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Abstract001

Analogy-making lies at the heart of human cog-002
nition. Adults solve analogies such as horse003
belongs to stable like chicken belongs to . . . ?004
by mapping relations (kept in) and answering005
chicken coop. In contrast, young children of-006
ten use association, e.g., answering egg. This007
paper investigates whether large language mod-008
els (LLMs) solve verbal analogies in A:B::C:?009
form using associations, similar to what chil-010
dren do. We use verbal analogies extracted011
from an online learning environment, where012
14,006 7-12 year-olds from the Netherlands013
solved 872 analogies in Dutch. The seven014
tested LLMs performed at or above the level of015
children. However, when we control for solv-016
ing by association this picture changes. We017
conclude that the LLMs we tested rely heavily018
on association like young children do. How-019
ever, LLMs make different errors than children,020
and association doesn’t fully explain their su-021
perior performance on this children’s verbal022
analogy task.023

1 Introduction024

Analogy-making, using what you know about one025

thing to infer knowledge about a new, somehow026

related instance, lies at the heart of human intelli-027

gence and creativity and forms the core of educa-028

tional practice (Gentner, 1988; Hofstadter, 1997;029

Holyoak, 2012). Given how important analog-030

ical reasoning is to learning and generalization,031

much research has focused on how this seemingly032

unique human ability emerges, develops, and can033

be improved (Goswami, 1991; Sternberg and Nigro,034

1980; Stevenson and Hickendorff, 2018) as well as035

emulated in machines (Gentner and Forbus, 2011;036

Mitchell, 2021). Recently, large language models037

(LLMs), such as GPT-3 (Brown et al., 2020), have038

demonstrated surprisingly good performance in ver-039

bal analogy solving (e.g., table is to legs as tree040

is to . . . ? chair, leaves, branches or roots?) (Lu041

et al., 2022; Webb et al., 2023). The question then042

Figure 1: How well does each LLM perform? We see
that when prompted with A:B::C:? many LLMs out-
perform children. However, LLMs can also solve most
items by association, evidenced by correctly solving
analogies when only prompted with C:?.

arises how LLMs solve these analogies. Is it simi- 043

lar to adult humans using relational mapping? Or 044

perhaps more similar to the associative processes 045

children tend to use? 046

Earlier work shows that language models largely 047

rely on semantic similarity between analogy terms 048

to solve analogies (Rogers et al., 2020; Ushio et al., 049

2021b), which would indicate solving by associa- 050

tion. In this paper we investigate whether LLMs 051

use association or analogy to solve a set of Dutch 052

verbal analogies. First, we examine how LLM per- 053

formance compares to children and find that the 054

best models outperform out 12-year-olds. Second, 055

we examine whether LLM performance is influ- 056

enced by the same item characteristics that affect 057

children’s analogy solving, where results confirmed 058

that this is indeed the case, especially for lower per- 059

forming models. Third, through a series of prompt- 060

ing experiments we show that these LLMs appear 061

to use association to solve a large proportion of 062

analogies. Fourth, we compare error patterns of 063

children with LLMs and find that LLMs are far 064

more similar to each other (and those of similar 065

architecture and size) than to children. 066
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This paper contributes to the study of analogical067

