
A Multi-Power Law for Loss Curve Prediction Across
Learning Rate Schedules

Kairong Luo 2024310643 Zhixuan Pan 2024311550 Chumeng Jiang 2024316092

Abstract

Training large language models is both resource-intensive and time-consuming,
making it crucial to understand the quantitative relationship between model perfor-
mance and hyperparameters. In this paper, we derive an empirical law that is able
to predict the entire pretraining loss curve across various learning rate schedules,
including constant, cosine, and step decay schedules. This law takes a multi-power
form, combining a power law based on the sum of learning rates and additional
power laws to account for a loss reduction effect as learning rate decays. We vali-
date this law extensively on Llama-2 models of varying sizes and demonstrate that,
after fitting on a few learning rate schedules, it accurately predicts the loss curves
for unseen schedules of different shapes and horizons. Moreover, by minimizing
the predicted final pretraining loss across learning rate schedules, we are able to
find a schedule that outperforms the widely-used cosine learning rate schedule.
Interestingly, this automatically discovered schedule bears some resemblance to
the recently proposed Warmup-Stable-Decay (WSD) schedule (Hu et al., 2024) but
achieves a slightly lower final loss. We believe these results could offer valuable
insights for understanding the dynamics of pretraining and for designing learning
rate schedules to improve efficiency.

1 Introduction

Language models can achieve strong performance if pretrained at a very large scale with an appropriate
configuration of hyperparameters, such as model width, model depth, number of training steps, and
learning rate. However, a full-scale grid search over these hyperparameters is often impossible since
one large-scale pretraining run can take weeks or even months.

To reduce the cost of hyperparameter tuning, researchers have proposed various scaling laws that
aim to predict the final pretraining loss or downstream performance at scale. These laws usually try
to capture an empirical relationship between the final performance and a few key hyperparameters,
and use a simple parameterized function to approximate this relationship. A notable example is the
Chinchilla scaling law (Hoffmann et al., 2022), which approximates the final pretraining loss as a
function of the model size N and the total number of training steps T (or alternatively, the number of
training tokens), L(N,T) = L0 +A · T−α +B ·N−β . Based on a few experiments with varying N
and T , one can fit the parameters L0, A,B, α, β and use the formula to infer the optimal choice of N
and T given a fixed compute budget C = NT .

However, existing scaling laws fall short in providing guidance on the choice of Learning Rate (LR),
which is arguably the most critical hyperparameters in optimization. It is indeed very challenging to
incorporate the effect of LR into the scaling laws, as its impact on the training speed and stability
is intricate and not yet well understood in a quantitative manner. A qualitative understanding is
as follows: a large LR can reduce the training loss quickly, but in the long term, it may cause
overshooting and oscillation along sharp directions on the loss landscape. In contrast, a small LR
leads to a more stable training process, but at the cost of slowing down the convergence. Practitioners
often trade-off between these two extremes by starting training with a large LR and then gradually

Preprint. Under review.

5000 10000 15000 20000 25000
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(L

R
 x

 1
0

4)

17500 18000 185002.9

3.0

3.1

WSD
Cosine
WSD (Tuned)
WSDLD (Tuned)
Opt

5000 10000 15000 20000 25000
Step

2.8

3.0

3.2

3.4

3.6

Lo
ss

22000 23000
2.72

2.74

WSD
Cosine
WSD (Tuned)
WSDLD (Tuned)
Opt

Figure 1: Performance of various schedules, including our optimized LR schedule (Opt), on a 400M Llama-
2 (Touvron et al., 2023) model over 12B tokens. Zoom in/out facilitates the readers who are interested in
the local details. (a) Our optimal schedule comprises constant and decay stages post-warmup, aligning with
WSD (Hu et al., 2024). See Section 4 for details. (b) Our optimized schedule outperforms cosine LR and tuned
WSD variants (WSD uses exponential decay; WSDLD uses linear decay).

reducing it over time, following a Learning Rate schedule (LR schedule) (Bengio, 2012). These LR
schedules sometimes include a warmup phase at the beginning, where the LR is gradually increased
from a small value to a large value over a few thousand steps, and only after this warmup phase
does the LR start to decay. The most commonly used LR schedule in language model pretraining
is the cosine schedule (Loshchilov & Hutter, 2017), which decays the LR following a cosine curve.
Other schedules include the cyclic (Smith, 2017), Noam (Vaswani, 2017), and Warmup-Stable-Decay
(WSD) schedules (Hu et al., 2024), but there is no consensus on which schedule is the best.

In this paper, we aim to obtain a quantitative understanding of the empirical relationship between
the LR schedule and the final training loss in language model pretraining. More specifically, we
study the following problem, which we call the schedule-aware loss curve prediction problem: Can
we use a simple formula to accurately predict the training loss curve L(t) (1 ≤ t ≤ T) given a
LR schedule E := {η1, η2, . . . , ηT } for T steps of training? Following the standard practice in
pretraining, we assume that each training step is taking fresh samples from a data stream, thus there
is no generalization gap between the training and test loss. We focus on learning rate schedules that
decay the LR over time (ηt ≤ ηt−1) as these schedules are the most common in practice.1 Moreover,
we assume that we have already picked a good initial LR ηmax that is nearly optimal for short training
runs without LR decay. Starting from this initial LR η1 = ηmax, we are interested in predicting the
loss curve as the LR decays over time.

Existing scaling laws are insufficient for this problem because they are usually overfitted to one
predetermined LR schedule. For example, Hoffmann et al. (2022) fitted the parameters L0, A,B, α, β
in the Chinchilla scaling law L(N,T) = L0 +A · T−α +B ·N−β for training runs that have gone
through the entire cosine LR schedule, which makes the law inapplicable to other LR schedules, or
even to the same LR schedule with early stopping. Finding a good scaling law for this problem also
requires a more sophisticated approach. In contrast to existing laws that make predictions based on
two or three hyperparameters, which are easy to visualize and analyze, here we need to predict the
loss curve based on the entire LR schedule, which is inherently high-dimensional. A more careful
experimental design is thus needed to speculate what a good approximation formula could be.

Our Contribution: Multi-Power Law. In this paper, we propose the following empirical law (1)
for schedule-aware loss curve prediction:

L(t) = L0 +A · S1(t)
−α − LD(t), where S1(t) :=

t∑
t=1

ητ . (1)

Here, L0 + A · S1(t) can be seen as a naïve extension of the Chinchilla scaling law by replacing
the number of steps T with the sum of LRs and neglecting the dependence on the model size. This
alone can be seen as a crude approximation of the loss curve that linearizes the contribution of the
LR at each step, but it is agnostic to the shape of LR decay. The remaining term LD(t) serves as a
correction term that captures how decaying the LR to smaller values leads to a reduction in the loss:

LD(t) := B

t∑
k=2

(ηk−1 − ηk) ·G(η−γ
k Sk(t)), Sk(t) :=

t∑
τ=k

ητ , G(x) := 1− (Cx+ 1)−β . (2)

More specifically, LD(t) is the sum of the LR reduction ηk−1 − ηk at each step k multiplied by a
nonlinear factor. The factor gradually saturates to a constant as the training progresses, and the speed
of saturation follows a power law in a scaled sum of LRs η−γ

k Sk(t).
1If there is a LR warmup phase in the schedule, we focus on the decay phase right after the warmup phase.

2

5000 10000 15000 20000 25000
Step

1

2

3

Le
ar

ni
ng

 R
at

e
(x

10
4)

Const
Cosine
Two-Stage

B = 9 × 10 5

5000 10000 15000 20000 25000
Step

3.0

3.5

4.0

Lo
ss

loss
pred

5000 10000 15000 20000 25000
Step

1

2

3

Le
ar

ni
ng

 R
at

e
(x

10
4)

Two-Stage
B = 3 × 10 5

WSD
WSDLD

5000 10000 15000 20000 25000
Step

3.0

3.5

4.0

Lo
ss

loss
pred

Figure 2: Loss Curves of 25M, 100M, and 400M models from up to down. (a) Fit on Training Set: Our
multi-power law is reducible to two-stage and Constant LR schedules, and captures Cosine LR decay effects. (b)
Prediction on Test Set: Our law generalizes to unseen schedules like WSDLD and WSD, and handles steep
decays in Two-Stage cases.

