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ABSTRACT

The well-known generalization problem hinders the application of artificial neural
networks in continuous-time prediction tasks with varying latent dynamics. In sharp
contrast, biological systems can neatly adapt to evolving environments benefiting
from real-time feedback mechanisms. Inspired by the feedback philosophy, we
present feedback neural networks, showing that a feedback loop can flexibly
correct the learned latent dynamics of neural ordinary differential equations (neural
ODEs), leading to a prominent generalization improvement. The feedback neural
network is a novel two-DOF neural network, which possesses robust performance
in unseen scenarios with no loss of accuracy performance on previous tasks. A
linear feedback form is presented to correct the learned latent dynamics firstly,
with a convergence guarantee. Then, domain randomization is utilized to learn
a nonlinear neural feedback form. Finally, extensive tests including trajectory
prediction of a real irregular object and model predictive control of a quadrotor
with various uncertainties, are implemented, indicating significant improvements
over state-of-the-art model-based and learning-based methods.

1 INTRODUCTION

Figure 1: Neural network architectures. Left:
Neural ODE developed in Chen et al. (2018).
Right: Proposed feedback neural network.

Stemming from residual neural networks (He et al.,
2016), neural ordinary differential equation (neural
ODE) (Chen et al., 2018) emerges as a novel learning
strategy aiming at learning the latent dynamic model
of an unknown system. Recently, neural ODEs have
been successfully applied to various scenarios, espe-
cially continuous-time missions (Liu & Stacey, 2024;
Verma et al., 2024; Greydanus et al., 2019; Cran-
mer et al., 2020). However, like traditional neural
networks, the generalization problem limits the appli-
cation of neural ODEs in real-world applications.

Traditional strategies like model simplification, fit
coarsening, data augmentation, and transfer learning
have considerably improved the generalization per-
formance of neural networks on unseen tasks (Rohlfs,
2022). However, these strategies usually reduce the
accuracy performance on previous tasks, and large-
scale training data and network structures are often
required to approximate previous accuracy. The ob-
jective of this work is to develop a novel network
architecture, acquiring the generalization improvement while preserving the accuracy performance.

Living beings can neatly adapt to unseen environments, even with limited neurons and computing
power. One reason can be attributed to the existence of internal feedback (Aoki et al., 2019). Internal
feedback has been shown to exist in biological control, perception, and communication systems,
handling external disturbances, internal uncertainties, and noises (Sarma et al., 2022; Markov et al.,
2021). In neural circuits, feedback inhibition is able to regulate the duration and magnitude of
excitatory signals (Luo, 2021). In engineering systems, internal feedback indicates impressive
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effects across filtering and control tasks, such as Kalman filter (Kalman, 1960), Luenberger observer
(Luenberger, 1966), extended state observer (Guo et al., 2020), and proportional-integral-derivative
control (Ang et al., 2005). The effectiveness of feedback lies in its ability to harness real-time
deviations between internal predictions/estimations and external measurements to infer dynamical
uncertainties. The cognitive corrections are then performed timely. However, existing neural networks
rarely incorporate such a real-time feedback mechanism.

In this work, we attempt to enhance the generalization of neural ODEs by incorporating the feedback
scheme. The key idea is to correct the learned latent dynamical model of a Neural ODE according
to the deviation between measured and predicted states, as illustrated in Figure 1. We introduce
two types of feedback: linear form and nonlinear neural form. Unlike previous training methods
that compromise accuracy for generalization, the developed feedback neural network is a two-DOF
framework that exhibits generalization performance on unseen tasks while maintaining accuracy on
previous tasks. The effectiveness of the presented feedback neural network is demonstrated through
several intuitional and practical examples, including trajectory prediction of a spiral curve, trajectory
prediction of an irregular object and model predictive control (MPC) of a quadrotor.

2 NEURAL ODES AND LEARNING RESIDUES

A significant application of artificial neural networks centers around the prediction task., x(t) 7→
x(t + ∆t). Note that t indicates the input x evolves with time. Chen et al. (2018) utilize neural
networks to directly learn latent ODEs of target systems, named Neural ODEs. Neural ODEs
greatly improve the modeling ability of neural networks, especially for continuous-time dynamic
systems (Massaroli et al., 2020), while maintaining a constant memory cost. The ODE describes the
instantaneous change of a state x(t) ∈ Rn

dx(t)

dt
= f (x(t), I(t), t) (1)

where f(·) : Rn × Rm × R→ Rn represents a latent nonlinear mapping, and I(t) ∈ Rm denotes
external input. Note that compared with Chen et al. (2018), we further consider I(t) that can extend
the ODE to non-autonomous cases. The adjoint sensitive method is employed in Chen et al. (2018) to
train neural ODEs without considering I(t). In Appendix A.1, we provide an alternative training
strategy in the presence of I(t), from the view of optimal control.

Given the ODE (1) and an initial state x(t), future state can be predicted as an initial value problem

x(t+∆t) = x(t) +

∫ t+∆t

t

f (x (τ) , I (τ) , τ) dτ. (2)

The workflow of neural ODEs is depicted in Figure 1. However, like traditional learning methods,
generalization is a major bottleneck for neural ODEs (Marion, 2024). Learning residuals will appear
if the network has not been trained properly (e.g., underfitting and overfitting) or the applied scenario
has a slightly different latent dynamic model. Take a spiral function as an example (Appendix A.3.1).
When a network trained from a given training set (Figure 5 (a)) is transferred to a new case (Figure 5
(b)), the learning performance will dramatically degrade (Figure 5 (d)). Without loss of generality,
the learning residual error is formalized as

f (x(t), I(t), t) = fneural (x(t), I(t), t,θ) + ∆f(t) (3)
where fneural (·) : Rn×Rm× R→ Rn represents the learned ODE model parameterized by θ, and
∆f(t) ∈ Rn denotes the unknown learning residual error. In the presence of ∆f(t), the prediction
error of (2) will accumulate over time. The objective of this work is to improve neural ODEs with as
few modifications as possible to suppress the effects of ∆f(t).

3 NEURAL ODES WITH A LINEAR FEEDBACK

3.1 CORRECTING LATENT DYNAMICS THROUGH FEEDBACK

Even though learned experiences are encoded by neurons in the brain, living organisms can still
adeptly handle unexpected internal and external disturbances with the assistance of feedback mech-
anisms (Aoki et al., 2019; Sarma et al., 2022). The feedback scheme has also proven effective in

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

traditional control systems, facilitating high-performance estimation and control objectives. Exam-
ples include Kalman filter (Kalman, 1960), Luenberger observer (Luenberger, 1966), extended state
observer (Guo et al., 2020), and proportional-integral-derivative control (Ang et al., 2005).

Figure 2: The learned latent dynamics
are modified through accumulative eval-
uation errors to approach the truth one.