reasoning in LLMs in three ways: (1) it is the first068

to directly compare LLM verbal analogy solving069

performance to that of children; (2) we use exper-070

iments to tap into whether LLMs solve analogies071

using association like young children; and (3) we072

use Dutch rather than English language items and073

examine performance in multilingual LLMs.074

2 Theoretical Background075

2.1 The Analogical Reasoning Process076

Although there are different cognitive models of077

analogical reasoning—varying in the order of pro-078

cessing steps and whether these occur sequentially079

or in parallel—there is a general consensus on080

which processes are involved. Taking the exam-081

ple of “body is to feet as tree is to . . . ?” (or more082

abstractly, A:B::C:?), the basic analogy informa-083

tion processing steps are generally considered to be:084

(1) encoding relevant information about the base085

(A:B) and target (C) domains; (2) searching and086

retrieving relationships and similarities between087

the analogy elements in the base domain, A and B088

(e.g., “stands on” for body and feet); (3) aligning089

the base and target domains ("body and tree are090

things that stand") and mapping the mostly likely091

relationship between A and B, to the target domain,092

C, to come up with D; and (4) evaluating the valid-093

ity of the predicted solution (Gentner and Hoyos,094

2017; Sternberg, 1977; Thibaut and French, 2016).095

2.2 Factors Affecting People’s Verbal Analogy096

Solving097

The basic analogy solving steps are consistently098

found in people from about 12 years and up099

(Thibaut and French, 2016). When adults make100

mistakes there are three main factors that to lead to101

errors: (1) the relation type (causal is more difficult102

than categorical), (2) a large conceptual distance103

between analogy base and target domains, and (3)104

salient distractors amongst the multiple-choice op-105

tions (Jones et al., 2022).106

Type of Relation Jones et al. (2022) grouped107

analogical relations into three types: categori-108

cal, causal and compositional. They found that109

adults perform better on categorical analogies (e.g.,110

tarantula:spider::bee:insect) than causal (e.g., frac-111

ture:cast::incision:scar) or compositional (e.g., fin-112

gernail:finger::knee:leg) analogies. Children’s per-113

formance follows a similar pattern, assuming suf-114

ficient domain knowledge is in place (e.g., Stern-115

Figure 2: Example analogy "lawyer : defending ::
teacher : educating"

berg and Nigro, 1980; Goswami and Brown, 1990; 116

Alexander and Kulikowisch, 1991). 117

Conceptual Distance Between Base and Target 118

Domains The greater the distance between an 119

analogy base and target domain the more diffi- 120

cult the analogy is for adults and children to solve 121

(Jones et al., 2022; Thibaut and French, 2016). For 122

example, bowl:dish::spoon:silverware is easier for 123

people to solve than wrench:tool::sad:mood. 124

Distractor Salience People are sometimes lured 125

to choose a distracting incorrect response in mul- 126

tiple choice verbal analogies, and are most easily 127

distracted by answer options that have a strong 128

semantic association with the C term (Kucwaj 129

et al., 2022). Jones et al. (2022) defines distrac- 130

tor salience as the relation between C:D relative 131

to each of the C:D’, where D’ represents each dis- 132

tractor option. Distractor salience is high, when 133

the semantic similarity between C and one of the 134

incorrect answers D’ is greater than the seman- 135

tic similarity between C and the correct answer D. 136

High distractor salience leads to lower performance 137

in adults (Ichien et al., 2020; Jones et al., 2022) and 138

this is even more apparent in children (Richland 139

et al., 2006; Thibaut and French, 2016). 140

2.3 Analogical Reasoning Development 141

Children’s verbal analogical reasoning improves 142

with age, where a gradual shift occurs around 4- 143

8 years of age from reasoning based on surface 144

similarities and associations to reasoning based on 145

(abstract) relations (Gentner, 1988; Stevenson and 146

Hickendorff, 2018; Gentile et al., 1977). For ex- 147

ample, if we ask a four-year-old “horse belongs to 148

stable like chicken belongs to . . . ?” they may use 149

association and reply “egg”, relying on the strong 150

connection between the words chicken and egg 151

to solve the problem. In contrast, older children 152

and adults will likely give the intended relational 153
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response “chicken coop”, using the underlying re-154