We call this law of L(t) the multi-power scaling law as it consists of multiple power-law forms.
See also Appendix D.3 for the practical version of our law that accounts for the warmup phase.
L0, A,B,C, α, β, γ are the parameters of the law and can be fitted by running very few pretraining
experiments with different LR schedules. We summarize our main contributions as follows:

1. We propose the multi-power law (1) for schedule-aware loss curve prediction, and empir-
ically validate that after fitting the parameters of the law on at most 3 pretraining runs, it
can predict the loss curve for unseen LR schedules with remarkable accuracy (see Figure 1).
Unlike the Chinchilla scaling law, which relies solely on the final loss of each training run
to fit its parameters, our approach utilizes the entire loss curve of each training run to fit the
parameters, thus significantly reducing the number of training runs and compute resources
needed for accurate predictions (Figure 7). Extensive experiments are presented for various
model architectures, sizes, and training horizons (Section 3).

2. Our multi-power law is accurate enough to be used to search for better LR schedules. We
show that by minimizing the predicted final loss according to the law, we can obtain an
optimized LR schedule that outperforms the standard cosine schedule. Interestingly, the
optimized schedule has a similar shape as the recently proposed WSD schedule (Hu et al.,
2024), but its shape is optimized so well that it outperforms WSD with grid-searched
hyperparameters (Section 4).

3. We use a novel “bottom-up” approach to empirically derive the multi-power law. Starting
from two-stage schedules, we conduct a series of ablation studies on LR schedules with
increasing complexity, which has helped us to gain strong insights into the empirical
relationship between the LR schedule and the loss curve (Section 2).

2 Empirical Derivation of the Multi-Power Law
In this section, we present our empirical derivation of the multi-power law for schedule-aware loss
curve prediction. In the first place, we reduce the problem to studying a loss reduction term led by
LR decay. Then we take a “bottom-up” approach to study this term for LR schedules with increasing
complexity, from two-stage, multi-stage, to general LR decay schedules. For the first two cases, we
conduct extensive ablation studies on the behavior of the training loss and derive formulas that can
accurately predict the loss reduction term. This has finally inspired us to propose the multi-power
law for general cases as a natural unification and generalization of the formulas derived for the two
special cases. We will further validate our law with extensive experiments in Section 3.

Background: Learning Rate Schedule. An LR schedule is a sequence E := {η1, . . . , ηT } that
specifies the LR at each step of the training process. In the domain of language model pretraining,
the cosine LR schedule (Loshchilov & Hutter, 2017) is the most popular one, which can be expressed
as ηt = 1+α

2 ηmax +
1−α
2 ηmax cos(

πt
T), where ηmax is the maximum LR and α is usually set to 0.1.

The Warmup-Stable-Decay (WSD) schedule (Hu et al., 2024) is a recently proposed LR schedule.
This schedule first goes through a warmup phase with W steps, then maintains at a stable LR ηmax

with Tstable steps, and finally decays in the form f(s− Tstable)ηmax during stage Tstable≤s≤Ttotal . Here
f(x) ∈ (0, 1) can be chosen as linear or exponential decay functions. The visualization of these two
LR schedules is in Figure 1(a).

3

7000 8000 9000 10000 11000 12000
Step t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Le
ar

ni
ng

 R
at

e
(L

R
 x

 1
0

4)

Area B Area A=
A B

LR A
LR B

Area A
Area B

Mark A
Mark B

(a) LR vs Step t

7000 8000 9000 10000 11000 12000
Step t

3.40

3.42

3.44

3.46

3.48

3.50

3.52

3.54

3.56

Lo
ss

LD(TA + xB)

Loss A
Loss B

Mark A
Mark B

(b) Loss vs Step t

0 500 1000 1500 2000 2500 3000 3500 4000
Step x

0.00

0.02

0.04

0.06

0.08

Lo
ss

 R
ed

uc
tio

n

LD(TA + xB)Power:
Error=5.16e-07

Exponential:
Error=1.21e-05

Exponential Model
Power Model
Loss Reduction

(c) Loss Reduction vs Step x

Figure 3: Example of Two-Stage cases: tB=11000, xB=3000, ηB = 9× 10−5, ηA = 3× 10−4, TA = 8000.
(a) A and B have the equal LR sums: xA = 900, tA = 8900. (b) Loss Reduction LD(TA + xB) = LA(tA)−
LB(tB). (c) Fitting Loss Reduction L̂D(TA + xB) with power form results in 0.13(1 − (1 + 0.21x)0.15);
Fitting with exponential form results in 0.0790(1− e−0.01x). The shape of loss reduction is closer to a power
form instead of exponential.

Background: Warmup Phase. Many LR schedules, such as WSD, contain a warmup phase that
increases the LR gradually from 0 to the maximum LR ηmax over a few steps. Our discussion focuses
on the training after the warmup, where the LR is non-increasing in almost all LR schedules. The
steps are counted after the warmup phase, i.e., t = 1 is the first step after the warmup.

2.1 Our Approach: Learning Rate Sum Matching
Auxiliary Training Process. We first introduce an auxiliary training process to aid our analysis
of the loss curve of the actual training process with LR schedule E := {η1, . . . , ηT }. This auxiliary
training process is exactly the same as the actual training process for the first K steps, where K is the
largest number such that η1 = η2 = · · · = ηK . Then the auxiliary training process continues training
with a constant LR schedule, where the LR is set to η1 for all the remaining steps. We denote the
training loss at step t in this auxiliary process as Lconst(t).

Learning Rate Sum Matching. The multi-power law for approximating the loss curve L(t) of
the actual training process is based on the following decomposition. Define Z(t) as the step in the
auxiliary process that has the same sum of LRs as the actual training process at step t. Then,

L(t) = Lconst(Z(t))− (Lconst(Z(t))− L(t))︸ ︷︷ ︸
=: LD(t)

, where Z(t) :=
1

η1

t∑
τ=1

ητ . (3)

Here, we first use the training loss at step Z(t) in the auxiliary process, Lconst(Z(t)), as an approx-
imation for L(t), and then write the approximation error term as LD(t). We call LD(t) the Loss
reDuction term as it is a quantification of the reduction of loss due to learning rate decay.

The rationale behind this approach is that matching the LR sum between the two training processes
should result in similar training losses, and thus a more accurate approximation can be obtained by
further exploring the loss reduction term LD(t). See Appendix D.2 for more discussion.

Power-Law Ansatz for the Auxiliary Loss. Under constant LR schedules, it is easy to predict the
loss curve accurately. Taking inspiration from previous works (Hoffmann et al., 2022; Kaplan et al.,
2020), we choose to take a power-law form to approximate the training loss of the auxiliary process,
which works reasonably well in our experiments. That is,

Lconst(t) ≈ L̂const(t) := L0 + Ã · t−α, (4)

where L0, Ã, α are parameters. Replacing t with Z(t) := 1
η1

∑t
τ=1 ητ = 1

η1
S1(t) gives

L̂const(Z(t)) = L0 + Ãηα1 S
−α
1 (t), where S1(t) :=

∑t
τ=1 ητ . Finally, we reparameterize Ã as

Ã := Aη−α
1 , where A is a parameter, and obtain the formula:

L̂const(Z(t)) = L0 +A · S−α
1 (t). (5)

See Figure 15 for an empirical validation of eq. (5) for various constant LR schedules.

Loss Reduction Term. It remains to understand the behavior of the loss reduction term LD(t),
which is inherently complex since it depends on each LR used in training. In the rest of the section,
we conduct a series of experiments to determine an accurate approximation form for LD(t).

4

0.05

0.10

0.15

B B = 400.521 A + 0.027

B vs A

Fit
B = 403.270 B + 0.126

B vs B

Fit
B vs TA

2.5 5.0 7.5
A (x10 4)

500

1000

C

C vs A

0 1 2 3
B (x10 4)

C = 5.707 0.480
B

C vs B

Fit

1 2
TA (x104)

C vs TA

Figure 4: The patterns of B̃, C̃ over ηA, ηB and TA in Two-Stage cases. For illustration purposes, the
second row uses C̃ as the y-axis. B̃ can be approximated to be proportional to ηA − ηB , and C̃ manifests
power-law pattern over ηB . The effect of ηA on C̃ and the impact of TA are unpredictable or negligible, which
is approximately ignored in our discussion.

