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Abstract
Sonar imaging is widely utilized in submarine and underwater
detection missions. However, due to the complex underwater envi-
ronment, sonar images suffer from complex distortions and noises,
making detection models hard to extract clean high-level features
for detection. Existing works introduce denoised images as pseudo
labels to assist the network to extract clean features while not fully
considering the rationality of pseudo labels. To this end, we propose
an Efficient Pseudo Labels-Driven Underwater Forward-looking
Sonar Images Object Detection algorithm (EPL-UFLSID). Specifi-
cally, we first design a Gaussian Mixture Model based Deep Image
Prior (GMMDIP) network to generate denoised sonar images by
setting the GMM distribution as its input. After that, to filter the
most detection-friendly images of the denoised images generated
by GMMDIP as efficient pseudo labels, Detection-Friendly Image
Quality Assessment network (DFIQA), is designed, which is also
able to help EPL-UFLSID further distill cleaner features from pseudo
labels to improve detection performance. Extensive experimental
results show that our EPL-UFLSID reaches average precision (AP) of
67.8%/39.8% and average recall (AR) of 73.7%/49.6% on two real sonar
datasets, which outperforms SOTA underwater forward-looking
sonar images object detection algorithms.
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1 Introduction
Forward-looking sonar (FLS) is commonly employed as an equip-
ment to gather underwater information due to its capbility to cap-
ture visible images in turbid and dark environments. Consequently,
autonomous underwater vehicles (AUVs) are frequently equipped
with FLS to aid in tasks such as positioning, object detection and
other works [1][40]. In response to this need, numerous underwa-
ter FLS image object detection algorithms have been developed to
enhance the efficiency and accuracy of AUV operations.

Generally, sonar images are easily affected by environmental
noises, reverberant noises and self-noises [14], which heavily dam-
age the quality of sonar images, resulting in bad detection perfor-
mance. It’s natural to think that when various noises are removed,
AUVs can detect the object more accurately. Therefore there are a
variety of methods including traditional and deep learning methods
[39][20] developed to remove the noises from sonar images, while
they simply model the sonar image noises like speckle noise or
reverberant noise with a known and simple distribution.

In addition, although visually, the denoised sonar images look
better for people to view and become smoother, they may not nec-
essarily assist in the performance improvement of detection models
when denoising the sonar images before feeding them into a detec-
tion model. This is because the purposes of denoising for view and
denoising for detection are different, where exists potential con-
flicts between them [13]. In other words, the denoised sonar images
may have noises that are not observable to the human eye, and
accordingly reduce performance of subsequent detection models.
A few works [18][7] have tried to handle the above problems by
fusing features extracted from the denoised images and the original
images that are favorable for detection, while their performance is
still moderate due to the mediocre quality of the denoised images.
Therefore, how to obtain higher quality denoised images and ra-
tionally introduce them into the detection backbone network as
pseudo labels to enhance the detection performance still needs to
be researched.
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Figure 1: The illustration of the enhancement of detection
performance through the utilization of pseudo labels. Intro-
ducing denoised sonar images into the detection module can
provide additional supervisory information to the detection
backbone network, thereby enhancing the detection perfor-
mance. However, the variability in the quality of denoised
sonar images poses a challenge. When low-quality images
are introduced into the detection module as pseudo labels,
they may even degrade the detection performance. In other
words, the detection performance are positively correlated
with the quality of denoised sonar images which are selected
as pseudo labels.

To this end, we propose an Efficient Pseudo Labels-Driven Under-
water Forward-looking Sonar Images Object Detection algorithm,
namely EPL-UFLSID, which introduces efficient pseudo labels to
drive detection models to extract cleaner features and achieve better
detection performance. Firstly, although Deep Image Prior (DIP)
[29] can achieve excellent performance in denoising natural images,
its effectiveness diminishes when applied to gray, low-contrast, and
noise-disturbed sonar images. We design a Gaussian Mixture Model
(GMM) [24] based DIP network (GMMDIP) to generate higher qual-
ity denoised sonar images, which utilizes the Gaussian mixture
model acquired by fitting the original sonar images as its input,
thereby providing GMMDIP with a prior on the distribution of
sonar images. After GMMDIP provides a batch of denoised images
with varying denoising qualities, the denoised image of the high-
est quality need to be selected from them as a pseudo label based
on the illustration in Figure 1. Therefore, we design a Detection-
Friendly Image Quality Assessment network (DFIQA) to select the
best one from a set of denoised sonar images generated from GM-
MDIP which will be served as a pseudo label to help improve the
detection performance. Besides, DFIQA provides a score for the re-
constructed image compared to pseudo label, which will be served
as a loss after sigmoid function to jointly optimize the detection
network. Our contributions can be summarized as follows:

1) We propose a novel algorithm named as EPL-UFLSID, which
improves the forward-looking sonar images object detction perfor-
mance by introducing efficient pseudo labels to guide the detection
backbone network to extract cleaner detection-friendly features.

2) GMMDIP, an unsupervised sonar image denoising network, is
proposed to produce high quality denoised sonar images which are
served as pseudo labels to help improve the detection performance.

3)A detection-friendly image quality assessment network named
as DFIQA is proposed to select the most efficient pseudo labels for
detection, which is also a machine vision oriented image quality
assessment network.

2 Related Work
2.1 Underwater Sonar Image Object Detection
In recent years, with the development of deep learning, the per-
formance of CNN-based sonar image object detection algorithms
has been greatly improved. For example, in addressing the chal-
lenge of improving underwater sonar image detection accuracy
with finite training data, notable contributions have been made by
studies such as [30], [31], and [32]. Among these, [30] stands out
for achieving high accuracy through CNN network, surpassing the
performance of certain template matching detection methods. [4]
devises a feature extraction network that employs residual blocks
to substitute the backbone in Mask RCNN, which reduces network
parameters without compromising accuracy.

Besides, in order to reduce the complexity of the network as
well as the running time, one-stage networks such as YOLOv3 [21],
SSD [17], RetinaNet [15] are also adopted as the base detection
network. [38] introduces an attention mechanism in YOLOv5 and
proposes a real-time target detection algorithm TR-YOLOv5, which
achieves some degree of improvement. [34] designs a multi-scale
convolution structure to enhance the network perception of small
target features and improves the performance of small target detec-
tion. [10] proposes a dual path feature fusion network for feature
extraction, which achieves robust and real-time sonar image detec-
tion. However, these algorithms do not fully take into account the
characteristics of the underwater sonar image such as grayscale,
low contrast and diverse noise interference.

Recently, [19] denoises the sonar images by characterizing the
noise of sonar images as multiplicative speckle noise, and sets them
as pseudo labels to enhance the detection performance, however
the quality of pseudo labels still needs to be improved. Therefore,
how to generate better and efficient pseudo labels that provide
additional supervisory information for the detection network to
improve the sonar image detection performance still needs to be
studied.

2.2 Underwater Sonar Image Denoising
The underwater sonar images captured by forward-looking sonar
are subject to a variety of noise interference owing to its imaging
mechanism and working environment, thus undermining image
recognition, even detection tasks. Therefore, various traditional
and deep learning methods for underwater sonar image denoising
have been proposed.

Traditional methods usually need modeling specific noises based
on a great amount of parameters and are less generalized. LEE
filter [12], KUAN filter [11], FROST filter [5], and SRAD filter [37]
are classical adaptive despeckling filters. [28] proposes a 2-D finite
impulse response (FIR) Wiener filter driven by an adaptive cuckoo
search (ACS) algorithm and eliminated Gaussian noise. However,
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Figure 2: Overview of the proposed method EPL-UFLSID. The original sonar images are denoised by GMMDIP, generating 900
denoised sonar images with various qualities. Then the denoised sonar image with the highest score is selected as an efficient
pseudo label by DFIQA. Meanwhile, the original sonar image goes through a feature extractor along with a reconstruction
module responsible for reconstructing a sonar image, which is a medium to allow the pseudo label and score generated by
DFIQA on the reconstructed image to jointly optimize the entire network.

the above traditional methods are generally ineffective because
they damage the details and textures of the original sonar images
during the denoising process.