lation structure to solve the analogy.155

Two main factors that seem to affect the transi-156

tion from associative to relational reasoning are in-157

creased domain knowledge (Goswami and Brown,158

1990; Gentner, 1988; Alexander and Kulikowisch,159

1991) and improved executive functions (work-160

ing memory and inhibition control; Doumas et al.,161

2018; Thibaut and French, 2016).162

Children tend to fail in analogy solving if they163

are unfamiliar with the elements or relations in the164

analogy (Gentner and Hoyos, 2017; Goswami and165

Brown, 1990; Goddu et al., 2020). If children are166

shown to possess the required domain knowledge167

and are provided clear instructions on how to solve168

the task then they can successfully solve verbal169

analogies (in the form of pictures) as early as 3-170

years-old (Goswami, 1991; Goddu et al., 2020).171

However, even when children can solve these172

analogies, evidence from scene analogy problems173

(Richland et al., 2006) and eye-tracking studies174

(Thibaut and French, 2016) shows that children up175

to 8 years-old tend to focus first on the C term when176

solving analogies, sometimes ignoring A and B al-177

together (Thibaut and French, 2016). This appears178

to be related to limited working memory capac-179

ity (Richland et al., 2006; Stevenson et al., 2013;180

Stevenson, 2017) and limits in inhibition- and exec-181

utive control (Thibaut and French, 2016; Doumas182

et al., 2018). Performance improves when interven-183

tions are used that support children’s processing184

capacities (Stevenson and Hickendorff, 2018) and185

when children are forced to focus first on the A:B186

pair (Glady et al., 2017).187

2.4 Verbal Analogy Solving in LLMs188

The extent to which LLMs can solve analogies is a189

subject of debate. Most of this work has focused on190

comparing models in terms of overall accuracy on191

benchmarks such as the Bigger Analogy Test Set192

(BATS; Mikolov et al., 2013b) and verbal analo-193

gies from the Scholastic Assessment Test (SAT;194

Turney et al., 2003) and investigating the types195

of relations they can solve (e.g., syntactic versus196

semantic). More importantly, when LLMs demon-197

strate analogy solving abilities, it is unclear how198

they achieved these solutions (e.g., Webb et al.,199

2023), whether this is through relational reasoning200

or another process, such as the associative strategy201

often employed by young children.202

Word embeddings Over a decade ago, Mikolov 203

et al. (2013b) published their seminal paper 204

showing that pre-trained word embeddings (e.g., 205

Word2Vec Mikolov et al., 2013a) could be used 206

to solve verbal analogies in the form of A:B::C:? 207

using vector arithmetic, the most famous ex- 208

ample being: embed(king) − embed(man) + 209

embed(woman) ≈ embed(queen), where 210

embed represents the word embedding obtained 211

from the pre-trained neural network. This mile- 212

stone was tempered by Gladkova et al. (2016), 213

who made clear that this method was limited in 214

the breadth of relations that it could process. For 215

example, the capitol-country relation was solved 216

quite successfully, but others such as animal-sound 217

and part-whole, were solved less successfully. 218

Transformer language models With the rise of 219

the Transformer architecture, featuring language 220

models such as BERT (Devlin et al., 2018), ver- 221

bal analogy solving remained a challenge. Ear- 222

lier work transferred the verbal analogy datasets, 223

such as the BATS to the sentence level, and 224

showed that BERT-based models and GPT-2 (Rad- 225

ford et al., 2019) performed at a similar level to 226

GloVe (Pennington et al., 2014), a word embed- 227

ding model, on analogies containing relations such 228

as capitol-country and male–female pairs (Zhu and 229

de Melo, 2020). More recently, Czinczoll et al. 230

(2022) developed a dataset containing scientific 231

and metaphor analogies (SCAN). Here there was 232

a clear advantage of transformer models over anal- 233

ogy solving with word embeddings, where GPT-2, 234

BERT and M-BERT outperformed GloVe on the 235

analogy items containing metaphors such as ca- 236

reer:mountain::success:ascent. Also, Petersen and 237

van der Plas (2023) showed that by changing the 238

training objective of LLMs to maximize relational 239

similarity, LLM performance improves. Yet, the 240

general conclusion remained that verbal analogy 241

solving is more challenging for LLMs than people. 242

People versus LLMs in analogy solving Recent 243

research has shown that LLMs can solve verbal 244

analogies with similar accuracy to people. For ex- 245

ample, Ushio et al. (2021b) showed that LLMs 246

such as GPT-2 and RoBERTa generally perform 247

well on analogies designed for 4th to 10th graders 248

(9-16 year-olds). Also, Webb et al. (2023) con- 249

cluded that GPT-3 and GPT-4 generally perform 250

around the same level as adults on two verbal anal- 251

ogy datasets. 252
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Item factors affecting LLM verbal analogy solv-253