2.2 Case 1: Two-stage Learning Rate Schedule
To understand the behavior of LD(t), we start with the simplest form of LR decay that consists of
two stages: In Stage 1, the LR remains constant at ηA for TA steps (η1 = η2 = · · · = ηTA = ηA);
in Stage 2, the LR suddenly decreases to ηB and the rest of training continues with ηB for TB steps
(ηTA+1 = ηTA+2 = · · · = ηTA+TB

= ηB). We call this LR schedule a two-stage LR schedule. In
this case, the first TA steps of the auxiliary and actual training processes are the same, and the loss
reduction term LD(t) becomes non-zero only in Stage 2.

The Loss Reduction Term Follows a Power Law. In Figure 3, we plot the loss reduction term
LD(t) of a two-stage learning rate schedule with ηA = 3× 10−4, TA = 8000, ηB = 9× 10−5. As
the number of steps x := t− TA in Stage 2 increases, LD(TA + x) monotonically rises from 0 to
around 0.09 and eventually saturates. This motivates us to approximate LD(TA + x) in the form
B̃ · (1 − U(ηBx)), where B̃ is a parameter and U(s) is a function that decreases from 1 to 0 as
s = ηBx increases from 0 to infinity. The reason we choose ηBx instead of x as the argument of U
will be clear when we generalize this to multi-stage schedules.

But at what rate should U(s) decrease? After trying different forms of U(s) to fit LD(TA + x), we
find that the power-law form U(s) = (C̃ · s + 1)−β for some C̃, β > 0 fits most properly, which
leads to the following power-law form for the loss reduction term:

LD(TA + x) ≈ L̂D(TA + x) := B̃(1− (C̃ · ηBx+ 1)−β). (6)

Figure 3(c) shows that this power law aligns well with the actual loss reduction term LD(TA + x). In
contrast, the exponential form U(s) = e−Bs (so LD(TA + x) ≈ A(1− e−BηBx)) struggles to match
the slow and steadily increase of LD(TA + x) when x is large.

We further investigate how to estimate the parameters B̃, C̃, β in the power law. Our preliminary
experiments suggest that the power law fits the loss reduction term very well with a constant β that
is independent of ηA, ηB, TA, so we just set β = 0.4, which is a constant that works well. Then we
conduct experiments to understand how the best parameters B̃, C̃ to fit LD(t) depend on ηA, ηB, TA,
where we set default values ηA = 3× 10−4, ηB = 3× 10−5, TA = 8000 and change one variable at
a time. See Appendix E for experiment details.

B̃ is Linear to LR Reduction. Our first observation is that B̃ ∝ ηA − ηB. As shown in the first row
of Figure 4, B̃ linearly decreases with ηB and approximately increases linearly with ηA, especially
when ηA is not too large. Moreover, the slope of B̃ over ηA and ηB are approximately opposite to each
other. This motivates us to hypothesize that B̃ ∝ ηA−ηB and reparameterize B̃ as B̃ = B(ηA−ηB),
where B is a constant.

C̃ Follows a Power Law of ηB. Our second observation is that C̃ follows a power law. As shown in
the second row of Figure 4, we find that C̃ is very sensitive to ηB but much less dependent on ηA.
We hypothesize that C̃ follows a power law C̃ ∝ η−γ

B , and reparameterize C̃ as C̃ = Cη−γ
B , where

C > 0 and γ > 0 are constants.

LR Reduction Term Depends Less on TA. We also find that B̃ and C̃ are less sensitive to TA. As
shown in the last column in Figure 4, B̃ and C̃ are relatively stable as TA varies. This suggests that

5

0 20 40 60 80
Stage Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Lo
ss

 R
ed

uc
tio

n
(x

10
3)

(1)=2.5e-04
(2)=2.0e-04
(3)=1.5e-04
(4)=1.0e-04
(5)=8.0e-05
(6)=5.0e-05
(7)=4.0e-05
(8)=3.0e-05

1 2 3 4 5
(i 1) (i) (x10 5)

0.005

0.010

0.015

0.020

0.025

0.030

B

B=547.767((i 1) (i))

lr=3e-04
lr=2e-04
lr=2e-04
lr=1e-04
lr=8e-05
lr=5e-05
lr=4e-05
lr=3e-05

0.5 1.0 1.5 2.0 2.5
(i) (x10 4)

200

300

400

500

600

700

800

C

C = 4.951((i)) 0.483

lr=3e-04
lr=2e-04
lr=2e-04
lr=1e-04
lr=8e-05
lr=5e-05
lr=4e-05
lr=3e-05

Figure 5: Left: The loss reduction LDk(t) between the adjacent stages of the multi-stage training loss curve
still follows the power form. The multi-stage loss curve refers to Figure 14. Right: The parameter patterns in
the two-stage setting hold in the multi-stage setting approximately. B̃ ∝ η(i−1) − η(i) and C̃ ∝ ηi keep and the
shape of patterns are similar to the patterns in our ablation experiments, as shown in Figure 4.

the loss reduction induced by a single LR decay is approximately independent from the time that LR
decays. This insight will be revisited when we generalize the two-stage case to multi-stage cases.

Final Approximation Form. Putting all these together, we have the final approximation form for
the loss reduction term in the two-stage schedule:

LD(T1 + x) ≈ L̂D(T1 + x) := B(ηA − ηB)(1− (Cη1−γ
B x+ 1)−β). (7)

2.3 Case 2: Multi-Stage Leaning Rate Schedule
We go one step further from two-stage step decay schedule to multi-stage step decay schedules. This
class of schedules consists of multiple stages, where the LR decays when a new stage starts but
remains constant within each stage. Now, we consider an n-stage LR schedule E = {η1, . . . , ηT },
where the i-th stage lasts from step t = Ti−1 + 1 to t = Ti and uses the LR ηt = η(i) (0 = T0 <
T1 < · · · < Tn−1 < Tn = T , η(1) ≥ η(2) ≥ · · · ≥ η(n)). See Figure 14 for an example.

Multi-Stage Loss Reduction. To draw insights into the behavior of LD(t) in the multi-stage case,
we use the following strategy. Recall that LD(t) is the difference in training losses between the
auxiliary and actual training processes at equal LR sums. In addition to these processes, we construct
some intermediate processes: for 1 ≤ i ≤ n, we define the i-th process to be the same as the actual
training process in stages 1 to i but continue to use the learning rate η(i) for all stages after i. The
first and last processes are the auxiliary and actual training processes themselves.

We again use the trick of LR sum matching: we find the steps of these n processes that have the same
LR sum, and then conduct experiments to analyze the loss difference between adjacent processes. Let
Li(t) be the training loss of the i-th process at step t. For 1 ≤ i ≤ j ≤ n and t ≥ Tj−1, we define
Zi,j(t) as the step number in the i-th process that has the same LR sum as the j-th process at step t,
i.e., Zi,i(t) := t and Zi,j(t) := Ti +

1
η(i)

∑t
τ=Ti+1 ητ for i < j. Then we have

LD(t) =

i∑
k=2

LDk(Zk,n(t)), where LDk(t) := Lk−1(Zk−1,k(t))− Lk(t). (8)

Here, LDk(t) is the difference between the (k − 1)-th and k-th processes at equal LR sums. These
two processes are the same for the first k−1 stages and diverge only at the beginning of the k-th stage:
the former continues to use η(k−1) but the latter switches to η(k). This is similar to the two-stage
case, except that the first k − 1 stages may not use the same LR.

Interestingly, the power law behavior of the loss reduction term observed in the two-stage case also
approximately holds for LDk(t). As the training enters a new stage i+ 1, a new loss reduction term
LDi(·) is introduced in (8). We observe that LDi(Ti + x) follows a similar power law behavior as
in the two-stage case when x increases. As shown in Figure 5, each LDi(Ti + x) can be individually
approximated by a power law B̃(1− (C̃ · η(i)x+ 1)−β), and B̃ ∝ (η(i−1) − η(i)), C̃ ∝ (η(i))−γ .

