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Abstract

While LLMs have seen substantial improvement in reasoning capabilities, they also
sometimes overthink, generating unnecessary reasoning steps, particularly under
uncertainty given ill-posed or ambiguous queries. We introduce statistically princi-
pled early stopping methods that monitor uncertainty signals during generation to
mitigate this issue. Our first approach is nonparametric and provides finite-sample
guarantees on the probability of halting too early on well-posed queries. Our second
approach is parametric: it models inter-arrival times of uncertainty keywords as a
renewal process and applies sequential testing for stopping. We conduct empirical
evaluations on reasoning tasks across several domains and models. Our results
indicate that uncertainty-aware early stopping can improve both efficiency and
reliability in LLM reasoning. The performance varies across domains, and we
observe especially significant gains for math reasoning.

1 Introduction

Large language models (LLMs) have made remarkable progress in multi-step reasoning, yet they
sometimes still struggle when faced with ill-posed or ambiguous queries, see e.g., [12, [15]], etc.
Instead of abstaining or clarifying, models often attempt to provide definitive answers [[12}[15]. This
tendency can undermine reliability and waste computation on answers that should not have been
generated. A related failure mode is overthinking: producing unnecessarily long reasoning traces that
do not improve accuracy. Though reasoning can improve performance, empirical evidence suggests
that verbose reasoning sometimes correlates with incorrect or uncertain predictions [19, /5], and that
reasoning models may verbalize uncertainty without abstaining [[16} 5, [15]]. Together, these findings
point to a central challenge: reasoning models lack principled mechanisms to regulate reasoning
dynamically in response to uncertainty.

To address this, we propose statistically principled early stopping methods that monitor uncertainty
signals during token generation. Our first approach is nonparametric: a conformal prediction—based
method with finite-sample guarantees, ensuring that the probability of halting too early on well-posed
queries is controlled at a pre-selected false positive rate. Next, we introduce a parametric alternative
grounded in renewal process theory. It models the inter-arrival times of uncertainty keywords and
leverages asymptotic properties of renewal processes to construct sequential tests for stopping.

Through systematic experiments across math, science, and medical reasoning tasks, we show that
our approaches improve efficiency (cutting unnecessary tokens on ill-posed queries), while avoiding
premature halts on well-posed queries and maintaining accuracy. Performance varies across tasks,
and is especially promising for math. Our findings suggest that uncertainty-aware early stopping is a
promising mechanism for reducing computational cost in reasoning models.
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Background Our work adapts conformal anomaly detection e.g., [20, [13] etc, to address over-
thinking when queries are ambiguous or ill-posed. Previous work suggests that reasoning models
generate longer responses for ill-posed queries [15,[15,[19]. As a baseline, we therefore limit the trace
length uniformly across all examples. Given calibration traces, a length threshold 7 is computed as
the (1 — «)(1 + 1/n)-quantile of trace lengths |T;|,% = 1,...,n in our calibration dataset. For new
queries, generation continues until the length exceeds 7, at which point token generation stops. This
method effectively controls the false positive rate (FPR)—defined here as the probability of halting
too early on a well-posed query [20} 13]

2 Methods

Qualitative analyses from [[12} 5} [15] suggest that models often verbalize uncertainty in their reasoning
chains, yet still provide definitive final answers. Inspired by these findings, we propose algorithms
that leverage such uncertainty signals for early stopping.

Uncertainty Keyword Set Construction We construct a domain-specific lexicon of uncertainty key-
words using a semi-supervised approach (details in Appendix [A). Specifically, we compare reasoning
traces generated by three reasoning modelsﬂ for a subset of math problems from AbstentionBench
[12]. A random forest classifier is trained on k-gram features to distinguish traces generated for
original and ill-posed questions. The most informative k-grams are extracted as seed keywords,
then manually curated and expanded into a categorized lexicon summarized in Table [T} with full
details in Appendix [A] There are four main categories: Doubt/Speculation, Questioning the Premise,
Missing Information, and Contrasting Possibilities. The keywords within these categories serve as
interpretable signals of uncertainty in reasoning traces. Importantly, keyword matching is far more
efficient than using a secondary LLM to judge uncertainty, making it practical for large-scale or
real-time applications.