ing There has been some research on the effect254

of relationship type on LLM’s verbal analogy solv-255

ing performance. Ushio et al. (2021a) showed that256

fine-tuned RoBERTa models performed slightly257

better on categorical relations (hypernymns) than258

compositional ones (meronymns). And Webb et al.259

(2023) found that categorical relations in the SAT260

verbal analogies were easier for GPT-3 than com-261

positional (function) relations and also that categor-262

ical relations were easier than both compositional263

and causal relations on the items from Jones et al.264

(2022). Similarly, Linford et al. (2022) found that265

categorical relations were easier for BERT mod-266

els than causal relations, although performance on267

both was far lower than for human adults.268

Similarly to people, LLMs have more difficulty269

as the conceptual distance between the domains270

in the analogy increases. For example, the LLMs271

in Czinczoll et al. (2022) performed better on the272

BATS analogies than on their SCAN dataset com-273

prising scientific and metaphor based analogies,274

where the semantic distance between the base and275

target domains was greater. In addition the scien-276

tific analogies were solved better by LLMs than277

those based on metaphors, which was explained by278

there being a clearer correspondence between base279

and target domains in scientific analogies. Also,280

Webb et al. (2023), used the items from Jones et al.281

(2022) to investigate whether, like in people, a near282

conceptual distance between the base and target283

domains made analogies easier to solve for GPT-3284

than far analogies; this was indeed the case. Inter-285

estingly, humans outperformed GPT-3 on the far286

analogies.287

There is less research on the effect of distractor288

salience on LLM analogy solving. In Petersen and289

van der Plas (2023) their best performing trained290

model appeared unaffected by low versus high dis-291

tractor salience. In Musker et al. (2024), analogy292

tasks presented in an in-context-learning setting293

with interleaved distractors affected LLMs more294

than human adults. We expect that salient distrac-295

tors, i.e. multiple-choice options that are seman-296

tically more similar to the analogy terms than the297

correct response, will have a greater chance of be-298

ing "selected" by the LLMs.299

3 Research Questions300

In this study, with pre-registered hypotheses and301

methods, we examine how 7 multilingual LLMs302

solve 872 verbal analogies, also solved by 14,006 303

in an online learning environment. 304

RQ1: How well do LLMs perform compared 305

to children ages 7-12 in verbal analogy solving? 306

We expected recent LLMs to solve the analogies 307

with similar accuracy to older children (12-year- 308

olds) as this is similar to adult performance (hy- 309

pothesis 1; Webb et al., 2023; Ushio et al., 2021a). 310

RQ2: Which item characteristics influence chil- 311

dren’s and LLM performance on verbal analo- 312

gies? We expected the pattern of results found in 313

adults also to be found in children and in LLMs. 314

First, we expect performance on categorical rela- 315

tions to be better than compositional and causal 316

relations for both children (Sternberg and Nigro, 317

1980, hypothesis 2a1) and LLMs (Webb et al., 318

2023, hypothesis 2a2). Second, we expect analo- 319

gies with a near conceptual distance between A:B 320

to be easier than far analogies for children (Thibaut 321

and French (2016); Hypothesis 2b1) and LLMs 322

(Czinczoll et al., 2022; Webb et al., 2023, hypothe- 323

