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Abstract

Large-scale, pre-trained neural networks have demonstrated strong capabilities
in various tasks, including zero-shot image segmentation. To identify concrete
objects in complex scenes, humans instinctively rely on deictic descriptions in
natural language, i.e., referring to something depending on the context, such as
“The object that is on the desk and behind the cup”. However, deep learning ap-
proaches cannot reliably interpret such deictic representations as they have limited
reasoning capabilities, particularly in complex scenarios. Therefore, we propose
DeiSAM—a combination of large pre-trained neural networks with differentiable
logic reasoners—for deictic promptable segmentation. Given a complex, textual
segmentation description, DeiSAM leverages Large Language Models (LLMs)
to generate first-order logic rules and performs differentiable forward reasoning
on generated scene graphs. Subsequently, DeiSAM segments objects by match-
ing them to the logically inferred image regions. As part of our evaluation, we
propose the Deictic Visual Genome (DeiVG) dataset, containing paired visual
input and complex, deictic textual prompts. Our empirical results demonstrate that
DeiSAM is a substantial improvement over purely data-driven baselines for deictic
promptable segmentation.

1 Introduction

Recently, large-scale neural networks have substantially advanced various tasks at the intersection of
vision and language. One such challenge is grounded image segmentation, wherein objects within a
scene are identified through textual descriptions. For instance, Grounding Dino (Liu et al., 2023c),
combined with the Segment Anything Model (SAM) (Kirillov et al., 2023), excels at this task if
provided with appropriate prompts. However, a well-documented limitation of data-driven neural
approaches is their lack of reasoning capabilities (Shi et al., 2023; Huang et al., 2024). Consequently,
they often fail to understand complex prompts that require high-level reasoning on relations and
attributes of multiple objects, as demonstrated in Fig. 1.

In contrast, humans identify objects through structured descriptions of complex scenes referring
to an object, e.g., “An object that is on the boat and holding an umbrella”. These descriptions are
referred to as deictic representations and were introduced to artificial intelligence research motivated
by linguistics (Agre & Chapman, 1987), and subsequently applied in reinforcement learning (Finney
et al., 2002). A deictic expression refers to an object depending on the agent using it and the overall
context. Although deictic representations play a central role in human comprehension of scenes,
current approaches fail to interpret them faithfully due to their poor reasoning capabilities.

To remedy these issues, we propose DeiSAM, which is a combination of large pre-trained neural
networks with differentiable logic reasoners for deictic promptable object detection and segmentation.
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Figure 1: DeiSAM segments objects with deictic prompting. Shown are segmentation masks with
an input textual prompt. DeiSAM (right) correctly segments the people on the boat holding umbrellas,
whereas the neural baselines (left) incorrectly segment the boat instead (Best viewed in color).

The DeiSAM pipeline is highly modular and fully differentiable, sophisticatedly integrating large
pre-trained networks and neuro-symbolic reasoners. Specifically, we leverage Large Language
Models (LLMs) to generate logic rules for a given deictic prompt and perform differentiable forward
reasoning (Shindo et al., 2023, 2024) with scene graph generators (Zellers et al., 2018). The reasoner
is efficiently combined with neural networks by leveraging forward propagation on computational
graphs. The result of this reasoning step is used to ground a segmentation model that reliably identifies
the objects best matching the input.

In summary, we make the following contributions: 1) We propose DeiSAM2, a modular, neuro-
symbolic framework using LLMs and scene graphs for object segmentation with complex textual
prompts. 2) We introduce a novel Deictic Visual Genome (DeiVG) benchmark that contains visual
scenes paired with deictic representations, i.e., complex textual identifications of objects in the scene.
To further investigate the challenging nature of abstract prompts, we curate a new DeiRefCOCO+
benchmark. It is a deictic variant of RefCOCO+, an established reference object detection benchmark.
3) We empirically demonstrate that DeiSAM strongly outperforms neural baselines for deictic
segmentation. 4) We showcase that DeiSAM can perform end-to-end training via differentiable
reasoning to improve the segmentation quality adapting to complex downstream reasoning tasks.

2 Related Work

Multi-modal Large Language Models. The recent achievements of large language models
(LLMs) (Brown et al., 2020) have led to the development of multi-modal models, including vision-
language models (Radford et al., 2021; Alayrac et al., 2022; Li et al., 2022a; Liu et al., 2023b), which
take visual and textual inputs. However, these large models’ reasoning capabilities are limited (Huang
et al., 2024), often inferring wrong conclusions when confronted with complex reasoning tasks.
DeiSAM addresses these issues by combining large models with (differentiable) reasoners.

Additionally, DeiSAM is related to prior work using LLMs for program generation. For example,
LLMs have been applied to generate probabilistic programs (Wong et al., 2023), Answer Set Pro-
grams (Ishay et al., 2023; Yang et al., 2023), and programs for visual reasoning (Surís et al., 2023;
Stanić et al., 2024). These works have demonstrated that LLMs are powerful program generators and
outperform simple zero-shot reasoning. With DeiSAM we propose the usage of LLMs to generate
differentiable logic programs for image segmentation and object detection.

Scene Graph Generation. Scene Graph Generators (SGGs) encode complex visual relations to a
summary graph using the comprehensive contextual knowledge of relation encoders (Lu et al., 2016;
Zellers et al., 2018; Tang et al., 2019). Recently, the focus has shifted to transformer-based SGGs that
use attention to capture global context while improving visual and semantic fusion (Lin et al., 2020;
Lu et al., 2021; Dong et al., 2022). Lately, attention has also been used to capture object-level relation
cues using visual and geometric features (Sudhakaran et al., 2023). The modularity of DeiSAM
allows for using any SGG to obtain graph representations of input visual scenes. Scene graphs
are essential for segmentation models to be faithful reasoners. Without them, models may develop
shortcuts, resulting in apparent answers through flawed scene understanding (Marconato et al., 2023).

Visual Reasoning and Segmentation. Visual Reasoning has been a fundamental problem in machine
learning research, resulting in multiple benchmarks (Antol et al., 2015; Johnson et al., 2017; Yi et al.,
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2020) to address this topic and subsequent frameworks (Yi et al., 2018; Mao et al., 2019; Amizadeh
et al., 2020; Hsu et al., 2023) that perform reasoning using symbolic programs and multi-modal
transformers (Tan & Bansal, 2019). These benchmarks are primarily developed to answer queries
written in natural language texts paired with visual inputs. Our proposed dataset, DeiVG, is the
first to integrate complex textual prompts into the task of image segmentation with natural images.
In a similar vein, to tackle visual reasoning tasks, neuro-symbolic rule learning frameworks have
been proposed, where discrete rule structures are learned via backpropagation (Evans & Grefenstette,
2018; Minervini et al., 2020; Shindo et al., 2021, 2023, 2024; Zimmer et al., 2023). These works
have primarily been tested on visual arithmetic tasks and dedicated synthetic environments for
reasoning (Stammer et al., 2021). DeiSAM is a unique neuro-symbolic framework that addresses
image segmentation in natural images and utilizes differentiable reasoning for program learning.

Semantic segmentation aims to generate objects’ segmentation masks given visual input (Wang
et al., 2018; Guo et al., 2018). Multiple datasets and tasks have been proposed that assess a model’s
reasoning ability to identify objects (Kazemzadeh et al., 2014; Yu et al., 2016). Recently, Segment
Anything Model (SAM) (Kirillov et al., 2023) has been released, achieving strong results on zero-shot
image segmentation tasks. Grounded SAM (Ren et al., 2024) combines Grounding DINO (Liu
et al., 2023c) with SAM, allowing for objects described by textual prompts. Moreover, LISA (Lai
et al., 2023) fine-tunes multi-modal LLMs to perform low-level reasoning over image segmentation.
However, LISA still requires strong prior information on the type target object (e.g.“the person that is
wearing green shoes”) and breaks down for more abstract tasks (cf. Sec. 5.5). In contrast, DeiSAM
encodes the reasoning process explicitly as a differentiable function, thus avoiding spurious neural
networks’ behavior. Consequently, DeiSAM is capable of high-level reasoning on arbitrarily abstract
prompts (e.g.“an object”) utilizing structured representation of scene graphs. To this end, frameworks
that enhance the transformer (or attention) architecture for various segmentation tasks have been
proposed (Liu et al., 2023a; Wu et al., 2024a,b). These approaches rely on transformers (or attentions)
as their core reasoning pipeline. In contrast, DeiSAM explicitly encodes logical reasoning processes
to guarantee accurate and faithful interpretation of abstract and complex prompts.

