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ABSTRACT

Graph neural networks (GNNs), and especially message-passing neural networks,
excel in a variety of domains such as physics, drug discovery, and molecular mod-
eling. In low resource settings, it is crucial for stochastic gradient descent to
promptly optimize the objective meaningfully rather than spending initial itera-
tions on adjusting weights towards suitable value ranges for efficiently reducing
the loss. In accordance with signal propagation theory, we propose a variance-
preserving aggregation function (VPA) for message aggregation and graph-level
readout to achieve such favorable forward and backward dynamics. Moreover,
VPA maintains the expressivity of GNNs with respect to their ability to dis-
criminate non-isomorphic graphs. Experiments demonstrate that VPA leads to
increased predictive performance for popular GNN architectures as well as im-
proved learning dynamics. Our results could pave the way towards even more
efficient GNNs by enabling normalizer-free or self-normalizing architectures.

1 INTRODUCTION AND RELATED WORK

For many real-world prediction tasks, graphs naturally represent the input data. Graph neural net-
works (GNNs) (Scarselli et al., 2009; Kipf & Welling, 2017; Defferrard et al., 2016; Veličković
et al., 2018) are therefore of large interest as they are able to naturally process such data. They
have been used for molecule predictions (Duvenaud et al., 2015; Kearnes et al., 2016; Gilmer et al.,
2017; Mayr et al., 2018; Satorras et al., 2021), material science (Reiser et al., 2022; Merchant et al.,
2023), modeling physical interactions or improving PDE solvers for physics predictions (Sanchez-
Gonzalez et al., 2020; Brandstetter et al., 2022; Mayr et al., 2023), weather prediction (Keisler,
2022; Lam et al., 2022), predictions about social networks (Hamilton et al., 2017; Fan et al., 2019;
Monti et al., 2019), gene regulatory networks in systems biology (Eetemadi & Tagkopoulos, 2018;
Wang et al., 2020), combinatorial optimization (Cappart et al., 2023; Sanokowski et al., 2023), and
knowledge graphs (Schlichtkrull et al., 2018; Li et al., 2022) for reasoning.

Despite the huge successes of GNNs, there are some limitations. Morris et al. (2019) and Xu et al.
(2019) analyzed the expressive power of GNNs and found that they are not more powerful than the
Weisfeiler-Leman graph isomorphism heuristic (1-WL test) (Leman & Weisfeiler, 1968) at distin-
guishing non-isomorphic graphs. Moreover, Xu et al. (2019) constructed a GNN (GIN architecture),
which should attain the same expressive power as the 1-WL test. An important conclusion in the de-
sign of the GIN architecture was that the choice of the message aggregation and graph-level readout
function is crucial for enabling maximum expressivity. More specifically, SUM aggregation allows
to attain 1-WL expressive power, while MEAN or MAX aggregation effectively limits expressivity.

While the expressive power of GNNs has been investigated profoundly (Xu et al., 2019), signal
propagation (Neal, 1995; Schoenholz et al., 2017; Klambauer et al., 2017) through GNNs is cur-
rently under-explored. There are plenty of works on conventional fully-connected neural networks
(FCNNs), which study signal propagation behavior (e.g., Schoenholz et al., 2017; Klambauer et al.,
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2017) throughout the networks. Typically, for FCNNs or convolutional neural networks (CNNs),
there are either weight initialization schemes (e.g., Glorot & Bengio, 2010; He et al., 2015) or nor-
malization layers (e.g., Ioffe & Szegedy, 2015; Ba et al., 2016), which prevent that the weighted
summed inputs lead to exploding activations throughout the depth of the network.

For GNNs and especially the GIN architecture with SUM message aggregation, exploding acti-
vations are a main obstacle for efficient training as well and signal propagation behavior appears
problematic. Conventional weight initialization schemes at the aggregation step cannot be applied
in a straightforward manner, since the number of neighbors in an aggregation step and the number of
nodes in a graph are variable. Moreover, the fact that zero variance in messages might be a common
case for graph classification also limits the applicability of normalization layers.