sis 2b2). Third, we expect higher distractor salience 324

to lead to more errors in children (Thibaut and 325

French, 2016, hypothesis 2c1) and LLMs (Ushio 326

et al., 2021b, hypothesis 2c2). 327

RQ3: Do LLMs choose associative or analogical 328

solutions? We investigate this through a series 329

of experiments comparing LLM performance on 330

alternative formulations of the verbal analogies, 331

where we control for associative responses. 332

4 Methods 333

LLM data and code and a selection of the chil- 334

dren’s data is publicly available. The full dataset 335

is available upon request from Prowise Learn, the 336

company that provided the children’s data on the 337

verbal analogies dataset. 338

4.1 Prowise Learn’s Verbal Analogies Game 339

Prowise Learn is an online adaptive learning envi- 340

ronment for elementary school children. 341

Verbal analogies is one of the games on the plat- 342

form (see Figure ??). The analogies are presented 343

as text in "A:B::C:?" format, and the children must 344

choose among five answer options, all five of which 345

are semantically associated with C. For more infor- 346

mation see Appendix 1. 347

Data Collection with Children For this study, 348

we extracted information on 14,006 7-12 year-old’s 349
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(M = 10.73, SD = 1.15 years) performance on 872350

verbal analogies from the Prowise Learn database.351

We applied three selection criteria when extracting352

the children’s data (on June 19, 2021): (1) children353

solved at least 20 items to ensure stable ability354

estimates, (2) children had last played the game on355

or after September 1st 2020, the start of the school356

year and 4 months after the launch of the game,357

when item difficulty estimates were verified to have358

small standard errors and (3) children were ages 7-359

12 to avoid confounds in performance (i.e., younger360

children most likely did not have sufficient reading361

abilities and older children had most likely repeated362

a grade). This data collection was approved by the363

university’s Ethics Review Board.364

Item Selection The game contained three types365

of verbal reasoning problems; verbal analogies was366

one of them. From the initial set of 872 verbal367

analogies, we checked all items that were outliers368

(>1.5 SD) on the item difficulty scale and removed369

17 items that were judged by two independent raters370

to contain errors (e.g., multiple correct solutions,371

requiring domain knowledge likely unfamiliar to372

children). This resulted in 855 items for data anal-373

ysis.374

4.2 Item characteristics375

Relation Type Relationship type refers to how376

the A and B term are related. This relationship is377

applied to the C-term to find D. Table ?? provides378

a selected overview of relation types in the analogy379

task1. For analyses related to RQ2 we selected 302380

items that fall into the following three categories381

defined by Jones et al. (2022):382

• Categorical: one of the A:B terms defines the383

category and the other word is an example of384

this category. For example, “yellow” is part385

of the category “color”.386

• Causal: one of the A:B terms is the cause and387

the other is the effect. For example, “stum-388

bling” will result in “falling”.389

• Compositional: one of the A:B terms is part390

of the other term. For example, “leaf” is part391

of a “tree”.392

Conceptual Distance Between Base and Target393

Domains We used three vector-based language394

1These labels were chosen and annotated by the Prowise
Learn item developers.

