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ABSTRACT

The predictions of small transformers, trained to calculate the greatest common
divisor (GCD) of two positive integers, can be fully characterized by looking at
model inputs and outputs. As training proceeds, the model learns a list D of integers,
products of divisors of the base used to represent integers and small primes, and
predicts the largest element of D that divides both inputs. Training distributions
impact performance. Models trained from uniform operands only learn a handful
of GCD (up to 38 GCD < 100). Log-uniform operands boost performance to
73 GCD < 100, and a log-uniform distribution of outcomes (i.e. GCD) to 91.
However, training from uniform (balanced) GCD breaks explainability.

1 INTRODUCTION

Transformers (Vaswani et al.l 2017 have been applied to problems of mathematics, both symbolic
(Lample & Charton, 2019}, |Charton et al., |2020; [Shi et al., [2021]) and numerical (Charton| [2021]).
Yet, they struggle with basic arithmetic (Lee et al.| [2023; Nogueira et al., 2021). Large language
models (LLM) can learn addition or multiplication by a small prefactor, and generalize beyond
their training range when fine-tuned using scratchpad (Nye et al., |2021), chain-of-thought (Wei
et al.,2023) or algorithmic prompting (Zhou et al.,[2022)), but these techniques require bespoke data
and do not extend to complex tasks (Dziri et al.,|2023)). Math transformers were also found to be
brittle (Welleck et al.,[2021)), to fail on simple tasks (Davis, |2023)), and to be hard to interpret, except
in the simplest cases (Nanda et al., 2023). Yet, small transformers can learn advanced calculations,
such as eigen-decomposition (Charton, 2021)) and polynomial roots (Charton, [2022b)).

In this paper, I train 4-layer transformers to compute the greatest common divisor (GCD) of two
positive integers, an important operation for rational arithmetic and number theory, and observe that:

1. Transformers learn to cluster input pairs with the same GCD. All pairs of integers (a, b) with
the same GCD £ are predicted the same.

2. Transformer predictions can be fully characterized. During training, the model learns a set of
integers D, and predicts, for any input pair (a, b), the largest element in D that divides a and b.

3. Early during training, transformers learn to predict products of divisors of the base used to
represent integers. Small primes are ‘“grokked” (Power et al.|[2022)) after extended training.

4. Models trained from log-uniform operands and outcomes achieve better performance. They
correctly predict up to 91 GCD < 100. Model predictions remain fully explainable.

5. An unbalanced distribution of outcomes in the training set is required for full explainability:
explainability partially fails once models are trained from uniformly distributed GCD.

These results demonstrate how transformers can be trained to perform exact calculations involving
integer divisibility, a central task in integer arithmetic and number theory. Beyond GCD calculations,
the broader potential impact of this research extends in three directions. First, it presents a new
approach to model explainability: fully characterizing black-box model predictions by experimenting
with selected inputs and leveraging our theoretical understanding of the underlying mathematics. Sec-
ond, the results on log-uniform training distributions of operands and outcomes — faster learning and
better performance — may extend to other arithmetic tasks, e.g. fine tuning LLM. Finally, mathemati-
cal tasks play a central role for Foundational Models for Science — large language models pre-trained
on mathematics, and fine-tuned on specific fields, such as high energy physics, computational biology
or astrophysics. Before they can do science, transformers must learn maths.
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RELATED WORK

Neural networks for arithmetic were first proposed by |Siu & Roychowdhury|(1992), and recurrent
models by |[Kalchbrenner et al.|(2015)), Zaremba et al.| (2015) and [Kaiser & Sutskever| (2015). Recent
research mostly focuses on fine-tuning LLM on arithmetic tasks, to solve math word problems (Meng
& Rumshisky, 2019 |Griffith & Kalita, 2021). See Lee et al.|(2023) for a summary. As an alternative,
Neural Arithmetic Logical Units (Trask et al.,[2018; Mistry, 2023)) learn exact computations that can
generalize to any input, by constraining the weights of linear models to be close to 0, 1 or —1.

The difficulty of learning arithmetic tasks was discussed by many authors. |[Saxton et al.[(2019),
benchmarking mathematical tasks, observe that number theoretic operations, like factorization, are
hard. |[Palamas| (2017) further investigates the hardness of modular arithmetic. |Dziri et al.| (2023)) note
the difficulty of extending the promising results obtained by |Lee et al.|(2023) on the four operations
to complex mathematical calculations or algorithms — GCD and Euclid’s algorithm, here.

The role of number representation was discussed by Nogueira et al.|(2021)) and |Charton| (202 1}).
Grokking was first described by |Power et al.|(2022). |Liu et al.|(2022) propose metrics to characterize
it. (Gromov| (2023) provides an insightful analysis of grokking in feed-forward networks. Most prior
work on explainability in arithmetic transformers tries to interpret model weights (Nanda et al.,
2023; Zhong et al.| 2023)). (Charton|(2022a) conducts similar experiments for linear algebra.

2 EXPERIMENTAL SETTINGS

GCD calculations are framed as a supervised translation task. Problems (pairs of integers) are
randomly sampled, represented as sequences of tokens, and used to train sequence-to-sequence
transformers to translate input pairs into their GCD, by minimizing the cross-entropy between model
predictions and the sequences representing correct solutions. Integers are encoded as sequences of
digits in base B, preceded by a sign which also serves as a separator (Table ). In base 10, the model
translates (8, 12), encoded as the sequence ‘+ 8 + 1 2',into its GCD, 4, encoded as ‘+ 4.
The choice of B is a trade-off. Small bases result in longer sequences that are harder to learn, but use
a small vocabulary that is easier to memorize. Composite bases allow for simple tests of divisibility:
in base 10, divisibility by 2, 5 and 10 is decided by looking at the rightmost token in the sequence.

Transformers with 4 layers, 512 dimensions and 8 attention heads, using Adam (Kingma & Bal,
2014) are trained with a learning rate of 10~ (no scheduling is needed) on batches of 256 examples.
All inputs pairs are sampled uniformly between 1 and M = 10°. All data is generated on the fly:
different training epochs use different examples for the train and test set. After each epoch (300,000
examples), the models are evaluated on two test sets of 100,000 examples: a natural test set of
uniformly sampled pairs (a, b), and a stratified test set with GCD uniformly distributed between 1 and
100. In the natural set, small GCD are more common — we have P(ged(a, b) = k) = — (Cesaro,
1883). The stratified set has about 1000 examples with GCD k for 1 < k& < 100, and is generated by:

 sampling k, uniformly between 1 and 100,
» sampling @ and b, uniformly between 1 and 2, such that ged(a, b) = 1, using rejection sampling,
* adding (ka, kb) to the stratified test set.

These two test sets provide two measures of accuracy. Model accuracy, measured on the natural set,
is the probability that the GCD of two random integers from 1 to M is correctly predicted. Accuracy
on the stratified test set is the number of GCD correctly predicted between 1 and 100. The size of
the problem space (102 possible input pairs) guarantees minimal duplication between train and test
set. All experiments are run on one NVIDIA V100 GPU with 32 GB of memory. The source code
for these experiments can be found at https://github.com/facebookresearch/GCDL

Table 1: Encoding gcd(160,120) = 40, in base 2, 6, 10 and 30

Base Encoded input Encoded output
2 [+,1,0,1,0,0,0,0,0,+,1,1,1,1,0,0,0} [+111011IOVOVO}
6 [+,4,2,4,+,3,2,0] (+,1,0,4]

10 [+,1,6,0,+,1,2,0] [+,4,0]

30 [+,5,10,+,4,0] [+,1,10]
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Table 2: Number of correct GCD under 100 and accuracy. Best of 6 experiments.