Final Approximation Form. Inspired by the above observation and our approximation (7) for the
two-stage case, we propose to approximate LDk(t) with a power law:

LDk(Tk−1 + x) ≈ L̂Dk(Tk−1 + x) := B(η(k−1) − η(k))(1− (C(η(k))1−γx+ 1)−β). (9)

6

10000 20000 30000 40000 50000 60000 70000
Step

3.2

3.3

3.4

3.5

Lo
ss 60000 62500 65000 67500 70000

3.20

3.22

3.24

3.26

3.28

3.30

Learning Rate
Loss
Multi-power
One-power 0.0

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

10000 20000 30000 40000 50000 60000 70000
Step

3.2

3.3

3.4

3.5

Lo
ss 60000 62500 65000 67500 70000

3.20

3.22

3.24

3.26

3.28

Learning Rate
Loss
Multi-power
One-power 0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Figure 6: The examples of long-horizon non-monotonic schedules. The one-power line represents the
auxiliary process curve. Left: The cyclic schedule with 72,000 steps, where each half-cycle spans
8,000 steps, and the first decay begins after 16,000 steps. Right: The random-polyline schedule,
consisting of piecewise linear interpolation between randomly selected intermediate learning rates in
the range of 3× 10−5 to 3× 10−4, with LR milestones occurring at intervals of 8,000 steps.

Plugging this approximation into (8), we can approximate the loss reduction term LD(t) at step
Ti−1 < t ≤ Ti of the actual training process as LD(t) ≈ L̂D(t) :=

∑i
k=2 L̂Dk(Zk,n(t)), then

LD(t) ≈ L̂D(t) =

i∑
k=2

B(η(k−1) − η(k))(1− (C(η(k))1−γ(Zk,n(t)− Tk) + 1)−β).

By definition of Zk(t), we have Zk,n(t)− Tk = Sk(t)
η(k) , where Sk(t) :=

∑t
τ=Tk+1 ητ is the sum of

LRs from the beginning of Stage k + 1 to step t. We can further simplify the above formula as

LD(t) ≈ L̂D(t) =

i∑
k=2

B(η(k−1) − η(k))(1− (C(η(k))−γSk(t) + 1)−β). (10)

2.4 General Case

Ansatz for the Loss Reduction Term. A general learning rate schedule E := {η1, . . . , ηT } could
be viewed as a T -stage schedule, where the i-th stage uses learning rate ηi for li = 1 step. This
motivates us to make the ansatz that the formula for the loss reduction term LD(t) in multi-stage
schedules (10) can continue to hold even when every stage only lasts for one step.

LD(t) ≈ L̂D(t) =

t∑
k=2

B(ηk−1 − ηk)(1− (Cη−γ
k Sk(t) + 1)−β), (11)

where Sk(t) :=
∑t

τ=k ητ is the sum of LRs from step k to step t, and B,C, γ, β are parameters.

Multi-Power Law. Following the approach of learning rate sum matching in Section 2.1, we first
decompose L(t) as Lconst(Z(t))− LD(t) (see (3)). Then we combine the above ansatz for the Loss
reduction term with the power-law ansatz for the auxiliary loss, leading to our multi-power law:

L(t) ≈ L0 +A · S−α
1 (t)−

t∑
k=2

B(ηk−1 − ηk)(1− (Cη−γ
k Sk(t) + 1)−β).

See also Appendix D.3 for the practical version of our law that accounts for the warmup phase by
slightly changing the A · S−α

1 (t) term. See Appendix B.1 for the discussion about the simplification
of the multi-power law.

3 Empirical Validation of the Multi-Power Law
The multi-power law (MPL) comes from our speculations from our experiments with special types of
LR schedules. Now we present extensive experiments to validate the law for common LR schedules
used in practice. Our experiments demonstrate that MPL requires only two or three learning rate (LR)
schedules and their corresponding loss curves in the training set to fit the law. The fitted MPL can
then predict loss curves for test schedules with different shapes and extended horizons. Details of the
experimental setup, fitting approaches, and configurations are provided in Appendix F.

3.1 Results

Generalization to Unseen LR Schedules. The MPL can accurately predict loss curves for LR
schedules outside the training set. As illustrated in Figure 2, despite the absence of WSD LR
schedules in the training set and the variety of decay functions, MPL successfully predicts their loss
curves with high accuracy. Furthermore, MPL can generalize to two-stage schedules with different
ηB values from the training set, effectively extrapolating for both continuous and discontinuous cases.

7

0 20000 40000 60000 80000 100000 120000
Steps

2.6

2.7

2.8

2.9

3.0

3.1

3.2

Lo
ss 124000 126000 128000 130000

2.550

2.575
Loss Curves
Chinchilla Pred
Multi-power Pred
Loss Ends(C)
Loss Curves(M)
Target Loss

0 100000 200000 300000 400000 500000
Step

2.0

2.1

2.2

2.3

2.4

2.5

Lo
ss

loss
Multi-power
Chinchilla 0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Linear Schedule

Figure 7: Left: Predictions for target loss at 128,000-step for cosine schedule using MPL and CDSL
fitting. The CDSL uses the final losses of six cosine losses from 14960 steps to 72000 steps, marked
as Loss Ends(C). The MPL uses 24000-step constant and cosine curves, marked as Loss Curves(M).
Right: Comparison of MPL and CDSL fits on the open-source 7B OLMo curve generated with a
linear schedule.

Generalization to Longer Horizons. MPL demonstrates the ability to extrapolate loss curves
for horizons exceeding three times the training set length. In our runs, the training set contains
approximately 22,000 post-warmup steps, while the test set includes curves with up to 70,000 post-
warmup steps. These results validate MPL’s capability to generalize to longer horizons. Notably, the
data-to-model ratio for a 25M-parameter model trained over 72,000 steps (36B tokens) is comparable
to Llama2 pretraining (70B model, 2T tokens), consistent with trends favoring higher data volumes
for fixed model sizes (Dubey et al., 2024).

Generalization to Non-Monotonic Schedules. MPL extends effectively to complex non-monotonic
schedules, although derived for monotonic decay schedules. The test set includes challenging cases
such as cyclic schedules and the random-polyline schedule, where LR values are randomly selected
at every 8,000 steps and connected by a polyline. These experiments, conducted on a 25M-parameter
model over 72,000 steps, also represent a demanding long-horizon scenario. As shown in Figure 6,
MPL accurately predicts these long-horizon non-monotonic schedules, demonstrating its robustness
and adaptability.

3.2 Comparison with Baselines

Comparison with Chinchilla Law. While Chinchilla-style data scaling laws, which we abbreviate
as CDSLs, are widely utilized (Muennighoff et al., 2023; Hoffmann et al., 2022), MPL offers several
distinct advantages: (1) MPL incorporates LR dependency, unlike CDSLs, and (2) MPL predicts the
entire loss curve, whereas CDSLs are restricted to final loss predictions. Based on these advantages,
the MPL shows higher sample efficiency than the CDSLs. Moreover, we find that two curves
of different schedules are enough to fit the MPL with generalizability, as details are discussed in
Appendix B.3. As shown in Figure 7, MPL achieves 1/4 error in final loss prediction with 1/4
compute budget compared to CDSL. MPL also shows advantages in the fitting of open-source 7B
OLMo (Groeneveld et al., 2024) in Figure 7.

Comparison with Momentum Law. The MPL shows higher accuracy and can apply to the
discontinuous schedules compared to the recent Momentum Law (Tissue et al., 2024). The Momentum
Law (MTL) (Tissue et al., 2024) incorporates LR annealing effects by modeling loss reduction based
on the momentum of LR decay. However, MTL indicates an exponential loss reduction in two-stage
LR schedules, which contradicts our observations (see Figure 3). Additionally, as shown in Figure 9,
MPL outperforms MTL in predicting loss reduction for WSD schedules with linear LR decay. In
the highlighted regions, MPL achieves high accuracy in the decay stage, whereas MTL exhibits
substantial error. A summary of prediction results across test sets is provided in Table 1, where MPL
consistently outperforms MTL in both average and worst-case scenarios. The details of the MTL and
its relation to the MPL can be found in Appendix B.1.

4 The Multi-power Law Induces Better LR Schedules

Due to the high cost of each pretraining run and the curse of dimensionality for LR schedules, it
is generally very impossible to tune the LR for every training step. However, in this section, we
show that by using the predicted final loss from the MPL, we can optimize the entire LR schedule to
significantly reduce the final loss and beat the cosine schedule.

8

Table 1: Model performance comparison. R2, MAE, RMSE, PredE, and WorstE are the coefficient
of determination, Mean Absolute Error, Root Mean Square Error, Prediction Error, and Worst-case
Error, respectively.