models2 to compute the semantic distance (1 - co- 395

sine similarity) between the A:B and the C:D pair. 396

For analyses with Conceptual Distance as a cate- 397

gorical predictor, we categorized the distances as 398

near (distance ranging from 0-.35), middle (.36- 399

.64) or far distance (.65-1.0). We used the most 400

frequent category (near, middle or far) from the 401

three models as the selected category for each item 402

for analysis. 403

Distractor Salience Distractor salience was mea- 404

sured by the cosine similarity between C and D 405

minus the cosine similarity between C and each 406

incorrect answer D’. Distractor salience is catego- 407

rized as high when the similarity between C and 408

D’ is higher than the similarity between C and the 409

correct answer (Jones et al., 2022). We used the 410

same three vector-based models from Section 4.2 to 411

compute the cosine distances between embeddings 412

for C and each of the five D’s. Then we determined 413

distractor salience (high or low) per item for each 414

vector model and used the most frequent category 415

(high or low) for analysis. 416

4.3 Analogy completion with LLMs 417

Pretrained Language Models We studied how 418

7transformer-based multilingual LLMs solved the 419

same set of verbal analogies as the children. 420

Two of the LLMs are BERT-based masked lan- 421

guage models. RobBERT (Delobelle et al., 2020) 422

was pretrained on Dutch data only, and RoBERTa’s 423

multilingual variant XLM-V (Liang et al., 2023) 424

was trained on 116 languages.3 Identical to BERT 425

(Devlin et al., 2018), both models contain 12 layers 426

with 12 attention heads each. 427

The other LLMs are autoregressive transformer- 428

decoder based language models. The open-source 429

models we use are Aya (Üstün et al., 2024) and 430

Command-R, both accessed through the Cohere 431

API. The proprietary models we use are An- 432

thropic’s Claude Sonnet-3.5, Google’s Gemini- 433

2.0-flash, and Open AI’s GPT-4o, each accessed 434

through the API provided by the respective com- 435

pany. 436

2Word2Vec trained by CLIPS on different Dutch corpora
(Tulkens et al., 2016), Word2Vec trained by the Nordic Lan-
guage Processing Laboratory on the CoNLL17 corpus (Kutu-
zov et al., 2017), and FastText trained on Common Crawl and
Wikipedia (Grave et al., 2018).

3We found XLM-V to be more suitable than mBERT or
XLM-R as it suffers less from overtokenization in Dutch and
thus covers more of our test words.
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Analogy completion We wanted to mimic the437

way the children solved the analogies in the best438

way possible. This was especially important be-439

cause we investigate whether an associative re-440

sponse is more likely in the presence of a correct441

response. Therefore, we prompted the generative442

LLMs with the full analogy and asked them to443

choose from the five response options. For exam-444

ple, "tripping is to falling as picking up is to ?445

Choose clean, junk, mess, room, or thrift store."446

The response options were presented in random447

order.448

However, this method was not possible to im-449

plement for the BERT-based models. Therefore,450

for the RobBERT and XLM-V models we used the451

masked language model approach and fed the mod-452

els ‘A is to B, as C is to D’, replacing D with each453

possible multiple-choice solution. The D option454

with the highest probability for the completion was455

considered the selected response.456

5 Results RQ1: How well do LLMs457

perform compared to children?458

Figure 1 shows performance per model on the459

872 items. We see that all tested models,460

both BERT-based and autoregressive transformer-461

decoder based language models, perform at or462

above the level of children on the multiple choice463

question verbal analogy task. Children already at464

the age of 7 perform higher than chance level (gray465

dashed line), with Aya, Command-R, RobBER-466

Tand XLM-Varound the same level as 12 years old,467

whereas Claude, Geminiand GPT-4ooutperform all468

children and other models.469

We analyzed how many of the items LLMs470

could solve by word association and report their471

performance on the C:? task (Experiment 1, see472

also 7). Results show that for the autoregressive473

transformer-decoder based models, word associa-474

tion can explain most of their success, but also in475

other models a large portion of items can be solved476

soley by association (Figure 1, blue portion of the477

bars). See 7 for further details and conclusions.478

6 Results RQ2: Which item factors479

influence analogy solving?480

For RQ2, we tested the effects of solver (children,481

LLMs) and/or item characteristics on accuracy us-482

ing logistic regression.483

Relation Type As expected (H1a), in children,484

we found that causal relations are more difficult485

Figure 3: Near analogies are often easier to solve than
far analogies for both children and LLMs.

Figure 4: Analogies with low distractor salience are
easier to solve than those with high distractor salience
for both children and LLMs.

than compositional and categorical relations. How- 486

ever, counter to expectations (H1b), for LLMs re- 487

lation type rarely affected performance (see Ap- 488

pendix 2). 489

Near vs Far Distance between Base and Target 490

Domains Items with a near semantic distance 491

between the base and target domains were (signif- 492

icantly) easier for both children (z = 3.20, p < 493

.001) and most LLMs (all p < .001, except 494

Geminiz = 1.08, p = .28 and Claudez = 495

1.64, p = .10) than those with a far semantic dis- 496

tance, confirming hypothesis H2b (see Figure 3). 497

Distractor Salience As can be seen in Figure 4, 498

items with lower distractor salience were signifi- 499

cantly easier to solve than those with high distrac- 500

tor salience for both children (z = 5.49, p < .001) 501

and all LLMs (zaya = 6.28, zcommandR = 5.49, 502

zgemini =, zgpt4o = 3.61, zrobbert = 3.98 and 503

zxlmv = 3.47, all p < .001 except zclaude = 504

1.95, p = .05), confirming H2c. 505
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Figure 5: Near analogies are still easier than far analo-
gies, when we control for associative responses.