We attempt to introduce the feedback scheme into neu-
ral ODEs, named feedback neural networks, as shown in
Figure 1. Neural ODEs have exploited latent dynamical
models fneural(t) of target systems in training set. The
key idea of feedback neural networks is to further cor-
rect fneural(t) according to state feedback. Denote ti as
the historical evaluation moment satisfying ti ≤ t. At
current moment t, we collect k + 1 state measurements
{x(t0),x(t1), · · · ,x(tk)}, in which tk = t. As portrayed
in Figure 2, fneural(t) is modified by historical evaluation
errors to approach its truth dynamics f(t), i.e.,

f̂neural(t) = fneural(t) +

k∑
i=0

L (x (ti)− x̄ (ti)) (4)

where L ∈ Rn×n represents the positive definite matrix
and x̄ (ti) ∈ Rn represents the predicted state from the
last evaluation moment, e.g., an Euler integration

x̄ (ti) = x (ti−1) + Tsf̂neural(ti−1) (5)
with the prediction step Ts ∈ R.

To avoid storing more and more historical measurements over time, define an auxiliary variable

x̂ (t) = x̄ (t)−
k−1∑
i=0

(x (ti)− x̄ (ti)) (6)

where x̂ (t) ∈ Rn can be regarded as an estimation of x (t). Combining (4) and (6), can lead to
f̂neural(t) = fneural(t) +L(x(t)− x̂(t)). (7)

From (5) and (6), it can be further rendered that
x̂ (tk) = x̂ (tk−1) + Tsf̂neural(tk−1). (8)

By continuating the above Euler integration, it can be seen that x̂(t) is the continuous state of the
modified dynamics, i.e., ˙̂x(t) = f̂neural(t). Finally, f̂neural(t) can be persistently obtained through
(7) and (8) recursively, instead of (4) and (5) accumulatively.

3.2 CONVERGENCE ANALYSIS

In this part, the convergence property of the feedback neural network is analyzed. The state observa-
tion error of the feedback neural network is defined as x̃(t) = x(t)− x̂(t), and its derivative ˙̃x(t),
i.e., the approximated error of latent dynamics is defied as f̃(t) = f(t)− f̂neural(t). Substitute (1)
and (3) into (7), one can obtain the error dynamics

˙̃x(t) = −Lx̃(t) + ∆f(t). (9)

Before proceeding, a reasonable bounded assumption on the learning residual error ∆f(t) is made.
Assumption 1. There exists an unknown upper bound such that

∥∆f(t)∥ ≤ γ (10)
where ∥ · ∥ denotes the Euclidean norm and γ ∈ R is an unknown positive value.

Note that the above assumption can cover common step disturbances (Figure S12).
Theorem 1. Consider the nonlinear system (1). Under the linear state feedback (7) and the
bounded Assumption 1, the state observation error x̃(t) and its derivative ˙̃x(t) (i.e., f̃(t)) can
exponentially converge to bounded sets B1 = {x̃(t) ∈ Rn : ∥x̃(t)∥ ≤ γ/λm(L)} and B2 ={
˙̃x(t) ∈ Rn :

∥∥∥ ˙̃x(t)∥∥∥ ≤ γλM (L)/λm(L) + γ
}

, respectively, which can be regulated by L.

Proof. See Appendix A.2.
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3.3 MULTI-STEP PREDICTION

Figure 3: The multi-
step prediction.

With the modified dynamics f̂(t) and current x(t), the next step is to predict
x(t+∆t) as in (2). By defining z(t) =

[
xT (t), x̂T (t)

]T ∈ R2n, from (8), we

have ż(t) =
[
fT (t), f̂T (t)

]T
. One intuitional means to obtain z(t+∆t) is to

solve the ODE problem with modern solvers. However, as shown in Theorem
1, the convergence of f̃(t) can only be guaranteed as current t. In other words,
the one-step prediction result by solving the above ODE is accurate, while the
error will accumulate in the long-term prediction. In this part, an alternative
multi-step prediction strategy is developed to circumvent this problem.

The proposed multi-step prediction strategy is portrayed in Figure 3, which
can be regarded as a cascaded form of one-step prediction. The output of each
feedback neural network is regarded as the input of the next layer. Take the
first two layers as an example. The first-step prediction x(t+ Ts) is obtained
by x(t + Ts) = x(t) + f̂(x(t), x̂(t), θ)Ts. The second layer with the input
of x(t+ Ts) will output x(t+ 2Ts). In such a framework, the convergence
of later layers will not affect the convergence of previous layers. Thus, the
prediction error will converge from top to bottom in order.

Note that the cascaded prediction strategy can amplify the data noise in case
of large L. A gain decay strategy is designed to alleviate this issue. Denote
the feedback gain of i-th later as Li, which decays as i increases

Li = L⊙ e−βi (11)
where β represents the decay rate. The efficiency of the decay strategy is presented in Figure 5(g).
The involvement of the decay factor in the multi-step prediction process significantly enhances the
robustness to data noise.

3.4 ABLATION STUDY ON OBSERVER GAIN

Figure 4: Prediction errors of the spiral curve with different levels
of feedback gains and uncertainties to show practical implications
of Theorem 1 udner Assumption 9. The right image is a partial
enlargement of the left one. The blue star denotes the case without
uncertainty, and the uncertainty increases along both the left and
right directions. When the gain is set as 0, the feedback neural
network will equal the neural ODE. The related simulation setup is
detailed in Appendix A.3.4.

The adjustment of linear feed-
back gain L can be separated
from the training of neural
ODEs, which can increase the
flexibility of the structure.

The gain adjustment strategy is
intuitional. Theorem 1 indi-
cates that the prediction error
will converge to a bounded set
as the minimum eigenvalue of
feedback gain is positive. And
the converged set can shrink
with the increase of the min-
imum eigenvalue. In reality,
the amplitude of λm(L) is lim-
ited since the feedback x is usu-
ally noised. The manual ad-
justment of λm(L) needs the
trade-off between prediction ac-
curacy and noise amplification.
Thus, an ablation study on (L)
to show practical implications
of Theorem 1 under Assumption 9 is implemented.

Figure 4 shows the multi-step prediction errors (N = 50) with different levels of feedback gains and
uncertainties. Two phenomena can be observed from the heatmap. The one is that the prediction error
increases with the level of uncertainty. The other is that the prediction error decreases with the gain at
the beginning, but due to noise amplification, the prediction error worsens if the gain is set too large.
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4 NEURAL ODES WITH A NEURAL FEEDBACK

Section 3 has shown a linear feedback form can promptly improve the adaptability of neural ODEs
in unseen scenarios. However, two improvements could be further made. At first, it will be more
practical if the gain tuning procedure could be avoided. Moreover, the linear feedback form can
be extended to a nonlinear one h(x(t) − x̂(t)) : Rn → Rn to adopt more intricate scenes, as
experienced in the control field (Han, 2009).

An effectual solution is to model the feedback part using another neural network, i.e., hneural(x(t)−
x̂(t), ξ) parameterized by ξ. Here we design a separate learning strategy to learn ξ. At first, the
neural ODE is trained on the nominal task without considering the feedback part. Then the feedback
part is trained through domain randomization by freezing the neural ODE. In this way, the obtained
feedback neural network is skillfully considered as a two-DOF network. On the one hand, the original
neural ODE preserves the accuracy on the previous nominal task. On the other hand, with the aid of
feedback, the generalization performance is available in the presence of unknown uncertainties.