Base 2 3 4 5 6 7 10 11 12 15
Correct GCD 7 5 7 3 19 3 13 2 19 9
Accuracy 81.6 689 814 640 915 625 847 61.8 915 717
Base 30 31 60 100 210 211 420 997 1000 1024
Correct GCD 27 2 28 13 32 1 38 1 14 7
Accuracy 947 613 950 847 955 613 968 613 847 815

3 LEARNING THE GREATEST COMMON DIVISOR - BASE EXPERIMENTS

A model trained on pairs of positive integers under one million, encoded in base B = 10, correctly
predicts 84.7% of the examples in the natural test set, and 13 correct GCD under 100 (accuracy
on the stratified test set). Performances vary with the encoding base: from 61.8% accuracy and 2
correct GCD for base 11, to 96.8% and 38 GCD for base 420 (Table . The best performances are
achieved for composite bases (30, 60, 210 and 420), the worst for large primes. Learning is very fast:
for base 30, the model achieves 90% accuracy after 2 epochs (600,000 examples), and 93% after 6.
Model size has little impact on performance (Appendix [B)). For base 30, 1-layer transformers with
32 dimensions (less than 300,000 parameters) achieve 93.3% accuracy. 24-layer models with 1024
dimensions (714 million parameters) achieve 93.4%. For base 31, accuracy is 61% for all models.

These variations in model performance can be understood by looking at model predictions. Table 3]
presents, for bases 2 and 10 and GCD up to 36, the most frequent model prediction for pairs with a
given GCD (Pred), and its frequency in the stratified test set (%) — detailed results for 6 bases and
GCD up to 100 are in Appendix . All frequencies are very close to 100%: for every test pair with
GCD k, the model makes the same prediction f (k). In other words, the model can tell whether two
input pairs have the same GCD. Correct model predictions (f (k) = k) only happen for products of
divisors of the base. In fact, all model predictions can be summarized in three rules:

(R1) Predictions are deterministic. The model predicts a unique value f (k) for almost all (99.9%)
pairs of integers with GCD k. Predictions are correct when f (k) = k.

(R2) Correct predictions are products of primes dividing B. For base 2, they are 1, 2, 4, 8, 16,
32 and 64. For base 31, 1 and 31. For base 10, all products of elements from {1, 2,4, 8,16}
and {1,5,25}. For base 30, all products of {1,2,4,8},{1,3,9,27} and {1, 5, 25}.

(R3) f(k) is the largest correct prediction that divides k. For instance, f(8) = 8, and f(7) = 1,
for base 2 and 10, but f(15) = 5 for base 10 and f(15) = 1 for base 2.

These results can be interpreted as follows. For prime bases, such as B = 2, an integer is divisible
by B* iff its representation ends in k zeroes. The model learns to “predict” GCD by counting the
rightmost zeroes in its operands, z, and zp, and predicting B* with z = min(z,, 25). This accounts
for all observed results. For instance, it will correctly predict the GCD of a = 8 = 10002 and
b =12 = 11005 to be 22 = 4, and incorrectly predict the GCD of 7 = 1115 and 14 = 11105 to be

Table 3: Model predictions and their frequencies, for GCD 1 to 36. Correct predictions in bold face.

Base 2 Base 10 Base 2 Base 10 Base 2 Base 10
GCD  Pred % Pred % GCD  Pred % Pred % GCD  Pred % Pred %
1 1 100 1 100 13 1 100 1 100 25 1 100 25 100
2 2 100 2 100 14 2 100 2 100 26 2 100 2 100
3 1 100 1 100 15 1 100 5 100 27 1 100 1 100
4 4 100 4 100 16 16 100 16 99.7 28 4 100 4 100
5 1 100 5 100 17 1 100 1 100 29 1 100 1 100
6 2 100 2 100 18 2 100 2 100 30 2 100 10 100
7 1 100 1 100 19 1 100 1 100 31 1 100 1 100
8 8 100 8 100 20 4 100 20 100 32 32 99.9 16 99.9
9 1 100 1 100 21 1 100 1 100 33 1 100 1 100
10 2 100 10 100 22 2 100 2 100 34 2 100 2 100
11 1 100 1 100 23 1 100 1 100 35 1 100 5 100
12 4 100 4 100 24 8 100 8 100 36 4 100 4 100
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Figure 1: Correct GCD vs training Figure 2: Correct GCD vs training
time. Natural (k%) distribution of GCD. time. 5% uniform, 95% natural GCD.

1. For composite bases, such as B = 10, an integer « is divisible by f, such that kf = B", iff its n
rightmost digits are in {0, f,2f...(k — 1) f}. The model learns to test the divisibility of its operands
by comparing their n rightmost digits with the k possible values, and predict the largest f that divides
both operands. In practice, only divisibilities that can be tested by considering the two last digits in
the representation are learned. For B = 210 divisibility by 4 is learned, but divisibility by 8 is not.
For B = 420 divisibility by 16 is learned, but not by 32. The three rules also account for variations
in model accuracy (computed on the natural test set) for different bases (see Appendix [C)).

Learning GCD one prime power at a time. Learning curves have a step-like shape (Figure[I)), and
GCD are learned in sudden batches. When the model learns a new power of a prime divisor of B,
it also learns its products with already known GCD. For instance, for base 30, the model initially
predicts {1,2,4}, {1,3,9}, {1,5} and their products: 17 GCD under 100. A first step happens
around epoch 50, when the model learns 25 and the three associated multiples 50, 75 and 100 (21
GCD), a second around epoch 220, learning 8, 24, 40 and 72, and a third at epoch 660, learning 27
and 54, for a grand total of 27 correct GCD. The three rules hold at all times during training.

Accelerating learning by balancing the distribution of GCD. The distribution of GCD verifies
P(ged(a,b) = k) = ﬂz—ﬁw (Cesaro, |1883). As a result, large GCD are very rare in the training set,
and learning them is very slow. This can be mitigated, and training accelerated, by adding a small
proportion (5%) of uniformly sampled GCD to the training set: for B = 30, the model learns 25
GCD in 30 epochs, and 27 GCD in 175, vs 250 and 660 in the original experiments (Figure 2)).

In these experiments, models only correctly calculate GCD that are products of divisors of the base,
and the best accuracies are achieved for bases divisible by many small primes, e.g. 30, 210 or 420.
Still, all models learn to cluster pairs of input integers according to their GCD, and output a unique
prediction f(k) for all pairs with GCD k. This is a non-trivial result and a significant achievement.

4 LARGE COMPOSITE BASES B - GROKKING SMALL PRIMES

For large bases B, non-divisors of B are sometimes learned after extended training. In one experiment
with base 1000, the model predicts 13 GCD < 100 after 84 epochs: all products of {1,2,4, 8,16}
and {1,5,25}. Then, the training loss is flat during 100 epochs, and it seems that the model is no
longer learning anything. But then, the model starts predicting GCD 3, with an accuracy of 0.2%
at epoch 188, and 93% at epoch 193 (despite only seeing 100,000 input pairs with GCD 3 during
these 5 epochs). Multiples of 3 are then learned, and by epoch 220, the model predicts 22 GCD: all
products of {1,2,4,8,16}, {1,5,25} and {1, 3}. Model predictions still respect rules R1 and R3
(Appendix [E.I| Table [20)), and the three rules can be updated as follows:

(G1) Prediction is deterministic. All pairs with the same GCD are predicted the same, as f (k).
(G2) Correct predictions are products of primes divisors of B and small primes.
(G3) f(K) is the largest correct prediction that divides k.

This phenomenon is related to grokking (Power et al., [2022)). Tablepresents results for 16 large
bases, with models trained up to 1300 epochs. Grokking usually sets in late during training: for bases
625 and 4000, all products of divisors of B are learned in 5 and 15 epochs, but it take 600 epochs
for grokking (of 2 and 3) to happen. Primes and powers of primes are roughly grokked in order.
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Table 4: Predicted ged, divisors and non-divisors of B. Best model of 3. For non-divisors, the epoch learned
is the first epoch where model achieves 90% accuracy for this GCD.