Figure 6: Analogies with low distractor salience are
still easier for LLMs, when we control for associative
responses.

7 Results RQ3: Do LLMs choose506

associative or analogical solutions?507

We investigated whether LLMs choose analogical508

solutions to verbal analogies, after explicitly testing509

and controlling for associative responses.510

7.1 Experiment 1: C:?511

In experiment 1, we prompt the LLMs with only512

the C-term, e.g., "C is to [MASK]". If these are513

solved by association as we expect, then LLMs514

should still be able to solve a substantial portion515

of analogies purely by association with C (Ushio516

et al., 2021b; Poliak et al., 2018); hypothesis 3a).517

This was indeed the case as can be seen in Table518

1, where the generative LLMs solve up to 62% of519

items without being given A:B.520

7.2 Experiment 2: A:B::C:? for selected items521

We removed items that each model solved with C:?522

and reevaluated their performance along the same523

item factors from RQ2. We see that near analogies524

are still easier than far analogies, although the gap525

is small for the best performing models (see 5).526

Figure 7: Near analogies are easier to solve than far
analogies.

Also, low distractor salience analogies are easier 527

than analogies with high distractor salience, but 528

also here the gap is small or non-existent for the 529

best performing models 6. 530

Table 1 shows an overview of model versus 531

children’s performance where all items solved cor- 532

rectly with the C:? prompt had been filtered out. 533

We see that BERT-based models solve nearly 30% 534

of analogies correctly when prompted with only 535

"C:?", so without any information about the rela- 536

tion A:B to be mapped. The autoregressive encoder- 537

decoder models solved even greater portions cor- 538

rectly (40−60%) with the C-only prompt. Notably, 539

for the youngest children in our dataset, 7-8-year 540

olds, performance dropped to below chance level 541

on the filtered items sets. 542

7.3 RQ4: Do LLMs choose the same 543

distractors as children do? 544

In this exploratory analysis we compared LLM er- 545

rors to those of children. For each of the tested 546

models, we looked at the subset of items it an- 547

swered incorrectly and compared the distractor it 548

chose to the one chosen by most children. We com- 549

puted Cohen’s Kappa coefficient (Cohen, 1960) 550

to test the agreement of distractor choice between 551

each pair of models and between each model and 552

the children (see Figure 7). As can be expected, the 553

Bert-based models, RobBERTand XLM-V, show 554

similar error patterns, while having low agreement 555

with the autoregressive transformer-decoder mod- 556

els. Notably, neither type of model architecture 557

shows similar error patterns to those of children. 558

These results suggest that the high performance of 559

LLMs in this task is not driven by the same process 560

as children. 561
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Exp 0 A:B::C:? and Exp 1 C:? Exp 2 filtered A:B::C:?
LLMs LLMs Children

7-yrs 8-yrs 9-yrs 10-yrs 11-yrs 12-yrs
model N items Acc (SD) Acc (SD) N items Acc (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

Aya 855 .67 (.47) .49 (.50) 435 .54 (.50) .21 (.37) .25 (.38) .30 (.38) .35 (.38) .42 (.39) .49 (.39)
Command-R 855 .57 (.50) .42 (.49) 494 .50 (.50) .23 (.39) .28 (.39) .34 (.39) .39 (.39) .47 (.38) .53 (.39)
Claude 855 .86 (.34) .60 (.49) 343 .80 (.40) .15 (.32) .19 (.33) .25 (.34) .30 (.35) .37 (.36) .44 (.36)
Gemini 855 .84 (.36) .62 (.48) 321 .73 (.45) .10 (.27) .14 (.28) .19 (.29) .25 (.31) .33 (.33) .40 (.35)
GPT-4o 855 .85 (.36) .58 (.49) 359 .76 (.43) .15 (.32) .19 (.33) .24 (.34) .30 (.35) .37 (.36) .44 (.37)
RobBERT 680 .56 (.50) .29 (.45) 484 .51 (.50) .25 (.40) .30 (.40) .35 (.40) .40 (.39) .48 (.39) .54 (.38)
XLM-V 622 .59 (.49) .28 (.45) 447 .51 (.50) .24 (.39) .28 (.39) .34 (.39) .41 (.39) .48 (.38) .55 (.38)