3 DeiSAM — The Deictic Segment Anything Model

DeiSAM uses first-order logic as its language, and we provide its formal definition in App. A. Let
us start by outlining the DeiSAM pipeline with a brief overview of its modules, before describing
essential components in more detail.

3.1 Overview: Deictic Segmentation

We show a schematic overview of the proposed DeiSAM workflow in Fig. 2. First, an input image is
transferred into a graphical representation using a (1) Scene Graph Generator. Specifically, a scene
graph comprises a set of triplets (n1, e, n2), where entities n1 and n2 have relation e. For example, a
person (n1) is holding (e) an umbrella (n2). Consequently, each triplet (n1, e, n2) in a scene graph
can be interpreted as a fact, e(n1, n2), where e is a 2-ary predicate and n1 and n2 are constants in
first-order logic. The textual deictic prompt needs to be interpreted as a structured logical expression
to perform reasoning on these facts.

% Program 1
cond1(X):-on(X,Y),type(Y,boat).
cond2(X):-holding(X,Y),type(Y,umbrella).
target(X):-cond1(X),cond2(X).

Listing 1: Rules generated by LLMs.

For this step, DeiSAM leverages (2) Large Lan-
guage Models, which can generate logic rules for
deictic descriptions, given sufficiently restrictive
prompts as we demonstrate. In our example, the
LLM would translate “An object that is on the boat,
and that is holding an umbrella” into the rules (Program 1) in Listing 1. The first two rules define
the conditions described in the prompt, and the last rule identifies corresponding objects. However,
users often use terminology different from that of the SGG, e.g., boat and barge target the same
concept but will not be trivially matched. To bridge the semantic gap, we introduce a (3) semantic
unifier. This module leverages word embeddings of labels, entities, and relations in the generated
scene graphs and rules to match synonymous terms by modifying rules accordingly. The semantically
unified rules are then compiled to a (4) forward reasoner, which computes logical entailment using
forward chaining (Shindo et al., 2023). The reasoner identifies the targeted objects and their bounding
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Figure 2: DeiSAM architecture. An image paired with a deictic prompt is given as input. We parse
the image into a scene graph (1) and generate logic rules (2) corresponding to the deictic prompt using
a large language model. The generated scene graph and rules are fed to the Semantic Unifier module
(3), where synonymous terms are unified. For example, barge in the scene graph and boat in the
generated rules will be interpreted as the same term. Next, the forward reasoner (4) infers target objects
specified by the textual deictic prompt. Lastly, we perform object segmentation (5) on extracted
cropped image regions of the target objects. Since the forward reasoner is differentiable (Shindo
et al., 2023), gradients can be passed through the entire pipeline (Best viewed in color).

boxes from the scene graph. Lastly, we segment the object by feeding the cropped images to a (5)
segmentation model.

Now, let us investigate the two core modules of DeiSAM in detail: rule generation and reasoning.

3.2 LLMs as Logic Generators

To perform reasoning on textual prompts, we need to identify corresponding rules. We use LLMs
to parse textual descriptions to logic rules using the system prompt specifying the rule format to be
generated. The complete prompt is provided in App. B. DeiSAM uses a specific rule format describing
object and attribute relations. For example, a fact on(person,boat) in a scene graph would be
decomposed into multiple facts on(X,Y), type(X,person), and type(Y,boat) to account for
several entities with the same attribute in the scene.

The computational and memory cost of forward reasoning is determined by the number of variables
over all rules and the number of conditions. Naive formatting of rules (Shindo et al., 2024) leads
to an exponential resource increase with the growing complexity of deictic prompts. Since the
representations used in the forward reasoner are pre-computed and kept in memory, non-optimized
approaches will quickly lead to exhaustive memory consumption (Evans & Grefenstette, 2018). In
our format, however, we restrict the used variables to X and Y and only increase the number of rules
with growing prompt complexity. Thus resulting in linear scaling of computational costs instead.

3.3 Reasoning with Deictic Prompting

DeiSAM performs differentiable forward reasoning as follows. We build a reasoning function
freason : G × R → T where G is a set of facts representing a scene graph, R is a set of rules
generated by an LLM, and T is a set of facts representing identified target objects in the scene.

(Differentiable) Forward Reasoning. For a visual input x ∈ R2, DeiSAM utilizes scene
graph generators (Zellers et al., 2018) to obtain a logical graph representation G, where each fact
rel(obj1, obj2) ∈ G represents an edge in the scene graph. Each fact in a given set G is mapped to
a confidence score using a valuation vector v ∈ [0, 1]|G|. A SGG is a function sgg : R2 → [0, 1]|G|

that produces a valuation vector out of a visual input. DeiSAM builds on the neuro-symbolic message-
passing reasoner (NEUMANN) (Shindo et al., 2024) to perform reasoning. For a given set of rules
R, DeiSAM constructs a forward reasoning graph, which is a bi-directional graph representation
of a logic program. Given an initial valuation vector produced by an SGG, DeiSAM computes
logical consequences in a differentiable manner by performing bi-directional message passing on
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the constructed reasoning graph using soft-logic operations (cf. App. A.1). DeiSAM identifies target
objects to be segmented using confidence scores over facts representing targets, e.g., target(obj1),
and extracts the corresponding bounding boxes from the scene graph.

Semantic Unifier. DeiSAM unifies diverging semantics in the generated rules and scene graph using
concept embeddings similar to neural theorem provers (Rocktäschel & Riedel, 2017). We rewrite the
corresponding rulesR of a prompt by identifying the most similar terms in the scene graph for each
predicate and constant. If rule R ∈ R contains a term x, which does not appear in scene graph G,
we compute the most similar term as argmaxy∈G encoder(x)⊤ · encoder(y), where encoder is an
embedding model for texts. We apply this procedure to terms and predicates individually.

4 The Deictic Visual Genome

cooler

An object that has a handle
and that is on a bench

Figure 3: An exam-
ple from Deictic Visual
Genome (DeiVG2).

To facilitate a thorough evaluation of the novel deictic object segmentation
tasks, we introduce the Deictic Visual Genome (DeiVG) dataset. Building
on Visual Genome (Krishna et al., 2017), we construct pairs of deictic
prompts and corresponding object annotations for real-world images, as
shown in Fig. 3. Our analysis of the scene graphs in Visual Genome
found the annotations to often be noisy and ambiguous, which aligns
with observations from previous research (Hudson & Manning, 2019).
Consequently, we substantially filtered and cleaned potential candidates
to produce a sound dataset.

First, we restricted ourselves to 19 commonly occurring relations and en-
sured that prompts were unambiguous, with only one kind of target object
satisfying the prompt. Specifically, DeiVG contains prompts requiring
the correct identification of multiple objects, but these are guaranteed to be the same type according
to Visual Genomes synset annotations. We automatically synthesize prompts from the filtered scene
graphs using textual templates, e.g., the relations has(cooler,handle) and on(cooler,bench)
would yield a prompt “An object that has a handle and that is on a bench” targeting the cooler. Entries
in the DeiVG dataset can be categorized by the number of relations they use in their object description.
We introduce three subsets with 1-3 relations, which we denote as DeiVG1, DeiVG2, and DeiVG3,
respectively. Each dataset is distinct, e.g., DeiVG2 contains only prompts using 2 relations. For each
set, we randomly select 10k samples that we make publicly available to encourage further research.