Model Size Method R2 ↑ MAE ↓ RMSE ↓ PredE ↓ WorstE ↓

25M Momentum Law 0.9904 0.0047 0.0060 0.0014 0.0047
Multi-power Law (Ours) 0.9975 0.0039 0.0046 0.0012 0.0040

100M Momentum Law 0.9959 0.0068 0.0095 0.0022 0.0094
Multi-power Law (Ours) 0.9982 0.0038 0.0051 0.0013 0.0058

400M Momentum Law 0.9962 0.0071 0.0094 0.0025 0.0100
Multi-power Law (Ours) 0.9971 0.0053 0.0070 0.0019 0.0070

4.1 Method

Given that the Multi-Power Law (MPL) provides an accurate estimation of the loss, the final loss
prediction by MPL can serve as a surrogate for evaluating schedules. Consider the learning rate (LR)
as a T -dimensional vector η = (η1, . . . , ηT) and the final loss L(η) under given hyperparameters.
The goal is to identify the optimal LR schedule η∗ = argmaxη L(η). We parameterize the final loss
prediction as LΘ(η) using MPL with parameters Θ = {L0, A,B,C, α, β, γ}. The parameters Θ̂ can
be estimated as described in Section 3. Using LΘ̂(η) as a surrogate for L(η), we approximate η∗ by
solving:

η̂ = min
η

LΘ̂(η) s.t. 0 ≤ ηi+1 ≤ ηi, ∀ 1 ≤ i ≤ T − 1. (12)

This process induces an “optimal" schedule η̂ derived from MPL with parameter Θ̂. We set the
initial learning rate η0 to 3× 10−4 and assume ηi is monotonically non-increasing based on prior
knowledge. The high-dimensional vector η is optimized using the Adam optimizer. Additional
details are provided in Appendix G.

4.2 Results

Induced LR Schedule Exhibits Stable-Decay Behavior. The induced learning rate schedule
follows a Warmup-Stable-Decay (WSD) pattern, comprising two main stages after the warmup phase.
It maintains a peak LR for an extended period, followed by a rapid decay to a near-zero LR, as shown
in Figure 1 and Figure 19.

Induced LR Schedule Outperforms Cosine Schedule. Figures 1 and 19 compare the induced
schedules with the cosine and WSD schedules across models ranging from 25M to 400M. Figure 20
extends this comparison to longer training horizons. The induced schedules consistently outperform
the cosine schedule, achieving a margin over 0.02. Notably, no WSD-like schedule is present in the
training set, predicting such loss curves an extrapolation by MPL.

Characteristics of the Induced Schedules. The induced schedules provide insights into hyper-
parameter tuning for WSD schedules. Observations from Figures 1 and 19 highlight the following:
(1) Our findings suggest that a lower ending LR—typically below 1/20 of the peak LR—is more
effective in most scenarios, compared to 1/10 in prior research (Hoffmann et al., 2022; Kaplan et al.,
2020). Further details are provided in Appendix G. (2) f(x) = (1 − x)−α, where α ≈ 1.5, well
captures relationship between normalized steps t̃ and normalized LRs η̃avg in our experiments. This
simplified version, referred to as WSD with Sqrt-Cube Decay (WSDSC), is effective across various
model sizes and types, as shown in Figures 8 and 10. See Appendix B.2. (3) The induced schedules
align closely with the optimal decay steps identified via grid search, as illustrated in Figure 1. See
Appendix G.

5 Conclusions and Future Directions
In this paper, we introduce the multi-power law for scheduler-aware loss curve prediction, which
can accurately predict loss curves and inspire optimal scheduler derivation. Our findings enhance
the understanding of training dynamics in large language models, potentially improving training
efficiency. In future work, we will consider refining the law, exploring its underlying mechanisms,
and studying the LR relationship with unfixed maximum LR.

9

References
Armen Aghajanyan, Lili Yu, Alexis Conneau, Wei-Ning Hsu, Karen Hambardzumyan, Susan Zhang,

Stephen Roller, Naman Goyal, Omer Levy, and Luke Zettlemoyer. Scaling laws for generative
mixed-modal language models. In International Conference on Machine Learning, pp. 265–279.
PMLR, 2023.

Alexander Atanasov, Jacob A Zavatone-Veth, and Cengiz Pehlevan. Scaling and renormalization in
high-dimensional regression. arXiv preprint arXiv:2405.00592, 2024.

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural
scaling laws. Proceedings of the National Academy of Sciences, 121(27):e2311878121, 2024.

Yoshua Bengio. Practical Recommendations for Gradient-Based Training of Deep Architectures, pp.
437–478. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-35289-8. doi: 10.
1007/978-3-642-35289-8_26. URL https://doi.org/10.1007/978-3-642-35289-8_26.

James Bergstra, Dan Yamins, David D Cox, et al. Hyperopt: A python library for optimizing the
hyperparameters of machine learning algorithms. SciPy, 13:20, 2013.

Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. A dynamical model of neural scaling
laws. arXiv preprint arXiv:2402.01092, 2024.

Xiang Cheng, Dong Yin, Peter Bartlett, and Michael Jordan. Stochastic gradient and langevin
processes. In International Conference on Machine Learning, pp. 1810–1819. PMLR, 2020.

Zhengxiao Du, Aohan Zeng, Yuxiao Dong, and Jie Tang. Understanding emergent abilities of
language models from the loss perspective, 2024. URL https://arxiv.org/abs/2403.15796.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Omer Elkabetz and Nadav Cohen. Continuous vs. discrete optimization of deep neural networks.
Advances in Neural Information Processing Systems, 34:4947–4960, 2021.

Jonas Geiping and Tom Goldstein. Cramming: Training a language model on a single gpu in one day.
In International Conference on Machine Learning, pp. 11117–11143. PMLR, 2023.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerat-
ing the science of language models. arXiv preprint arXiv:2402.00838, 2024.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/2203.
15556.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics: Methodology
and distribution, pp. 492–518. Springer, 1992.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In Learning and Intelligent Optimization: 5th International
Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected Papers 5, pp. 507–523. Springer,
2011.

Marcus Hutter. Learning curve theory. arXiv preprint arXiv:2102.04074, 2021.

10

https://doi.org/10.1007/978-3-642-35289-8_26
https://arxiv.org/abs/2403.15796
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556

Ayush Jain, Andrea Montanari, and Eren Sasoglu. Scaling laws for learning with real and surrogate
data. arXiv preprint arXiv:2402.04376, 2024.

Yuchen Jin, Tianyi Zhou, Liangyu Zhao, Yibo Zhu, Chuanxiong Guo, Marco Canini, and Arvind
Krishnamurthy. Autolrs: Automatic learning-rate schedule by bayesian optimization on the fly.
arXiv preprint arXiv:2105.10762, 2021.

Arlind Kadra, Maciej Janowski, Martin Wistuba, and Josif Grabocka. Scaling laws for hyperparameter
optimization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=ghzEUGfRMD.

Arlind Kadra, Maciej Janowski, Martin Wistuba, and Josif Grabocka. Scaling laws for hyperparameter
optimization. Advances in Neural Information Processing Systems, 36, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models,
2020. URL https://arxiv.org/abs/2001.08361.

Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learning curve prediction
with bayesian neural networks. In International conference on learning representations, 2022.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning
Research, 18(185):1–52, 2018.

Qianxiao Li, Cheng Tai, and E Weinan. Stochastic modified equations and adaptive stochastic
gradient algorithms. In International Conference on Machine Learning, pp. 2101–2110. PMLR,
2017.

Zhiyuan Li and Sanjeev Arora. An exponential learning rate schedule for deep learning. arXiv
preprint arXiv:1910.07454, 2019.

Licong Lin, Jingfeng Wu, Sham M Kakade, Peter L Bartlett, and Jason D Lee. Scaling laws in linear
regression: Compute, parameters, and data. arXiv preprint arXiv:2406.08466, 2024.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In
International Conference on Learning Representations, 2017. URL https://openreview.net/
forum?id=Skq89Scxx.

Chao Ma, Lei Wu, and Weinan E. A qualitative study of the dynamic behavior for adaptive gradient
algorithms. In Joan Bruna, Jan Hesthaven, and Lenka Zdeborova (eds.), Proceedings of the 2nd
Mathematical and Scientific Machine Learning Conference, volume 145 of Proceedings of Machine
Learning Research, pp. 671–692. PMLR, 16–19 Aug 2022. URL https://proceedings.mlr.
press/v145/ma22a.html.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
models. Advances in Neural Information Processing Systems, 36:50358–50376, 2023.