Our aim in this work is to develop a general aggregation approach 1, which can be applied to dif-
ferent GNN architectures, preserves maximum expressivity, and at the same time avoids exploding
activations. With simplistic assumptions, we will motivate the use of a variance-preserving aggrega-
tion function for GNNs (see Fig. 1), which improves signal propagation and consequently learning
dynamics.
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Figure 1: Overview of main message aggregation functions and their properties.

2 GNNS WITH VARIANCE PRESERVATION

Notational preliminaries. We assume a graph G = (V,E) with nodes vi ∈ V, edges eij ∈ E and
D-dimensional node features hi ∈ RD. We use N(i) to indicate the set of neighboring nodes to
node vi within V. To be consistent with Fig. 1, we define N always to be the number of neighboring
nodes, i.e. N := |N(i)|, where we assume that i is clear from the context. For simplicity, we do not
assume any edge features.

Graph neural networks (GNNs) exchange information, i.e., messages, through the application of
a local, permutation-invariant function across all neighborhoods. The core layers iteratively update
node embeddings hi at node vi via three substeps 1.-3.:

1. mij = ϕ
(
hi,hj

)
or mij = ϕ

(
hj

)
2. m⊕

i =
⊕

j∈N(i)

mij 3. h′
i = ψ

(
hi, θ

(
m⊕

i

))

to a new embedding h′
i, where the aggregation

⊕
j∈N(i) at node vi is across all neighboring nodes,

i.e., those nodes vj , that are connected to node vi via an edge eij . These nodes are renumbered
according to Fig. 1 from 1 to N . Depending on the type of GNN, ϕ, ψ, and θ can be realized as
learnable functions, usually Multilayer Perceptrons (MLPs). E.g., for Graph Convolutional Net-
works (GCNs) (Kipf & Welling, 2017) only ψ is learnable, for general Message Passing Neural
Networks (Gilmer et al., 2017) ϕ and ψ are learnable, and for Graph Isomorphism Networks (GINs)
(Xu et al., 2019) all three are learnable.

Signal propagation theory allows to analyze the distribution of quantities through randomly ini-
tialized neural networks. From certain assumptions (for details see App. A.2) it follows that
mij ∼ pN (0, I). If mij are further assumed to be independent of each other2, one obtains

1We are not interested in proposing a new pooling mechanism, but in suggesting a new aggregation function
that can optionally be applied to graph-level readout. For further details on the differences between aggregation
and pooling, see App. A.1.

2Note that this assumption is too strong, since for a fixed i, all mij depend on each other because they are
all determined by the input hi.
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mSUM

i ∼ pN (0, NI) for SUM aggregation (i.e.,
⊕

≡
∑N

i=1), and mMEAN

i ∼ pN (0, 1
N I) for MEAN

aggregation (i.e.,
⊕

≡ 1
N

∑N
i=1) at initialization.

A variance preserving aggregation (VPA) function. Our key idea is to introduce a new aggrega-
tion function which preserves variance, i.e., mi ∼ pN (0, I). This is possible with the aggregation
function

⊕
≡ 1√

N

∑N
i=1. We denote this aggregation function as variance-preserving aggregation

(VPA) and show the preservation property by applying Lemma 1 element-wise. For a complete proof
see App. A.3.
Lemma 1. Let z1, . . . , zN be independent copies of a centered random variable z with finite vari-
ance. Then the random variable y = 1√

N

∑N
n=1 zn has the same mean and variance as z.

In contrast to SUM or MEAN aggregation functions, VPA theoretically preserves the variance across
layers. According to signal propagation theory, such behavior is advantageous for learning.