Base GCD predicted  Divisors predicted Non-divisors (epoch learned)
625 = 54 6 {1,5,25} 2 (634)

2017 4 {1} 2 (142), 3 (392)

2021 = 43.47 10 (1,43}, {1,47} 2 (125), 3 (228)

2023 = 7.172 16 (1,7}, {1,17} 3(101), 2 (205), 4 (599)
2025 = 3%.52 28 {1,3,9,27, 81}, {1,525} 2 (217), 4 (493), 8 (832)
2187 =37 20 {1,3,9,27,81} 2(86), 4 (315), 5 (650)
2197 = 133 11 {1,13} 2 (62), 3 (170), 4 (799)

2209 = 472 8 {147} 2 (111), 3 (260), 9 (937)
2401 = 74 10 (1,7,49} 2 (39), 3 (346)

2401 =74 14 {1,7,49} 3(117),2 (399), 4 (642)
2744 = 23.7° 30 {1,2,4,8,16,32}, {1,7,49} 3 (543), 5 (1315)

3125 = 5° 16 {1,525} 2 (46), 3 (130), 4 (556)

3375 = 3%.53 23 {1,3,9,27}, {1,5,25} 2 (236), 4 (319)

4000 = 2°.5° 24 {1,2,4,8,16,32}, {1,5,25} 3(599)

4913 = 173 17 {1,17} 2 (54), 3 (138), 4 (648), 5 (873)
5000 = 23.5% 28 {1,2,4,8,16,32}, {1,5,25} 3(205), 9 (886)

10000 = 2%.5* 22 (1,2,4,8,16}, {1,5,25} 3(21D)

Learning curves (Appendix [E.T| Figure [5)) retain their usual step-like shape: long periods of stagnation
followed by sudden drops in the loss, and rises in accuracy, as new GCD are learned. Because it helps
learn small GCD, grokking boosts model accuracy (from 63% to 91% for B = 2023), but overall the
number of correct GCD remains low (under 30 for all large bases).

Balancing outcomes. The technique proposed in section [3|to accelerate learning (adding a small
amount of uniformly distributed GCD to the training set) does not apply to larger bases (Appendix [E.3|
Table[21). However, the unbalanced distribution of GCD can be corrected by sampling from a log-
uniform distribution — so that P(ged(a, b) = k) = < instead of & — as follows:

* Sample k between 1 and 100, with probability P(k) = <, with &= lei(i 1.
e Sample a and b uniformly from 1 to %, such that ged(a, b) = 1.

* Add (ak, bk) to the training set.

A log-uniform training distribution of GCD helps the model learn new non-divisors of B for 9
bases out of 35 (Table E]) For B = 211, primes up to 7 are learned. For B = 10000, 7, 9, 13 and
27 are learned, bringing the number of correct GCD to 62, our best result so far. For B = 30, a
counter-intuitive situation prevails: instead of small primes, the model learns B — 1 and B + 1.

Table 5: Log-uniform vs natural outcomes. Best model of 3, trained for 700 epochs. Non-divisors in bold.

Natural Log-uniform outcomes Natural Log-uniform outcomes
Base #GCD | #GCD New divisors learned || Base #GCD | # GCD  New divisors learned
2 7 7 - 997 1 1 -
3 5 5 - 1000 22 31 9,32, 64
4 7 7 - 2017 4 6 9
5 3 3 - 2021 10 10 -
6 19 20 64 2023 16 11 -
7 3 3 - 2025 28 28 -
10 13 14 32 2187 20 20 -
11 2 2 - 2197 11 11 -
12 19 20 81 2209 8 8 -
15 9 10 81 2401 14 16 5
30 25 36 16, 29, 31 2744 29 21
31 2 2 - 3125 16 16 -
60 28 33 27,32, 64 3375 23 21 -
100 13 15 32, 64 4000 25 31 9, 64
210 32 32 - 4913 17 9 -
211 1 18 2,3,4,5,7 5000 28 30 64
420 38 47 13,49 10000 22 40 7,9, 32
625 6 9 4 10000 22 62 7,9,13,27, 32,64




Published as a conference paper at ICLR 2024

5 LEARNING FROM LOG-UNIFORM OPERANDS

In all experiments so far, all pairs in the training sets are uniformly sampled between 1 and 10°. As a
result, models are mostly trained from examples with large operands. 90% of operands are larger than
100,000, and small instances, like gcd(6, 9), are almost never encountered. This contrast with the
way we are taught, and teach, arithmetic. We usually insist that small examples should be mastered,
and sometimes memorized, before larger instances, like gcd(102370, 102372) can be tackled.

In this section, I sample training pairs from a log-uniform distribution, by uniformly sampling real
numbers 0 < z < log M, computing e* and rounding to the nearest integer. In this setting, the
training set has as many 1-digit as 6-digit operands. In 3% of training example, both operands are
smaller than 10, and in 11% of examples, both are smaller than 100. This presents the model with
many simple examples that it can memorize, just like children rote learn multiplication and addition
tables. This is different from curriculum learning: the distribution of operands does not change during
training. Also, the log-uniform sampling only applies to the training set (the test sets are unaffected),
and it has no impact on the distribution of outcomes.

Table 6: Accuracy and correct GCD (up to 100), log-uniform operands. Best of three models, trained for
1000 epochs (300M examples). All models are tested on 100,000 pairs, uniformly distributed between 1 and 10°.

Base Accuracy Correct GCD \ Base Accuracy GCD \ Base Accuracy GCD

2 94.4 25 60 98.4 60 2025 99.0 70
3 96.5 36 100 98.4 60 2187 98.7 66
4 98.4 58 210 98.5 60 2197 98.8 68
5 97.0 42 211 96.9 41 2209 98.6 65
6 96.9 39 420 98.1 59 2401 99.1 73
7 96.8 40 625 98.2 57 2744 98.9 72
10 97.6 48 997 98.3 64 3125 98.6 65
11 97.4 43 1000 99.1 71 3375 98.8 67
12 98.2 55 1024 99.0 71 4000 98.7 66
15 97.8 52 2017 98.6 63 4913 98.2 57
30 98.2 56 2021 98.6 66 5000 98.6 64
31 97.2 44 2023 98.7 65 10000 98.0 56

Training from log-uniform operands greatly improves performance (Table[6). Accuracy for all bases
is between 94 and 99%, compared to 61 and 97% with uniform operands. For base 2401, the
number of correct GCD is 73, our best result so far. For base 10, the number of correct GCD is 48
(vs 13). Learning is accelerated: for base 10, GCD 1,2, 4 and 5 are learned as early as epoch 3, 3 and
8 by epoch 25, 7 and 9 by epoch 220 and 11 by epoch 750.

As before, large bases perform better. All models with B < 420 have an accuracy over 98% and
correctly predict more than 55 GCD under 100. The divisors or B are learned first, then, small powers
of primes are grokked, roughly in order. After training, models have learned to predict all primes up
to a certain value, some of their small powers, and all associated products. All primes up to 5 are
learned for base 2, up to 11 for base 10, up to 17 for base 100, and up to 23 for base 1024. For base
1024, 2401, and 2744, only 27 GCD are incorrectly predicted:

e the 16 primes from 29 and 97, all predicted as 1,

» small multiples of these primes: products of 2 and 29, 31, 37,41, 43 and 47, predicted as 2, and
products of 3 and 29 and 31, predicted as 3,

« powers of small primes: 49 = 72, predicted as 7, and 81 = 3%, predicted as 27.

» small multiples of these: 98 = 49 * 2, predicted as 14.

The three rules with grokking (G1 to G3) still apply: predictions are deterministic, for a pair (a, b)
with GCD k, the model predicts the largest correctly predicted GCD that divides k.