Rui Pan, Haishan Ye, and Tong Zhang. Eigencurve: Optimal learning rate schedule for sgd on
quadratic objectives with skewed hessian spectrums. arXiv preprint arXiv:2110.14109, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Utkarsh Sharma and Jared Kaplan. A neural scaling law from the dimension of the data manifold.
arXiv preprint arXiv:2004.10802, 2020.

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter conference
on applications of computer vision (WACV), pp. 464–472. IEEE, 2017.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

11

https://openreview.net/forum?id=ghzEUGfRMD
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://proceedings.mlr.press/v145/ma22a.html
https://proceedings.mlr.press/v145/ma22a.html

Yunfei Teng, Jing Wang, and Anna Choromanska. Autodrop: Training deep learning models with
automatic learning rate drop. arXiv preprint arXiv:2111.15317, 2021.

Howe Tissue, Venus Wang, and Lu Wang. Scaling law with learning rate annealing. arXiv preprint
arXiv:2408.11029, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Zhen Xu, Andrew M Dai, Jonas Kemp, and Luke Metz. Learning an adaptive learning rate schedule.
arXiv preprint arXiv:1909.09712, 2019.

12

0 1 2 3 4 5 6 7
Step (x104)

2.5

3.0

3.5

4.0

Lo
ss

Const loss
Const pred
Cosine loss
Cosine pred

0 10000 20000 30000 40000 50000 60000 70000
Step

0.0

0.5

1.0

1.5

2.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Cosine
Opt
WSDSC
Loss
LR

2.4

2.6

2.8

3.0

3.2

Lo
ss

55000 60000 65000 70000

2.375

2.400

2.425

Figure 8: Left: Long horizon prediction for the cosine and constant schedules. From up to down, the
model sizes range from 25M to 1B. Right: The comparison on 1B models between the optimized
schedule (Opt), cosine schedule (Cosine), and the simplified optimized schedule (WSDSC, see
Section 4.2), a WSD schedule with sqrt-cube decay.

Table 2: Downstream performance comparison for Cosine and induced schedules. Percentage changes
(↑ or ↓) indicate relative improvements or regressions compared to the Cosine schedule.

Downstream Dataset LAMBADA HellaSwag PIQA ARC-E
Cosine Schedule 46.54 37.12 65.13 43.56
Induced Schedule 48.71 (↑ 2.17%) 37.74 (↑ 0.62%) 65.07 (↓ 0.06%) 44.09 (↑ 0.53%)

A Discussion

Model Types. We validate the MPL on GPT-2 (Radford et al., 2019) and OLMo (Groeneveld
et al., 2024) models to evaluate the generalizability of the MPL across model architectures. In the
preceding experiments, we used the Llama2 (Touvron et al., 2023). For experiments on GPT-2, the
validation process followed the procedure fit with curves of cosine and constant schedules, described
in Section 3. For the 7B OLMo model, we fit the MPL on the open-source training curve, which
employs a linear decay schedule, as shown on the right of Figure 7. Our results show that the MPL
presents a high prediction accuracy across different model types for both self-run and open-source
experiments.

Model Size. We extended the MPL and its induced schedule to a larger scale by training a 1B-
parameter model on 144B data tokens. The MPL was fitted over 24,000 steps and successfully
predicted loss curves up to 72,000 steps, as shown in Figure 8. We tested the performance of the
induced 72,000-step schedule and its simplified version (see Section 4.2) against the widely used
cosine schedule. The induced schedule outperformed the cosine schedule, while the simplified version
achieved results between the induced and cosine schedules. To further validate the effectiveness of the
induced schedules, we compared downstream task performance for models trained using the cosine
and induced schedules. As shown in Table 2, the induced schedule led to overall improvements in
downstream tasks.

Peak Learning Rate Ablation. We evaluated the applicability of the MPL across different peak
learning rates. In previous experiments, the peak learning rate was fixed at 3× 10−4. However, as
shown in Figure 4, the empirical behavior of two-stage learning rate schedules deviates when the
peak learning rate increases. To investigate this, we conducted experiments with peak learning rates
of 4× 10−4 and 6× 10−4. The MPL achieved an average R2 value of 0.9965 for the 4× 10−4 case
and 0.9940 for the 6× 10−4 case, demonstrating consistently high accuracy.

Batch Size Ablation. We conduct ablation experiments on sequence batch sizes of 64 and 256 over
25M models, apart from 128 in previous experiments. The MPL presents a consistent accuracy with
R2 higher than 0.9970.

Random Seed. We performed an ablation study to examine the impact of random seed variability
on curves. We trained a 25M-parameter model for 24,000 steps using the cosine schedules with
three random seeds. As shown in Figure 9, the standard deviation of the resulting loss values was
approximately less than 0.001, establishing a lower bound for prediction errors. It highlights the
prediction accuracy of the MPL discussed in Section 3.

13

5000 10000 15000 20000 25000
Step

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1
Lo

ss

22000 22500 23000 23500 24000
3.310

3.312

3.314

3.316

3.318

3.320

Seed 45018
Seed 337
Seed 1660

5000 10000 15000 20000 25000
Step

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

WSDLD

3.0

3.2

3.4

3.6

3.8

Lo
ss

18000 20000 22000

2.95

3.00

3.05

3.10

Loss
Multi-power
One-power
Momentum

Figure 9: Left: The experiments on 25M and 24000 steps of different seeds. The standard variance
of final loss is 0.0007 and the max gap is 0.0014. Right: Comparison between multi-power law and
momentum law. In the decay stage, the multi-power law not only presents higher accuracy to fit the
loss curve but also aligns with the curvature of the curve. As a comparison, the momentum law can
also fit the loss in the stable stage, but it predicts a counterfactual concave curve in the decay stage.

5000 10000 15000 20000 25000
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Cosine
WSD
WSDSC
Loss
LR

3.25

3.50

3.75

4.00

4.25

4.50

Lo
ss

18000 19000 20000 21000 22000 23000

3.25

3.30

10000 20000 30000 40000 50000 60000 70000
Step

3.2

3.3

3.4

3.5

3.6

Lo
ss 60000 62500 65000 67500 70000

3.14

3.16

3.18

3.20

3.22

Learning Rate
Loss
Multi-power
One-power

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Figure 10: The loss curves of GPT2 models. The multi-power law is fit over 24000-step constant
and cosine schedule losses. Left: The comparison between the cosine, WSD, and WSDSC (see
Section 4.2) schedules; Right: Prediction on the 72000-step loss curve of cosine schedule.

B Simplification of Formula, Usage and Fitting.

B.1 Simplification of Formula

We simplify the full multi-power law (MPL; see Equation (1)) at various levels, trading computational
complexity for reduced accuracy. Table 3 summarizes the fitting performance of simplified versions
and variants of the MPL. The fitting experiments are conducted over 25M models.

No Loss Reduction. The necessity of the loss reduction term LD(t) can be assessed by fitting a
one-power law (OPL), a simplified MPL where LD(t) = 0 or equivalently B = 0:

LOPL(t) = L0 +A · S1(t)
−α, S1(t) :=

t∑
τ=1

ητ . (13)

This formulation approximates the loss curve by linearizing the cumulative learning rate (LR) effects.
The fitted results (first row of Table 3) exhibit significant degradation compared to the full MPL,
demonstrating the critical role of LD(t).

14

5000 10000 15000 20000 25000
Step

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Const
Cosine
Two-Stage

B = 9 × 10 5

5000 10000 15000 20000 25000
Step

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Two-Stage
B = 1.8 × 10 4

WSD
WSDLD

0 2 4 6
Step (x104)

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Const
Cosine

5000 10000 15000 20000 25000
Step

3.4

3.6

3.8

4.0

Lo
ss

loss
pred

5000 10000 15000 20000 25000
Step

3.4

3.6

3.8

4.0

Lo
ss

loss
pred

0 2 4 6
Step (x104)

3.4

3.6

3.8

4.0

4.2

Lo
ss

Const loss
Const pred
Cosine loss
Cosine pred

5000 10000 15000 20000 25000
Step

3.3

3.4

3.5

3.6

3.7

3.8

Lo
ss

loss
pred

5000 10000 15000 20000 25000
Step

3.3

3.4

3.5

3.6

3.7

3.8

Lo
ss

loss
pred

0 2 4 6
Step (x104)

3.2

3.4

3.6

3.8

4.0

Lo
ss

Const loss
Const pred
Cosine loss
Cosine pred

Figure 11: Ablation study on batch sizes. The R2 values for batch sizes of 64 and 256 are 0.9977 and
0.9973, respectively. Row One: Learning rate schedules. Row Two: Loss curves for experiments
with a sequence batch size of 64. Row Three: Loss curves for experiments with a sequence batch
size of 256. Column One: Training set results. Column Two: Test set results, focusing on loss
curves with the same horizon as the training set. Column Three: Test set results, focusing on loss
curves with an extended horizon.