4.1 DOMAIN RANDOMIZATION

The key idea of domain randomization (Tobin et al., 2017; Peng et al., 2018) is to randomize the
system parameters, noises, and perturbations as collecting training data so that the real applied case
can be covered as much as possible. Taking the spiral example as an example (Figure 5 (a)), training
with domain randomization requires datasets collected under various periods, decay rates, and bias
parameters, so that the learned networks are robust to the real case with a certain of uncertainty.

Two shortcomings exist when employing domain randomization. On the one hand, the existing trained
network needs to be retrained and the computation burden of training is dramatically increased. On
the other hand, the training objective is forced to focus on the average performance among different
parameters, such that the prediction ability on the previous nominal task will degraded, as shown in
Figure 6 (a). To maintain the previous accuracy performance, larger-scale network designs are often
required. In other words, the domain randomization trades precision for robustness. In the proposed
learning strategy, the generalization ability is endowed to the feedback loop independently, so that
the above shortcomings can be circumvented.

4.2 LEARNING A NEURAL FEEDBACK

In this work, we specialize the virtue from domain randomization to the feedback part hneural(t)
rather than the previous neural network fneural(t). The training framework is formalized as follows

ξ∗ = argmin
ξ

ncase∑
i=1

∑
j∈Dtra

i

∥∥x∗
i,j − xi,j

∥∥
s.t. xi,j = xi,j−1 + Ts (fneural(xi,j−1) + hneural (xi,j−1 − x̂i,j−1, ξ)) (12)

where ncase denotes the number of randomized cases, Dtra
i = {xi,j−1, x̂i,j−1,x

∗
i,j |j = 1, . . . ,m}

denotes the training set of the i-th case with m samples, x∗
i,j denotes the labeled state, and xi,j

denotes one-step prediction of state, which is approximated by Euler integration method here.

The learning procedure of the feedback part hneural(t) is summarized as Algorithm 1. After training
the neural ODE fneural(t) on the nominal task, the parameters of simulation model are randomized
to produce ncase cases. Subsequently, the feedback neural network is implemented in these cases and
the training set Dtra

i of each case is constructed. The training loss is then calculated through (12),
which favors the update of parameter ξ by backpropagation. The above steps are repeated until the
expected training loss is achieved or the maximum number of iterations was reached.

For the spiral example, Figure 6 (b) presents the learning performance of the feedback neural network
on the nominal task. It can be seen that the feedback neural network can precisely capture the latent
dynamics, maintaining the previous accuracy performance of Figure 5 (c). Moreover, the feedback
neural network also has the generalization performance on randomized cases, as shown in Appendix
Figure S10. Figure 6 (c) further provides the evolution of training loss of the feedback part on the
spiral example. More training details are provided in Appendix A.3.3.
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Figure 5: A toy example is presented to intuitively illustrate the developed linear feedback. The
mission is to predict the future trajectory of a spiral curve with a given initial state {x(t),y(t)}. The
neural ODE is trained on a given training set (a), yielding an approving learning result (c). Note
that the pentagrams denote start points. The trained network is then transferred to a test set (b),
which model is significantly different from the training one. With the linear feedback mechanism,
the feedback neural network can achieve a better approximated accuracy of the change rate (e), in
comparison with the neural ODE (d). As a result, a smaller multi-step prediction error (f) can be
attained by benefiting from the feedback neural network. (g) shows that the noise amplification
issue in multi-step prediction can be alleviated by the gain-decay strategy. (h) further presents the
prediction results with different prediction steps N . N in (f)-(g) is set as 50.

Figure 6: Learning with domain randomization. (a): Train the neural ODE through domain random-
ization. It can be seen that the learning performance of latent dynamics on the nominal task (Figure 5
(a)) degrades as inducing domain randomization, in comparison with Figure 5 (c). Previous works
usually try to scale up neural networks to approach the previous performance. (b): Freeze the neural
ODE after training on the nominal task and train the feedback part through domain randomization.
The feedback neural network maintains the previous performance on the nominal task. (c) The
training loss of the feedback part. Note that the neural ODE employed in (a) and (b) have the same
architectures as the one in Figure 5 (c).
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Algorithm 1 Learning neural feedback through domain randomization
Input: Randomize parameters to produce ncase cases; trained neural ODE fneural on nominal task.
Result: Neural feedback hneural.

Initialize: Network parameter ξ; Adam optimizer.
1: repeat
2: Run feedback neural network among ncase cases to produce x̂i,j ;
3: Construct datasets Dtra

i ;
4: Evaluate loss through (12) on randomly selected mini-batch data;
5: Update ξ by backpropagation;
6: until convergence

5 EMPIRICAL STUDY

5.1 TRAJECTORY PREDICTION OF AN IRREGULAR OBJECT

Figure 7: Trajectory prediction results of an irregular bottle. Left:
The irregular bottle is thrown out by hand and performs an approxi-
mate parabolic motion. Right: The prediction errors with different
methods. The prediction horizon is set as 0.5 s. The colored shaded
area represents the standard deviations of all 9 test trajectories.

Precise trajectory prediction
of a free-flying irregular ob-
ject is a challenging task
due to the complicated aero-
dynamic effects. Previ-
ous methods can be mainly
classified into model-based
scheme (Frese et al., 2001;
Müller et al., 2011; Bouffard
et al., 2012) and learning-
based scheme (Kim et al.,
2014; Yu et al., 2021). With
historical data, model-based
methods aim at accurately
fitting the drag coefficient
of an analytical drag model,
while learning-based ones try
to directly learn an accelera-
tion model using specific ba-
sis functions. However, the
above methods lack of online adaptive ability as employing. Benefiting from the feedback mech-
anism, our feedback neural network can correct the learned model in real time, leading to a more
generalized performance in cases out of training datasets.

We test the effectiveness of the proposed method on an open-source dataset (Jia et al., 2024), in
comparison with the model-based method (Frese et al., 2001; Müller et al., 2011; Bouffard et al.,
2012) and the learning-based method (Chen et al., 2018). The objective of this mission is to accurately
predict the object’s position after 0.5 s, as it is thrown by hand. 21 trajectories are used for training,
while 9 trajectories are used for testing. The prediction result is presented in Figure 7. It can be seen
that the proposed feedback neural network achieves the best prediction performance. Moreover, the
predicted positions and learned latent accelerations of all test trajectories are provided in Figure S2
and Figure S3, respectively. Implementation details are provided in Appendix A.4.

5.2 MODEL PREDICTIVE CONTROL OF A QUADROTOR

MPC works in the form of receding-horizon trajectory optimizations with a dynamic model, and
then determines the current optimal control input. Approving optimization results highly rely on
accurate dynamical models. Befitting from the powerful representation capability of neural networks
for complex real-world physics, noticeable works (Torrente et al., 2021; Salzmann et al., 2023;
Sukhija et al., 2023) have demonstrated that models incorporating first principles with learning-based
components can enhance control performance. However, as the above models are offline-learned
within fixed environments, the control performance would degrade under uncertainties in unseen
environments.

7
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Figure 8: Training sets and convergence procedures. Left: Collected trajectories used for training. We
first randomly sample positional waypoints in a limited space, followed by optimizing polynomials
that connect these waypoints through the minimum snap method (Mellinger & Kumar, 2011). Then
the quadrotor with the baseline controller from Jia et al. (2022) is commended to follow planned
trajectories, yielding real fly results as the training set. 40 trajectories are collected with the length
of 200 discrete nodes each. Right: Training curves of 6 random trials. All training trials converged
rapidly thanks to stable integration and end-to-end analytic gradients.