5 Experimental Evaluation

With the methodology of DeiSAM and our novel evaluation benchmark DeiVG established, we now
provide empirical and qualitative experiments. Our results outline DeiSAM’s benefits over purely
neural approaches, supplemented by ablation studies of each module. Additionally, we investigate
RefCOCO (Yu et al., 2016), a low-level reasoning benchmark for segmentation tasks, and demonstrate
the robustness of DeiSAM for abstract prompts. Lastly, we show that DeiSAM is end-to-end trainable
and can thus be leveraged to improve the performance of the neural components in the pipeline.

5.1 Experimental Setup

We base our experiments on the three subsets of DeiVG. As an evaluation metric, we use mean
average precision (mAP) over objects. Since the object segmentation quality largely depends on the
used segmentation model, we focus on assessing the object identification preceding the segmentation
step. The default DeiSAM configuration for the subsequent experiments uses the ground truth scene
graphs from Visual Genome (Krishna et al., 2017), gpt-3.5-turbo3 as LLM for rule generation,
ada-0024 as embedding model for semantic unification, and SAM (Kirillov et al., 2023) for object
segmentation. Additionally, we provide few-shot examples of deictic prompts and paired rules in the
input context of the LLM, which improves performance (cf. App. E). We present detailed ablations
on each component of the DeiSAM pipeline in Sec. 5.4.

3
https://openai.com/blog/introducing-chatgpt-and-whisper-apis

4
https://openai.com/blog/new-and-improved-embedding-model
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Table 1: DeiSAM handles deictic prompting. Mean
Average Precision (mAP) of DeiSAM and neural base-
lines on DeiVG datasets are shown. Subscript numbers
indicate the complexity of prompts.

Mean Average Precision (%) ↑
Method DeiVG1 DeiVG2 DeiVG3

SEEM 1.58 4.44 7.54
OFA-SAM 3.37 9.01 15.38
GLIP-SAM 2.32 0.03 0.00
Gr.Dino-SAM 10.48 32.33 46.04
LISA 14.90 56.03 75.79
DeiSAM (ours) 65.14 85.40 87.83

An object on 
the large chair 
and wears a tie.

An object in front 
of the cart and has 
a shadow.

teddy
bear

bench
on

horse carriage

in_front_of 

Figure 4: DeiSAM handles ambiguous
prompts. Results with prompts (top)
with scene graphs (bottom).

We compare DeiSAM to multiple purely neural approaches, both empirically as well as qualitatively.
We include three baselines that use one model for object identification and subsequently segment
the grounded image using SAM (Kirillov et al., 2023), similar to the grounding in DeiSAM. Our
comparison includes the following models for visual grounding: 1) One-For-All (OFA) (Wang et al.,
2022), a unified transformer-based sequence-to-sequence model for vision and language tasks of
which we use a dedicated visual grounding checkpoint5. 2) Grounded Language-Image Pre-training
(GLIP) (Li et al., 2022b) a model for specifically designed for object-aware and semantically-rich
object detection and grounding. 3) GroundingDino (Liu et al., 2023c) an open-set object detector
combining transformer-based detection with grounded pre-training. Moreover, we compare to an
end-to-end semantic segmentation model supporting textual prompts with SEEM (Zou et al., 2023).
Lastly, we compare to LISA (Lai et al., 2023), a state-of-the-art neural reasoning segmentation model.

5.2 Empirical Evidence

The results on DeiVG of all baselines compared to DeiSAM are summarized in Tab. 1. DeiSAM
clearly outperforms all purely neural approaches by a large margin on all splits of DeiVG. The perfor-
mance of most methods improves with more descriptive deictic prompts, i.e., more relations being
used. We attribute this effect to two distinct causes. For one, additional information describing the
target object contributes to higher accuracy in object detection. On the other hand, DeiVG1 contains
significantly more samples with multiple target objects than DeiVG2 or DeiVG3. Consequently,
cases in which a method identifies only one out of multiple objects will have a higher impact on the
overall performance. Overall, the large gap between DeiSAM and all baselines highlights the lack
of complex reasoning capabilities in prevalent models and DeiSAM’s large advantage. We further
provide a runtime comparison and its analysis in App. F, showcasing that DeiSAM’s runtime is
comparable to the baselines, and the bottleneck is in the LLMs, not in the reasoning pipeline.

5.3 Qualitative Evaluation

After empirically demonstrating DeiSAM’s capabilities, we look into some qualitative examples.
In Fig. 4, we demonstrate the efficacy of the semantic unifier. All examples use terminology in
the deictic prompt diverging from the scene graph entity names. Nonetheless, the unification step
successfully maps synonymous terms and still produces the correct segmentation masks, overcoming
the limitation of off-the-shelf symbolic logic reasoners.

In Fig. 5, we further compare DeiSAM with the purely neural baselines. DeiSAM produces the correct
segmentation mask even for complicated shapes (e.g., partially occluded cable) or complex scenarios
(e.g., multiple people, only some holding umbrellas). All baseline methods, however, regularly fail to
identify the correct object. A common failure mode is confounding nouns in the deictic prompt. For
example, when describing an object in relation to a ‘boat’, the boat itself is identified instead of the
target object. These examples strongly illustrate the improvements of DeiSAM over the pure neural
approach on abstract reasoning tasks.

5
https://modelscope.cn/models/damo/ofa_visual-grounding_refcoco_large_en/summary
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An object that is on 
the table and that is
behind a mug. 

An object that is on
the boat and that is
holding an umbrella.

An object that is 
on the car and 
that has ears.

DeiSAM
(Ours)

GroundedDino 
SAM SEEM OFA-SAM GLIP-SAM

Figure 5: DeiSAM segments objects with deictic prompts. Segmentation results on the DeiVG
dataset using DeiSAM and baselines are shown with deictic prompts. DeiSAM correctly identifies
and segments objects given deictic prompts (left-most column), while the baselines often segment a
wrong object. More results are available in App. G (Best viewed in color).

5.4 Ablations

The modular nature of the DeiSAM pipeline enables easy component variations. Next, we investigate
the performance of key modules in isolation and their overall influence on the pipeline.

Table 2: Ablations on prompting techniques for
rule generation w/ Llama-2-13B-Chat. Few-shot
examples are imperative for rule generation with
chain-of-thought (CoT) prompting providing addi-
tional improvements for complex deictic prompts.

Prompting Overall Success (%) ↑
Technique DeiVG1 DeiVG2 DeiVG3

Instruct Only 0.00 0.00 0.00
CoT 0.00 0.00 0.00
Few-shot 94.04 92.52 90.17
Few-shot + CoT 91.00 95.17 93.45

LLM Rule Generation. One of the key steps
for DeiSAM is the translation of deictic prompts
posed in natural language into syntactically
and semantically sound logic rules. We ob-
served that the performance of instruction-tuned
LLMs on this task heavily depends on the em-
ployed prompting technique. Consequently, we
leverage the well-known methods of few-shot
prompting (Brown et al., 2020) and chain-of-
thought (CoT) (Wei et al., 2022).

To that end, we first let the model extract all
predicates from a deictic prompt, which we sub-
sequently provide as additional context for the rule generation. For both cases, we provide multiple
few-shot examples.We evaluate all prompting approaches with LLama-2-13B (Touvron et al., 2023)
in Tab. 2. Clearly, few-shot examples are imperative to perform rule generation successfully. Addi-
tionally, CoT for predicate decomposition further improves the rule generation for complex prompts.

With the best prompting technique identified, we additionally evaluated multiple open and closed-
source language models of different sizes (cf. App. F). In general, all instruction-tuned models can
generate logic rules from deictic prompts. However, larger models strongly outperform smaller ones,
especially for more complex inputs. The overall best-performing model was gpt-3.5-turbo producing
correct rules for DeiVG for 93.65% of all samples.

