
 1222 remains stable and superior across a wide range of kernel sizes, from a very local context
 1223 ($k = 13$) to a much smoother one ($k = 45$). The negligible performance variance (Avg MSE
 1224 range of 0.002) clearly indicates that:

1225

- 1226 The interactive modules in TwinsBlocks are the primary drivers of performance, as they
 1227 can effectively refine a wide range of initial decompositions.
- 1228 Our method is highly robust and generalizable, as it does not require careful tuning of the
 1229 decomposition kernel for different datasets.

1230 **Justification of Interactive Module Design.** The interaction module acts as a “correction mechanism”. The seasonal branch, being processed by the powerful Attention and FFN modules, learns rich representations of dependencies and fine-grained temporal variations. The four MLPs are trained end-to-end with the entire model via backpropagation, which transforms these signals into “guidance” (scaling and shifting factors) for the trend branch. This allows the trend embedding to be adaptively updated, absorbing or discarding information that was initially mis-assigned by the simple moving average. To rigorously validate this design choice, we conducted a fine-grained ablation study on Table 14. We systematically compared our full model against several variants:

- 1231 **Variant A:** Only using learnable bias MLPs (β, μ), and scaling MLPs (α, γ) are fixed to 1.
- 1232 **Variant B:** Only using learnable scaling MLPs (α, γ), and bias MLPs (β, μ) are fixed to 0.
- 1233 **Variant C:** A_S and F_S share the same MLPs, i.e. $\alpha = \gamma, \beta = \mu$.

- **Variant D:** Only using A_S for interaction and ignoring F_S .
- **Variant E:** Replacing four MLPs with a single FiLM-layer (Perez et al., 2018) conditioned only on A_S .
- **Variant F:** Two separate FiLM-layers for A_S and F_S .

Table 14: Fine-grained ablation study on our interactive module.

Variant	ETTm1		ETTh2		ECL		Traffic		Weather		Solar		PEMS03		PEMS07	
	MSE	MAE														
TwinsFormer	0.315	0.354	0.285	0.332	0.134	0.223	0.379	0.258	0.158	0.199	0.188	0.222	0.063	0.165	0.055	0.145
A	0.327	0.368	0.296	0.345	0.141	0.231	0.395	0.272	0.165	0.207	0.201	0.234	0.070	0.170	0.062	0.152
B	0.321	0.359	0.290	0.339	0.139	0.228	0.388	0.264	0.163	0.205	0.194	0.229	0.079	0.179	0.060	0.149
C	0.320	0.360	0.288	0.340	0.137	0.226	0.384	0.261	0.161	0.202	0.192	0.225	0.068	0.168	0.058	0.147
D	0.334	0.375	0.309	0.353	0.148	0.242	0.406	0.281	0.172	0.215	0.215	0.242	0.083	0.184	0.074	0.166
E	0.329	0.372	0.302	0.349	0.143	0.235	0.398	0.275	0.166	0.208	0.206	0.236	0.078	0.177	0.070	0.160
F	0.324	0.363	0.299	0.347	0.142	0.233	0.389	0.265	0.164	0.206	0.200	0.232	0.075	0.172	0.068	0.155

As shown in Table 14, our interactive module design is optimal, and removing components (e.g., scaling or bias terms) in Variants A, B, C, and D leads to performance degradation, demonstrating that our four-MLP design with dedicated processing pathways provides significantly better representation capacity for handling complex temporal interactions. Crucially, even the FiLM-conditioning Variants E and F cannot match our performance, validating our architectural innovation in using specialized MLPs for distinct signal types. Although both FiLM and our interactive module use affine transformations, our interactive module represents a significant architectural innovation specifically designed for time series decomposition:

- **Novel Dual-Source Conditioning:** We process two distinct signals (A_S for cross-variate dependencies and F_S for temporal details) through separate pathways, unlike single-input-based FiLM.
- **Specialized Transformation Networks:** We use dedicated MLPs for each type of signal, enabling specialized processing of different information characteristics.
- **Decomposition-Specific Design:** Our module is integral to a novel dual-stream architecture for component interaction, representing a new application domain for feature-wise modulation.

Performance on the Irregular Multivariate Time Series Forecasting. To evaluate the performance on irregularly sampled time series, we use four datasets and follow the setting of (Zhang et al., 2024a). Here is the detailed information for these datasets:

- Human Activity³ consists of 12 irregularly measured 3D positional variables from sensors worn on the ankles, belts, and chests of five individuals performing various activities.
- USHCN⁴ includes over 150 years of climate data from multiple U.S. stations, covering 5 climate variables.
- PhysioNet⁵ includes 12000 IMTS from different patients, each with 41 clinical signals collected irregularly during the first 48 hours of ICU admission.
- MIMIC-III⁶ is a widely accessible clinical database that houses electronic health records of patients in critical care.