Expressive power of GNN-VPA. According to Xu et al. (2019) a prerequisite for maximum ex-
pressive power w.r.t. discriminating non-isomorphic graphs is an injective aggregation function,
such as SUM aggregation, while MEAN or MAX aggregation results in limited expressivity. A mes-
sage passing algorithm with VPA has the same expressive power as SUM aggregation, which follows
analogously to Xu et al. (2019) from Lemma 2 (see App. A.4 for a proof).
Lemma 2. Assume the multiset X is countable and the number of unique elements in X is bounded
by a number N . There exists a function f : X → RN such that h(X) = 1√

|X|

∑
x∈X f(x) is

unique for each multiset X ⊂ X of bounded size, where |X| denotes the cardinality of multiset X
(sum of multiplicities of all unique elements in the multiset).

Extension of variance preservation to attention. Our variance-preserving aggregation strategy
can be extended to attention mechanisms. We assume, that random variables z1, . . . , zN are ag-
gregated by an attention mechanism. The respective computed attention weights are assumed to be
given by c1, . . . , cN , where ci ∈ R+

0 and
∑N

i=1 ci = 1 holds. Further, we consider ci to be constants
3.

In order to find a useful extension of VPA to attention, we first consider two extreme cases on the
distribution of attention weights:

• Case 1: All attention weights are equal. Then in order to fulfill
∑N

i=1 ci = 1, all ci = 1
N .

• Case 2: Attention focuses on exactly one value, which might be w.l.o.g. j. Then cj = 1
and ci = 0 ∀ i ̸= j.

We note that case 1 is the same as MEAN aggregation and case 2 corresponds to MAX aggregation if
max(z1, . . . , zN ) = zj and zi < zj ∀ i ̸= j. In both cases, GNNs have more limited expressivity
than with VPA or SUM aggregation.

To apply the concept of variance preservation to attention, we define a constant C :=
√∑N

i=1 c
2
i

and use the following attention mechanism: y = 1
C

∑N
i=1 ci zi. As shown in Lemma 3 this results

in a variance-preserving attention mechanism. For a complete proof see App. A.5.
Lemma 3. Let z1, . . . , zN be independent copies of a centered random variable z with finite vari-
ance and let c1, . . . , cN be constants, where ci ∈ R+

0 and
∑N

i=1 ci = 1. Then the random variable

y = 1
C

∑N
n=1 cnzn with C =

√∑N
i=1 c

2
i has the same mean and variance as z.

3 EXPERIMENTS

We tested the effectiveness of our idea on a range of established GNN architectures4: Graph Isomor-
phism Networks (GIN) (Xu et al., 2019), Graph Convolutional Network (GCN) (Kipf & Welling,

3Note, that this might be an over-simplistic assumption, especially since/when keys and values are not
independent.

4Code is available at https://github.com/ml-jku/GNN-VPA.
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2017), Graph Attention Networks (GAT) (Veličković et al., 2018) and Simple Graph Convolution
Networks (SGC) (Wu et al., 2019). To evaluate prediction performance, we combined GIN and
GCN architectures with each of the aggregation methods in Fig. 1 both for message aggregation
and graph-level readout. Note that we used the GCN formulation as reported in Morris et al. (2019)
to circumvent the inherent normalization in the GCN architecture by Kipf & Welling (2017).

To incorporate the idea of variance preservation into the SGC architecture, we changed the update
of h from

h′
i =

1

di + 1
hi +

N∑
j=1

aij√
(di + 1)(dj + 1)

hj

to

h′
i =

1√
di + 1

hi +

N∑
j=1

aij
4
√
(di + 1)(dj + 1)

hj

(where aij are entries of the adjacency matrix, di and dj are node degrees, and, hi and hj denote the
hidden neural representation at some time step during message passing). For a variance-preserving
version of GAT, we adapted attention according to Lemma 3 and note that in the practical imple-
mentation, we do not backpropagate errors through these constants during training.