Category Examples

Doubt / Speculation “maybe,” “not entirely sure”

Questioning the Premise “maybe the question,” “the problem could be”
Missing Information “not provided,” “without details”

Contrasting Possibilities “but maybe,” “alternatively it could be”

Table 1: Overview of uncertainty keywords. See Appendixb]for the full taxonomy.

Uncertainty Score. For a tokenized trace prefix T[1 : ¢] of length £ > 0, we define a (fast-to-compute
and scalable) uncertainty score u(7T'; £), the frequency of uncertainty expressions:

u(T'; £) = #{uncertainty phrases in T[1 : £]} /4. (1)

Maxwise Conformal Stopping Our first approach computes the maximum of the uncertainty score
over the traces. We partition traces into bins of tokens of siz<ﬂ B, with boundaries L; = j - B, j =
1,.... We collect calibration traces T;, ¢ = 1, ..., n, on well-posed problems, representing reasoning
paths of the model we are interested in. For each calibration trace T; and boundary L; < |T;|, we
compute the score u(T;; L;) on the prefix T;[1 : L;]. We then define a global threshold of “maximal
uncertainty" as follows. For each calibration trace T;, compute M; = max;.r,, <|1;| u(Ty; Lj). Then,
to quantify how large these scores typically get during normal reasoning, we calculate their (1 —a)(1+
1/n) quantile, for some user-specified a € (0,1), i.e., 7 = Quantile(; _q)141/n)({Mi}iy) -
For a new query 7' at inference/test-time, we monitor «(7; L;), j = 1,... and stop as soon as
u(T, L;) > 7*. This controls the probability of early stopping on a well-posed query at level « (see
Appendix [B|for a formal statement).

Renewal Process Stopping Our second approach is a parametric rule based on renewal process theory
[6]]. Here, each occurrence of an uncertainty phrase is treated as an “arrival” in a renewal process.
This rule stops decoding when the observed arrival rate of uncertainty phrases is significantly higher
than expected. From calibration traces, we extract inter-arrival times A;, j = 1,.... We estimate the

"For completeness, a proof is provided in Appendix
’Qwen/QuQ-32B, microsoft/Phi-4-reasoning, and deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
3Here, B is treated as a hyperparameter and we choose B = 100; see SectionE] about its choice.



mean and variance of their distribution a i = Zjvil Aj/M and 62 = Zﬁl (A; — )2/ (M —1).

For a test trace, let IV; be the number of arrivals up to position ¢. Renewal theory [see |6} Sec. 10.2,
p. 417] implies that the normalized statistic Z; = (N; — t/ i) / \/t62 /i3 converges in distribution

to a standard normaﬂ ast — oo. If Z; exceeds z1_4, the (1 — o) standard normal quantile, we halt
generation at step ¢, fort = k - B for some k = 1, ... and B is the same as before. To account for
repeated testing, we adjust the significance level using the Sidék correction [18]: o/ = 1—(1—a)'/7,
where T' = [LLB“} is the maximum number of tests performed for this trace.

3 Experiments

Prompting Baselines We distill two prompting baselines from prior work: 1. Confidence Dampening
Prompt: Following [9], append: “Answer only if you are confident. Otherwise, say ‘I am not sure.” ”
to encourage abstention. 2. Critical Reasoning Prompt: Following [4], append: “Please solve these
problems with criticism. If the problem is reasonable, think step by step and put your final answer in
a box. If the problem is unreasonable, highlight the issues clearly and provide a succinct explanation.”
to encourage critique of unreasonable inputs while maintaining structured reasoning.

Experimental Setup We set max_new_tokens = 32,768 with default temperature and decoding
method defined by model providers. For simplicity, we use identical zero-shot prompts and do not
apply any model-specific tuning. We evaluate 6 RL-tuned and 3 distilled reasoning models, spanning
families such as DeepSeek [7], Qwen [21]], Phi [2]; the full list is in Appendix [C.1]

Datasets & Benchmarks We build on AbstentionBench [12]], which constructs benchmark subsets
from existing datasets by pairing original well-posed problems with ill-posed or unanswerable
variants. We follow their subsets and also cap the evaluation size at 200 samples per benchmark for
comparability. The resulting benchmarks span mathematical, scientific, and medical reasoning. Each
dataset is split 50/50 into calibration and test sets. The datasets are summarized in Appendix[C.2]

Evaluation Metrics We evaluate each method for false positive control and power/efficiency. All
metrics are averaged across models and datasets within each domain.