Learning curves retain their step-like shape, but they are more noisy, and smoother (see Appendix[E.2):
transitions now span several epochs, and each new prime takes more examples to be fully learned.
While the model During training, while the model learns a new divisor, rules G1 and G3 are
temporarily violated. During a few epochs, model predictions are split between the old and the new
value (e.g. between 7 and 49 when the model is learning 49). This situation, rarely observed in
previous experiments, is common with log-uniform operands.
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Table 7: Accuracy and correct GCD, log-uniform operands and outcomes. Best model of 3.
Base Accuracy Correct GCD ‘ Base  Accuracy GCD ‘ Base Accuracy GCD

2 16.5 17 60 96.4 75 2025 97.9 91
3 93.7 51 100 97.1 78 2187 97.8 91
4 91.3 47 210 96.2 80 2197 97.6 90
5 922 58 211 95.3 67 2209 97.6 87
6 95.2 56 420 96.4 88 2401 97.8 89
7 93.0 63 625 96.0 80 2744 97.6 91
10 94.3 65 997 97.6 83 3125 97.7 91
11 94.5 57 1000 97.9 91 3375 97.6 91
12 95.0 70 1024 98.1 90 4000 97.3 90
15 954 62 2017 97.6 88 4913 97.1 88
30 95.8 72 2021 98.1 89 5000 97.1 89
31 94.4 64 2023 97.5 88 10000 95.2 88

Log-uniform outcomes. Balancing the distribution of GCD by making it log-uniform, as described
in section[d] together with log-uniform operands, brings another large improvement in performance
(Table[7). After 1000 epochs, all models with B larger than 1000 predict 87 to 91 GCD: all primes
up to 53 and all composite numbers up to 100. These are our best results. They can be marginally
improved by training models from an inverse square root distribution of outcomes (Appendix [D.T)).
Note the low accuracy for base 2: with log-uniform outcomes, the model fails to learn GCD 1, for
lack of examples.

6 LEARNING FROM UNIFORM OUTCOMES

Log-uniform distributions of outcomes improve model performance by reducing the imbalance
between small and large GCD in the training set. It is therefore tempting to push this logic further,
and train models from a uniform distribution of GCD and operands, i.e. sample the training set like
the stratified test set from Section[2] Figure 3] presents learning curves for three models using base 10.
Model accuracy (measured on the natural test set) seems to vary randomly, and the test loss is flat.
Yet, the number of correct GCD is stable over time, and increases in steps, from 10 to 17, in line with
the results from section[3](13 GCD are learned). Something is learned despite the flat loss.

Accuracy 20.0 Correct GCD a0 Loss

175) 35 WWM

15.01 3.0
12,54 F L 2.5
10.0 2.0

80

704
60
50
40
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Figure 3: Learning curves for B=10. Uniform outcomes and operands. 3 different seeds.

Table 8] presents the most common model predictions, and their frequencies, for all GCD up to 20. At
first glance, predictions seem chaotic. At epoch 266, the model achieves 81% accuracy, and correctly
predicts 14 GCD: 1, 2, 5, 8, 20, 32, 40, 44, 48, 50, 64, 75, 80 and 100. One epoch later, accuracy is
down to 6%, the model still predicts 14 GCD: 4, 8, 10, 16, 40, 50, 55, 60, 64, 66, 75, 80, 95 and 100,
half of the correct GCD have changed! After another epoch, accuracy is 4% and the model predicts 4,
20, 25, 26, 30, 32, 40, 48, 50, 55, 64, 73, 80, 88 and 100. Again, half the correct GCD have changed.

As in previous experiments, frequencies are close to 100%: the model makes a unique prediction
f (k) for all pairs with GCD k, with the notable exception of epoch 267 where model predictions for
1, 3 ... are split (almost evenly) between 11 and 19. Model predictions cluster by classes of GCD: all
elements in class C; = {1,3,7,9,11,13,17,19} are predicted as 1 at epoch 266, 19 at epoch 267,
73 at epoch 268, and so on. The same pattern appears for classes Cy = {2, 6, 14,18}, Cy = {4,12}
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Table 8: Prediction for base 10 - uniform operands and outcomes. Most common prediction for GCD 1 to
20, and frequency, for successive epochs. Correct predictions are in bold

Epoch 266 ‘ Epoch 267 | Epoch 268 ‘ Epoch 269 | Epoch 270 H Epoch 580 ‘ Epoch 581

Pred % Pred % Pred % Pred % Pred % Pred % Pred %

1 100 19 54 73 100 7 100 13 100 1 98 71 99

1

2 2 100 | 66 100 | 26 100 | 62 100 | 66 100 22 93 22 99
3 1 100 19 52 73 100 7 100 13 100 1 99 71 99
4 44 91 4 100 4 100 | 44 100 4 100 4 100 4 100
5 5 100 | 55 100 | 55 100 | 55 100 5 100 5 100 5 100
6 2 100 | 66 100 | 26 200 | 62 100 | 66 100 22 93 22 99
7 1 100 19 62 73 100 7 100 13 100 1 99 71 99
8 8 99 8 100 | 88 100 8 100 8 100 88 100 | 88 99
9 1 100 19 53 73 100 7 100 13 100 1 99 71 99
10 70 70 10 100 | 30 99 70 100 | 70 100 30 100 | 70 100
11 1 100 19 57 73 100 7 100 13 100 1 98 71 99

12 44 91 4 100 4 100 | 44 100 4 100 4 100 18 22

13 1 100 19 55 73 100 7 100 | 13 100 1 98 77 99
14 2 100 | 66 100 | 26 100 | 62 100 | 66 100 22 92 22 99
15 5 100 | 55 100 | 55 100 | 55 100 5 100 5 100 5 100
16 48 97 16 84 48 99 48 99 16 98 48 98 48 78
17 1 100 19 54 73 100 7 100 13 100 1 99 77 100

18 2 100 | 66 100 | 26 100 | 62 100 | 66 100 22 93 22 99
19 1 100 | 19 53 73 100 7 100 13 100 1 99 71 99
20 20 100 | 60 100 | 20 98 20 100 | 20 53 20 100 | 20 100

and C5 = {5, 15}, i.e. pairs of integers both divisible by 2, 4, and 5, that would have been predicted
as 2, 4, and 5 by the base 10 model from section@ In other words, the model learns to cluster input
pairs into classes having a common divisor (a product of divisors of 10), just like it did in section 3}
but instead of predicting the smallest (and most common) element in each class, it predict a different
element at every epoch. This can be summarized into three rules with uniform outcomes:

(U1) Predictions are mostly deterministic. At a given epoch, the model usually predicts a unique
value f (k) for a given GCD k. In rare cases, the model makes 2 or 3 predictions.

(U2) Classes of multiples of products of prime divisors of B are predicted the same. For base 10,
some classes are C; = {1,3,7,9,11,13,17,19...}, C2 = {2,6,14,18,22,26,34,38... },
Cy=1{4,12,24,36,44,52,...} and C5 = {5,15,35,55... }.

(U3) For each class, the model prediction is an element of the class. Prediction varies from
one epoch to the next, but the number of correct GCD is stable over time: it is the number of
classes, which increases as the model learns new divisors of B.

The three rules explain the variations in the accuracy curve: since 61% of examples in the natural test
set have GCD 1, accuracy jumps by 61% every time class C1 is predicted as 1. Rule U3, on the other
hand, accounts for the step-shaped learning curve for correct GCD.

These results shed light on the learning process and the role of the distribution of outcomes. During
training, all models, regardless of outcome distribution, learn to partition their input pairs into classes,
with GCD multiples of a product of divisors of the base (or small primes when grokking happens), i.e.
for base 10, multiples of 2, 4, 5, 10, 20, and a default class associated to 1. The model makes a unique
prediction for all pairs in a class. When the distribution of outcomes is unbalanced, this prediction
is the smallest element in the class, which happens to be the most common. When outcomes are
uniformly distributed, a different element of the class is predicted at every epoch, somewhat randomly:
the model becomes less explainable.