In this part, the proposed feedback neural network is employed on the quadrotor trajectory tracking
scenario concerning model uncertainties and external disturbances, to demonstrate its online adaptive
capability. In offline training, a neural ODE is augmented with the nominal dynamics firstly to account
for aerodynamic residuals. The augmented model is then integrated with an MPC controller. Note
that parameter uncertainties of mass, inertia, and aerodynamic coefficients, and external disturbances
are all applied in tests, despite the neural ODE only capture aerodynamic residuals in training. For
the feedback neural network, the proposed multi-step prediction strategy is embedded into the model
prediction process in MPC. Therefore, the formed feedback-enhanced hybrid model can effectively
improve prediction results, further leading to a precise tracking performance. More implementation
details refer to Appendix A.5.3.

5.2.1 LEARNING AERODYNAMIC EFFECTS

While learning the dynamics, the augmented model requires the participation of external control
inputs, i.e., motor thrusts. Earning a quadrotor model augmented with a neural ODE could be tricky
with end-to-end learning patterns since the open-loop model are intensively unstable, leading to
the diverge of numerical integration. To address this problem, a baseline controller from Jia et al.
(2022) is applied to form a stable closed-loop system. The adjoint sensitive method is employed in
Chen et al. (2018) to train neural ODEs without considering external control inputs. We provide an
alternative training strategy concerning external inputs in Appendix A.1, from the view of optimal
control. Figure 8 shows training trajectories and convergence procedures. 6 trials of training are
carried out, each with distinct initial values for network parameters. The trajectory validations are
carried out using 3 randomly generated trajectories (Figures S4-S7). More learning details refer to
Appendix A.5.2.

5.2.2 FLIGHT TESTS

In tests, MPC is implemented with six different models: the nominal model (27), the neural ODE aug-
mented model (Section A.5.2), the feedforward neural network augmented model (Saviolo & Loianno,
2023), the feedback enhanced nominal model, the adaptive neural network augmented model (Cheng
et al., 2019) and the proposed feedback neural network, abbreviated as Nomi-MPC, Neural-MPC,
MLP-MPC, FB-MPC, AdapNN-MPC, and FNN-MPC, for the sake of simplification. More details
of all compared methods refer to Section A.5.4. Moreover, 37.6% mass uncertainty, [40%, 40%, 0]
inertia uncertainties, [14.3%, 14.3%, 25.0%] drag coefficient uncertainties, and [0.3, 0.3, 0.3]N trans-
lational disturbances are applied. The flight results on a Lissajous trajectory (out of training set) are
presented in Figure 9. The tracking performance is evaluated by root mean square error (RMSE).

It can be seen the Neural-MPC outperforms the Nomi-MPC since intricate aerodynamic effects are
captured by the neural ODE. Moreover, the performance of MLP-MPC is relatively unsatisfactory

8
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Figure 9: Tracking the Lissajous trajectory using MPC with different prediction models.

compared with the Neural-MPC. The reason can be attributed to its single-step training manner
instead of the multi-step one of the Neural-MPC, leading to a poor multi-step prediction. However,
because unseen parameter uncertainties and external disturbances are not involved in the training set,
the Neural-MPC still has considerable tracking errors. Due to the adaptive ability of the last layer,
AdapNN-MPC can handle a certain level of uncertainty. In contrast, FNN-MPC achieves the best
tracking performance. The reason can be attributed to the multi-step prediction of the feedback neural
network improves the prediction accuracy subject to multiple uncertainties, as shown in Figure S8.

6 RELATED WORK

6.1 NEURAL ODES

Most dynamical systems can be described by ODEs. The establishments of ODEs rely on analytical
physics laws and expert experiences previously. To avoid such laborious procedures, Chen et al.
(2018) propose to approximate ODEs by directly using neural networks, named neural ODEs. The
prevalent residual neural networks (He et al., 2016) can be regarded as an Euler discretization of
neural ODEs Marion et al. (2024). The universal approximation property of neural ODEs has been
studied theoretically (Zhang et al., 2020; Teshima et al., 2020; Li et al., 2022), which show the
sup-universality for C2 diffeomorphisms maps (Teshima et al., 2020) and Lp-universality for general
continuous maps (Li et al., 2022). Marion (2024) further provides the generalization bound (i.e.,
upper bound on the difference between the theoretical and empirical risks) for a wide range of
parameterized ODEs.

6.2 GENERALIZATION OF NEURAL NETWORKS

In classification tasks, neural network models face the generalization problem across samples,
distributions, domains, tasks, modalities, and scopes (Rohlfs, 2022). Plenty of empirical strategies
have been developed to improve the generalization of neural networks, such as model simplification,
fit coarsening, and data augmentation for sample generalization, identification of causal relationships
for distribution generalization, and transfer learning for domain generalization. More details of these
approaches on classification tasks can refer to Rohlfs (2022). Here, we mainly review state-of-the-art
research related to continuous-time prediction missions.

Domain randomization (Tobin et al., 2017; Peng et al., 2018) has shown promising effects to improve
the generalization for sim-to-real transfer applications, such as drone racing (Kaufmann et al., 2023),
quadrupedal locomotion (Choi et al., 2023), and humanoid locomotion (Radosavovic et al., 2024).
The key idea is to randomize the system parameters, noises, and perturbations in simulation so that

9
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the real-world case can be covered as much as possible. Although the system’s robustness can be
improved through domain randomization, there are two costs to pay. One is that the computation
burden in the training process is dramatically increased. The other is that the training result has a
certain of conservativeness since the training performance is an average of different scenarios, instead
of a specific case.

Recently, domain randomization has proven inadequate to cope with unexpected disturbances (Shi
et al., 2024). An adversarial learning framework is formalized in Shi et al. (2024) to exploit sequential
adversarial attacks for quadrupedal robots, and further utilize them to finetune previous reinforcement
learning-based controllers. Brain-inspired neural networks have shown striking generalization
performance in new environments with drastic changes (Chahine et al., 2023; Lechner et al., 2020),
benefiting from its attention concentration feature. By incorporating symbolic knowledge, Wang et al.
(2024) show the generalization of neural networks can be enhanced across different robot tasks.

All of the above strategies try to learn a powerful model for coping with diverse scenarios, which may
be laborious and computationally intensive. In this work, it is shown that only a closed-loop feedback
adjustment is sufficient to improve the generalization, without changing the original feedforward
network structure or training algorithm. The proposed strategy is simple but efficient.