False Positive Rate (FPR) Control: Defined as the probability of stopping too early on an well-posed
query (operationalized as the early stopping rate on original benchmarks). Lower values indicate
stronger FPR control. For the prompting baselines, we use the drop in accuracy as a proxy.

Power / Efficiency: The ability to stop early in ill-posed cases while not truncating useful reasoning
otherwise. We measure this using: (a) Early stopping rate on ill-posed benchmarks (Power; higher
values are better): the frequency of early stopping on ill-posed queries. For the prompting baselines,
we use the abstention rate as a proxy. (b) Token savings on ill-posed benchmarks (Efficiency): the
percentage of tokens saved relative to the full trace length.

Generalization to MIP. To test out-of-distribution robustness, we additionally evaluate on the
MiP benchmark (Missing Premise) [3]], which introduces unanswerable variants of math problems,
constructed differently from AbstentionBench. Models are calibrated on AbstentionBench GSM8K
and evaluated on MiP. The dataset sizes for all MiP variants are reported in Appendix [C.3]

3.1 Results

Effective FPR Control. Across math, science, and medical domains, uncertainty-based rules
achieve the target FPR control. This indicates that our proposed early stopping methods effectively
control the false positive rate.

Power in Math (In-Domain). On math tasks, uncertainty-based rules exhibit high power. The
Maxwise Rule achieves the highest early stopping rate (90.99%), closely followed by the Renewal
Process Rule (89.45%). Both far outperform the prompting and length baselines. This suggests

*For ease of exposition, we continue to use the term “calibration phase” to describe parameter estimation.

*While the theoretical result applies when we have a renewal process, e.g., when the sequence of tokens
is a Markov chain, in experiments, we have found that it provides a reasonable approximation even when the
sequence of tokens is generated from a language model.



that some component of math reasoning traces—possibly their logical structure—make uncertainty
signals powerful.

Domain Generalization. When moving to science and medical reasoning, power drops. For example,
on the Science dataset, the Renewal Process Rule achieves only 45.71% early stopping. On the
Medical dataset, the Maxwise Rule reaches 19.67%. Thus, while uncertainty-based rules generalize
well in terms of FPR control, their power is domain—sensitiveE] Despite the decrease in drop, our
proposed stopping rules outperform all baselines.

Math Science Medical
FPR Power FPR Power FPR Power

No Intervention | 0.00%  9.42% | 0.00% 0.56% | 0.00%  0.00%

Stopping Rule

Confidence 1.05% 17.15% | 1.67% 12.22% | 0.70%  0.56%
Criticism 1.94% 17.81% | 1.11% 16.11% | 1.11%  1.00%
Length 391% 20.85% | 1.11% 1.11% | 420%  6.60%
Maxwise 4.08% 90.99% | 6.11% 37.78% | 3.59% 19.67%
Renewal 3.52% 89.45% | 3.89% 41.67% | 4.42% 15.73%

Table 2: Average early stopping rates across domains. “Original (FPR)” = stopping too early on well-posed
queries. “AbstentionBench (Power)” = stopping on unanswerable/ambiguous queries.

Efficiency (Tokens Saved). Efficiency patterns mirror early stopping rates. The Maxwise Rule saves
the most tokens in Math (85.25%), but efficiency declines in Science (35.63%) and Medical (12.82%).
The Renewal Process Rule follows a similar trend. Length truncation saves negligible tokens across
all domains.

Generalization to MiP. When calibrated on GSMS8K and tested on MiP, only uncertainty-driven
rules preserves FPR control. For MiP queries, the Maxwise Rule (81.48%) and Renewal Process
Rule (81.39%) rules dominate again, outperforming the Length rule (45.97%).

Stopping Rule = Math  Science Medical Stopping Rule  Original (FPR) MiP (Power)

Maxwise 8525% 35.63%  12.82% Maxwise 3.87% 81.48%

Renewal 77.88%  32.06% 8.01% Renewal 1.96% 81.39%

Length 5.98% 0.00% 1.17% Length 12.91% 45.97%
(a) Efficiency (Tokens Saved). (b) Generalization to MiP.