Base 1000, grokking and loss of determinism. Models with base 1000, trained on uniform operands
and outcomes, undergo a similar learning process (see Appendix [D.3) during the first 400 training
epochs. Grokking sets in around epoch 200. Multiples of 11, 22, 44, 55 and 88 are learned around
epoch 220, then multiples of 3 by epoch 260 and of 7 by epoch 400. At this point, 41 GCD are
correctly predicted. Note that grokking no longer happens in order: 11 is learned before 3.

During the grokking phase, a new phenomenon develops. As new primes are grokked and more
classes are created, model predictions for each class become less deterministic. Instead of predicting
a unique value for each class at each epoch, the model now “hesitates” between several values, and
the frequency of the most common prediction goes down. By epoch 400, for the class C, the model
makes 18 different predictions with frequencies ranging from 2% to 13% (Table[13]in Appendix [D.3).
Model predictions are no longer explainable, and the three rules are not respected.
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Interestingly, GCD continue to be learned under this new regime, starting with the largest (i.e. the
smallest classes of multiples). By epoch 740, 95 GCD under 100 are correctly predicted. The worst
performance is achieved for small GCD: 43, 74 and 85% correct predictions for GCD 1, 2 and 3.
Appendix [D.4] presents results for larger bases, where up to 99 GCD under 100 are learned.

7 DISCUSSION

Can transformers learn the greatest common divisor? With enough examples and appropriate
adjustment of their training distribution, they can. Models leveraging large composite bases, and
trained on log-uniform operands and outcomes predict over 90 of the 100 first GCD. Models trained
on uniform outcomes predict 95 GCD. However, the experiments from section [3]show the limits of
naive, benchmark-based evaluations on arithmetic tasks: high accuracies (95%) can be achieved, on
held-out test sets of of random examples, by models that only predict a handful of GCD.

The approach to explainability presented in this paper differs from most works on the subject.
Instead of looking at model parameters, I engineer experiments that reveal the algorithms that the
model is implementing. It is often repeated that transformers are incomprehensible black-boxes, that
sometimes confabulate and often fail in unpredictable ways. Here, model predictions can be fully
characterized by a small number of rules. This is a promising direction for future research.

Experiments indicate that transformers learn a sieve algorithm for computing GCD. The model
first learns divisibility by products of divisors of the base, which can be tested by looking at the last
digits of a number, or counting its rightmost zeroes. Using these rules, the model clusters its input
pairs into classes of multiples of divisors of the base, and predicts the GCD as the minimum for the
class. All GCD corresponding to products of divisors of B? are learned this way. At the end of this
phase, in base 2, the model correctly predicts 1,2, 4, 8,16 and 32.

As training proceeds, new prime divisors are learned (grokked) in order. They are all prime because
multiples of previous divisors were learned already, i.e. the model functions like a sieve. Every
time a new divisor p is learned, all existing classes are split between multiples and non-multiples
of p. In base 2, once the model learns divisibility by 3, six new classes are created: multiples of 3,
6, 12, 24, 48 and 96 (splitted from 1,2, 4, 8, 16 and 32. This accounts for the steps observed in the
learning curves. A GCD is correctly predicted once all the powers of primes dividing it are learned.
Eventually, all GCD will be learned this way.

Experiments with uniform outcomes suggest that an unbalanced training distribution of GCD is
needed for this algorithm to succeed, because it causes each class to be predicted by its smallest,
and most common, member (the correct GCD), and it guarantees that primes are learned in order.
Interestingly, this algorithm is not related to Euclid’s algorithm. Note also that it is not specific to
transformers: Appendix [D.5]shows that similar results can be achieved with LSTM and GRU.

Another important finding is the role of training distributions. All models are tested on sets with
uniform operands, but the best results are achieved with a log-uniform distribution of operands
and outcomes in the training set. This may come as a surprise, since many authors observed that
evaluating a model out of its training distribution has a negative impact on performance. The existence
of special training distributions, that allow for faster learning and more robust models (with respect
to out-of-distribution generalization) was already observed for linear algebra (Charton, [2022a)).

A log-uniform distribution of operands strikes a balance between memorization and generalization,
and helps models learn hard instances by memorizing easier cases. This is related to curriculum
learning, but avoids catastrophic forgetting, because the training distribution never changes. These
observations may apply to other arithmetic tasks. On the other hand, a log-uniform distribution of
outcomes helps learning by enforcing a better representation of large GCD in the training set, a
classical recipe in machine learning (calssifiers are often trained on balanced datasets). The counter-
intuitive result is that a perfectly balanced, uniform training distribution set degrades performance by
preventing the model from learning small GCD, and breaking model explainability.

Is it really grokking? Power et al.| (2022)) define grokking as “generalization far after overfitting.” In
all experiments, training and test data are generated on the fly from a very large problem space. No
overfitting can happen, and the classical pattern of grokking, train accuracy dropping, and validation
accuracy catching up after a long time, will not occur. The similarity with grokking lies in the sudden
change in accuracy after a long stagnation of the training loss.
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APPENDIX

A RATIONAL ARITHMETIC WITH TRANSFORMERS

In these experiments, transformers are trained to perform five arithmetic operations on positive
rational numbers:

* comparison: given four positive integers a, b, c and d, predict whether § < <.

* Integer division: given two integers a and b, predict the integer | ¢ |.

* Addition: given four integers a, b, c and d, predict the sum § + <, in lowest terms.

* Multiplication: given four integers a, b, ¢ and d, predict the product { X %, in lowest terms.
 Simplification: given two integers a and b, predict the lowest term representation of %, i.e.

b
ged(a,b)

S withc = m and d =
For the comparison, addition and multiplication tasks, all integers a, b, ¢ and d are uniformly sampled

between 1 and M (M=100,000 or 1,000,000).

For the simplification task, 3 integers m, n, p are uniformly sampled between 1 and M, I leta =

= d’(’z,n) and b = df’%n) and the model is tasked to predict a and b.

For the integer division task, 3 integers m, n, p are uniformly sampled between 1 and M, with m < n,
Ilet a = pn +m and b = n, and the model is tasked to predict p = | ¥ .

All integers are encoded as sequences of digits in base B (see section [2). Sequence to sequence
transformers with 4 layers, 512 dimensions and 8 attention heads are trained to minimize a cross-
entropy loss, using Adam with learning rate 10~*, inverse square root scheduling, linear warmup over
10, 000 optimization steps, and a batch size of 256. After each epoch (300,000 examples), models
are tested on 100,000 random examples.

Comparison is learned to very high accuracy, and integer division to some extent. On the other
hand, the three tasks involving GCD calculations (simplification, addition and multiplication) are not
learned (Table [9).

Table 9: Rational arithmetic with transformers. Accuracy of trained models Best of 3 models, trained for
1000 to 1500 epochs.

Comparison Integer division Simplification Addition Multiplication
Base M=10° M=10° | M=10° M=10° | M=10> M=10° | M=10° M=10° | M=10° M=10°
10 100 100 21.2 24 0.14 0.02 0 0 0 0
30 99.9 100 142 22 0.21 0.02 0 0 0 0
31 99.9 100 14.3 2.4 0.02 0 0 0 0 0
1000 100 99.9 8.8 0.7 0.09 0.01 0 0 0 0

B MODEL SCALING FOR THE BASE EXPERIMENTS

Section [3] presents results for 4-layer transformers with 512 dimensions and 8 attention heads. In
this section, I experiment with very small models (down to 1 layer and 32 dimensions), and very
large ones (up to 24 layers and 1024 dimensions). Note: in Tables[I0|and[T1] the number of trainable
parameters are indicated for base 10, they will be larger for larger bases, because larger vocabularies
increase the number of parameters in the embedding and decoding layers.

Table['llj]presents accuracies for models with one layer, 8 attention heads, and 32 to 512 dimensions.
These models have 3 to 100 times less parameters that the 4-layer baseline, but there is no significant
change in trained model accuracy for 12 different bases.