Benchmarking datasets and settings. We tested our methods on the same graph classification
benchmarks from the TUDataset collection as Xu et al. (2019), consisting of five social network
datasets (IMDB-BINARY, IMDB-MULTI, COLLAB, REDDIT-BINARY, and REDDIT-MULTI-
5K) and four bioinformatics datasets (MUTAG, PROTEINS, PTC and NCI1). Since the social
network datasets do not contain any node features, we introduced node features in two different
ways. In the first variant, the graphs are considered as given with all node features set to 1. In the
other variant, the one-hot encoded node degree is used as an additional node feature. We report re-
sults for the first variant in Table 1 and results for the second variant in Table B1. The bioinformatics
datasets were used with the provided node features. For more details on the used datasets, we refer
to Morris et al. (2020) and Xu et al. (2019).

Training, validation, and test splits. Our experiments were evaluated with 10-fold cross-
validation. In each iteration, we used 1/10 of the data for testing, 1/10 for validation and 8/10 for
training. The validation set was only used to adjust the number of training epochs, such that our test
accuracies were computed for the epoch with the highest validation accuracy. For more details on
implementation and hyperparameters see App. B.1.

Results. Test accuracies for all four GNN architectures comparing VPA with the standard aggrega-
tion methods are shown in Table 1. In almost all cases, VPA significantly outperforms the compared
methods. Notably, the GIN and GCN architectures in combination with MEAN or MAX aggrega-
tion were unable to learn the social network tasks without additional node features, likely due to
the inherent inability of these aggregation functions to capture a node’s degree. This emphasizes
the increased expressivity of VPA compared to these methods. For additional results concerning the
training behavior, see App. B.3.

IMDB-B IMDB-M RDT-B RDT-M5K COLLAB MUTAG PROTEINS PTC NCI1 AVG p

GIN+SUM 71.8 ± 4.0 47.1 ± 4.3 85.5 ± 2.2 52.0 ± 3.0 70.9 ± 1.5 87.2 ± 4.9 73.3 ± 3.1 54.1 ± 7.1 81.7 ± 2.3 69.3 2.0e-5
GIN+MEAN 50.0 ± 0.0 33.3 ± 0.0 50.0 ± 0.1 20.0 ± 0.1 32.5 ± 0.1 76.1 ± 11.1 67.2 ± 2.9 58.7 ± 6.5 77.7 ± 1.9 51.7 3.2e-15
GIN+MAX 50.0 ± 0.0 33.3 ± 0.0 49.7 ± 0.5 20.2 ± 0.4 52.0 ± 0.0 77.0 ± 8.2 71.8 ± 3.6 59.0 ± 9.7 80.5 ± 2.8 54.8 3.9e-13
GIN+VPA 72.0 ± 4.4 48.7 ± 5.2 89.0 ± 1.9 56.1 ± 3.0 73.5 ± 1.5 86.7 ± 4.4 73.2 ± 4.8 60.1 ± 5.8 81.2 ± 2.1 71.2 -

GCN+SUM 63.3 ± 6.1 42.1 ± 3.7 75.4 ± 3.2 37.3 ± 3.5 67.0 ± 2.2 78.7 ± 7.8 70.3 ± 2.2 61.3 ± 7.8 80.2 ± 2.0 64.0 9.9e-9
GCN+MEAN 50.0 ± 0.0 33.3 ± 0.0 49.9 ± 0.2 20.1 ± 0.1 52.0 ± 0.0 72.4 ± 6.3 74.3 ± 4.4 63.3 ± 6.5 75.8 ± 2.6 54.6 3.3e-12
GCN+MAX 50.5 ± 0.0 33.3 ± 0.0 50.0 ± 0.0 20.0 ± 0.1 52.0 ± 0.0 67.6 ± 4.3 43.9 ± 7.3 58.7 ± 6.6 55.1 ± 2.6 47.8 1.4e-15
GCN+VPA 71.7 ± 3.9 46.7 ± 3.5 85.5 ± 2.3 54.8 ± 2.4 73.7 ± 1.7 76.1 ± 9.6 73.9 ± 4.8 61.3 ± 5.9 79.0 ± 1.8 69.2 -

