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Abstract

Molecular dynamics (MD) simulation predicts the trajectory of atoms by solving
Newton’s equation of motion with a numeric integrator. Due to physical constraints,
the time step of the integrator need to be small to maintain sufficient precision.
This limits the efficiency of simulation. To this end, we introduce a graph neural
network (GNN) based model, MDNet, to predict the evolution of coordinates and
momentum with large time steps. In addition, MDNet can easily scale to a larger
system, due to its linear complexity with respect to the system size. We demonstrate
the performance of MDNet on a 4000-atom system with large time steps, and show
that MDNet can predict good equilibrium and transport properties, well aligned
with standard MD simulations.

1 Introduction

Molecular dynamics (MD) is a simulation technique for analyzing the movement of many-body
systems by solving Newton’s equation of motion. The resulting trajectories provide a view of dynamic
evolution of atoms and molecules, and can be used to analyze the equilibrium and transport properties
of the system [1]. MD plays a key role in many scientific fields, including materials science [2, 3],
biochemistry [4], drug discovery [5], etc.

The core of an MD algorithm is to solve Newton’s equation of motion at discrete time steps. One of
the most frequently used algorithm is the ordinary Verlet integrator [6], which predicts the coordinate
of atom i at time t, qi(t), after time step ∆t by:

qi(t+ ∆t) = 2qi(t)− qi(t−∆t)− ∂U
∂qi(t)

∆t2

mi
+O(∆t4), (1)

where the potential energy U of the system is a function of the coordinates q. The time step ∆t
must be set small enough to avoid the contribution of O(∆t4). In practice, ∆t is usually chosen at
femtosecond scale (1 fs = 10−15s). Recently, efforts have been made to solve the classical mechanics
of many-body systems via machine learning methods [7–12]. However, all these methods are
limited to small systems containing only dozens of atoms, whereas practical MD simulations usually
involve thousands to millions of atoms. Therefore, a scalable machine learning approach with linear
complexity is highly desired.

In this paper, we propose MDNet, a scalable graph neural network (GNN) model to predict the
dynamics of many-body systems. The key contribution is to predict the movement of an atom based
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Figure 1: Illustration of model architecture of MDNet.

on its local environment encoded by a series of descriptors similar as DeePMD [13, 14]. In addition,
we introduce momenta in the local environment descriptor and make the model comply with the law
of conservation of momenta. We show that MDNet can simulate a system containing thousands of
atoms with a time step 128 times larger than that of the Verlet integrator. The resulting equilibrium
and transport properties are shown to be consistent with the simulations using the Verlet integrator.

1.1 Related Work

The trajectories of MD simulations can be viewed as sequence data hence could be learned by
sequence models, such as recurrent neural networks (RNNs). Tsai et al. showed that one-dimensional
stochastic trajectories generated from higher-dimensional dynamics can be learned by long short-
term memory network (LSTM). Kadupitiya et al. demonstrated that LSTM was able to predict MD
trajectory for systems containing 16 atoms. Another type of models including HNN [10], SRNN [11],
GFNN [12] and others [15–19], manged to incorporate physical knowledge and solve mechanical
problems by learning Hamiltonian or other physical quantities. However, all the aforementioned
models used the information of all atoms to predict the dynamics, which limits their scalability.

In traditional MD simulations, a common assumption is that atoms only interact with their neighbors.
Motivated by this assumption, Satorras et al. proposed E(n) equivariant graph neural networks
(EGNNs), which model the system by a graph and achieve linear complexity [20]. Compared
to EGNN, MDNet use more sophisticated descriptors of local environments and achieve better
performance.

2 Background

We briefly introduce some basic notations in Hamiltonian mechanics that MDNet is built upon. The
Hamiltonian for an N-particle system in d dimensions can be written as:

H(p,q) = T (p) + U(q), p,q ∈ RN×d, (2)

where p,q are the momenta and coordinates of the atoms. The momentum is defined as pi = mivi,
where mi and v are the mass and velocity of atom i, respectively. T (p) =

∑N
i=1

pi

2mi
is the kinetic

energy of the system and U(q) is the potential energy induced by interaction between atoms. The
motion of atoms is determined by Hamilton’s equation:

q̇i =
∂H
∂pi

=
pi

mi
, ṗi = − ∂H

∂qi
= − ∂U

∂qi
= Fi. (3)

which is a generalization of Newton’s equation of motion. The equation is then solved at discrete
time steps via numeric integrators, where the velocity Verlet (appendix A) [21] is the most widely
used one.