Table [IT] presents results for models from 6 to 24 layers, symmetric (same number of layers in the
encoder and decoder), or asymmetric (using a one-layer encoder or decoder). The dimensions are
512, 640, 768 and 1024 for 6, 8, 12, and 24 layers, and the dimension-to-attention-heads ratio is kept
constant at 64 (i.e.there are 8, 10, 12 and 24 attention heads respectively). Again, model size has no
significant impact on accuracy.

12
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Overall, these scaling experiments suggest that trained model performance is stable over a wide range
of model size (300 thousands to 700 millions parameters). These results are strikingly different from
what is commonly observed in Natural Language Processing, where very small transformers (under a
few million parameters) cannot learn, and accuracy improves with model size.

Table 10: Model accuracies for different dimensions and numbers of parameters. All models have one
layer and 8 attention heads. Parameter counts for base 10.

512 dimensions 256 dim. 128 dim. 64 dim. 32 dim. | 4-layer baseline
Base 11.6M 4.0M 1.7M 0.6M 0.3M 33.7M
2 81.3 81.4 81.4 81.4 81.2 81.6
3 68.8 68.9 68.7 68.8 68.7 68.9
4 81.4 81.4 81.4 81.4 81.4 81.4
5 64.0 63.7 63.8 63.7 63.8 64.0
6 91.3 91.3 91.1 91.1 90.7 91.5
7 62.5 62.4 62.5 62.5 62.5 62.5
10 84.4 84.3 84.3 84.4 84.2 84.7
11 61.7 61.7 61.7 61.9 61.7 61.8
12 91.4 91.4 91.3 91.3 91.1 91.5
15 71.6 71.6 71.5 71.5 71.4 71.7
30 94.6 93.8 93.5 93.7 93.3 94.7
31 61.3 61.3 61.2 61.3 61.3 61.3

Table 11: Model accuracies for different depths and number of parameters (in millions). 1 and 6 layer
models have 512 dimensions and 8 heads, 8-layer have 640 dimensions and 10 heads, 12-layer 768 dimensions
and 12 heads, 24-layer models have 1024 dimensions and 16 heads. The largest base 2 and 3 models could not
run on one 32GB GPU. All model parameters for base 10.

1/6 6/1 6/6 1/8 8/1 8/8 1712 12/1  12/12 | 1/24 24/1 24724
Base | 325 273 483 | 59.1 484 97.1 | 1171 947 2048 | 387.4 3133 7138

2 81.3 813 814|815 814 813 | 813 813 814 - 81.4 -
3 68.7 68.8 687 | 688 689 690 | 689 688 0688 68.8 68.6 -
4 81.3 814 814|814 814 8l6 | 814 814 814 81.5 81.4 81.3
5 63.8 63.8 63.7 | 63.8 636 637 | 637 637 63.6 63.9 63.7 63.6
6

7

913 911 913 | 913 914 913 | 913 91.0 91.0 91.3 91.0 90.9
62.6 62.6 624 | 625 624 626 | 625 624 624 62.4 62.3 62.2
10 843 842 844 | 847 844 845 | 844 844 834 84.5 83.4 83.3
11 61.8 61.7 61.6 | 61.7 618 61.7 | 620 61.6 61.7 61.7 61.6 61.6
12 914 913 913 | 914 915 914 | 814 912 912 91.4 91.3 91.2
15 715 715 714 | 715 715 715 | 714 715 715 71.5 70.6 71.4
30 946 934 935|947 936 936 | 947 93.6 93.6 93.5 93.4 934
31 612 612 613|612 613 612 | 614 612 613 61.4 61.3 61.1

C THEORETICAL VALUES OF ACCURACY

In this section, I compute a theoretical accuracy for models from section [3| that follow the three rules,
assuming that all products of prime divisors of B are correctly predicted. The distribution of the
GCD of random uniform positive integers verifies: P(ged(a, b) = k) = — (Cesaro, |1883).

Therefore, if B = p*, with p prime, theoretical model accuracy is
6 = 1 6 p?
kY — = — —_—=——
A(p ) - A(p) 71_2 ;70 pgi 7_[_2 pg _ 17

2

if B=p"q', A(B) =1 - T (1 - A(p))(1 - Alg)),
if B = pkglr™, A(B) =1 — = (1 — A(p))(1 — A(q))(1 — A(r)), and so on.
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Table 12: Theoretical accuracy, accuracy and number of correct GCD under 100. Best of 6 experiments.

Base 2 3 4 5 6 7 10 11 12 15
Theoretical accuracy 81.1 684 81.1 633 90.2 62.1 88.6 61.3 902 803
Accuracy 81.6 689 814 640 915 625 847 618 915 717
Correct GCD 7 5 7 3 19 3 13 2 19 9
Base 30 31 60 100 210 211 420 997 1000 1024
Theoretical accuracy 94.1 609 941 886 963 60.8 963 608 88.6 81.1
Accuracy 947 613 950 847 955 613 968 613 847 815
Correct GCD 27 2 28 13 32 1 38 1 14 7

Table [I2] compares theoretical accuracies with empirical observations. Best model performances may
be higher than theory, because of sampling errors in the test set, or lower than theory when some
powers of prime divisors of B have not been learned.

D ADDITIONAL EXPERIMENTS

D.1 EXPERIMENTS WITH OUTCOME DISTRIBUTIONS

The results at the end of section [5|demonstrate that training from a log-uniform distribution of GCD
(P(ged = k) = k € improves model performance compared to the natural, inverse square distribution

(P(ged = k) = 1= C') . In this section, I experiment with three alternative distributions of outcomes:
* a “long-tail” log-uniform distribution: instead of sampling GCD between 1 and 100, they

are sampled between 1 and 200,
* an inverse square root distribution of outcomes: P( gcd =k)= T

* an inverse power 1.5 distribution: P(ged = k) = + f

Table 13: Correct GCD for different outcome distribution scaling laws. Best of 3 models, trained for
1000-1300 epochs. Log-uniform operands.

Outcome distribution scaling law
Base 5 = $,k<100 $,k<200 =

k2 kVEk vk
1000 71 71 91 90 91
1024 71 72 90 85 91
2017 63 64 88 87 88
2021 66 71 89 87 92
2023 65 67 88 85 90
2025 70 71 91 88 92
2187 66 70 91 86 91
2197 68 65 90 85 91
2209 65 68 87 85 90
2401 73 69 89 85 92
2744 72 72 91 88 89
3125 65 67 91 87 92
3375 67 68 91 87 92
4000 66 60 90 85 90
4913 57 60 88 90 92
5000 64 65 89 90 91
10000 56 55 88 90 91

Table [I3] presents results for 17 bases between 1000 and 10000, for models trained with log-uniform
operands and five distributions of outcomes. As observed in section[5] a log-uniform distribution of
outcomes achieves better performances than the natural (inverse square) distribution. The inverse
power 1.5 distribution of outcomes only brings marginal improvement over the natural distribution.
With log-uniform outcomes, sampling GCD up to 200 instead of 100 has a negative impact on the
number of correct GCD, except for the largest bases. On the other hand, training from an inverse
square root distribution of outcomes improves performance for all bases. For 6 bases, 92 GCD under
100 are predicted correctly.
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D.2 LEARNING WITH SMALLER BATCHES

A common advice, when training transformers on natural language processing tasks, is to use the
largest possible batches (i.e. as many as will fit in GPU memory). Large batches have two advantages,
they avoid extreme gradients by averaging them over many samples, and they accelerate training by
reducing the number of optimization steps. All models in this paper were trained with batches of
256 examples. In this section, I experiment with batches of 64, training models with log-uniform
operands (and various outcome distributions) for about 800 epochs.

TablelElcompares models with batches of 64 to batches of 256, trained for a week (about 800 epochs
for batch 64, 1300 for batch 256), on 11 different bases. For the same training time, batch size seems
to have little impact on performance. This suggests that models could be trained on machines with
less GPU memory, at no penalty.

Table 14: Correct GCD for different batch sizes. Best of 3 models, log-uniform operands. Models with batch
size 64 are trained for 800 epochs, models with batch size 256 for 1300 epochs.