SGC 62.9 ± 3.9 40.3 ± 4.1 78.9 ± 2.0 41.3 ± 3.5 68.0 ± 2.2 73.5 ± 9.8 73.1 ± 3.4 59.0 ± 6.0 68.5 ± 2.2 62.8 3.8e-12
SGC+VPA 70.4 ± 4.1 47.5 ± 4.4 84.2 ± 2.2 53.4 ± 2.7 71.7 ± 1.7 73.9 ± 6.2 75.4 ± 4.2 63.1 ± 8.0 76.4 ± 2.8 68.4 -

GAT 51.0 ± 4.4 37.4 ± 3.6 74.5 ± 3.8 33.1 ± 1.9 56.2 ± 0.6 77.7 ± 11.5 75.4 ± 2.9 60.5 ± 5.5 77.7 ± 2.2 60.4 7.6e-9
GAT+VPA 71.1 ± 4.6 44.1 ± 4.5 78.1 ± 3.7 43.3 ± 2.4 69.9 ± 3.2 81.9 ± 8.0 73.0 ± 4.2 60.8 ± 6.1 76.1 ± 2.3 66.5 -

Table 1: Test accuracy on the TUDatasets with 10-fold cross-validation. Standard deviations are
indicated with ±. Column ”AVG” shows the average test accuracy across data sets and column
”p” indicates p-values of paired one-sided Wilcoxon tests across all datasets and validation folds
comparing each method to the corresponding VPA variant.
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4 DISCUSSION

Our results hint at a potentially powerful new aggregation function with equal expressivity as SUM
aggregation and improved learning dynamics.

In general, it needs to be considered that better prediction performance of more powerful GNNs will
only be observed when the underlying machine learning problem requires such a level of expressive-
ness. For benchmarks from real-world data, it might, however, not be known whether less powerful
GNNs can also show competitive prediction performance.

Furthermore, variance preservation seems to be an important property to avoid exploding or vanish-
ing activations. This is especially relevant for very deep networks. For the datasets used, all methods
could be trained without diverging due to exploding activations. One reason could be that the GNNs
are quite shallow and therefore there are only a few message-passing steps. Nevertheless, results in
Table 1 and learning curves in Fig. B1 show that VPA has advantages over SUM aggregation in terms
of convergence speed.

On the social network datasets, VPA seems to perform particularly well compared to other methods
when no additional node features are introduced, forcing the GNNs to learn from the network struc-
ture instead (see experimental results in Table 1). However, including the node degree as a feature
improves the performance of less expressive GNNs (see Table B1). The advantage in prediction
performance of VPA over other methods is less pronounced in this setting.

While we suggest VPA as a general aggregation scheme, which is easily applicable to many GNN
architectures, such as GIN, its application might not be obvious for other models. For example, SGC
inherently contains a normalization strategy using node degrees and GAT makes use of attention
weights during aggregation. In both cases, signal propagation is affected. Taking this into account,
we suggest variants of VPA for SGC and GAT. Variance preservation for GAT+VPA is shown in
Lemma 3, however, we did not formally proof variance preservation for SGC+VPA.

It should further be considered, that distributional assumptions to formally show variance preserva-
tion might only hold at the time of initialization. However, as discussed in App. A.2 even that time
point is important. Furthermore, even under other assumptions on the distribution of the messages,
arguments about the increase and decrease of variance would hold.
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APPENDIX

A THEORETICAL DETAILS

A.1 AGGREGATION VS. POOLING

The message aggregation step and the graph-level readout step are critical operations in GNNs (Corso et al.,
2020). Message passing on graphs involves the pair-wise exchange of messages, a message aggregation mecha-
nism, which combines messages from all neighboring nodes into one representation, and subsequent updates on
nodes. This process can be linked to convolution operations (Wu et al., 2021; Kipf & Welling, 2017; Bronstein
et al., 2021). However, unlike traditional convolutions, where the kernel size remains fixed, the message aggre-
gation in GNNs is contingent on the number of neighboring nodes and, consequently, the incoming messages
(Wu et al., 2021).