3 Model Architecture

In Hamilton’s equation (3), the variation of q only depends on p and vice versa. However, with a
larger time step, atoms interact with each other, thus, ∆q depends not only on p, but also q (and so is
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∆p). In MDNet, we model ∆q and ∆p via neural networks:

∆q,∆p = MDNet [q(t),p(t),∆t] , (4)

and the integration algorithm becomes:

p(t+ ∆t) = p(t) + ∆p, q(t+ ∆t) = q(t) + ∆q. (5)

In MDNet, the system is represented by a graph where each atom is represented by a node. Two
nodes are connected by an edge if the distance between them is less than a cut-off distance, rc. For
an edge between node i and j, its edge feature and message is calculated as:

eij = [
1

rij
,
qi − qj

r2ij
,pi − pj ]

T , mij = φe(eij) (6)

where rij = ||qi−qj ||2 is the Euclidean distance between node i and j, eij ∈ Rm1 and mij ∈ Rm2 .
In three-dimensional space,m1 = 7. The features 1

ri,j
and qi−qj

r2ij
are motivated from DeePMD [13, 14]

and pi − pj brings the information of momenta. Relative coordinates and momenta are used to
preserve translation invariance. The edge operator φe is an MLP. Then, edge features and messages
are gathered to nodes. For node i with neighbors {jk}nk=0, the local embedding Li is computed as

Ei = [ei,j0 , ..., ei,jn−1
], Mi = [mi,j0 , ...,mi,jn−1

],Li = MiE
T
i , Li ∈ Rm2×m1 . (7)

Here permutation invariance is preserved by the multiplication between Ei and Mi. Finally, the
variation of coordinates and momenta are predicted by aggregating the contribution of each edge,

∆qij ,∆pij = φo(Li, eij), (8)

∆pi =
∑

j∈N (i)

∆pij , ∆qi =
∑

j∈N (i)

∆qij +
pi

m
∆t. (9)

To ensure the conservation of momentum, for any edge, we randomly choose one direction, e.g. i ->
j, compute ∆pij and let ∆pji = −∆pji. This treatment is also applied to the calculation of ∆qij’s.

4 Experiments

We test the performance of MDNet on a liquid argon system containing 4000 atoms. The interatomic
interaction is modeled by Lennard-Jones potential [22]:

V (r) = 4ε
[
(
σ

r
)12 − (

σ

r
)6
]

(10)

where r is the distance between two atoms, ε and σ are set to 0.2374 kcal/mol and 3.432 Å respectively.
Although there is only one kind of interaction in the system, the dynamics could be rather complicated,
with increasing space and time scale.

Dataset: To create the dataset, we run classical MD simulations with LAMMPS using Verlet
integrator with a time step of 1 fs. We independently sample 20 trajectories from different initialized
configurations, where 15 are used for training, 3 are used for testing and 2 are used for validation.
For each trajectory, we randomly initialize 4000 atoms in a simulation box with periodic boundary
condition in all directions. The system is first relaxed under 80 K and 1 bar in the NPT ensemble with
Nosé-Hoover (NH) thermostat [23] and barostat for 20000 steps. Then, the system is further relaxed
under 80 K in the NVT ensemble with NH thermostat for 20000 steps. Finally, a NVE simulation is
performed for 2560 steps and only the trajectory of this final stage is used. In each trajectory, we
sample 10 frames {q(ti),p(ti)}10i=1 of the system and use {q(ti + ∆t),p(ti + ∆t)}10i=1 as targets.
According to the time reversibility of MD, the reversed data are also added to the dataset. Besides, an
extra 40960-steps MD simulation in the NVT ensemble is performed to validate roll-out performance.

Implementation details: The cutoff radius rc for constructing the nearest neighbor graph is 7.0
Å. The MLPs φe and φo both have 4 layers and use ReLU [24] as activation function. φe has 40
neurons in each hidden layer and φo has 200 neurons in each hidden layer. Training is carried out for
1000 epoch, batch size 1 with Adam optimizer [25]. Learning rate starts from 5× 10−3 and decays
exponentially at a rate of 0.8. The loss function is the mean squared error (MSE) of coordinates
and momenta, normalized by their standard deviations respectively. We compare MDNet to EGNN
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Figure 2: RDFs and MSDs computed from ground truth and MDNet with different ∆t.

[20] composed of 4 EGCL layers with 64 neurons per layer and Swish activation function [26].
Hyperparameters of EGNN are consist with the original paper.