Table 3: Summary of fitting results for simplified laws. Each row corresponds to a specific law,
reporting metrics including R2, MAE, RMSE, PredE, and WorstE. Higher R2 values and lower MAE,
RMSE, PredE, and WorstE indicate better fitting performance. See Table 1 for metric definitions.

Formula Differences from MPL R2 ↑ MAE↓ RMSE↓ PredE↓ WorstE↓
OPL LD(t) = 0 (B = 0) 0.8309 0.0378 0.0412 0.0111 0.0241

LLDL G(x) = 1 0.9797 0.0077 0.0101 0.0023 0.0108
No-γ γ = 0 0.9961 0.0046 0.0053 0.0014 0.0041
SPL x = t− k 0.9921 0.0066 0.0075 0.0020 0.0069
MEL G(x) = 1− e−Cx, γ = 0 0.9934 0.0044 0.0057 0.0013 0.0047
MTL G(x) = 1− e−Cx, x = t− k 0.9904 0.0047 0.0060 0.0014 0.0047
MPL (Ours) 0.9975 0.0039 0.0046 0.0012 0.0040

Linear Approximation of Loss Reduction. The loss reduction term LD(t) (defined in Equa-
tion (2)) can be simplified by treating the scaling function G(x) as a constant:

LD(t) ≈
t∑

k=2

B(ηk−1 − ηk) = B(η1 − ηt).

Despite its simplicity, we observe a near-linear relationship between LD(t) and the LR reduction
(η1 − ηt), regardless of the LR schedule type, as shown in Figure 12. This motivates the Linear Loss

15

5000 10000 15000 20000 25000
Step

3.4

3.6

3.8

4.0

Lo
ss

loss
LR
loss
LR

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

0.0 0.5 1.0 1.5 2.0 2.5
LR Reduction (x10 4)

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

 R
ed

uc
tio

n

linear regression
(LR reduction, Loss reduction)

Const
WSDLD
WSD-Cosine
Cosine
WSD

Figure 12: Linear regression between loss reduction and LR reduction over different schedules. The
total step number is 24000 and the model size is 25M. WSD-Cosine denotes the WSD schedule
with cosine decay function. The decay steps for the WSD schedule and variants are 4000. Left: the
learning rate schedules and corresponding loss curves. Right: the loss reductions over LR reductions
for different schedules, as well as their linear regression. The mean R2 value is 0.9980.

reDuction Law (LLDL):

LLLDL(t) = L0 +A · S1(t)
−α +B(η1 − ηt). (14)

As shown in Table 3, LLDL achieves significantly better accuracy than OPL, although it underper-
forms the full MPL. However, this formulation is unsuitable for optimizing schedules, as its results
collapse to trivial solutions.

Loss Reduction Without γ. Next, we simplify G(x) by setting γ = 0, yielding the No-γ Law:

LNo−γ = L0 +A · S1(t)
−α +B

t∑
k=2

(ηk−1 − ηk) ·G(Sk(t)). (15)

Results (third row of Table 3) indicate a slight performance drop, confirming that γ enhances fitting
accuracy with minimal additional computational cost. Thus, we retain γ in the final MPL.

Step-Based Approximation. An alternative is to replace G(η−γ
k Sk(t)) with a step-based formula-

tion, G(t− k). This yields the Step Power Law (SPL):

LSPL = L0 +A · S1(t)
−α +B

t∑
k=2

(ηk−1 − ηk) ·G(t− k). (16)

While simpler, this approximation reduces prediction accuracy and contradicts empirical results, as it
implies loss reduction even when LR reaches zero.

Exponential Approximation. Substituting G(x) with an exponential function G(x) = 1− e−Cx

gives the Multi-exponential Law (MEL):

LMEL = L0 +A · S1(t)
−α +B

t∑
k=2

(ηk−1 − ηk) ·G(Sk(t)). (17)

Results (fifth row of Table 3) show a performance drop compared to the power-based MPL, consistent
with observations in Section 2.

Relation to Momentum Law. The concurrently proposed Momentum Law (MTL) is in the form of

LMTL(t) = L0 +A · S1(t)
−α +B · S2, where S1 =

t∑
i=1

ηi, S2 =

t∑
i=2

i∑
k=2

(ηk−1 − ηk)λ
i−k.

16

λ < 1 is a hyper-parameter of MTL. It is indeed a variant of MPL since

S2 =

t∑
i=2

i∑
k=2

(ηk−1 − ηk)λ
i−k =

t∑
k=2

(ηk−1 − ηk)

t∑
i=k

λi−k =

t∑
k=2

(ηk−1 − ηk)

(
1− λt−k+1

1− λ

)
.

Thus, the Momentum Law (MTL) is a variant of MPL with an exponential step-based approximation:

LMTL(t) = L0 +A · S1(t)
−α +B′ ·G(t− k + 1), G(x) = 1− e−C′x.

Here, B′ = B
1−λ , C

′ = − log λ. While MTL incorporates step-based decay, its performance (last
second row of Table 3) lags behind MEL, highlighting the limitations of step-based approximations.

B.2 Approximation of Decay Function

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Steps

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 L
R

25M, 36000
25M, 72000
25M, 144000
100M, 36000
100M, 72000
100M, 144000
400M, 36000
400M, 72000
400M, 144000
Average

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Steps

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 L
R

Average
(1 x)2

(1 x)3
2

1 x
1 + cos(x)

2
10 x

Figure 13: Approximation of decay functions.

To facilitate the use of the optimized LR schedules and find out their decaying trends, we try to
approximate the decay function of the WSD-like optimized schedules. Given the optimized schedules
S = {t, η}N,T , where N and T denote model sizes and training steps, we compute the normalized
LRs and steps as follows:

η̃ =
η

ηmax
, t̃ =

t− tmin

tmax − tmin
.

Then we average across N and T as shown in the left of Figure 13, computing an averaged LR
schedule η̃avg. Then we utilize a symbolic regression approach to search for the approximate function
form of the decay function. We get that f(x) = (1 − x)−α best capture the relation between t̃
and η̃avg. In our experiments, α = 3

2 fits well and we show the average schedule against different
candidates function form in the right of Figure 13. We use the WSD with the decay function f to train
a 25M model with 24000 steps and 4000 decay steps. The result with a final loss of 3.274 slightly
outperforms the WSD with exponential function (Hu et al., 2024) with a final loss of 3.276, but can
not match the directly optimized schedule, which reaches below 3.269.

B.3 The Selection of Training Set

We conduct ablation experiments over the loss curves in the training sets, including two-stage, cosine,
and constant LR schedules. We remove one of them and keep the other two as training sets. Then we
fit over these subsets of the full training sets in the same approach with the multi-power law. The
runs are over 25M models. The resulting coefficients are shown in Table 4 and the resulting test
metrics are shown in Table 5. The test metrics are measured over the full test sets, including different
schedule types and horizons. There are some observations as follows:

• As shown in Table 4, the coefficients of different fittings are consistent overall, while there
are a few parameters that vary, like C. We conjecture there are some correlations between
C and other parameters like γ. A refined form of multi-power law would be expected in
future work.

17

• As shown in Table 5, the multi-power law shows its robustness over the training sets, with
comparable performances between the full-set fitting and the subset-fitting results.

Items A B C α β γ L0

Full 0.507 446.4 2.070 0.531 0.406 0.522 3.1
Cosine + 2-stage 0.5272 455.0 6.276 0.5032 0.3622 0.4172 3.147

Constant + 2-stage 0.5279 457.0 7.569 0.5067 0.3613 0.4002 3.149
Constant + Cosine 0.5292 477.4 0.854 0.5041 0.3189 0.6256 3.146

Table 4: Parameters for Different Fittings. “Full” denotes the fitting with the full training set, all three
loss curves.