For graph-level readouts, the distributed neural representation across the graph needs to be fused to a com-
mon representation space. This operation is denoted as pooling in the context of GNNs. For CNNs pooling
often also refers to the aggregation step itself. We will however be more strict in distinguishing aggregation
and pooling here and consider pooling to be caused by the stride parameter of CNNs. Graph-level readout
pooling operations can be grouped into topology-based pooling, hierarchical pooling, and global pooling (Lee
et al., 2019). Global pooling consolidates the graph information into a single hidden representation before
making final predictions, so similar operations as for message aggregation can be used here. Advanced pooling
mechanisms consider the graph as a distribution, from which nodes are sampled (Chen et al., 2023).

A.2 MLP SIGNAL PROPAGATION

In accordance with signal propagation literature (Schoenholz et al., 2017; Klambauer et al., 2017) we are inter-
ested in signal propagation of randomly initialized neural networks, i.e., we assume distributions on weights of
these networks. Although it might also seem interesting to know about signal propagation behavior at different
time points during training, this is much more difficult to study, since the distributions of weights might then
also depend on the training data. However, an argument for studying signal propagation at initialization would
be that learning might not work at all (or start well) when signal propagation throughout the whole network
does not even work (well) at initialization.

In order to investigate the forward dynamics of a message-passing network at initialization time with signal
propagation theory, we take the following assumptions, assuming the case of ϕ taking two arguments5. The
initial representation of pairs of node representations hP

ij = (hi,hj) with i ̸= j follows a data distribution
hP

ij ∼ pdata with some mean EhP∼pdata

(
hP

ij

)
= µhP and some covariance CovhP∼pdata

(
hP

ij

)
= ChP .

We further assume a deep and broad MLP ϕw(.) with randomly sampled weights according to LeCun’s initial-
ization scheme (LeCun et al., 2012), w ∼ pN (0, 1/H), where H is the fan-in of each neuron, and with linear
activation in the last layer. Since an MLP ϕ is a measurable function, mij = ϕw(hi,hj) is also a random
variable. Then, central results from signal propagation theory (Neal, 1995; Schoenholz et al., 2017; Lee et al.,
2018; Hoedt & Klambauer, 2023) imply that the distribution of mij at initialization can be approximated by
a standard normal distribution mij ∼ pN (0, I) (Lee et al., 2018, Section 2.2) and even a fixed point at zero-
mean and unit variance can be enforced (Klambauer et al., 2017; Lu et al., 2023). In practice, batch- (Ioffe &
Szegedy, 2015) or layer-norm (Ba et al., 2016) are often used in these MLPs to partly maintain these statis-
tics, i.e. zero mean and unit variance, also during learning. We are aware that this approximation only holds
at initialization and might be overly simplistic (Martens et al., 2021) (see Section 4). However, note that we
use this assumption only to make the point of variance preservation of the aggregation step. Even under other
assumptions on the distribution of mij the arguments about increase and decrease of variance would hold.

A.3 PROOF LEMMA 1

Proof. Because the variables zn are centered, we have

E[y] = E

[
1√
N

N∑
n=1

zn

]
=

1√
N

N∑
n=1

E[zn] = 0 = E[z]. (A1)

5For the one-argument version of ϕ (where the message is computed only from the node representation hj

of the neighboring node) the line of reasoning is almost analogous.

9



Published at ICLR 2024 Workshop on Practical Machine Learning for Low Resource Settings

Furthermore, we have

Var[y] = E

( 1√
N

N∑
n=1

zn

)2
− E

[
1√
N

N∑
n=1

zn

]2
= (A2)

= E

 1

N

(
N∑

n=1

zn

)2
 =

1

N
E

 N∑
n=1

z2n +

N∑
n=1

N∑
m=1,m ̸=n

2znzm

 = (A3)

=
1

N
NE[z2n] = Var[zn] = Var[z], (A4)

where we have used the independence assumption E[znzm] = E[zn]E[zm] = 0 and that the zn are centered,
which means that E[z2n] = Var[zn].