One-step results: We present the one-step root mean squared errors (RMSE) obtained by the Verlet
integrator, EGNN and MDNet on validation set in Table 1. It is shown that MDNet reports comparable
RMSE with Verlet with a small time step (16 fs), and significantly outperforms Verlet with a large
time step. As the time step increases, the RMSE of Verlet increases faster than MDNet, due to the
contribution of the fourth order error. The performance of EGNN is poor with all the time steps.

∆t [fs] Verlet EGNN MDNet

16 8.44× 10−5,8.42× 10−7 2.51× 10−4, 3.13× 10−5 1.80× 10−5, 2.32× 10−6

32 6.68× 10−4, 6.58× 10−6 9.94× 10−4, 6.14× 10−5 5.90× 10−5,4.04× 10−6

64 5.24× 10−3, 5.74× 10−5 3.82× 10−3, 1.14× 10−4 3.05× 10−4,1.22× 10−5

128 3.88× 10−2, 1.75× 10−3 1.34× 10−2, 1.86× 10−4 2.29× 10−3,5.66× 10−5

Table 1: Validation RMSE for prediction of coordinates in Å (left) and velocity and Å/fs (right),
respectively. Results obtained from Verlet, EGNN and MDNet with different ∆t.

Roll-out performance: MD simulations can be performed by adopting one-step prediction iteratively,
which is known as roll-out. We use two metrics to evaluate the roll-out performance of MDNet:
radial distribution function (RDF) [27] and mean-squared displacement (MSD) [28, 29]. where RDFs
provide good descriptions of equilibrium structure and MSD is a measure of transport properties
of simulation systems. To compute RDFs, we conduct 40000 fs simulation and take 8 frames from
the subsequent trajectory with a gap of 128 fs. The final RDFs are averaged over these 8 frames.
As shown in Figure 2 (left), RDFs obtained from MDNet with different time steps coincide with
ground truth, which show correct equilibrium structures. To compute MSD, the trajectory is saved
with a resolution of 256 fs and calculate displacement against the first frame. As shown in Figure 2
(right), MSDs obtained from MDNet are linear with time and are in good agreement with ground
truth, despite that the slopes with large time steps are slightly smaller. In summary, MDNet can
reproduce the equilibrium structures and transport properties of the simulation system with large time
steps. We also compare the time cost of roll-out and show that MDNet enjoys faster roll-out speed
compared to Verlet, thanks to the large time step. The comparison of time cost is in the appendix B.

5 Conclusion and Discussion

We introduce MDNet, a GNN model that can predict the dynamics of many body system with large
time steps. We demonstrate that MDNet exhibites good precision on one-step prediction with a large
time step, and is able to generate MD trajectories. The generated trajectories are characterized by
RDF and MSD, which showed good agreement with the ground truth. It is worth mentioning that
MDNet only takes local environments as feature, so it could be generalized to larger systems with the
same species of atoms without further training and we plan to investigate this in our future work.
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There are several future directions. Firstly, the total energy is not guaranteed to be conserved during
roll-out of MDNet. Incorporating thermostat into MDNet is necessary to control the temperature
and total energy. Secondly, The Lennard-Jones system presented in this paper is the simplest case
in MD applications. With the introduction of chemical bonds, the system will exhibit multiple
characteristic times and the dynamics will be much more difficult to predict. The extension of MDNet
to complicated systems is worthy of further study.
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A The Velocity Verlet Algorithm

The algorithm of the most commonly used integrator, velocity Verlet, is:

pi(t+
1

2
∆t) = pi(t) +

1

2
Fi(t)∆t,

qi(t+ ∆t) = qi(t) +
pi(t+ 1

2∆t)

mi
∆t, (11)

pi(t+ ∆t) = pi(t+
1

2
∆t) +

1

2
Fi(t+ ∆t)∆t.

In practice, pi(t+ ∆t) may not need to be calculated explicitly. Then, the coordinates and momenta
are updated alternately, which is also known as leapfrog integration.

B Comparison of Time Cost

We demonstrate the time cost of roll-out of MDNet and Verlet algorithm here.

forward time [s] time cost per fs [s]

Verlet-1 fs 3.82× 10−3 3.82× 10−3

MDNet-16 fs 4.01× 10−2 2.51× 10−3

MDNet-128 fs 4.03× 10−2 3.15× 10−4

Table 2: The time cost of Verlet and MDNet for one-step prediction and 1 fs simulation. For fair
comparision, Verlet algorithm is implemented by Tensorflow [30] and MDnet by DGL [31] with
Tensorflow backend. The computation time is evluated on a single Tesla P4.
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