Semantic Unification. Next, we take a more detailed look into the semantic unification module. At
this step, we bridge the semantic gap between differing formulations in the deictic prompt and the
scene graph generator. To evaluate this task, we created an exemplary benchmark based on synonyms
in the visual genome. For 2.5k scenes in DeiVG, we considered all objects in the scene graph and
identified one object name that differed from its synset entry. Based on that synonym, the task is to
identify the one, unique, synonymous object in the scene. For example, in an image containing a
‘table’, ‘couch’, ‘chair’, and ‘cupboard’ the query ’sofa’ should identify the ’couch’ as most likely
synoynm. Overall, the task is considerably more challenging than it may appear at first glance, with
the best model only achieving a success rate of 72% (cf. App F). We observed, for example, the query
‘sofa’ is matched with ‘pillow’ instead of the targeted ‘couch’ or ‘trousers’ with ‘jacket’ instead of
‘pants’. These results motivate further research into the semantic unification process.
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Table 3: Comparison on RefCOCO+.

Mean Average Precision (%) ↑
Method val testA testB
LISA 67.55 74.86 63.03
GroundedSAM 55.09 66.21 44.21
DeiSAM 71.72 77.29 64.98

Table 4: Comparison on DeiRefCOCO+.

Mean Average Precision (%) ↑
Method val testA testB
LISA 44.92 47.60 43.23
GroundedSAM 30.06 31.75 28.12
DeiSAM 71.56 79.51 66.43

5.5 Solving Reference Expression

In addition to experiments on DeiVG, we also consider the RefCOCO dataset (Yu et al., 2016), which
comprises referring expressions for object segmentation. Thus, this dataset is the most similar setup
to the deictic segmentation task in prior work. The key difference between RefCOCO and DeiVG is
that the latter is built to evaluate models’ abstract reasoning capabilities in complex visual scenes. In
contrast, RefCOCO mainly evaluates descriptive object identifications, i.e., objects with names and
properties, e.g.“old man or child in green short”, compared to e.g. “an object on a table and next to a
computer” in DeiVG. Consequently, deictic prompts are more challenging than the reference texts in
RefCOCO, since DeiVG prompts do not include explicit names and properties of target objects.

Since there were no publicly available scene graphs (or SGGs) for MSCOCO images, we used GPT3
to convert the reference text to a structured scene graph representation with additional annotations.
Tab. 3 shows the mAP of LISA, GroudnedSAM, and DeiSAM on RefCOCO. LISA achieved better
overall performances than GroundedSAM, showing its strong capability on the reference task.
DeiSAM, however, remains competitive with LISA and achieves better results on all splits.

To further investigate the challenging nature of abstract prompts, we curated a DeiRefCOCO+
benchmark that contains more abstract textual references. Specifically, we turned the reference
texts in RefCOCO+ into deictic prompts by removing any description of the target object. For
example, the prompt “kid wearing navy shirt” is modified to “an object that is wearing navy shirt”.
Tab. 4 again shows the mAP of DeiSAM, GroundedSAM, and LISA on the modified DeiRefCOCO+
dataset. Importantly, DeiSAM retains a similar performance on both types of prompt formulations. In
comparison, we observe a strong drop in performance for GroundedSAM and LISA with the absence
of confounding object descriptions. These results further highlight the strength and abstraction level
of the performed reasoning performed by DeiSAM 6.

5.6 DeiCLEVR – Abstract Reasoning Segmentation

DeiSAM excels in high-level abstract reasoning, where purely neural pipelines often struggle.
To demonstrate, we developed DeiCLEVR, an abstract reasoning segmentation task based on
CLEVR (Johnson et al., 2017). This task challenges models with abstract concepts and relationships.

Task. The task is to segment objects given prompts where the answers are derived by the reasoning
over abstract list operations. We consider 2 operations: delete and sort. The input is a pair of an image
and a prompt, e.g. “Segment the second left-most object after deleting a gray object?”. Examples
are shown in Fig. 6. To solve this task, models need to understand the visual scenes and perform
high-level abstract reasoning to segment.

Dataset. (Image) Each scene contains at most 3 objects with different attributes: (i) colors of cyan,
gray, red, and yellow, (ii) shapes of sphere, cube, and cylinder, (iii) materials of metal and matte. We
excluded color duplications in a single image. (Prompts) We generated prompts using a templates:
“The [Position] object after [Operation]?”, where [Position] can take either of: left-most first, second,
or third. [Operation] can take either of: (I) delete an object, and (II) sort the objects in the order of:
cyan < gray < red < yellow (alphabetical order). We generated 10k examples for each operation.

Models. We used DeiSAM with Slot Attention (Locatello et al., 2020) pretrained on the visual
Inductive Logic Programming (ILP) dataset (Shindo et al., 2024), which contains positive and negative
visual scenes for list operations. We used GroundedSAM and LISA for neural baselines (cf. App. E).

6In App. F, we demonstrate experiments on DeiVG with prompts in the RefCOCO’s reference format,
highlighting the robustness of DeiSAM against neural baselines.
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DeiSAM LISAGroundedSAM

The 2nd leftmost object 
  after deleting a red object. 

Input

The leftmost object 
after sorting objects 
in the order of 
cyan<gray<red<yellow. 

Prompt

Figure 6: DeiSAM performs abstract reasoning segmentation. When presented with a visual scene
paired with an abstract, complex prompt (left), DeiSAM effectively identifies and segments the object
specified by the prompt, while neural baselines frequently fail to deduce the target object (right).

Result. In Table 5, we present the mean Average Precision (mAP) for each baseline evaluated. The
purely neural baselines struggle to accurately deduce segmentations in response to abstract reasoning
prompts, while DeiSAM excels at identifying and segmenting the object specified by the prompt.

Table 5: DeiSAM handles abstract vi-
sual reasoning. mAP on DeiCLEVR.

mAP ( ↑) Delete Sort
DeiSAM 99.29 99.57
GroundedSAM 7.6 15.39
LISA 12.88 11.15

Moreover, Fig. 6 provides qualitative examples illustrat-
ing that DeiSAM effectively segments objects requiring
high-level reasoning. In contrast, the neural baselines fre-
quently fail to segment the correct target object. These
findings indicate that existing neural baselines are inad-
equate for addressing abstract reasoning prompts. We
demonstrate that integrating differentiable logic reasoners
can significantly enhance reasoning capabilities.

5.7 End-to-End Training of DeiSAM

Since DeiSAM employs a differentiable forward reasoner, a meaningful gradient signal can be
back-propagated through the entire pipeline. Consequently, DeiSAM enables end-to-end learning on
complex object detection and segmentation tasks with logical reasoning explicitly modeled during
training. To illustrate this property, we show that DeiSAM can learn weighted mixtures of scene
graph generators by propagating gradients through the reasoning module.

% Program 2
targetSgg(X,SG):-cond1(X,SG),cond2(X,SG).
cond1(X,SG):-hasSgg(X,Y,SG),typeSgg(Y,hair,SG).
cond2(X,SG):-onSgg(X,Y,SG),onSgg(Y,surfboard,SG).
% Compose weighted mixtures.
w_1: target(X):-targetSgg(X,sgg1).
w_2: target(X):-targetSgg(X,sgg2).

Listing 2: A program for SGG learning.

Task. We consider 2 distinct scene graph
generators and compose a weighted mix-
ture of them. We show an example for the
deictic prompt “An object that has hair and
that is on a surfboard” in Listing 2. The
first 3 rules compute the target object for
each SGG, similarly to Program 1, and
the last 2 rules produce a weighted merge
of both predictions. Importantly, Program 2 utilizes different SGGs (i.e.variable SG) and merges the
results using learnable weights (i.e.w_1 and w_2). Consequently, the learning task is the optimization
of weights wi ∈ R for downstream deictic segmentation. The differentiability of the DeiSAM
pipeline allows efficient gradient-based optimizations.