Table 1: LLM Performance on Experiment 0 (original set of A:B::C:? items), Experiments 1 (C:?) and 2 (selection
of A:B::C:?). Children’s mean proportion correct (by age group) on the same selection of items per LLM from
Experiment 2.

8 Discussion562

The main goal of this paper was to investigate563

whether LLMs tend to use association to solve564

verbal analogies, similar to what young children565

do. Direct comparison of performance between566

the children and LLMs showed that some LLMs567

perform around the 12-year-old level, but the best568

performing LLMs surpass children’s performance.569

All LLMs seemed to rely heavily on association to570

solve verbal analogies. However, LLMs make dif-571

ferent errors than children, and association doesn’t572

fully explain their superior performance on this573

children’s verbal analogy task.574

To understand whether LLMs solve verbal analo-575

gies using similar mechanisms as children do, we576

tested whether different factors of the verbal anal-577

ogy items (distractor salience, semantic distance578

between base and target domains and relation type)579

affect the performance of LLMs on the task similar580

to children. Both distractor salience and semantic581

distance affect LLMs’ performance the same way582

as in children, with smaller models affected more583

by these factors. Our analysis shows that these fac-584

tors are also present when word association does585

not explain the entire reasoning process. Relation586

type, however, does not affect LLMs performance587

on verbal analogy the same way as children.588

An important finding here was that LLMs were589

able to solve 28% − 62% of analogies when590

prompted with only "C:?", so without any infor-591

mation about the relation A:B to be mapped. This592

experimental manipulation is similar to Ushio et al.593

(2021b) who evaluated to what degree the en-594

tire context of the analogy was needed for LLMs595

to solve analogies, by masking the head or tail596

of the candidate analogy pair. They found that597

RoBERTa and BERT only dropped 10 to 15 per-598

centage points in accuracy, still achieving accura- 599

cies of 30% or higher on the SAT analogies. In 600

our case, LLMs also dropped around 10 percentage 601

points after filtering out items solved correctly with 602

C:? only. Interestingly, 7-8 year-olds performance 603

often dropped to below chance level on the filtered 604

item sets, which is what was expected as associa- 605

tion is the most utilized strategy in this age-group 606

(see Table 1; Thibaut and French (2016); Stevenson 607

and Hickendorff (2018)). 608

Our error analysis provides further insight into 609

the similarities in verbal analogical reasoning be- 610

tween children and LLMs. While LLMs exhibit 611

comparable error patterns—particularly among 612

models with the same architecture—their mistakes 613

only loosely align with those made by children. 614

This suggests that there are differences in the way 615

LLMs and children solve verbal analogies. Fu- 616

ture analyses should compare their error patterns 617

to those of adults to determine whether LLMs re- 618

semble more advanced human reasoning or rely on 619

fundamentally different processes. 620

9 Conclusion 621

In sum, LLMs perform at or above the level of chil- 622

dren in our verbal analogical reasoning task. While 623

word association plays a significant role in their 624

success, they are able to solve analogies also when 625

this strategy is absent. While LLMs share some 626

similarity to children in the factors that affect per- 627

formance, the errors they make suggest a different 628

mechanism. Future work can contrast adult-like 629

"relational mapping" with other possible mecha- 630

nisms children have been postulated to use such as 631

"relational priming" (Leech et al., 2008) or "partial 632

analogical reasoning" (Stevenson and Hickendorff, 633

2018) to further examine how LLMs solve verbal 634

analogies. 635
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