As shown in Table 15, the results indicate that Twinsformer is inferior to some baselines. The performance drop on irregularly-sampled data stems from a fundamental architectural premise: both the moving average and Fourier decomposition modules necessitate a regular time grid to produce well-defined trend and seasonal components. The subsequent interactive mechanism, designed to

³<https://archive.ics.uci.edu/dataset/196/localization+data+for+person+activity>

⁴<https://www.osti.gov/biblio/1394920>

⁵<https://archive.physionet.org/challenge/2012>

⁶<https://mimic.mit.edu/>

refine these semantically meaningful representations, cannot recover from the inherently flawed inputs generated under irregular sampling, causing the model’s core advantage to diminish.

Table 15: Performance comparison for irregular multivariate time series forecasting.

Setups	Human Activity		USHCN		PhysioNet		MIMIC-III	
	2000ms→2000ms	24months→6months	36h→12h	36h→12h	MSE	MAE	MSE	MAE
PatchTST	0.008	0.064	0.615	0.409	0.028	0.115	0.098	0.243
iTransformer	0.012	0.082	0.608	0.398	0.065	0.214	0.073	0.216
TimeMixer	0.006	0.054	0.596	0.370	0.013	0.129	0.046	0.137
Fredformer	0.007	0.064	0.605	0.389	0.011	0.060	0.022	0.088
WPMixer	0.005	0.050	0.568	0.368	0.028	0.072	0.057	0.117
TwinsFormer	0.006	0.066	0.602	0.385	0.032	0.084	0.078	0.210

Extra Visualization for the Interaction Mechanism. To better understand our interactive module, we compare the intrinsic representations among: (1) raw time series, (2) moving average decomposition, and (3) the enhanced output of our interactive module. Specifically, we employ the t-SNE (Maaten & Hinton, 2008) tool to qualitatively compare the intrinsic structure of different feature representations. While t-SNE provides nonlinear projections that may distort absolute distances, the consistent experimental setup across all three conditions allows for meaningful relative comparisons of representation quality and temporal coherence.

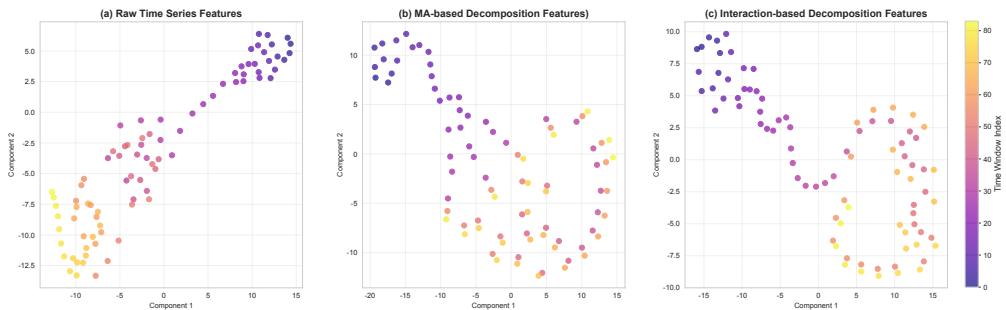


Figure 9: Visualization of the learned features using t-SNE on ETTh2.

As shown in Figure 9, the raw time series features exhibit a scattered distribution with intermixed points from different time windows, indicating ambiguous intrinsic structure and poorly defined temporal patterns. In comparison, the moving average (MA)-based decomposition features demonstrate improved clustering over the raw representation, suggesting that MA decomposition can partially extract meaningful temporal structures. Notably, the interaction-based decomposition features reveal significantly clearer and more organized clustering patterns. The coherent progression of points corresponding to sequential time windows provides visual evidence that our interactive module effectively captures intrinsic temporal dependencies and produces more structured representations.

Limitations and Future Works. Despite its compelling performance on regularly-sampled time series, our work has a clear boundary for the current model’s applicability: it is highly effective for forecasting in domains with strong periodicity and regular sampling (e.g., energy, traffic, weather) but is not yet suited for inherently irregular time series. Future work will be directed toward transcending this boundary to create a more universal forecasting framework. We plan to explore continuous decomposition strategies with neural ordinary differential equations or continuous-time state-space models, which can inherently model the latent trend and seasonal dynamics directly from irregular observations and provide a robust foundation for the dual streams. Furthermore, although the interaction module is designed to be lightweight, the computational complexity inherent in the attention mechanism remains prohibitive for high-dimensional variable datasets. Thus, the development of an interaction framework based on non-attention mechanisms represents a promising direction for future research.