A.4 PROOF LEMMA 2

Proof. Since the number of unique elements in X is bounded by N , there exists a bijective mapping Z : X →
{1, ..., N} assigning a natural number to each x ∈ X . Then an example of such a function f is a one-hot
encoding function f(x) = eZ(x), with eZ(x) ∈ RN being a standard basis vector, where component i of eZ(x),

i.e. eZ(x)[i] is defined as eZ(x)[i] :=

{
0 for i ̸= Z(x)

1 for i = Z(x)
.

We define h(X) to be:

h(X) =
1√
|X|

∑
x∈X

f(x) =
1√
|X|

∑
x∈X

eZ(x).

Summing up the components of h(X) yields the square root of the cardinality of X , i.e. the embeddings
contain information on the cardinality of X . Since we know,

√
|X| from the embedding, we can just multiply

the embedding h(X) with
√

|X| to obtain the original multiplicity of each element x in multiset X . Thus, the
multiset X ⊂ X can be uniquely reconstructed from h(X), implying that h is injective.

We note, that for MEAN aggregation, i.e., h̃(X) = 1
|X|
∑

x∈X f(x), the multiset X cannot be reconstructed

from h̃(X), since in that case the components of h̃(X) sum up to 1 and therefore, do not indicate the cardinality
of X (e.g., h({0, 1}) = (0.5, 0.5) = h({0, 0, 1, 1})). In contrast, for h(X) = 1√

|X|

∑
x∈X f(x), the

embeddings contain information on the cardinality of X , which is lost for MEAN aggregation. Multiplication
by |X| does not work for MEAN aggregation to reconstruct the original multiset X , as no cardinality information
is stored in the embedding h̃(X). More generally, no function f can be found such that h̃(X) is unique for
each multiset X ⊂ X of bounded size (see Corollary 8 in Xu et al. (2019)).

A.5 PROOF LEMMA 3

Proof. Because the variables zn are centered, we have

E[y] = E

[
1

C

N∑
n=1

cnzn

]
=

1

C

N∑
n=1

cnE[zn] = 0 = E[z]. (A5)

Furthermore, we have

Var[y] = E

( 1

C

N∑
n=1

cnzn

)2
− E

[
1

C

N∑
n=1

cnzn

]2
= (A6)

= E

 1

C2

(
N∑

n=1

cnzn

)2
 =

1

C
E

 N∑
n=1

c2nz
2
n +

N∑
n=1

N∑
m=1,m ̸=n

2cncmznzm

 = (A7)

=
1

C2

N∑
n=1

c2nE[z
2
n] =

1∑N
i=1 c

2
i

( N∑
i=1

c2i

)
E[z2n] = Var[zn] = Var[z], (A8)

10



Published at ICLR 2024 Workshop on Practical Machine Learning for Low Resource Settings

where we have used the independence assumption E[znzm] = E[zn]E[zm] = 0 and that the zn are centered,
which means that E[z2n] = Var[zn].

Note, that for case of uniform attention weights, C =
√∑N

i=1 c
2
i =

√∑N
i=1

(
1
N

)2
=√

N 1
N2 = 1√

N
. Further y = 1

C

∑N
i=1 ci zi = 1

1√
N

∑N
i=1

1
N

zi =
√
N 1

N

∑N
i=1 zi = 1√

N

∑N
i=1 zi is

obtained, which is the same as VPA.
In the case that attention focuses on exactly one value, i.e., cj = 1 and ci = 0 ∀ i ̸= j gives C = 1, and
y = 1

C

∑N
i=1 ci zi = zj . Cardinality information is lost in this case. However, the attention mechanism might

be learnable and therefore not converge to this solution if limited expressivity leads to larger losses during
optimization.
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B EXPERIMENTAL DETAILS & FURTHER RESULTS