Recently, there are many deep-leaning methods for underwater
sonar image denoising. [9] uses the autoencoder algorithm for sonar
image denoising. [35] proposes an image despeckling convolutional
neural network (ID-CNN), which assumes a gamma distribution of
noise. It uses a componentwise division residual layer to recover the
speckle component. [2] proposes a self-supervised training strategy
simplifying the generation of training sets for removing speckle
noise from acoustic images. However, these methods are premised
on the assumption that speckle noise is mainly presented on the
sonar images, without considering complex noise distributions in
real sonar images. Besides, due to the lack of noise-free sonar im-
ages, supervised methods require synthesizing the dataset with
optical images, which introduce the domain shifting. As discussed
in [41], the success of CNN-based denoisers is strongly dependent
upon whether the distributions of noises in synthetic and realis-
tic noisy images are well matched. Therefore, an unsupervised
denosing algorithm for underwater sonar images without synthetic
training datasets need to be studied.

3 Proposed methods
The architecture of the proposed method EPL-UFLSID is described
in Figure 2. As mentioned before, the introduction of efficient
pseudo labels can provide additional supervisory information for
the detection network to extract cleaner feature information from
the original sonar images. Therefore, we first design the GMMDIP

network, which generates a batch of sonar images with different
qualities by fitting a Gaussian mixture model of the original sonar
images as its input, giving in advance the distributional charac-
teristics of the original sonar images for GMMDIP network. Then
we design a siamese-like network with the help of entropy images
named as DFIQA that selects the sonar image that is the most fa-
vorable for detection as an efficient pseudo label and DFIQA also
provides a score for the reconstructed image, which will be served
as a loss after sigmoid function to jointly optimize the detection
network.

3.1 GMMDIP network
As previously explained, the denoised sonar images can be intro-
duced as pseudo labels to provide additional supervisory informa-
tion to the detection network. The quality of pseudo labels largely
dedicates the effectiveness of the supplementary supervisory infor-
mation extracted by the detection network, consequently affecting
detection performance.

As DIP [29] has shown great potential in the field of image
restoration, denoising, etc, and does not require a training dataset,
we hence propose the Gaussian Mixture Model based Deep Image
Prior network(GMMDIP) to generate a series of reliable denoised
sonar images served as pseudo labels.

Here, we use 𝑓𝜃 : Z → Y to denote the GMMDIP network param-
eterized by 𝜃 ∈ Θ, which transforms a tensor/vector 𝑧 ∈ 𝒁 to the
original sonar image 𝑦 ∈ 𝒀 . As stated in [29], the conditional image
distribution 𝑝 (𝑥∗ |𝑦0) is modeled by using the prior knowledge of
the network to recover the denoised image, where the unknown
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Figure 3: The structure of GMMDIP. The input to GMMDIP
is obtained by fitting a Gaussian Mixture Model of the orig-
inal image, corresponding to the fitted curve of the GMM
distribution and the curve of the original image distribution.
Meanwhile the shallow and last few convolutional layers in
GMMDIP are frozen and used to enhance the convergence
speed of the network.

image 𝑥∗ is determined by the measurement 𝑦0. Thus, the final
optimization objective of GMMDIP can be interpreted as:

𝜃∗ = argmin
𝜃

𝐸 (𝑓𝜃 (𝑧);𝑦0), (1)

that is to say:
min
𝜃

∥ 𝑓𝜃 (𝑧) − 𝑦0∥2 . (2)

The structure of GMMDIP is shown in Figure 3, which is “hour-
glass” (also known as “encoder-decoder") like architecture with
some skip connections. In previous research on DIP network op-
timization [6][27][22], few studies conducted on network input
𝑧 ∈ R3×𝑊 ×𝐻 . Moreover, while the DIP network is commonly ap-
plied to address noises in natural images, the noise characteristics
in sonar images are notably more intricate and challenging to sim-
ulate using conventional distributions. Additionally, sonar images
contain less color information compared to natural images.

Therefore, we first propose to use the noise distribution obtained
by fitting a Gaussian Mixture Model (GMM) to the original sonar
image, namely 𝑧 = 𝐺𝑀𝑀 (𝑦0), given the powerful ability of GMM
to model complex and poorly defined distributions, instead of using
the uniform noise between 0 and 0.1 as input. In this way, the ini-
tialized GMM input obtained for each sonar image can be provided
to the network in advance with the initial distribution prior of the
sonar image, which further improves the performance of denois-
ing in conjunction with the depth prior learned by the GMMDIP
network.