Table 3: Left: Average percentage of tokens saved on ill-posed queries. Right: Generalization to MiP. “Original
(FPR)” = early stopping on well-posed GSM8K calibration queries. “MiP (Power)” = early stopping on MiP
unanswerable variants.

4 Discussion and Conclusion

We introduce two efficient mechanisms for truncating reasoning traces based on detecting uncertainty
cues, with guaranteed false-positive control and good performance across diverse datasets spanning
math, science and medical domains. In contrast, the baselines fail to produce meaningful improve-
ments. Our results are thus complementary to previous findings [[12} 5] that unreasonable problems
inherently trigger longer reasoning. Instead, our data show that some models generate shorter but
equally flawed traces when premises are missing, making length an unreliable stopping signal and
requiring more nuanced uncertainty-based strategies.

These are preliminary results, and several directions require further investigation. First, our method
shows reduced power on medical tasks, highlighting the need for domain-specific adaptations. Second,
some hyperparameters, such as the bin size B in our maxwise conformal stopping rule, needs to
be carefully decided. Third, broader benchmarking—beyond simple prompting methods—will be

SThere are a number of possible reasons, including the uncertainty keywords we constructed were extracted
from mathematical reasoning traces, making them especially tailored to mathematical reasoning. While a
detailed investigation of the reasons for this is beyond the scope of our current paper, they are an important topic
for future research.



important for further evaluation. We leave these directions, along with more comprehensive ablation
studies to strengthen generalization, to future work.
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A Construction of Uncertainty Keywords

A.1 Semi-Supervised Keyword Identification

To construct a domain-relevant and interpretable set of uncertainty keywords, we employ a semi-
supervised procedure that combines model outputs, feature extraction, and manual curation. The
process begins by comparing reasoning traces on benchmark datasets (gsm8k, mmlu) across sev-
eral reasoning-oriented LLMs, including Qwen/QwQ-32B, microsoft/Phi-4-reasoning, and
deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.

We create a small training set by pairing original reasoning traces with corresponding unanswerable
ones from AbstentionBench [[12]. Using only the training split to avoid contamination, we train a
Random Forest classifier with k-gram features (k = 2, 3, 4) to discriminate between the two types
of traces. Then, we extract the top-20 most informative k-gram features from each model-dataset
combination. Running the procedure across both datasets and all three models produces multiple
candidate feature lists, which are merged into a single sorted list of unique candidates.

A.2  Augmenting the Keyword Set

The merged candidate features serve as seeds for constructing a more comprehensive uncertainty
keyword set. Following the methodology of AbstentionBench, we manually categorize and expand
these seed phrases, ensuring semantic coverage across multiple ways models express doubt or
hesitation. To enrich the set further, we leverage automated code completion tools to suggest
semantically similar variants, which are curated for relevance and precision [[1].

A.3 Categorization of Uncertainty Expressions

To support interpretability and modular use, we organize the keyword set into semantic categories:

9 <

* Doubt/Speculation: explicit signals of uncertainty or hedging, e.g., “maybe,
sure.”

not entirely

* Questioning the Premise: expressions that highlight potential flaws in the query itself, e.g.,
“maybe the question,” “the problem could be.”



* Missing Information: indicators of insufficient or absent data, e.g., “without specific
details,” “don’t have any information.”

99 <

* Contrasting Possibilities: hedged alternatives framed with doubt, e.g., “but maybe,” “alter-

natively it could be.”

This structured taxonomy makes the keyword set directly usable as a feature for uncertainty scoring
functions. For example, the density of matched keywords in a reasoning prefix can serve as a
nonparametric measure of uncertainty, which is then integrated into our conformal and renewal-based
early stopping frameworks.

B Conformal Early Stopping Methods

B.1 Length-Based Early Stopping

Algorithm 1 Conformal Stopping Threshold for Reasoning Traces (Length-based)

Require: Calibration set {(X;,T;)}?_,, confidence level o € (0, 1)

Ensure: Estimated stopping threshold 7
1: Initialize list of stopping steps S < [ ]

2: for each (X, T;) in calibration set do

3: 4+ | T3] > Compute the length of each reasoning trace
4: end for

5: Sort the lengths in ascending order: £1) < 6(2) <...< E(,,L)

6: Letk=[(n+1)(1—a)]

7: Set the threshold 7 = £y,

8: Return 7

Prediction Phase:
9: For a new input X, generate reasoning trace T' = (1, t2, . . .) token by token.
10: Once the length of the generated trace exceeds 7, stop. Otherwise, continue generating.