Experimental Setup. We used VETO (Sudhakaran et al., 2023), which outperforms other SGGs on
biased datasets where only some relations appear frequently. As the second ‘SGG’ for our weighted
mixture model, we relied on ground-truth scene graphs from Visual Genome. We consider the
following baselines: DeiSAM-VETO that only uses a pre-trained VETO model (Sudhakaran et al.,
2023), DeiSAM-Mixture (naive) that uses a mixture of VETO and VG scene graphs with randomly
initialized weights. We compare those approaches to DeiSAM-Mixture*, which uses the trained
mixture. We extracted instances from DeiVG datasets not used in VETO training (ca. 2000 samples),
which we divided into a training, validation, and test split. For rule generation, we use the same
system prompt and models as in Sec. 5.1, adapting the generated programs for weight learning.

We minimize the binary cross entropy loss with respect to rule weights w_1 and w_2. To calculate
this loss, we provide labels for predicted masks in the model, i.e., a binary label yi ∈ {0, 1}. For
each instance in DeiVG, DeiSAM predicts segmentation masks in the forward pass, and gradients are
backpropagated through the differentiable forward reasoner (cf. App. E.1 for details).
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Table 6: End-to-end training improves DeiSAM.
Mean Average Precision on the test split of the task
of learning SGGs. DeiSAM-VETO uses a trained
VETO model (Sudhakaran et al., 2023), DeiSAM-
Mixture (naive) uses a mixture of a trained VETO
model and VG scene graphs with randomly ini-
tialized rule weights, DeiSAM-Mixture* uses the
resulted mixture model after the weight learning.

mAP (%) ↑
Method DeiVG1 DeiVG2

DeiSAM-VETO 6.64 15.92
DeiSAM-Mixture (naive) 37.61 59.81
DeiSAM-Mixture* 64.44 86.57

An object that is on a blanket, 
                        and that has a face

0.31

input image

0.96
before learning after learning

Figure 7: DeiSAM can learn to produce bet-
ter masks. Shown are the input image (left)
and target segmentation masks together with
confidence scores obtained before (middle)
and after (right) end-to-end training DeiSAM.
DeiSAM improves the quality of segmenta-
tion by learning (Best viewed in color).

Result. In Tab. 6, we compare the mAP on the test split. The trained model DeiSAM-Mixture∗
clearly outperforms the naive baseline, demonstrating successful training of the DeiSAM pipeline
using gradients via differentiable reasoning. DeiSAM-VETO weak performance can be attributed to
objects that appear only on prompts but not its training data (cf. App. D).

Fig 7 shows examples of segmentation masks and their confidence scores produced by DeiSAM-
Mixture models before and after training. Before learning, wrong or incomplete regions are segmented
with low confidence scores because the reasoner fails to identify correct objects with low-quality
scene graphs that miss critical objects and relations. After learning, DeiSAM produces faithful
segmentation masks and increased confidence scores. This experiment highlights that DeiSAM
improves the quality of scene graphs and the subsequent segmentation masks by learning using
gradients, i.e., it is a fully trainable pipeline with a strong capacity for complex logic reasoning.

6 Conclusion

Before concluding, let us discuss the limitations and future research directions. Our investigation
of DeiSAM’s components highlights some clear avenues for future research. While LLMs perform
well at parsing deictic prompts into logic rules with few-shot prompting, their performance could be
improved further by, e.g., syntactically constrained sampling7 or dedicated fine-tuning. Further, the
observed challenges in semantic unification could be addressed by querying LLMs instead of using
embedding models or providing multiple weighted candidates to the reasoner.

Upon manual inspection of the DeiVG dataset, we identified some inconsistent examples annotated
with erroneous scene graphs in Visual Genome that cannot be automatically cleaned up without
external object identification (cf. App. D). Our results support the assessment that generating rich
scene graphs is key but difficult to achieve in a zero-shot fashion. However, as we demonstrated, the
differentiable pipeline of DeiSAM can be utilized for meaningful training on complex downstream
tasks. Thus allowing for the incorporation of real-world use cases in the training of SGGs in an
end-to-end fashion. Further, DeiSAM can provide valuable information on general performance and
failure cases of SGGs by investigating deictic segmentation tasks. Furthermore, the modularity of
DeiSAM allows for easy integration of potential improvements to any of its components.

To conclude, we proposed DeiSAM to perform deictic object segmentation in complex scenes.
DeiSAM effectively combines large-scale neural networks with differentiable forward reasoning
in a modular pipeline. DeiSAM allows users to intuitively describe objects in complex scenes by
their relations to other objects. Moreover, we introduced the novel Deictic Visual Genome (DeiVG)
benchmark for segmentation with complex deictic prompts. In our extensive experiments, we
demonstrated that DeiSAM strongly outperforms neural baselines highlighting its strong reasoning
capabilities on visual scenes with complex textual prompts. To this end, our empirical results revealed
open research questions and important future avenues of visual scene understanding.

7
https://github.com/IsaacRe/Syntactically-Constrained-Sampling
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Figure 8: Forward reasoning graph for Program 1 in Listing 1. A reasoning graph consists of atom
nodes and conjunction nodes, and is obtained by grounding rules i.e., removing variables by, e.g.,
X← obj1, Y← obj2. By performing bi-directional message passing on the reasoning graph using
soft-logic operations, DeiSAM computes logical consequences in a differentiable manner. Only
relevant nodes are shown (Best viewed in color).

A First-Order Logic and Differentiable Reasoning.

We provide a formal definition of first-order logic (FOL). An atom is a formula p(t1, . . . , tn), where
p is a predicate symbol (e.g.type) and t1, . . . , tn are terms. A term is a variable or a constant. A
ground atom or simply a fact is an atom with no variables (e.g.type(obj1, boat)). A literal is an
atom (A) or its negation (¬A), and a clause is a finite disjunction (∨) of literals. A definite clause is a
clause with exactly one positive literal. If A,B1, . . . , Bn are atoms, then A ∨ ¬B1 ∨ . . . ∨ ¬Bn is a
definite clause. We write definite clauses in the form of A :- B1, . . . , Bn, and refer to them as rules for
simplicity in this paper. Forward Reasoning is a data-driven approach of reasoning in FOL (Russell &
Norvig, 2010), i.e., given a set of facts and a set of rules, new facts are deduced by applying the rules
to the facts. Differentiable forward reasoners compute logical entailment using tensor representations
(Evans & Grefenstette, 2018; Shindo et al., 2023) or graph neural networks (Shindo et al., 2024),
and perform rule learning using gradients given labeled examples in the form of inductive logic
programming (Cropper & Dumancic, 2022).

DeiSAM employs a graph neural network-based differentiable forward reasoner (Shindo et al., 2024),
and we briefly explain the reasoning process. We represent a set of (weighted) rules as a directed
bipartite graph. For example, Fig. 8 is a reasoning graph that represents Program 1.

A.1 Details of Differentiable Forward Reasoning

We provide the details of differentiable forward reasoning.
Definition A.1. A Forward Reasoning Graph is a bipartite directed graph (VG ,V∧, EG→∧, E∧→G),
where VG is a set of nodes representing ground atoms (atom nodes), V∧ is set of nodes representing
conjunctions (conjunction nodes), EG→∧ is set of edges from atom to conjunction nodes and E∧→G is
a set of edges from conjunction to atom nodes.

DeiSAM performs forward-chaining reasoning by passing messages on the reasoning graph. Essen-
tially, forward reasoning consists of two steps: (1) computing conjunctions of body atoms for each
rule and (2) computing disjunctions for head atoms deduced by different rules. These two steps can
be efficiently computed on bi-directional message-passing on the forward reasoning graph. We now
describe each step in detail.

(Direction→) From Atom to Conjunction. First, messages are passed to the conjunction nodes
from atom nodes. For conjunction node vi ∈ V∧, the node features are updated:

v
(t+1)
i =

∨(
v
(t)
i ,

∧
j∈N (i)

v
(t)
j

)
, (1)

where
∧

is a soft implementation of conjunction, and
∨

is a soft implementation of disjunction.
Intuitively, probabilistic truth values for bodies of all ground rules are computed softly by Eq. 1.