B.1 IMPLEMENTATION DETAILS

We extended our framework upon implementations as provided by PyTorch Geometric (Fey & Lenssen (2019)).
Specifically, we used the following convolutional layers: GINConv (GIN), GraphConv (GCN), SGConv
(SGC) and GATConv (GAT). We used 5 GNN layers for GIN, GCN and GAT, respectively, and one layer
with K = 5 hops for SGC. The dimension of the messages was 64 for all architectures. An MLP with one
hidden layer was used for classification with a hidden dimension of 64 for GIN and 128 for all other models.
Furthermore, we used a dropout rate of 0.5 and the standard Adam optimizer with a learning rate of 0.001.

B.2 EXTENDED RESULTS

Table B1 shows results for the social datasets in the TUDataset benchmark with the node degree encoded as
node features. Please refer to Section 3 for further details and to Section 4 for a discussion of these results
compared to those in Table 1.

IMDB-B IMDB-M RDT-B RDT-M5K COLLAB

GIN+SUM 72.5 ± 4.5 50.8 ± 4.1 81.5 ± 1.7 47.5 ± 2.4 82.2 ± 1.7
GIN+MEAN 73.8 ± 4.4 48.9 ± 3.7 77.1 ± 2.8 47.1 ± 1.6 80.7 ± 1.0
GIN+MAX 71.0 ± 4.5 47.5 ± 4.9 78.5 ± 2.2 42.7 ± 2.1 77.1 ± 1.7
GIN+VPA 73.7 ± 3.7 49.7 ± 3.6 82.0 ± 2.0 47.4 ± 1.9 82.2 ± 1.7
GCN+SUM 70.7 ± 3.1 43.9 ± 3.7 76.3 ± 3.6 50.4 ± 2.4 73.7 ± 2.2
GCN+MEAN 71.9 ± 5.2 51.3 ± 3.4 71.0 ± 2.5 46.3 ± 2.3 80.6 ± 1.0
GCN+MAX 62.9 ± 3.5 43.1 ± 4.2 63.4 ± 5.0 30.6 ± 2.6 74.8 ± 1.6
GCN+VPA 73.6 ± 5.5 50.5 ± 2.7 80.6 ± 3.4 47.9 ± 2.3 81.3 ± 1.5
SGC 72.9 ± 3.9 50.6 ± 3.5 81.0 ± 2.4 49.0 ± 1.9 81.3 ± 1.8
SGC+VPA 72.6 ± 3.7 49.4 ± 3.6 81.5 ± 2.3 47.8 ± 2.8 80.5 ± 1.1

GAT 73.9 ± 3.4 50.2 ± 4.0 78.3 ± 3.0 47.0 ± 2.7 81.2 ± 1.4
GAT+VPA 71.7 ± 4.9 49.6 ± 6.1 79.1 ± 2.3 47.5 ± 1.7 79.5 ± 1.5

Table B1: Results on the social datasets of the benchmark setting by (Xu et al., 2019). In this variant
of the datasets, the number of neighbors of a node is encoded as a node feature. The compared
methods are again GIN and GCN with four different aggregation functions and SGC and GAT
with their tailor-made variance preservation modifications.
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B.3 LEARNING DYNAMICS

We investigated the learning dynamics of the compared methods based on the training loss curves (see Fig-
ure B1). The learning curves show that GIN model training converges fast with MEAN, MAX and VPA and
slower with SUM aggregation, which we attribute to the exploding variance in the forward pass.
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Figure B1: Learning Curves of the GIN architecture with different aggregation functions on the
TUDataset benchmarks used by Xu et al. (2019) and which were retrieved in the version as provided
by Morris et al. (2020). Note that the default hyperparameters are adjusted to the SUM aggregation
function. Nevertheless, the network training converges faster with variance-preserving aggregation
(VPA) compared to SUM aggregation. At the same time, VPA also maintains expressivity, whereas
MEAN and MAX aggregation decrease the expressivity of GNNs.
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