To further improve the denoising performance, we use the total
variation (TV) [25]:

TV(𝒙) =
∑︁
𝑖, 𝑗

|𝒙𝑖+1, 𝑗 − 𝒙𝑖, 𝑗 | + |𝒙𝑖, 𝑗+1 − 𝒙𝑖, 𝑗 | (3)

for any 2D image 𝒙 ∈ Rℎ×𝑤 . Thus the final optimized loss function
for our GMMDIP network is:

min
𝜃,𝜃𝐵𝑁

| |𝑓𝜃 (𝑧) − 𝑦0 | |2 + 𝜆𝑇𝑉 (𝑓𝜃 (𝑧)), (4)

where 𝜃𝐵𝑁 means the parameter of batch normalization layer in
GMMDIP, and 𝜆 is a regularization parameter, set to 0.45.

3.2 DFIQA network
As mentioned before, the merit of the pseudo labels introduced
in the detection network determines the ability of the detection
backbone network to extract clean features. We therefore design
the DFIQA network in the hope of accurately selecting one of the
most detection-friendly images from a batch of denoised images to
be detected as a pseudo label.

3.2.1 DFIQA Dataset Constuction.
Currently, image quality assessment algorithms primarily prioritize
human eye perception, neglecting quality assessment methods for
machine vision, especially in detection tasks. Differences in the
properties of machine vision and human eye vision can lead to the
fact that evaluation criteria specific to human eye vision are not
applicable to machine vision tasks. Moreover, specific datasets for
machine vision are scarce. Constructing datasets is crucial for train-
ing a quality evaluation network capable of generating detection-
friendly labels. Therefore, a set of pseudo labels are firstly generated
by GMMDIP for 900 iterations. Specifically, starting from iteration
100, one denoised sonar image is selected as a pseudo label every
100 intervals, resulting in 9 denoised sonar images for each sonar
image. Besides one original image is also plused to serve as a pseudo
label for each sonar image, thus 10 sets of pseudo labels are yielded
to serve as quality assessment datasets. Furthermore, to enhance
the generalization of the datasets, 10 sets of pseudo labels are ap-
plied to three one-stage detection networks, YOLOv3 [21], SSD [17]
and RetinaNet [15]. Then, in order to evaluate these three detection
networks, the product of two evaluation metrics commonly used
in target detection, IoU and AP, is introduced, which is defined as
follows:

𝑀𝑂𝑆𝐷𝐹𝐼𝑄𝐴 = 𝐴𝑃 × 𝐼𝑜𝑈 (Ω𝑔,Ω𝑝 ), (5)

where Ω𝑔 and Ω𝑝 are the sample box area and the prediction box
area, respectively. Besides, we weight and average the test results
of the three different detection frameworks to obtain a more gen-
eralized MOS value. Finally, two different datasets are constructed
with 18,680 images and 92000 images, representing the merits of
the performance of detection models driven by different pseudo
labels.

3.2.2 Network Structure of DFIQA.
After creating the DFIQA dataset, we develop an image quality
assessment network to select optimal images for detection as pseudo
labels from a series of denoised images with varying denoising
qualities generated from GMMDIP. Additionally, the quality scores
are integrated into the reconstruction part of EPL-UFLSID as a loss
function, jointly optimizing the whole network.

The DFIQA network structure, as depicted in Figure 4, comprises
two identical branches sharing weights, which select pairs of de-
noised images and their entropy images from DFIQA datasets as
inputs. Given the positive correlation between the sharpness of
images and high-level task performance like detection, DFIQA in-
corporates the entropy map as auxiliary information, which aids
the feature extraction network in capturing features conducive
to the detection task. In detail, the input image will go through a
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ResNet50 feature extractor, while the entropy image of the input
image will go through entropy image attention module (EIA) as
shown in Figure 5. EIA is designed to obtain the spatial attention
weight SA to direct the input image to focus more on the parts
with information correlated to detection task. The formula SA is as
follows:

𝑆𝐴 = 𝜎 (𝑊 2
𝑆A ∗ 𝛿 (𝑊 1

𝑆A ∗ (1 − 𝐸𝐼 ) + 𝑏1𝑆A) + 𝑏
2
𝑆A), (6)

where 𝐸𝐼 ∈ R1×𝐻×𝑊 denotes the entropy image of the input image,
𝐻 and𝑊 represent the height and width of the image. The term
(1−𝐸𝐼 ) adjusts the weights in the entropy image, assigning a higher
weight to the portion containing information about the object in the
original image and a lower weight to the remaining areas. 𝜎 (·), 𝛿 (·)
and ∗ denote the Sigmoid function, ReLU function and convolution
operation respectively.𝑊 and 𝑏 denote the weight parameters and
bias of convolution. 𝑆𝐴 ∈ R1×𝐻×𝑊 uses the Sigmoid function to
map values to between 0 and 1. Then Adaptive Averaging Pooling
is employed to plus a fully connected layer behind the feature
extractor to return a quality score.

During the training stage, given two input pairs (𝑥1, 𝐸𝐼�̃�1 ) and
(𝑥2, 𝐸𝐼�̃�2 ), along with two ground truth values𝑄1 and𝑄2, the output
quality scores can be denoted by:{

𝑞1 = 𝑓
(
𝑥1;𝐸𝐼�̃�1 ;𝜃

)
𝑞2 = 𝑓

(
𝑥2;𝐸𝐼�̃�2 ;𝜃

) , (7)

where 𝜃 refers to the network parameters. The whole loss function
of DFIQA is as follows:

𝐿𝐷𝐹𝐼𝑄𝐴 = 𝐿1𝐿𝑜𝑠𝑠 (𝑞1, 𝑄1) + 𝐿1𝐿𝑜𝑠𝑠 (𝑞2, 𝑄2) + 𝜆𝐿(𝑞1;𝑞2), (8)

where 𝜆 is a hyperparameter, here set to 10, and 𝐿(𝑞1;𝑞2) is margin-
ranking loss, which is given below:

𝐿(𝑞1, 𝑞2) =
{
𝑚𝑎𝑥 (0, (𝑞2 − 𝑞1) + 𝜖), 𝑄1 > 𝑄2
𝑚𝑎𝑥 (0, (𝑞1 − 𝑞2) + 𝜖), 𝑄1 < 𝑄2

, (9)

where 𝜖 is a parameter, here set to 0.5.
In the testing phase, we directly selected one branch of DFIQA

to predict the image quality.

3.3 Loss Function of EPL-UFLSID
To optimize the EPL-UFLSID effectively, we initially freeze weights
of the feature extraction network at first 50 epochs, pre-trained
on the COCO [16] dataset using the Resnet50 network. Then the
network is unfreezed at last 50 epochs to optimize both the feature
extractor and the back-stage network, which enables the feature
extractor to fine-tune on the sonar dataset, enhancing the overall
detection performance.

In the training stage, the loss function of EPL-UFLSID is defined
as follows:

𝐿𝐸𝑃𝐿−𝑈𝐹𝐿𝑆𝐼𝐷 = 𝐿𝑐𝑙𝑠 + 𝐿𝑙𝑜𝑐 + 𝜆𝐿𝑄𝐿 + 𝐿𝑀𝑆𝐸 . (10)
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(a) ground truth (b) SSD (c) YOLOv3 (d) YOLOv5 (e) YOLOv7 (f) MBSNN (g) Faster R-CNN (h) Retinanet (i) CenterNet (j) UFIDNet (k) ours

Figure 6: Qualitative comparison of the state-of-the-art object detection methods on the MDFD dataset. The third row of the
resultant plots of (b), (h), and (j) algorithms contain two overlapping target boxes i.e., orange and red boxes, which is because the
three algorithms incorrectly detect more targets. Besides, in the first and second row of reslutant plots, (h) and (j) algorithms
all mistakenly detect the background as target.

(a) ground truth (b) SSD (c) YOLOv3 (d) YOLOv5 (e) YOLOv7 (f) MBSNN (g) Faster R-CNN (h) Retinanet (i) CenterNet (j) UFIDNet (k) ours

Figure 7: Qualitative comparison of the state-of-the-art object detection methods on the UATD dataset. Compared to the MDFD
dataset, the objects of the UATD dataset are smaller and harder to detect. The second row of the resultant plots of (d) and (h)
algorithms contain misdetections, where (d) incorrectly detects ‘Circle Cage’ as ‘Ball’ and (h) mistakenly detects the background
as ‘Human Body’. Besides, in the first and third row of resultant plots, none of the targets are detected by (b) algorithm.