(Direction←) From Conjunction to Atom. Following the first message passing, the atom nodes are
then updated using the messages from conjunction nodes. For atom node vi ∈ VG , the node features
are updated:

v
(t+1)
i =

∨(
v
(t)
i ,

∨
j∈N (i)

wji · v(t)j

)
, (2)
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where wji is a weight of edge ej→i. We assume that each rule Ck ∈ C has its weight θk, and wji = θk
if edge ej→i on the reasoning graph is produced by rule Ck. Intuitively, in Eq. 2, new atoms are
deduced by gathering values from different ground rules and from the previous step.

We used product for conjunction, and log-sum-exp function for disjunction:

softorγ(x1, . . . , xn) = γ log
∑

1≤i≤n

exp(xi/γ), (3)

where γ > 0 is a smooth parameter. Eq. 3 approximates the maximum value given input x1, . . . , xn.

Prediction. The probabilistic logical entailment is computed by the bi-directional message-passing.
Let x(0)

atoms ∈ [0, 1]|G| be input node features, which map a fact to a scalar value, RG be the reasoning
graph, w be the rule weights, B be background knowledge, and T ∈ N be the infer step. For fact
Gi ∈ G, DeiSAM computes the probability as:

p(Gi | x(0)
atoms ,RG,w,B, T ) = x

(T )
atoms [i], (4)

where x
(T )
atoms ∈ [0, 1]|G| is the node features of atom nodes after T -steps of the bi-directional

message-passing.

By optimizing the cross-entropy loss, the differentiable forward reasoner can solve Inductive Logic
Programming (ILP) problems with propositional encoding (Shindo et al., 2018), where the task is
to find classification rules given positive and negative examples. It has been extensively applied
to solve complex visual patterns (Helff et al., 2023), image generation (Deiseroth et al., 2022),
meta-level reasoning and learning (Ye et al., 2022), predicate invention (Sha et al., 2024, 2023), and
self-explanatory learning (Stammer et al., 2024).

B System Prompts for Rule Generation

To generate logic rules using LLMs, we used the following system prompt.
Given a deictic representation and available predicates, generate rules in the format.
target(X):-cond1(X),...condn(X).
cond1(X):-pred1(X,Y),type(Y,const1).
...
condn(X):-predn(X,Y),type(Y,const2).
Use predicates and constants that appear in the given sentence.
Capitalize variables: X, Y, Z, W, etc.

In practice, this system prompt combined with few-shot examples for a downstream task (cf. App. E).

C DeiVG Datasets

We generated DeiVG dataset using Visual Genome dataset (Krishna et al., 2017). We used the entire
Visual Genome dataset to generate deictic prompts and answers out of scene graphs, and we randomly
downsampled 10k examples. We only considered the following relations:

• ‘on’
• ‘wears’
• ‘has’
• ‘parked on’
• ‘behind’
• ‘holding’
• ‘against’

• ‘wearing’
• ‘near’
• ‘along’
• ‘in front of’
• ‘at’
• ‘under’

• ‘sitting on’
• ‘made of’
• ‘above’
• ‘carrying’
• ‘riding’
• ‘over’

The prompts are synthetically generated by extracting relations that shares the same subject in the
scene. For example, with a pair of VG relations, "person is holding an umbrella" and "person on a
boat", we generate a deictic prompt, "an object that is holding an umbrella, and that is on a boat".
Subsequently, the corresponding answer is extracted from the scene graph. We provide two instances
in the generated DeiVG2 dataset in Listing 3.

17



% Example 1
{

deictic_prompt: "an object that is on a sofa, and that is on a book",
answer: [{"name": "paper",

"h": 32,
"synsets": ["paper.n.01"],
"object_id": 2687751,
"w": 61,
"y": 236,
"x": 272}],

VG_image_id: 2376540,
VG_data_index: 44297]

}
% Example 2
{

deictic_prompt: "an object that has a shadow, and that is wearing a black shirt",
answer: [{"h": 50,

"object_id": 1001275,
"merged_object_ids": [1001270],
"synsets": ["man.n.01"],
"w": 21, "y": 333,
"x": 47,
"names": ["man"]}],

VG_image_id: 2365153,
VG_data_index: 55196]

}

Listing 3: DeiVG examples.

D Additional Analysis on VG Scene Graphs

We provide a further investigation of Visual Genome (VG) scene graph annotations. We demonstrate
that (1) VG annotations have multiple versions and there is a non-trivial discrepancy between their
relation distributions, and (2) VG annotations contain incomplete and erroneous scene graphs that
cannot be automatically cleaned up without external object identification.

VG Annotation Discrepancy We investigated the scene graph generator module, going beyond
the ground truth scene graphs of Visual Genome. One of the key challenges in using a pre-trained
SGG is the potential mismatch between the set of objects and annotations in DeiVG and the training
data of the SGG. While we built on the latest version of Visual Genome with extended annotations
(VGv1.4), an older version (Krishna et al., 2017) has been commonly used for benchmarking different
SGGs by excluding non-frequent object types and relations (Xu et al., 2017). This preprocessed
older version (VG) is still considered the standard benchmark for SGGs, which lacks many crucial
objects and attributes in DeiVG built upon VGv1.4. We illustrate the discrepancy in Fig. 9, where
we compare the Kernel Density Estimate (KDE) of VGv1.4 and VG. It shows that the newer version
contains more types of objects in the top-and-middle frequency range. Additionally, many object
types of VGv1.4 in the middle-frequency range are not contained at all in VG. Consequently, when
parsing scenes from DeiVG with SGGs pre-trained on VG, the objects in the deictic prompt may
not be contained in the generated scene graph at all. For example, for a given deictic prompt “an
object that is wearing a black shirt”, we observed that the pre-trained SGG failed to detect black
shirt because it was not included in its training data. This discrepancy leads to sub-par performance
of DeiSAM with a pre-trained SGG, as shown in Tab. 6. While training the SGG specifically on
the relevant scene distribution can partially address this issue, it is crucial to highlight that DeiSAM
can be leveraged to improve SGGs as well. Our subsequent demonstration in Section 5.7 provides a
glimpse of DeiSAM’s capabilities, showcasing its differentiable forward reasoner’s ability to perform
end-to-end training, thereby unlocking new horizons in scene understanding and reasoning.

In Fig. 10, the plot on the left depicts the distribution of the least frequent tail object types on the latest
extended version (VGv1.4) in comparison to the older version (VG) (Krishna et al., 2017). Object
types are sorted with respect to the number of occurrences (x-axis). In the non-frequent range of 0 to
1000, VGv1.4 contains object types that never appear on the older version (VG), revealing these tail
classes of object types are completely missing in the processed older annotations (Xu et al., 2017),
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VGv1.4
VG

VGv1.4
VG

Figure 9: The large discrepancy between DeiVG and standard Visual Genome. DeiVG uses
Visual Genome with extended annotations (VGv1.4), but the older version (VG) (Krishna et al., 2017)
has been commonly used for SGG training. Object types are sorted w.r.t. the number of occurrences
(x-axis) and their corresponding occupancies are shown (y-axis). The left plot is for top-and-middle
frequent object types (0-50k #occ.), and the right plot is for middle frequent object types (0-3k #occ.).
VGv1.4 contains many object types that do not appear in VG (Best viewed in color).
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Figure 10: Further comparisons of VGv1.4 with VG. The plot on the left depicts the distribution of
the least frequent tail object types of the latest extended version (VGv1.4) in comparison to the older
version (VG) (Krishna et al., 2017). Object types are sorted w.r.t. the number of occurrences (x-axis).
The plot on the right shows the comparison of the number of object types and the number of total
objects in the datasets. VGv1.4 contains many more object types than VG, making it difficult for
SGGs that are pre-trained on the older version to achieve high performance (Best viewed in color).

which are commonly used for benchmarking SGGs. Moreover, the bar plot on the right indicates a
notable increase in the number of object types and total object counts in VGv1.4 in comparison to VG,
making it difficult for SGGs that are pre-trained on the older version to achieve high performance on
the DeiVG dataset built upon VGv1.4.