Inverse square outcomes Log-uniform outcomes
Base batch size 64  batch size 256 | batch size 64  batch size 256
10 49 48 69 65
12 54 55 67 70
30 56 56 73 72
31 45 44 64 64
210 55 60 81 80
1000 70 71 91 91
2025 66 70 90 91
2401 68 73 90 89
2744 70 72 91 91
4000 67 66 90 90
10000 55 56 89 88

D.3 UNIFORM OPERANDS AND OUTCOMES - BASE 1000

In this section, I provide detailed results for models using base 1000, and trained on uniform operands
and outcomes. Learning curves (Figure d) are similar to those for base 10 (Figure [3) during the first
200 epochs: loss curves are flat, accuracy varies wildly, and the number of correct GCD has the
characteristic step-like shape observed throughout this paper. Grokking, characterized by steep drops
in the loss and increases in the number of correct GCD, happens between epochs 200 and 400. Then,
the accuracy and the number of correct GCD, rise steadily. After 800 epochs 95 (out of 100) GCD
are correctly predicted.

Accuracy 100 Correct GCD a0 Loss

701
3.5
60 80
3.0
50
601 2.57
2.0

30 40 151

404

204 1.01
204
10 0.5

B T T T T i T T i 0.0 — T i i T
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800

Epochs Epochs Epochs
Figure 4: Learning curves for B=1000 - uniform operands and outcomes.

More precisely, by epoch 180, the model has learned to classify all examples into 14 sets: multiples
of 1, 2,4, 5,8, 10, 16, 20, 25, 32, 40, 50, 80 and 100. At each epoch, the model selects one element
in each class, which is its unique prediction for all pairs of integers with GCD in the class: the rules
Ul to U3 are respected.
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Grokking sets in around epoch 200, and by epoch 220, 5 new classes have been learned: multiples
of 11 (11, 33, 77 and 99), 22, 44, 55 and 88, created by “splitting away”’ the multiples of 11 from
the classes of multiples of 1, 2, 4, 5 and 8. Because of uniform outcomes, grokking does not happen
in increasing order: 11 is learned before 3. By epoch 260, multiples of 3 are learned and the model
predicts 31 different outcomes (splitting 12 classes, from 1 to 32). By epoch 400, multiples of 7 are
learned, and 41 GCD are predicted.

During the grokking phase, a new phenomenon develops. As new primes are grokked and more
classes are created, model predictions for each class become less deterministic. Instead of predicting
a unique value for each class at each epoch, the model now “hesitates” between several values, and
the frequency of the most common prediction goes down. By epoch 400, for the class of multiples of
1, the model makes 18 different predictions with frequencies ranging from 2% to 13% (Table .

Table 15: Base 1000 - epoch 400 - predicted values and frequencies.

GCD 1 GCD 2 GCD 3 GCD 4 GCD 5
Predd % | Pred % | Pred % | Pred % | Pred %

11 5 2 8 3 12 4 40 5 12

17 2 22 13 27 11 44 19 55 21

19 2 34 18 33 7 68 5 85 31

23 3 38 12 51 9 76 24 95 36

29 5 46 10 57 12 92 12

31 7 58 10 69 22

37 5 62 10 81 7

41 13 74 4 87 7

43 8 82 8 93 8

59 1 86 6 99 2

61 2

67 2

71 4

73 3

79 9

83 13

89 7

97 7

At this point, model predictions are neither deterministic nor interpretable, and the three rules are
no longer respected. Classes have as many predictions as there are elements, and the model begins
learning individual GCD, beginning with the largest ones (i.e. the smallest classes). By epoch 740, 95
of the 100 first GCD are correctly predicted, the worst performance being achieved on the smallest
values (GCD 1, 2 and 3, correctly predicted 43, 74 and 85% of the time).

D.4 UNIFORM OUTCOMES - LARGER BASES

In these experiments, models are trained for 1200 epochs, from uniform and log-uniform operands,
and uniform outcomes. As previously, large bases achieve the best results. Models trained on uniform
operands also seem to perform better.

Table 16: Correct GCD with uniform outcomes. Best of 3 models, trained for 1200 epochs.

Base  Uniform operands Log-uniform‘ Base  Uniform operands  Log-uniform

1000 71 94 2401 98 90
2017 98 87 2744 96 93
2023 99 90 3375 98 92
2187 99 94 4000 98 94
2209 57 90 4913 99 93
2310 96 92 10000 99 95
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D.5 EXPERIMENTS WITH DIFFERENT ARCHITECTURES

In this section, I experiment with two popular recurrent architectures: long short-term mem-
ories (LSTM) (Hochreiter & Schmidhuber, [1997), and gated recurrent units (GRU) (Cho
et al., 2014). T train models with 1024 and 2048 dimensions, and four layers, on uniform
operands, log-uniform operands and log-uniform operands and outcomes, for 10 different bases:
10, 30, 31, 210, 420, 1000, 2021, 2023, 2025 and 2401.

By and large, the reuslts of my experiments with transformers extend to other recurrent networks.
After 500 epochs, models trained on uniform operands (table [17] achieve performances similar to
those obtained in sections [3|and[d] Composite bases like 210 and 420 achieve the best results (35 and
38 GCD), and large bases allow for grokking small primes. There is no clear advantage of LSTM
over GRU, or 2048 over 124 dimensions. Models trained on log-uniform operands (table [I8)) and
outcomes (table[T9) perform better, but results are lower (after comparable training time) than with
trasnformers.

Table 17: Correct GCD with uniform operands. Best of 3 models, trained for 500 epochs.

LSTM GRU

Base 1024 dim. 2048 dim. 1024 dim. 2048 dim.

10 15 15 15 15

30 32 30 32 30

31 2 2 2 2
210 35 35 35 35
420 38 34 34 38
1000 14 22 14 14
2021 8 7 8 10
2023 6 11 11 11
2025 24 24 10 18
2401 8 6 10 10

Table 18: Correct GCD with log-uniform operands. Best of 3 models, trained for 500 epochs.

LSTM GRU

Base 1024 dim. 2048 dim. 1024 dim. 2048 dim.
10 30 33 45 36
30 38 40 40 40
31 29 32 22 20
210 47 46 44 46
420 50 45 44 43
1000 53 51 46 47
2021 44 40 36 35
2023 46 48 38 39
2025 52 52 40 46
2401 47 41 35 33

Table 19: Correct GCD with log-uniform operands and outcomes. Best of 3 models, trained for 450 epochs.

LSTM GRU

Base 1024 dim. 2048 dim. 1024 dim. 2048 dim.

10 53 54 38 53

30 40 58 36 40

31 44 58 37 44
210 61 74 53 61
420 64 74 53 64
1000 69 73 62 69
2021 60 76 54 60
2023 65 73 53 65
2025 69 74 60 69
2401 55 73 50 55
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E ADDITIONAL RESULTS
E.1 GROKKING

GCD predicted 08 Train loss
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Figure 5: Learning curves for base B=2023. 3 different model initializations.

Table 20: Model predictions. B = 1000, after 220 epochs. 32 is being learned.

GCD  Prediction | GCD  Prediction | GCD  Prediction | GCD  Prediction | GCD  Prediction

1 1 11 1 21 3 31 1 41 1
2 2 12 12 22 2 32 16/ 32 42 6
3 3 13 1 23 1 33 3 43 1
4 4 14 2 24 24 34 2 44 4
5 5 15 15 25 25 35 5 45 15
6 6 16 16 26 2 36 12 46 2
7 1 17 1 27 3 37 1 47 1
8 8 18 6 28 4 38 2 48 48
9 3 19 1 29 1 39 3 49 1
10 10 20 20 30 30 40 40 50 50

Table 21: Predicted GCD, natural test distribution, and 5% uniform GCD . Best model of 3. .