where 𝐿𝑐𝑙𝑠 and 𝐿𝑙𝑜𝑐 are Focal Loss [15] and Huber Loss, respectively.
𝜆 represents a hyperparameter set to 0.003, and 𝐿𝑄𝐿 denotes the
quality loss, which is defined as:

𝐿𝑄𝐿 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (−𝑄 (𝑅𝐼𝑖 )), (11)

where 𝑅𝐼𝑖 is the reconstructed image, 𝑄 (𝑅𝐼𝑖 ) is the quality score of
the reconstructed image. 𝐿𝑀𝑆𝐸 is L2-Loss employed to ensure the
consistency between the 𝑅𝐼𝑖 and the pseudo label 𝑃𝐿𝑖 selected by
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Table 1: Quatitative comparison of the state-of-the-art object detection methods on the MDFD and UATD datasets. The best
result in each column is in Red, and the second is in Blue. The baseline model of EPL-UFLSID is RetinaNet [15].

Method Backbone MDFD UATD
𝐴𝑃 (%) 𝐴𝑃50(%) 𝐴𝑃75(%) 𝐴𝑅(%) 𝐴𝑃 (%) 𝐴𝑃50(%) 𝐴𝑃75(%) 𝐴𝑅(%)

SSD [17] VGG-16 60.9 92.4 71.0 68.9 28.6 72.6 16.0 38.0
YOLOv3 [21] DarkNet-53 49.6 88.4 48.9 60.6 34.3 86.6 17.4 44.8
YOLOv5 [8] CSPDarkNet-53 44.9 76.6 48.4 60.8 36.6 86.3 20.4 46.9
YOLOv7 [33] CSPDarkNet-53 62.0 90.3 77.8 72.4 37.5 85.9 25.8 47.4
MBSNN [34] CSPDarkNet-53 54.1 83.2 62.6 65.8 34.7 81.4 19.1 44.3
Faster R-CNN [23] ResNet-50 58.2 94.2 64.8 66.5 20.3 60.6 6.7 41.0
CenterNet [3] ResNet-50 56.5 89.2 65.3 67.2 25.4 66.5 12.0 35.1
RetinaNet [15] ResNet-50 64.9 91.7 77.5 72.3 36.3 80.1 25.8 45.8
UFIDNet [19] ResNet-50 66.9 93.4 77.7 73.1 38.0 86.9 27.3 49.0
EPL-UFLSID(ours) ResNet-50 67.8 94.4 80.0 73.7 39.8 87.1 27.5 49.6

DFIQA, which is given as:

𝐿𝑀𝑆𝐸 =
1
|Ω |

∑︁
𝜔∈Ω

(𝑅𝐼𝑖 − 𝑃𝐿𝑖 )2, (12)

where |Ω | is the area of the map Ω.

4 Experimental results
In this section, we first present various performance evaluation
metrics. Then we compare our method with other sonar object
detection methods. Finally, we perform some ablation experiments
to validate the effectiveness of the proposed modules.

4.1 Datasets and Implementation Details
The effectiveness of the proposed method is demonstrated on the
marine-debris-fls-dataset (MDFD) [26] and the underwater acoustic
target detection (UATD) [36] dataset. The specific training dataset
and testing set allocation and experimental implementation details
will be in the supplementary materials.

4.2 Evaluation Metrics
4.2.1 GMMDIP Evaluation Metrics.
Due to the absence of reference clean sonar images and our focus
on generating pseudo labels optimized for detection, traditional
metrics like PSNR and SSIM are not used for denoised sonar image
quality assessment. Instead, we rely on objective metrics aligned
with the EPL-UFLSID evaluation criteria to gauge GMMDIP net-
work quality.

4.2.2 DFIQA Evaluation Metrics.
Spearman Rank-Order Correlation Coefficient (SROCC) and Pear-
son Linear Correlation Coefficient (PLCC) are used to evaluate the
performance of DFIQA. SROCC assesses the monotonicity of the
method, while PLCC assesses the method’s accuracy.