Errors on VG Annotations. Upon manual inspection of the DeiVG dataset, we identified some
inconsistent examples resulting from incomplete and erroneous scene graphs in Visual Genome
that cannot be automatically cleaned up without external object identification. For example, the
annotations shown in Fig. 11 lead to a DeiVG sample with two missing target objects and an incorrect
one. We plan on building a more consistent deictic segmentation benchmark using a cleanup process
similar to GQA (Hudson & Manning, 2019).

E Details of Experiments

We provide details of the models used in the evaluation. For all methods using SAM for segmentation—
including DeiSAM—we use the same publicly available SAM checkpoint8.

DeiSAM. We used NEUMANN (Shindo et al., 2024) with γ = 0.01 for soft-logic operations, and
the number of inference steps is set to 2. We set the box threshold to 0.3 and the text threshold to
0.25 for the SAM model. All generated rules are assigned a weight of 1.0. If no targets are detected,
DeiSAM produces a mask of a randomly chosen object in the scene.

For LLMs, we provided few-shot examples of deictic prompts and desired outputs as shown in
Listing 4. These few-shot examples improved the quality of the rule generation that follows a certain
format. These are combined with the system prompt in App. B to generate rules by LLMs.

8
https://huggingface.co/spaces/abhishek/StableSAM/blob/main/sam_vit_h_4b8939.pth

19

https://huggingface.co/spaces/abhishek/StableSAM/blob/main/sam_vit_h_4b8939.pth


Prompt: ‘An object that is wearing a helmet’

Figure 11: Example of erroneous annotations in Visual Genome leading to inconsistent examples in
DeiVG. Here, the annotations for ‘helmet’ are incomplete and in one case, the relation ‘wears’ is
linked to the wrong person (Best viewed in color).

Examples:

an object that is next to a keyboard.
available predicates: next_to
cond1(X):-next_to(X,Y),type(Y,keyboard).
target(X):-cond1(X).

an object that is on a desk.
available predicates: on
cond1(X):-on(X,Y),type(Y,desk).
target(X):-cond1(X).

an object that is on a ground, and that is behind a white line.
available predicates: on,behind
cond1(X):-on(X,Y),type(Y,ground).
cond2(X):-behind(X,Y),type(Y,whiteline).
target(X):-cond1(X),cond2(X)

an object that is near a desk and against wall.
available predicates: near,against
cond1(X):-near(X,Y),type(Y,desk).
cond2(X):-against(X,Y),type(Y,wall).
target(X):-cond1(X),cond2(X).

an object that has sides, that is on a pole, and that is above a stop sign.
available predicates: has,on,above
cond1(X):-has(X,Y),type(Y,sides).
cond2(X):-on(X,Y),type(Y,pole).
cond3(X):-above(X,Y),type(Y,stopsign).
target(X):-cond1(X),cond2(X),cond3(X).

an object that is wearing a shirt, that has a hair, and that is wearing shoes.
available predicates: wearing,has,wearing
cond1(X):-wearing(X,Y),type(Y,shirt).
cond2(X):-has(X,Y),type(Y,hair).
cond3(X):-wearing(X,Y),type(Y,shoes).
target(X):-cond1(X),cond2(X),cond3(X).

Listing 4: Few-short examples for rule generation using LLMs.

GroundedSAM. We used a publicly available GroundedDino version9 with Swin-B backbone, pre-
trained on COCO, O365, GoldG, Cap4M, OpenImage, ODinW-35 and RefCOCO. We set the box
threshold to 0.3 and the text threshold to 0.25 for the SAM model.

GLIP We used a publicly available version of GLIP-L10 with a Swin-L backbone and pre-trained on
FourODs, GoldG, CC3M+12M, SBU. We set the prediction threshold to 0.4.

OFA We used a publicly available version of OFA-Large11 fine-tuned for visual grounding.

9
https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha2/groundingdino_swinb_cogcoor.pth

10
https://huggingface.co/GLIPModel/GLIP/blob/main/glip_large_model.pth

11
https://modelscope.cn/models/iic/ofa_visual-grounding_refcoco_large_en/summary
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SEEM We used a publicly available checkpoint of SEEM12 with Focal-L backbone.

Evaluation Metric. We used mean average precision (mAP) to evaluate segmentation models.
Segmentation masks are converted to corresponding bounding boxes by computing their contours,
and then mAP is computed by comparing them with the ground truth bounding boxes provided by
Visual Genome.

E.1 Learning to Segment Better

We describe the experimental setting in more detail.

Method. Let (x, p) ∈ D be a DeiVG dataset, where x is an input image, and p is a deictic prompt.
For each input, DeiSAM produces segmentation masks Mi with corresponding confidence score si,
i.e., {(Mi, si)}i=0,...n = fdeisam(x, p). For each mask Mi, we consider a binary label yi ∈ {0, 1}
using its corresponding bounding box and comparing with ground-truth masks with the IoU score,
which assesses the quality of bounding boxes. For each instance (x, p) ∼ D, we compute the binary-
cross entropy loss: ℓ = −

∑
(Mi,si)∼fdeisam(x,p) (yi log si + (1− yi) log(1− si)) , We minimize the

loss ℓ through gradient descent with respect to the rule weights in the differentiable programs.

Task. Given SGGs sgg1, sgg2, . . . , sggn, we compose a DeiSAM model with a mixture of them,
i.e.sgg(x) =

∑
i wisgg i(x) with wi ∈ [0, 1] and sggi : R2 → [0, 1]|G|, where G is a set of facts

to describe scene graphs. For example, Program 2 shown on the right represents the mixture of
scene graph generators for the deictic prompt “An object that has hair and that is on a surfboard”. In
contrast to Program 1, the program utilizes different SGGs and merges the results using learnable
weights. The learning task is the optimization of weights wi for downstream deictic segmentation.
The differentiable reasoning pipeline in DeiSAM allows efficient gradient-based optimizations with
automatic differentiation.

Dataset. Let (x, p) ∈ D be a DeiVG dataset, where x is an input image, and p is a deictic prompt
and (o1, . . . , om) ∈ A be the answers, where o1, . . . om are correct target objects to be segmented
specified by the prompt. For each input, DeiSAM produces segmentation masks with their confidence:

{(Mi, si)}i=0,...n = fdeisam(x, p), (5)

where Mi is the i-th predicted segmentation mask and si is the confidence score. For each mask Mi,
we consider a binary label yi ∈ {0, 1} by computing its corresponding bounding box and using the
IoU score, which assesses the quality of bounding boxes:

yi =

{
1 if maxj IoU(Bi,Oj) > θ

0 otherwise
(6)

where θ > 0 is a threshold, Bi is a bounding box computed from mask Mi, and Oj is a mask that
represents answer object oj . We extracted instances from DeiVG datasets not used in VETO training
(ca. 2000 samples), which are divided into training, validation, and test splits that contain 1200, 400,
and 400 instances, respectively. If no targets are detected by the forward reasoner, DeiSAM produces
a mask of a randomly chosen object in the scene, i.e., if the maximum confidence score for targets is
less than 0.2, DeiSAM was set to sample a random object in the scene and segment with a confidence
score randomly sampled from a uniform distribution with a range of [0.1, 0.4].

Optimization. We used the RMSProp optimizer with a learning rate of 1e− 2, and performed 200
steps of weight updates with a batch size of 1. The reasoners’ inference step was set to 4. We used
IoU score’s threshold θ = 0.8.

F Ablations

Subsequently, we present detailed results corresponding to the ablation studies in Sec. 5.4.

LLMs for Rule Generation and Semantic Unification. First, we evaluated multiple open and
closed-source language models of different sizes on rule generation. The results on correct predicate
identification and rule generation are reported in Tab. 7. In general, all instruction-tuned models
can generate logic rules from deictic prompts. However, larger models strongly outperform smaller

12
https://huggingface.co/xdecoder/SEEM/resolve/main/seem_focall_v0.pt
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Table 7: Performance in logic rule generation of various large language models. We report the
success rate of extracting the correct predicates and generating the correct rules in isolation since the
predicates are supplied as context for rule generation. The combined success rate are the percentage
of samples were both are correct.