Proposition B.1. Assume ({1,...,0n, ¢, 11) are exchangeable, where U; is the reasoning trace length
for query X;. Let 7 = £y, k = [(n+1)(1 — )] . Then P({,, 1 > 7) < o Equivalently, the false
positive rate of stopping too early on a well-posed query is controlled at level .

Proof. Let R be the rank of ¢,, 1 among {¢1, ..., ¥¢,, ¢,+1} when sorted in nondecreasing order (ties
broken deterministically or randomly). By exchangeability, R is marginally uniformon {1,...,n+1}.
By construction, the event {/,, ;1 < {(;,y} is equivalent to {R < k}. Therefore, P({,,y; < 7) =
P(R<k)> niﬂ > 1 — «. Equivalently, P(¢,,41 > 7) < «. Since our procedure stops reasoning
whenever ¢,, 11 > 7, the probability of prematurely stopping on a well-posed query—i.e., the false
positive rate—is at most . This completes the proof. O

B.2 Maxwise Conformal Stopping

Proposition B.2. Let M; = max;.;, <1, ui(L;) for calibration traces, and M,y for the test trace.
Define 7* as in Algorithm 2] Then

P(3j : unt1(Ly) > 77) =P(Mpq1 >77) <

Proof. The values (M, ..., M, M, 1) are exchangeable since each M; is a deterministic functional
of the corresponding trace. By conformal validity, the test statistic M, falls below the (1 — a)(1 +
1/n) quantile 7 with probability at least 1 — a. Hence P(M,,+; > 7*) < «. Equivalently, the
chance that the test trace ever crosses the global threshold across all bins is controlled at level a. [



Algorithm 2 Maxwise Conformal Stopping (Uncertainty-based)

Require: Calibration set {(X;,T;)}7 i1 bin size B, confidence level a € (0,1)
Ensure: Global stopping threshold 7*

Prediction Phase:

Define bin boundaries L; = j - B up to max trace length.

Set global threshold 7* = Quantile( _,(141/n) ({Mi}=q) -

1:

2: for each calibration trace T; do

3: Compute M; = max;.r, <z, i(L;).
4: end for

5:

6: Return 7*.

7: For a new trace 7', after the first bin boundary L1, check uncertainty at bin boundaries.
8: Stop if u(L;) > 7* for some j.

C More on Experiments

C.1 Models Evaluated

The list of models evaluated are included in Table[C.I} Inference is performed using vLLM on four
NVIDIA A100-SXM4 GPUs (40GB VRAM each).

Category Model Size
QwQ-32B 32B
Qwen3-32B 32B
Phi-4-reasoning-plus 14B

RL-Tuned 4 oReason-Nemotron-14B 14B
MiMo-7B-RL-0530 7B
Skywork-OR1-32B 32B
DeepSeek-R1-Distill-Qwen-32B  32B

Distilled Qwen3-8B 8B
Phi-4-reasoning 14B

Table 4: Models evaluated in our experiments, covering both RL-tuned and distilled reasoning

families.

C.2 Datasets Evaluated

Domain Dataset Size  Description
Math GSMS8K 200  Grade-school math word problems [3].
MMLU 133 Math subsets (college math, abstract algebra, high school math) [8].
Science  GPQA 40 Graduate-level, Google-proof QA. Diamond subset [17].
Medical MEDQA 200  Patient records followed by a multiple-choice question [14,10].

CRAFT-MD 137

Dermatology patient records in the MEDQA format [14}[11].

Table 5: AbstentionBench-derived benchmark subsets used in our experiments.

C.3 MIP Dataset Sizes

Table[6]reports the sizes of the different subsets of the MIP benchmark used in our experiments. For
the MiP-GSMSK split, we remove all instances identical to the original GSM8K problems to avoid

data leakage.



MIP Subset Size

MIP-Formula 50
MIP-Math500 52
MIP-GSM8K 492
MIP-SVAMP 300

Table 6: Dataset sizes for the MIP benchmark subsets.
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