6.3 REAL-TIME RETRAINING AND ADAPTATION

Recently, online continual learning (Ghunaim et al., 2023) and test-time adaptation (Liang et al.,
2024) have emerged as promising solutions to handle unknown test distribution shifts. Online
continual learning focuses on the reduction of real-time training load, aiming at generalizing across
new tasks while maintaining performance on previous tasks. Test-time adaptation tries to utilize
real-time unlabeled data to obtain self-adapted models. For example, an extended kalman filter-based
adaptation algorithm with a forgetting factor is developed by Abuduweili & Liu (2020) to generalize
neural network-based models. Moreover, in order to improve the flexibility of neural networks,
the last layer of networks can be regarded as a weighted vector, which can be adjusted adaptively
according to real-time state feedback (Cheng et al., 2019; O’Connell et al., 2022; Richards et al.,
2023; Saviolo et al., 2024). The training for separating the last layer and front structure can be carried
out within a bi-level optimization framework. In such a paradigm, the uncertainty out of training
sets is reflected on the last layer of networks, which can be online adjusted in a control-oriented
(Richards et al., 2023) or regression-oriented (Cheng et al., 2019; O’Connell et al., 2022) fashion.
Patil et al. (2022) further develops real-time weight adaptation laws for all layers of feedforward
neural networks, with stability guarantees.

Different from the above retraining or adaptation strategy, the presented method directly corrects
the learned latent dynamics of neural ODEs with real-time feedback, yielding a two-DOF network
structure. Moreover, the feedback can be learned in a neural form. Integrating adaptive neural ODEs
with the developed feedback mechanism may be a valuable research direction (Section A.8).

7 CONCLUSION

Inspired by the feedback philosophy in biological and engineering systems, we proposed to incorpo-
rate a feedback loop into the neural network structure for the first time, as far as we known. In such a
way, the learned latent dynamics can be corrected flexibly according to real-time feedback, leading to
better generalization performance in continuous-time missions. The convergence property under a
linear feedback form was analyzed. Subsequently, domain randomization was employed to learn a
nonlinear neural feedback, resulting in a two-DOF neural network. Finally, applications on trajectory
prediction of irregular objects and MPC of robots were shown.

Limitations. First, the feedback gain and decay rate for the linear feedback neural network need to
be tuned manually. Future work will try to build a bi-level optimization framework to train neural
ODE while searching the optimal gains. Such joint optimization manner can also capture the coupled
information between feedforward neural ODE and feedback network. Morevoer, the presented
nonlinear neural form is preliminarily tested in Section 4. Future work will pursue to exploit its
potential in more complex tasks.

10
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A APPENDIX

A.1 TRAINING NEURAL ODES WITH EXTERNAL INPUTS

Firstly, we formulate the learning problem as an optimization problem:

min
θ

J =

N−1∑
i=1

li(xi,xi
r, ξ) + lN (xN ,xN

r) (13)

s.t. xi+1 = fd
neural(xi, Ii, ti,θ) (14)

where xi ∈ Rn and Ii ∈ Rm denotes the model rollout state and the real sample at time ti respectively,
xi+1 = fd

neural(xi, Ii, ti,θ) refers to the discretized integration of fneural (x(t), I(t), t,θ) with
fixed discrete step since real-world state trajectories xi

r ∈ Rn are sequentially recorded with fixed
timestep based on the onboard working frequency. li(·) ∈ R, lN (·) ∈ R are defined to quantify the
state differences between model rollout xi and real-world state xi

r. In this article, we select the
functions in a weighted quadratic form, i.e., (xi

r − xi)
⊤Li(xi

r − xi).

By utilizing the optimal control theory and variational method, the first-order optimality conditions
of the learning problem could be derived as

H = J +

N−1∑
i=1

λ⊤
i f

d
neural(xi, Ii, ti,θ) (15)

xi+1 = ∇λH = fd
neural(xi, Ii, ti,θ), x0 = x(0) (16)

λi = ∇xH = ∇xli + (
∂fd

neural

∂x
)⊤λi+1, λN =

∂lN
∂xN

(17)

∂H

∂θ
=

N−1∑
i=1

∇θli + λ⊤
i ∇θf

d
neural = 0 (18)

where H ∈ R stands for the Hamiltonian of this problem. Solving (18) could be done by applying
gradient descent on θ. The gradient is analytic and available (summarized in Algorithm 2) by
sequentially doing forward rollout (16) of x and backward rollout (17) of λ, where the latter one is
also known as the term adjoint solve or reverse-mode differentiation.

Algorithm 2 Analytic gradient computation
Input: Learning objective li(·), lN (·); model fd

neural; continuous trajectories {xr(t), I(t), t}.
Result: Gradient ∂H/∂θ.
1: x← Forward rollout of fd

neural using (16);
2: Compute ∇θli, ∇θlN , ∂fd

neural/∂x;
3: λ← Reverse rollout of ∇xH using (17) ;
4: ∂H/∂θ ← Compute gradient using (18).

Algorithm 3 Training neural ODEs with external inputs
Input: Learning objective lk(·), lN (·); mini-batch size s; trajectories Dtra = {xr(t), I(t), t}.
Result: Neural ODE fd

neural.
Initialize: Network parameters θ; slice Dtra into M segments {Dtra

j=1,··· ,M} with s length each.
1: repeat
2: for {xr

1:s, I1:s, t1:s} in {Dtra
j=1,··· ,M} do

3: Compute analytic gradient ∂H/∂θ using Algorithm 2;
4: Compute learning rate α using Adam or other methods;
5: θ ← θ − α · ∂H/∂θ;
6: end for
7: until convergence

The gradient computing only supports for a single continuous state trajectory, and the computational
complexity scales linearly with the trajectory length. However, in real-world applications, multiple
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trajectory segments with a long horizon might be produced. We introduce mini-batching as well
as stochastic optimization methods to deal with the drawback, as summarized in Algorithm 3. The
learning rate could be determined using Adam or other stochastic gradient descent-related methods.

A.2 PROOF OF THEOREM 1

A.2.1 CONTINUOUS-TIME STABILITY

The proof procedure requires the Lyapunov stability analysis arising from the traditional control field
(Slotine et al., 1991). At first, define a Lyapunov function

V (t) =
1

2
x̃(t)T x̃(t). (19)

Differentiate V (t) ∈ R, yielding

V̇ (t) = x̃(t)
T ˙̃x (t)

(a)
= x̃(t)

T
(−Lx̃(t) + ∆f(t))

= −x̃(t)TLx̃(t) + x̃(t)
T
∆f(t)

(b)

≤ −λm(L)

2
x̃(t)

T
x̃(t) +

1

2λm(L)
γ2 (20)

where (a) and (b) are driven by substituting (9) and using Young’s inequality x̃T∆f(t) ≤√
λm(L)∥x̃∥ γ√

λm(L)
≤ λm(L)∥x̃∥2

2 + γ2

2λm(L) , respectively. By combing (19) and (20), it can

be rendered that

V̇ (t) ≤ −λm(L)V (t) +
1

2λm(L)
γ2. (21)

By solving the first-order ordinary differential inequality, one can achieve

0 ≤ V (t) ≤ e−λm(L)t [V (0)− δ] + δ (22)

with δ = γ2

[2λm(L)2] ∈ R. It can be further implied that

lim
t→∞

∥x̃(t)∥ ≤ γ

λm(L)
(23)

which shows that even with learning residuals, the state observation error can converge to a bounded
set B1 = {x̃(t) ∈ Rn : ∥x̃(t)∥ ≤ γ/λm(L)} with the feedback modification. It can be seen that the
upper bound can be regulated to arbitrarily small by increasing λm(L).