4.2.3 EPL-UFLSID Evaluation Metrics.
For evaluating the performance of EPL-UFLSID, we use average
precision (AP) and average recall (AR) in COCO [16]. Additionally,
𝐴𝑃50 and 𝐴𝑃75 are employed as metrics. 𝐴𝑃50 measures AP when
the predicted bounding boxes overlap with the ground truth by at
least 50%, while 𝐴𝑃75 measures it when the overlap is at least 75%.

Table 2: DFIQA ablation comparison experiments on the
MDFD and UATD datasets.

Model L1 EIA MR MDFD UATD
SROCC PLCC SROCC PLCC

DFIQA-MR-EIA ✓ 0.7677 0.6347 0.6054 0.5451
DFIQA-MR ✓ ✓ 0.7736 0.6385 0.6149 0.5765
DFIQA ✓ ✓ ✓ 0.7833 0.6439 0.6242 0.6162

4.3 Performance Comparison
In the section 4.2, we mention that the GMMDIP performance
is represented by the evaluation metrics of EPL-UFLSID, and the
performance of DFIQA is represented by SROCC and PLCC, which
determines the EPL-UFLSID performance. Therefore we mainly
describe the performance comparison of EPL-UFLSID and DFIQA
with other methods.

4.3.1 EPL-UFLSID Performance Comparison.
To demonstrate the performence of EPL-UFLSID, we compare its
performancewith 9 state-of-the-art detectionmethods on theMDFD
and UATD datasets, respectively. The quantitative and qulitative
results are illustrated in Tabel 1, Figure 6 and Figure 7.

From Table 1, Figure 6 and Figure 7, EPL-UFLSID stands out as
significantly superior to the other 9 algorithms in terms of AP and
AR results. EPL-UFLSID achieves an impressive AP of 67.8%, an
AR of 73.7% on the MDFD dataset, which outperforms the second
best algorithm by 0.9% and 0.6%, and an AP of 39.8%, an AR of
49.6% on the UATD dataset, which also outstands the second best
algorithm by 1.8% and 1.6%. Moreover, our method outperforms in
𝐴𝑃50 and 𝐴𝑃75 results, demonstrating enhanced accuracy in target
localization. In terms of 𝐴𝑅, EPL-UFLSID consistently outperforms
other methods, indicating its proficiency in identifying more objects
compared to the competing methods. The superior performance
of EPL-UFLSID benefits from GMMDIP and DFIQA module, which
cooperatively generate efficient pseudo labels for detection model
to extract cleaner features.

4.3.2 DFIQA Performance Comparison.
The performance of DFIQA significantly influences the quality of
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Table 3: Performance comparison of EPL-UFLSID with
pseudo labels generated by GMMDIP with different inputs
at particular iteration on the MDFD and UATD datasets. The
best result in each column is in Red, and the second is in
Blue.

GMMDIP
Input iteration MDFD UATD

𝐴𝑃 (%) 𝐴𝑅(%) 𝐴𝑃 (%) 𝐴𝑅(%)

uniform_noise

200 62.5 72.5 35.8 46.6
300 65.5 73.2 36.9 46.3
400 64.3 70.4 36.5 46.3
500 64.6 72.1 36.8 46.6
600 65.0 71.0 36.7 47.2

GMM

200 64.7 72.6 37.8 47.2
300 67.2 73.7 37.4 48.2
400 63.3 73.3 38.4 48.6
500 63.1 73.6 37.3 47.2
600 66.3 73.5 36.4 46.8

the selected pseudo labels, consequently impacting EPL-UFLSID
detection performance. To assess the effectiveness of our method
to select efficient pseudo labels, we conduct ablation experiments
to analyze the performance of each module in DFIQA by SROCC
and PLCC metrics.

The ablation experiments results of DFIQA on the MDFD and
UATD datasets are illustrated in Table 2. Here the DFIQA network is
divided into three sub parts: L1 Loss, EIA_Module, Margin_ranking
Loss abbreviated as L1, EIA, MR, respectively. For the sake of space,
the performance of DFIQA on the MDFD dataset will be mainly
discussed. The baseline of DFIQA is ‘DFIQA-MR-EIA’ model, which
only uses L1 for optimization, with a SROCC of 0.7677 and PLCC of
0.6347. ‘DFIQA-MR’ model additionally includes EIA with the help
of entropy image, paying more attention to features beneficial for
advanced tasks like detection, resulting in an improvment of 0.0059
SROCC and 0.0038 PLCC. ‘DFIQA’ model extends ‘DFIQA-MR’
model by adding MR, transforming the network into a siamese net-
work and increasing sensitivity to ranking accuracy, hence SROCC
and PLCC performance are further improved 0.0097 and 0.0054,
achieving a SROCC of 0.7833 and PLCC of 0.6439. Besides, from
the results in Table 2, DFIQA still has excellent performance on the
UATD dataset.