Model Corr. Predicates (%) ↑ Corr. Rules (%) ↑ Combined (%) ↑
DeiVG1 DeiVG2 DeiVG3 DeiVG1 DeiVG2 DeiVG3 DeiVG1 DeiVG2 DeiVG3

Mistral-7B-Instruct 75.50 75.52 67.80 86.95 82.56 75.43 65.88 64.63 51.50
Llama-2-7B-Chat 75.03 26.91 12.47 98.29 96.36 95.22 74.06 25.92 12.06
Llama-2-13B-Chat 92.87 97.19 96.05 97.88 97.82 97.13 91.00 95.17 93.45
GPT-3.5-turbo 96.57 97.43 93.21 97.45 96.96 95.04 95.66 95.36 89.92

Table 8: Comparison of various embedding models on the semantic unification step in the DeiSAM
pipeline. The task is to identify one synonymous object name out of all objects in a scene, given their
embedding similarity. Success rate is reported over ca. 2.5k scenes from Visual Genome.

Model Unification Success (%) ↑
Glove-Wiki-Gigaword 52.27
Word2Vec-Google-News 55.03
OpenAI-CLIP ViT-B/32 52.90
DFN5B-CLIP ViT-H/14 66.65
MonarchMixer-Bert 30.15
MPNet-Base-v2 71.62
MiniLM-L6-v2 62.79
OpenAI-ada-002 66.50

ones, especially for more complex inputs. Interestingly, the types of failure cases differ significantly
between models. For example, both Llama models and GPT-3.5-turbo rarely make syntactical errors
in rule generation (< 1%), whereas most of Mistral-7B’s incorrect rules are already syntactically
unsound.

For the semantic unification task we compare various semantic embedding models as shown in
Table 8.

Runtime Analysis. We provide comparisons of the runtime of Grounded-SAM, LISA, and DeiSAM
in Tab. 9. It shows the inference time per instance (a visual input with a textual prompt), averaged
over 1000 examples for each dataset. GroundedSAM achieved remarkably faster inferences since
it does not encode the reasoning process. Both LISA and DeiSAM approaches require about 6 to
10 seconds per example. For more analysis, we provide the running time for each component of
DeiSAM in Tab. 10. It shows the inference time per instance of rule generation, semantic unification,
differentiable forward reasoning, and segmentation. We observe that semantic unification is the most
time-consuming process in the DeiSAM pipeline. In contrast, the differentiable forward reasoning
and segmentation only make up a negligible fraction of the runtime. However, as outlined in the paper,
the rule generation and semantic unification step rely on the OpenAI API and could be significantly
reduced by running a local model instead.

Table 9: Runtime comparison of DeiSAM and
baselines.

Running Time (sec)
Method DeiVG2 DeiVG3

GroundedSAM 0.01± 0.00 0.01± 0.00
LISA 6.38± 1.1 7.03± 1.17
DeiSAM (ours) 9.98± 4.61 10.85± 3.19

Table 10: DeiSAM runtime analysis.
Running Time (sec)

Method DeiVG2 DeiVG3

Rule Generation 1.4± 0.63 1.76± 0.67
Semantic Unification 6.38± 1.1 7.03± 1.17
Forward Reasoning 0.18± 0.67 0.18± 0.31
Segmentation 1.22× 10−6 9.82× 10−7

DeiVG in the ReCOCO’s reference format. We conducted additional experiments by modifying
the deictic prompts in DeiVG datasets to the ones with targets’ labels, resulting in prompts similar to
reference texts in RefCOCOs (Yu et al., 2016). Table 11 shows the mAP on DeiVG datasets with
the modified prompts using LISA, GroundedSAM, and DeiSAM. ± represents the gain compared
to the original performance with deictic prompts (shown in Tab. 1). Neural baselines gained the
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performance remarkably by the modified prompts since they contain labels for targets (e.g.person,
kid), on which neural models highly rely to identify targets.

Table 11: Comparison with modified prompts, e.g. "Person on the boat" instead of “An object on the
boat”. ± represents the gain compared to the original performance with deictic prompts.

Mean Average Precision (%) ↑
Method DeiVG1 DeiVG2 DeiVG3

LISA 26.81 (+11.91) 68.78 (+12.75) 82.20 (+6.41)
GroundedSAM 21.87 (+11.39) 47.91 (+15.58) 89.48 (+43.44)
DeiSAM (ours) 64.78 (−0.36) 84.23 (−1.17) 88.19 (+0.36)

G Additional Segmentation Results

We provide supplementary results of the segmentation on the DeiVG2 dataset in Fig. 12.

Grounded
SAM

DeiSAM
(Ours)

An object that is on the 
street and has smoke.

An object that is near the 
chair and holds a plant.

An object that is above 
the table and has black 
metal.

An object that is on the 
side walk and wears a 
coat.

An object that is carrying 
the person and has a tail.

Grounded
SAM

An object that is on the 
metal pole and has a bike.

An object near the 
microwave and on 
the fridge.

An object that is on the 
bike and has a purse.

DeiSAM
(Ours)

An object that is on the 
grass and has a door.

An object that is behind 
girls and has tires. 

Figure 12: Segmentation results on the DeiVG2 dataset using DeiSAM and GroundedSAM with
deictic prompts (top).
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claim is that the proposed approach can solve deictic prompts to
segment objects. In our experiments, we have extensively shown that the proposed model
outperforms baselines on deictic segmentation tasks, empirically supporting the main claim
made in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the last section of the paper, we discuss multiple limitations of the proposed
approach. Moreover, in the appendix, we provide empirical results of the runtime of our
framework compared to baselines and discuss the computational efficiency.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not include any theoretical results in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe details of the model, including hyperparameters and system
prompts, in the paper and in the appendix. Moreover, we provide the link to the anonymous
repository that contains all of the codes needed to run the experiments demonstrated in the
paper and it contains the link to the dataset proposed in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the link to the anonymous repository that contains all of the codes
needed to run the experiments demonstrated in the paper and it contains the link to the
dataset proposed in the paper. We will make the repository public upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the experimental setting in the paper and also more details in the
appendix. We present all the necessary to run the experiments together with the code on the
anonymous repository.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in the appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We report the error bars for the runtime analysis in App. F. For main ex-
periments in Sec. 5, we do not report error bars because most of our experiments are
deterministic, i.e., the proposed reasoning pipeline does not involve stochastic computations.
The internal usage of LLMs could produce errors by hallucinations, but we minimize such
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errors by performing error handling, i.e., we repeat the function call when they produce
output that cannot be parsed by the system. Thus, we report numbers from a single run for
each experiment. The only exception is the experiment of weight learning. We report a
single run because of the non-trivial financial cost of the LLM usage, i.e., the API needs to
be called iteratively in the learning process, and the expected budget significantly increases.
To mitigate this, we provide the random seed to reproduce the result for all experiments in
our codebase to ensure reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the details of the machine where we performed experiments. It
includes details of the hardware, e.g. CPU, GPU, and RAM. Moreover, we report the
running time of the proposed model and baselines for our main experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none of which we
feel must be specifically highlighted here.
Guidelines:
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper presents an abstract methodology that has no effects on the societal
impact specifically, such as malicious uses or fairness considerations. These aspects of
societal impacts will be attributed to the dataset itself to be used, not our proposed framework.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper presents an abstract methodology that has no effects on the safe-
guards specifically, such as the high risk of misuse. The paper does not contain any release
of pretrained models or datasets newly curated using web scraping.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In the paper, we cite and refer to all the papers that our framework uses.
Moreover, we provide the link to codebases of the relevant papers in our repository. We also
declare the license in the repository.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We include instructions for our code and dataset in the repository. It is
accessible via an anonymized URL that we provide.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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