Finally, from (9), it can be concluded that the derivative of the state observation error can also
converge to a bounded set B2 =

{
˙̃x(t) ∈ Rn :

∥∥∥ ˙̃x(t)∥∥∥ ≤ γλM (L)/λm(L) + γ
}

with the maximum
eigenvalue of feedback gain λM (L).

Figure S1 shows the convergence of the state observation error in the spiral curve example. Related
simulational setup is the same as Figure 5. It can be seen that the theoretical bounded set is relatively
conservative, as the result of the sufficiency of Lyapunov theorem.

As for unbounded learning residuals violating Assumption 1, we think it is still a major challenge in
learning fields. It reveals that neural networks have completely lost the representational ability to
target uncertainties. The best strategy may be retraining the networks based on fresh datasets, like an
online continual learning mission (Ghunaim et al., 2023).

A.2.2 DISCRETE-TIME STABILITY

As the developed procedure in (4)-(8) is discrete-time, we further provide the convergence analysis in
a discrete-time form.
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Figure S1: In the spiral curve example, the state observation error can converge to the theoretical
bounded set.

Discretizing (2), it can be obtained that

x(tk) = x(tk−1) + Tsf(tk−1). (24)

Define state observer error x̃(tk) = x(tk)− x̂(tk). By making a difference between (24) and (8),
one can achieve

x̃(tk) = x̃(tk−1) + Ts(f(tk−1)− f̂neural(tk−1))

(c)
= x̃(tk−1) + Ts(fneural(tk−1)− f̂neural(tk−1) + ∆f(t))

(d)
= (I − TsL)x̃(tk−1) + Ts∆f(t), (25)

where (c) and (d) are driven by substituting (3) and (7), respectively. With the bounded Assumption
1, if the observer gain L makes (I − TsL) stable, i.e., ρ(I − TsL) < 1, system (25) is input-to-state
stable (ISS) (Yan et al., 2023). ρ(·) denotes the spectral radius.

A.3 IMPLEMENTATION DETAILS OF SPIRAL CASE

A.3.1 SPIRAL DYNAMICS

The adopted spiral model is formalized as

ẋ (t) =

[
−η ω
−ω −η

]
x (t) +

[
ε
ε

]
(26)

with period ω ∈ R, decay rate η ∈ R, and bias ε ∈ R.

In tests, the initial value is set as x(0) = [9, 0]
T . For the nominal task, ω, η, and ε are set as 2, 0.1,

and 0, respectively.

A.3.2 TRAINING DETAILS OF NEURAL ODE

The adopted MLP for training ODE has 3 layers with 50 hidden units and ReLU activation functions.
The training datasets consist of 1000 samples, discretized from 0 s to 10 s with 0.01 s step size. In
training, we use RMSprop optimizer with the default learning rate of 0.001. The network is trained
with a batch size of 20 for 400 iterations.

A.3.3 TRAINING DETAILS OF FEEDBACK PART

As for the feedback part, we adopt MLP with 2 hidden layers with 50 hidden units each and
ReLU activation functions. The training datasets are collected through domain randomization,
with 20 randomized cases, i.e., ω = {0.8 : +0.12 : 3.08}, η = {0.04 : +0.005 : 0.135}, ε =
{−24 : +2.4 : 21.6}. Each case consists of 1000 samples, discretized from 0 s to 20 s with 0.02 s
step size. In training, we use RMSprop optimizer with the learning rate of 0.01. The network is
trained with a batch size of 100 for 2000 iterations.
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A.3.4 SETUP OF GAIN ADJUSTMENT TEST

Figure 4 shows the ablation study on linear feedback gain and degree of uncertainty. In this test, feed-
back gain is selected from {0 : +5 : 45} in order, and uncertainties are set as ω = {0.8 : +0.4 : 4.4},
η = {0.04 : +0.02 : 0.22}, ε = {−24 : +8 : 96} in order. The prediction step is set as 50. The
prediction results are evaluated using the means of 2-norm prediction errors.

A.4 IMPLEMENTATION DETAILS OF TRAJECTORY PREDICTION OF IRREGULAR OBJECTS

The input state of neural ODE consists of position and velocity. The adopted MLP for training latent
ODE has 3 hidden layers with 100 hidden units each and ReLU activation functions. The training
datasets consist of 21 trajectories, with 1058 samples each. The step size is 0.001 s. In training, we
use Adam optimizer with the default learning rate of 0.001. The network is trained with a batch size
of 20 for 1000 iterations.

Different from the one-step prediction strategy utilized in Jia et al. (2024) (modeled as non-
autonomous systems concerning attitude), this work predicts future states in a forward-rolling
way, learning a more precise result. For the compared drag model-based method, the drag coefficient
comes from Jia et al. (2024) fitted by least squares. The prediction error in Figure 7 is evaluated by
the 2-norm of position prediction error.

A.5 IMPLEMENTATION DETAILS OF MODEL PREDICTIVE CONTROL OF A QUADROTOR

A.5.1 QUADROTOR PRELIMINARIES

A quadrotor dynamics can be defined as a state-space model with a 12-dimensional state vector
x = [p,v,Θ,ω]⊤ ∈ R12 and a 4-dimensional input vector u = [T1, T2, T3, T4]

⊤ ∈ R4 of motor
thrusts. Two coordinate systems are defined, the earth-fixed frame E = {XE ,YE ,ZE} and the
body-fixed frame B = {XB ,YB ,ZB}. The position p ∈ R3 and the velocity v ∈ R3 are defined in
E while the body rate ω ∈ R3 is defined in B. The relationship between E and B is decided by the
Euler angle Θ ∈ R3. The translational and rotational dynamics can be formalized as

ṗ = v, v̇ = a = − 1

m
ZBT + gZE

Θ̇ = W (Θ)ω, Jω̇ = −ω × (Jω) + τ

[T, τ ]⊤ = C[T1, T2, T3, T4]
⊤

(27)

where g stands for the magnitude of gravitational acceleration, W (·) refers to the rotational mapping
matrix of Euler angle dynamics and C is the control allocation matrix. We note the nominal dynamics
of quadrotor as ẋ = f(x,u).

Next, differential flatness-based controller (DFBC) (Mellinger & Kumar, 2011) for the quadrotor is
introduced, which is adopted here to form a closed-loop system for end-to-end learning that remains
stable and differentiable numerical integration. By receiving the flat outputs Ψ̄ = [p,v,a, j] ∈ R12,
the positional signal and its higher-order derivatives, as the command signal, DFBC computes the
desired motor thrusts for the actuators under the 12-dimensional state feedback. By virtue of the
differential flatness property of the quadrotor, one can covert the flat outputs into nominal states x
and inputs u using related differential flatness mappings if the yaw motion remains zero. We note
this controller as [ż,u]⊤ = π(z,x, Ψ̄), where z is auxiliary state of controller for the expression
integrators and approximated derivatives in the rotational controller.

A.5.2 IMPLEMENTION OF LEARNING AERODYNAMICS EFFECTS

In training, no external wind and parameter uncertainties exist, and the aerodynamic drag is modeled
as RDR⊤v (Faessler et al., 2017), where R refers to the current rotational matrix that maps the
frame B to the frame E , and D = diag{[0.6, 0.6, 0.1]} is a coefficient matrix which is fitted by real
flight data from Jia et al. (2022).