4.4 Ablation study
4.4.1 Effectiveness of GMMDIP for EPL-UFLSID.
We compare the impact on EPL-UFLSID performance of denoised
sonar images generated by two GMMDIP models, one of which uses
GMM as input and the other uses uniform noise between 0 and 0.1
as input. Table 3 shows the results after introducing the denoised
images obtained by GMMDIP with different inputs and after differ-
ent iterations as pseudo labels into EPL-UFLSID for performance
comparison on the MDFD and UATD datasets. We discover that the
overall performance of EPL-UFLSID with GMMDIP using GMM as
input achieves AP/AR values of 67.2%/73.7% and 38.4%/48.6% on the
MDFD and UATD datasets, respectively, which is better than using
uniform noise as input. In addition, the performance of using GMM

Table 4: Comparison of EPL-UFLSID performance improve-
ment by selected pseudo labels with different DFIQA models
on the MDFD and UATD datasets.

DFIQA_model MDFD UATD
𝐴𝑃 (%) 𝐴𝑅(%) 𝐴𝑃 (%) 𝐴𝑅(%)

DFIQA-MR-EIA 65.7 72.5 37.0 46.6
DFIQA-MR 66.7 72.7 37.6 47.3
DFIQA 67.3 73.1 39.1 48.8

Table 5: Performance comparison of EPL-UFLSID and EPL-
UFLSID with 𝐿𝑄𝐿 on the MDFD and UATD datasets..

model MDFD UATD
𝐴𝑃 (%) 𝐴𝑅(%) 𝐴𝑃 (%) 𝐴𝑅(%)

Baseline (Retinanet[15]) 64.9 72.3 36.3 45.8
EPL-UFLSID 67.3 73.1 39.1 48.8

EPL-UFLSID+𝐿𝑄𝐿 67.8 73.7 39.8 49.6

as input is superior compared to using uniform noise as input on
the whole.

4.4.2 Effectiveness of DFIQA for EPL-UFLSID.

DFIQA is designed to select the most favorable images for de-
tection from a batch of denoised images of different qualities gen-
erated by GMMDIP, which also avoids manually picking the best
detection-friendly denoised images as pseudo labels. As shown in
Table 4, three DFIQA models mentioned in Table 2 have different
performance gains for EPL-UFLSID. As SROCC and PLCC of DFIQA
improves, EPL-UFLSID achieves improvement up to 1.6%/0.6% and
2.1%/2.2% AP/AR on the MDFD and UATD datasets, respectively.
Moreover, to further demonstrate the effectiveness of DFIQA, we
use the pre-trained DFIQA as additional supervision to optimize
EPL-UFLSID, resulting in the model EPL-UFLSID+𝐿𝑄𝐿 . The results,
shown in Table 5, indicate that the AP/AR values on the MDFD
and UATD datasets improve by 2.9%/1.4% and 3.5%/3.8%, respec-
tively, compared to the baseline model. Additionally, compared to
the EPL-UFLSID model without additional supervision 𝐿𝑄𝐿 , the im-
provements are 0.5%/0.6% and 0.7%/0.8%, respectively. These results
fully verify the effectiveness of DFIQA for EPL-UFLSID.

5 Conclusion
In this paper, we propose EPL-UFLSID, a novel approach for enhanc-
ing object detection in underwater forward-looking sonar images.
Our method introduces efficient pseudo labels for cleaner feature
extraction, relying on two key modules: GMMDIP and DFIQA.
GMMDIP generates denoised sonar images of different qualities
without reference clean images, while DFIQA filters the top scores
denoised images as detection-friendly pseudo labels. The collabora-
tion between GMMDIP and DFIQA enables EPL-UFLSID to extract
cleaner features from efficient pseudo labels, thus improving detec-
tion performance. Extensive experiments on the MDFD and UATD
datasets validate the effectiveness of EPL-UFLSID.
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