Natural distribution 5% uniform GCD
Base Correct GCD  Epochs | Correct GCD  Epochs
625 6 650 3 10
1000 22 250 15 560
2017 4 450 1 0
2021 10 550 10 600
2023 16 600 11 800
2025 28 850 18 225
2187 20 750 12 750
2197 11 800 11 775
2209 8 850 6 575
2401 14 700 14 630
2744 29 1400 21 650
3125 16 550 11 500
3375 23 400 23 475
4000 25 650 25 600
4913 17 950 7 575
5000 28 900 24 675
10000 22 250 22 300
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E.2 LEARNING CURVES - LOG-UNIFORM OPERANDS
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Figure 6: Learning curves for base B=2023. Log-uniform operands, natural outcomes. 3 different model
initializations.
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Figure 7: Learning curves for base B=2023. Log-uniform operands, log-uniform outcomes. 3 different
model initializations.

19



Published as a conference paper at ICLR 2024

E.3 DETAILED MODEL PREDICTIONS - BASE EXPERIMENTS

Table 22: Predicted values for ged 1 to 63.

Base 2 4 10 30 31 420
GCD | Prediction % Pred. % Pred. % Pred. % Pred. % Pred. %
1 1 100 1 100 1 100 1 100 1 100 1 100
2 2 100 2 100 2 100 2 100 1 100 2 100
3 1 100 1 100 1 100 3 100 1 100 3 100
4 4 100 4 100 4 100 4 100 1 100 4 100
5 1 100 1 100 5 100 5 100 1 100 5 100
6 2 100 2 100 2 100 6 100 1 100 6 99.6
7 1 100 1 100 1 100 1 100 1 100 7 100
8 8 100 8 100 8 100 8 100 1 100 8 100
9 1 100 1 100 1 100 9 100 1 100 9 100
10 2 100 2 100 10 100 10 100 1 100 10 100
11 1 100 1 100 1 100 1 100 1 100 1 100
12 4 100 4 100 4 100 12 100 1 100 12 99.8
13 1 100 1 100 1 100 1 100 1 100 1 100
14 2 100 2 100 2 100 2 100 1 100 14 100
15 1 100 1 100 5 100 15 100 1 100 15 99.4
16 16 100 16 100 16 99.7 8 100 1 100 16 100
17 1 100 1 100 1 100 1 100 1 100 1 100
18 2 100 2 100 2 100 18 100 1 100 18 100
19 1 100 1 100 1 100 1 100 1 100 1 100
20 4 100 4 100 20 100 20 100 1 100 20 100
21 1 100 1 100 1 100 3 100 1 100 21 100
22 2 100 2 100 2 100 2 100 1 100 2 100
23 1 100 1 100 1 100 1 100 1 100 1 100
24 8 100 8 100 8 100 24 100 1 100 24 100
25 1 100 1 100 25 100 25 99 1 100 25 99.9
26 2 100 2 100 2 100 2 100 1 100 2 100
27 1 100 1 100 1 100 9 100 1 100 9 100
28 4 100 4 100 4 100 4 100 1 100 28 100
29 1 100 1 100 1 100 1 100 1 100 1 100
30 2 100 2 100 10 100 30 100 1 100 30 99.6
31 1 100 1 100 1 100 1 100 31 100 1 100
32 32 99.9 32 98.7 16 99.9 8 100 1 100 16 100
33 1 100 1 100 1 100 3 100 1 100 3 100
34 2 100 2 100 2 100 2 100 1 100 2 100
35 1 100 1 100 5 100 5 100 1 100 35 100
36 4 100 4 100 4 100 36 100 1 100 36 100
37 1 100 1 100 1 100 1 100 1 100 1 100
38 2 100 2 100 2 100 2 100 1 100 2 100
39 1 100 1 100 1 100 3 100 1 100 3 99.9
40 8 99.9 8 100 40 99.9 40 100 1 100 40 99.9
41 1 100 1 100 1 100 1 100 1 100 1 100
42 2 100 2 100 2 100 6 99.9 1 100 42 100
43 1 100 1 100 1 100 1 100 1 100 1 100
44 4 100 4 100 4 100 4 100 1 100 4 100
45 1 100 1 100 5 100 45 100 1 100 45 99.8
46 2 100 2 100 2 100 2 100 1 100 2 100
47 1 100 1 100 1 100 1 100 1 100 1 100
48 16 100 16 100 16 99.9 24 100 1 100 48 99.9
49 1 100 1 100 1 100 1 100 1 100 7 100
50 2 100 2 100 50 100 50 100 1 100 50 99.6
51 1 100 1 100 1 100 3 100 1 100 3 99.8
52 4 100 4 100 4 100 4 100 1 100 4 100
53 1 100 1 100 1 100 1 100 1 100 1 100
54 2 100 2 100 2 100 18 99.9 1 100 18 100
55 1 100 1 100 5 100 5 100 1 100 5 100
56 8 100 8 100 8 99.9 8 100 1 100 56 100
57 1 100 1 100 1 100 3 100 1 100 3 99.9
58 2 100 2 100 2 100 2 100 1 100 2 100
59 1 100 1 100 1 100 1 100 1 100 1 100
60 4 100 4 100 20 100 60 100 1 100 60 99.7
61 1 100 1 100 1 100 1 100 1 100 1 100
62 2 100 2 100 2 100 2 100 31 100 2 100
63 1 100 1 100 1 100 9 100 1 100 63 100
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Table 23: Predicted values for ged 64 to 100.

Base 2 4 10 30 31 420
GCD | Prediction % Pred. % Pred. % Pred. % Pred. % Pred. %
64 64 98.9 64 99.2 16 99.8 8 100 1 100 16 100
65 1 100 1 100 5 100 5 100 1 100 5 100
66 2 100 2 100 2 100 6 100 1 100 6 100
67 1 100 1 100 1 100 1 100 1 100 1 100
68 4 100 4 100 4 100 4 100 1 100 4 100
69 1 100 1 100 1 100 3 100 1 100 3 100
70 2 100 2 100 10 100 10 100 1 100 70 100
71 1 100 1 100 1 100 1 100 1 100 1 100
72 8 100 8 100 8 100 72 100 1 100 72 100
73 1 100 1 100 1 100 1 100 1 100 1 100
74 2 100 2 100 2 100 2 100 1 100 2 100
75 1 100 1 100 25 100 75 100 1 100 75 99.4
76 4 100 4 100 4 100 4 100 1 100 4 100
77 1 100 1 100 1 100 1 100 1 100 7 100
78 2 100 2 100 2 100 6 100 1 100 6 100
79 1 100 1 100 1 100 1 100 1 100 1 100
80 16 100 16 100 80 99.9 40 100 1 100 80 100
81 1 100 1 100 1 100 9 100 1 100 9 99.8
82 2 100 2 100 2 100 2 100 1 100 2 100
83 1 100 1 100 1 100 1 100 1 100 1 100
84 4 100 4 100 4 100 12 100 1 100 84 100
85 1 100 1 100 5 100 5 100 1 100 5 100
86 2 100 2 100 2 100 2 100 1 100 2 100
87 1 100 1 100 1 100 3 100 1 100 3 99.8
88 8 100 8 100 8 100 8 100 1 100 8 100
89 1 100 1 100 1 100 1 100 1 100 1 100
90 2 100 2 100 10 100 90 100 1 100 90 99.9
91 1 100 1 100 1 100 1 100 1 100 7 100
92 4 99.9 4 100 4 100 4 100 1 100 4 100
93 1 100 1 100 1 100 3 100 31 99.9 3 99.8
94 2 100 2 100 2 100 2 100 1 100 2 100
95 1 100 1 100 5 100 5 100 1 100 5 100
96 32 100 32 99.5 16 99.8 24 100 1 100 48 99.9
97 1 100 1 100 1 100 1 100 1 100 1 100
98 2 100 2 100 2 100 2 100 1 100 14 100
99 1 100 1 100 1 100 9 100 1 100 9 99.8
100 4 100 4 100 100 100 100 100 1 100 100 99.6
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