A neural ODE fneural (with parameters θ) is augmented with the nominal dynamics to capture the
aerodynamic effect, i.e., v̇ = a = − 1

mZBT + gZE + fneural(v,Θ,θ). A MLP with 2 hidden
layers with 36 hidden units is adopted.
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End-to-end learning of fneural could be done using the algorithm 3, but a stable numerical integration
is necessary. A closed-loop system of the augmented dynamics using DFBC is employed, noted as
[ẋ, ż]⊤ = Φ([x, z]⊤, Ψ̄). In the proposed algorithm, [ẋ, ż]⊤ turns out to be the new state and Ψ̄
becomes the auxiliary input instead of the input of the augmented dynamics u.

We generate 40 Ψ̄ trajectories with the discrete nodes of 200 each for learning by randomly sampling
the positional waypoints in a limited space, followed by optimizing polynomials that connect these
waypoints, as shown in Figure 8. For validations of the learned neural ODE, we generate another 3
random Ψ̄ trajectories 2.5× longer than that used in training, the result illustrated in Figures S4-S7
indicates a good prediction on all 12 states.

A.5.3 IMPLEMENTATION OF MPC WITH FEEDBACK NEURAL NETWORKS

MPC works in the form of trajectory optimization (28) with receding-horizon N with a discrete
dynamic model fd, to obtain the current optimal control input u0, while maintaining feasibility
constraints ui ∈ U,xi ∈ X, i.e.,

min
x1:N ,u0:N−1

lN (xN ,xr
N ) +

N∑
i=1

lx(xi,x
r
i ) + lu(ui,u

r
i )

s.t. xi+1 = fd(xi,ui), x0 = x(0)

ui ∈ U, xi ∈ X

(28)

where the objective functions lx(·) ∈ R, lu(·) ∈ R, lN (·) ∈ R penalize the tracking error between
model predicted trajectory {x1:N ,u1:N} and the up-comming reference trajectory {xr

1:N ,ur
1:N},

where quadratic loss are often adopted. In this application, we make lx(·) = lN (·) = (x−xr)⊤Q(x−
xr), lu(·) = (u − ur)⊤R(u − ur), where Q = diag{[1003×1,506×1,13×1]} ∈ R12×12 and
R = diag{14×1} ∈ R4×4. The feasibility constraints ui ∈ U and xi ∈ X are normally designed
using box constraints. We make 04×1 ≤ u ≤ 44×1 to avoid control saturation and |Θ| ≤ π/23×1

to avoid singularities while using Euler angle-based attitude representation. The receding horizon
length N is set to be 10.

The key idea of using a feedback neural network augmented model is to apply the multi-step prediction
mechanism to the model prediction process in MPC. The multi-step prediction algorithm requires the
current feedback state x0 and current input u1 to update the sequence of x̂1:N . The updated x̂1:N

can be directly applied for the receding horizon optimization of the next state. We choose a linear
feedback gain of L = diag{312×1} ∈ R12×12 with a decay rate of 0.1.

A.5.4 BENCHMARK COMPARISONS

In the quadrotor example, in order to show the effectiveness of the proposed feedback neural network,
five other models are compared: the nominal model (27), the neural ODE augmented model (Section
A.5.2), the feedforward neural network augmented model (Saviolo & Loianno, 2023), the feedback
enhanced nominal model, and the adaptive neural network augmented model (Cheng et al., 2019),
abbreviated as Nomi-MPC, Neural-MPC, MLP-MPC, FB-MPC, and AdapNN-MPC, for the sake of
simplification.

The MLP augmented model employs the fully connected neural network to learn aerodynamic drag
(Saviolo & Loianno, 2023). The feedback enhanced nominal model refers to the analytic model
(27) strengthened by proposed feedback mechanism. The adaptive neural network augmented model
(Cheng et al., 2019) uses the feedforward neural network to learn aerodynamic drag in which the
last layer is regarded as a weighted vector, being adjusted adaptively according to real-time state
feedback. Similar idea is also proposed in O’Connell et al. (2022); Richards et al. (2023); Saviolo
et al. (2024). In tests, all learning-based methods have the same hidden layers, and the parameters of
the AdapNN-MPC are adjusted for optimal performance.

The training loss on the training set, the validation set, and the test set of MLP augmented model is
provided in Figure S13.
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A.5.5 TEST RESULTS

A periodic 3D Lissajous trajectory is used for comparative tests, where a variety of
attitude-velocity combination is exploited. The position trajectory can be written as
p(t) = [rxsin(2πt/Tx), rysin(2πt/Ty), h + rzcos(2πt/Tz)], where the parameters are
[rx, ry, rz, Tx, Ty, Tz, h] = [3.0, 3.0, 0.5, 6.0, 3.0, 3.0, 0.5]. Tracking such trajectory requires a con-
version of the flat outputs to the nominal 12-dimensional state x of the quadrotor using differential
flatness-based mapping.

During trajectory tracking, it could be seen from Figure S8 that the prediction accuracy of latent
dynamics at the first step is improved significantly under the multi-step prediction. Although the
learning-based model provides more solid results on dynamics prediction than just using the nominal
model, with the help of feedback, a convergence property of prediction error can be achieved, leading
to a better tracking performance (Figure 9).

A.6 ABLATION STUDY

Section 3.4 has analyzed the sensitivity of observer gain at different levels of uncertainties. In this
part, we further conduct the ablation studies on linear and nonlinear neural feedback units, and decay
rate.

A.6.1 LINEAR FEEDBACK UNIT

We test the performance of correcting the latent dynamics of spiral curves at 12 different levels
of learning residuals, with or without linear feedback unit. The parameter uncertainties cover
∆ω = {−0.72 : +0.12 : 0.6}, ∆η = {−0.03 : +0.005 : 0.025}, ∆ε = {−14.4 : +2.4 : 12}. All
compared results are summarized in Figure S9, which indicates the effectiveness of the linear feedback
unit.

A.6.2 NEURAL FEEDBACK UNIT

Similar to the last test, we further test the performance of the neural feedback unit at 12 different
levels of learning residuals. All compared results are summarized in Figure S10. It can be found
that the developed feedback neural network shows better generalization performance by enabling the
neural feedback unit.

It can be seen from Figure S9 and Figure S10, both methods can achieve comparative learning
performance. Compared with the linear feedback, no prior gain tunning is required for the neural
feedback at the cost of training cost.

A.6.3 DECAY RATE

Ablation study on decay rate: The performance of the decay rate is examined in the spiral curve
example. In tests, the decay rate is set as β = {0 : +0.01 : 0.06} in sequence, and the multi-step
prediction errors (Figure 5(g)) are calculated in RMSE. The test results are shown in the Figure S11.
It can be seen that the prediction error decreases with the increase of β at the beginning due to noise
mitigation. However, as β continues to increase, the convergence time becomes slower, leading to a
gradual increase in prediction error.

In practice, the tunning of feedback gain and decay rate is very intuitive. They can be increased
slowly from a small value until the critical value with the best estimation performance is reached.

A.7 TRAINING COST

For the training of neural ODEs, two strategies are employed in this work: the adjoint sensitive
method developed in Chen et al. (2018) without considering external inputs, and the alternative
training method developed in Appendix A.1 concerning external inputs. The adjoint sensitive method
is utilized in the spiral curve and irregular object examples, and its computational resource and
training time are the same as Chen et al. (2018). The alternative training method concerning external
inputs is employed in the quadrotor example to learn residual dynamics. It takes around 30 mins
to run 50 epochs on a laptop with 13th Gen Intel(R) Core(TM) i9-13900H. The alternative training
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method is derived from the view of optimal control, and its computational resource and training time
are comparable to the adjoint sensitive method theoretically.

Two feedback forms are presented. No prior training is required for the linear feedback form, showing
its advantage over traditional learning-based generalization methods. Moreover, the linear feedback
consists of several analytic equations, consuming almost no computing resources. As for the neural
feedback form, due to the optimization problem being non-convex, a satisfactory result usually takes
10 mins to 1 hour of training time on a laptop with Intel(R) Core(TM) Ultra 9 185H 2.30 GHz.

A.8 COMBINATION WITH ADAPTIVE NEURAL ODE

In this part, we further explore the combination potential of the developed linear feedback neural
network with the test-time adaptation (Cheng et al., 2019; O’Connell et al., 2022; Richards et al.,
2023; Saviolo et al., 2024). Let fneural(x(t), I(t), t,θ) = Ξ(x(t), I(t), t,θ)χ, where Ξ (·) :
Rn × Rm × R → Rn × Rl represents front layers of neural network, and χ ∈ Rl denotes the
weighted vector of the last layer of neural network, which is constant in a test case and can be adjusted
adaptively according to real-time state feedback. Integrating with the adaptive scheme, (7) can be
adjust to

f̂neural(t) = Ξ(t)χ̂+L(x(t)− x̂(t)), (29)

where χ̂ is updated through an adaptive law

˙̂χ = ΓΞT (t)x̃(t) (30)

with a positive definite observer gain Γ ∈ Rl × Rl.
Theorem 2. Consider the nonlinear system (1). Under the linear state feedback (29), the adaptive
law (30), and the bounded Assumption 1, the state observation error x̃(t) and its derivative ˙̃x(t)

(i.e., f̃(t)) can exponentially converge to bounded sets B1 = {x̃(t) ∈ Rn : ∥x̃(t)∥ ≤ γ/λm(L)} and

B2 =
{
˙̃x(t) ∈ Rn :

∥∥∥ ˙̃x(t)∥∥∥ ≤ γλM (L)/λm(L) + γ
}

, respectively, which can be regulated by L.

Proof. Define the estimation error χ̃ = χ− χ̂ and a Lyapunov function

V (t) =
1

2
x̃(t)T x̃(t) +

1

2
χ̃TΓ−1χ̃. (31)

Differentiate V (t) ∈ R, yielding

V̇ (t) = x̃(t)
T
(ẋ (t)− ˙̂x (t))− χ̃TΓ−1 ˙̂χ

(e)
= −x̃(t)TLx̃(t) + x̃(t)

T
(Ξ(t)χ̃+∆f(t))− χ̃TΞT (t)x̃(t)

= −x̃(t)TLx̃(t) + x̃(t)
T
∆f(t)

(32)

where (e) is driven by substituting (9), (29), and (30). The following proof process is consistent with
(20), which is omitted here.

Compared (7), (29) further increases the flexibility of the neural network by inducing the adaptive
mechanism. We further test this scheme in the quadrotor example, as shown in Figure S14. Note that
the feedback gain is set the same as that of the previous feedback neural network. It can seen that
the adaptation-enhanced feedback neural network (abbreviated as AdapFNN) achieves performance
comparable to the previous feedback neural network, with a slightly larger RMSE.

We think that the possible reason why the AdapFNN does not bring significant performance im-
provement is that the last layer of the neural network is not trained analytically. In other words,
the uncertainty of the test scenario is not reflected in the last layer. The bilevel training strategy
(O’Connell et al., 2022; Richards et al., 2023) may help improve AdapFNN’s performance.
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Figure S2: Trajectory prediction results of all 9 test trajectories in Section 5.1. It can be seen that the
predicted trajectories almost overlap with the truth ones.
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Figure S3: The learning performance of latent accelerations of all 9 test trajectories in Section 5.1.
It can be seen that the feedback neural network can accurately capture the latent dynamics of test
trajectories out of the training set.

Figure S4: 3 random trajectories generated for validations of the learned neural ODE, named traj-#1,
traj-#2, and traj-#3. All trajectories show well-predicted motions on pose and attitude. Detailed
results on all 12 states are provided in Figures S5-S7.
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Figure S5: Validation of learned neural ODE. Prediction on all 12 states of traj-#1.

Figure S6: Validation of learned neural ODE. Prediction on all 12 states of traj-#2.
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Figure S7: Validation of learned neural ODE. Prediction on all 12 states of traj-#3.

Figure S8: Test on the Lissajous trajectory. Prediction on the translational latent dynamics (i.e.,
acceleration) at the first step using different prediction models. The feedback neural network
augmented model achieve the best prediction performance.
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Figure S9: Test the linear feedback form on 12 randomized cases in the spiral curve example. It can
be found that the developed feedback neural network shows better generalization performance as
enabling the linear feedback unit.

Figure S10: Test the neural feedback form on 12 randomized cases in the spiral curve example.
The developed feedback neural network with the neural feedback unit shows better generalization
performance than the neural ODE.
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Figure S11: Ablation study on decay rate.

Figure S12: Test on step disturbance in the spiral curve example. The test setup is the same as Figure
5 except for the induce of step disturbance. As t = 7 s (denoted by a yellow diamond symbol), the
latent dynamics is changed suddenly (ω : 3→ 1, η : −0.05→ −0.12, ε : 10→ 5). It can be seen
that the proposed feedback neural network can attenuate the step disturbance quickly.

Figure S13: The training loss on the training set, the validation set, and the test set of the compared
MLP augmented model.
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Figure S14: Tracking the Lissajous trajectory using MPC with adaptation-enhanced feedback neural
network.

28


	Introduction
	Neural ODEs and learning residues
	Neural ODEs with a linear feedback
	Correcting latent dynamics through feedback
	Convergence analysis
	Multi-step prediction
	Ablation study on observer gain

	Neural ODEs with a neural feedback
	Domain randomization
	Learning a neural feedback

	Empirical study
	Trajectory prediction of an irregular object
	Model predictive control of a quadrotor
	Learning aerodynamic effects
	Flight tests


	Related work
	Neural ODEs
	Generalization of neural networks
	Real-time retraining and adaptation

	Conclusion
	Appendix
	Training neural ODEs with external inputs
	Proof of Theorem 1
	Continuous-time stability
	Discrete-time stability

	Implementation details of spiral case
	Spiral dynamics
	Training details of neural ODE
	Training details of feedback part
	Setup of gain adjustment test

	Implementation details of trajectory prediction of irregular objects
	Implementation details of model predictive control of a quadrotor
	Quadrotor Preliminaries
	Implemention of learning aerodynamics effects
	Implementation of MPC with Feedback Neural Networks
	Benchmark comparisons
	Test results

	Ablation study
	Linear feedback unit
	Neural feedback unit
	Decay rate

	Training cost
	Combination with adaptive neural ODE