Model R2 ↑ MAE ↓ RMSE ↓ PredE ↓ WorstE ↓
Full 0.9975 0.0039 0.0046 0.0012 0.0040

Cosine + 2-stage 0.9971 0.0040 0.0046 0.0012 0.0048
Constant + 2-stage 0.9976 0.0037 0.0045 0.0011 0.0039
Constant + Cosine 0.9993 0.0020 0.0031 0.0006 0.0060

Table 5: Performance Metrics for Different Fittings.

C Related Work

Optimal Learning Rate Schedule. Designing an effective learning rate schedule for deep learn-
ing has been a prominent research focus. Smith (2017) proposed a cyclical learning rate sched-
ule. Loshchilov & Hutter (2017), inspired by warm restarts, introduced the cosine learning rate
schedule, demonstrating its superiority across multiple experimental settings. From a theoretical
perspective, Li & Arora (2019) introduced an exponential decay learning rate schedule based on
the equivalence of weight decay. Xu et al. (2019) utilized reinforcement learning algorithms to
learn a learning rate schedule adaptively. Pan et al. (2021) proposed an eigenvalue-dependent step
schedule by incorporating the eigenvalue distribution of the objective function’s Hessian matrix into
the design of the learning rate scheduler. Geiping & Goldstein (2023) experimentally compared the
performance differences of various learning rate schedules, concluding that quick annealing of the
schedule aids in performance improvement. Recently, Hu et al. (2024) introduced a three-phase
learning rate schedule with warm-up, stable, and decay phases, showcasing its superior performance
across multiple datasets.

However, some of these papers focus on heuristically designing high-performance learning rate
schedules without a comprehensible, principled approach to optimize the schedule. Some of the
others try to optimize schedules within a function subspace. The effectiveness of the resulting
function may be restricted by the subspace. Our paper seeks to open the door to a principled and
comprehensible path of the optimal learning rate schedule design.

Scaling Laws. Scaling laws have arguably been the driving force behind the development of large
language models. Initially proposed by Kaplan et al. (2020) and further developed by Hoffmann
et al. (2022), Kadra et al. (2023), Aghajanyan et al. (2023) and Muennighoff et al. (2023), among
others, most scaling laws adopt a power law form. However, due to the lack of dependence on the
learning rate, these laws typically predict only the final loss of a training process, lacking guidance
for the full training curve. This is because only the final loss bears a full LR decay while the LR
decays at the intermediate steps are not sufficient. Typically, they need more than 10 training curves
to obtain the scaling law of the final losses for one particular schedule type, the Cosine schedule
practically (Hoffmann et al., 2022; Muennighoff et al., 2023). As a comparison, we could fit the
LR-dependent multi-power law applicable across different LR schedule types within only 2-3 loss
curves.

Several explanations for the power law form of scaling laws have been proposed, ranging from the
perspective of data manifolds (Sharma & Kaplan, 2020) to the power law distribution of eigenvalues

18

in the loss landscape (Lin et al., 2024). While our paper does not delve into the discussion about
the model dimension scaling, we discuss the scaling along the data dimension along with the
LR dimension. We believe it offers new perspectives and a novel starting point for theoretical
investigations.

Hyperparameters Optimization. Hyperparameter optimization (HO) has long been a focal point
of research within the machine learning community. For learning rate schedules (LR schedule), early
works primarily employed Bayesian optimization-based approaches (Hutter et al., 2011; Snoek et al.,
2012; Bergstra et al., 2013) or bandit-based solutions (Li et al., 2018) to tune hyperparameters. How-
ever, these works typically parameterized LR schedule as a learnable constant or a family of functions
with learnable parameters, without fully exploring the potential of LR schedule. While this form
of parameterization offers theoretical and experimental convenience, it often lacks interpretability.
Furthermore, methods proposed in Teng et al. (2021); Jin et al. (2021) aim to adjust LR schedule
during training automatically, but these approaches cannot identify the optimal LR schedule before
training begins, and they fail to fully generalize across different datasets, underutilizing the scaling
law information followed by the model. In contrast, Klein et al. (2022) selects hyperparameters based
on differences in learning curves for various hyperparameters, while Kadra et al. (2024) recognizes
the power law phenomenon and develops HP methods based on power law. However, we propose a
more robust scaling law than the power law specifically for the LR schedule dimension and present a
comprehensive framework for optimizing LR schedule.

Theory in Scaling Law. Although there are numerous experimental studies on scaling laws, our
understanding of the theoretical explanation and origins of scaling laws remains very limited. Sharma
& Kaplan (2020) demonstrated that the exponent of the power law is related to the intrinsic dimension
of the data in a specific regression task. Hutter (2021) examined a binary classification toy problem,
deriving a scaling law with respect to data dimensionality for this problem. Jain et al. (2024)
investigated scaling laws in the context of data selection. Bahri et al. (2024) assumed a power-law
spectrum on the covariates, obtaining a scaling law with respect to data and model dimensions in the
setting of least squares loss. Bordelon et al. (2024) considered scaling laws in regression problems
under gradient flow. Atanasov et al. (2024) and Lin et al. (2024) discussed the formation of scaling
laws in high-dimensional linear regression problems. Notably, our theoretical analysis is the first to
provide a loss prediction throughout the training process from the perspective of the learning rate
schedule, formally resembling the multi-power law observed in our experiments.

D Discussions of Multi-Power Law Derivation (Section 2)

D.1 Chinchilla Data Scaling Laws for the Final Loss Prediction.

Considering a fixed hyper-parameter setting, including the batch size, learning rate schedule, model
type, previous work Muennighoff et al. (2023); Hoffmann et al. (2022) mainly follows the Chichilla
Scaling Laws to extrapolate model size N and data quantity D: L(N,D) = L0+A ·D−α+B ·N−β .
According to the form of law, the data scaling is roughly independent of the model scaling. Thus, we
could focus on the data scaling and refer to L(T) = L0 + A · T−α as the Chinchilla Data Scaling
Laws (CDSLs), where T denotes the training steps given the fixed batch size. The Chinchilla law is
exclusively applicable to the final training loss because the Chinchilla law is LR-independent and
the mid-training parts of loss curves commonly bear insufficient learning rate decay compared to the
final loss (Hoffmann et al., 2022). As shown on the left of Figure 7, to extrapolate the final loss, we
first need to generate several (typically more than 10 (Hoffmann et al., 2022; Dubey et al., 2024))
loss curves given a specific schedule (typically the Cosine schedule). Then we could fit CDSL over
the final losses. Noticeably, the validation loss decreasing by 0.001 matters in the LLM scenario,
because slight progress in loss may require intense computation practically, especially on a large scale.
Moreover, the validation loss probably correlates with the emergent ability in downstream tasks. A
little difference in the loss scale may indicate a steep deviation in the downstream performance (Du
et al., 2024).

D.2 Motivation: Continuous Approximations of the Training Dynamics.

The rationale behind this approach is that matching the learning rate sum between the two training
processes should result in similar training losses, and thus a more accurate approximation can be

19

8000 8200 8400 8600
Step

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

(1)=3.0e-04
(2)=2.5e-04
(3)=2.0e-04
(4)=1.5e-04
(5)=1.0e-04
(6)=8.0e-05
(7)=5.0e-05
(8)=4.0e-05
(9)=3.0e-05

Equal LR Sum

8000 8200 8400 8600
Step

3.44

3.46

3.48

3.50

3.52

Lo
ss

(1)=3.0e-04
(2)=2.5e-04
(3)=2.0e-04
(4)=1.5e-04
(5)=1.0e-04
(6)=8.0e-05
(7)=5.0e-05
(8)=4.0e-05
(9)=3.0e-05

Equal LR Sum

Figure 14: Left: Multi-stage schedule and interpolated LR schedules between the multi-stage LR
schedule and the auxiliary schedule. There are 9 stages in our case, and the length of each stage,
except the first one, is 90. The step points with the equal LR sum as the final step are marked in black
and linked with the dash-point line. The learning rates before 8000 steps are constant at 3× 10−4.
Right: Corresponding training curves for the actual multi-stage training curve, the auxiliary schedule
as well as their interpolation.

2000 4000 6000 8000 10000 12000 14000
Step

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1

Lo
ss

loss
pred
loss
pred 36

24

16

12

10

6

3

1

Le
ar

ni
ng

 R
at

e
(x

10
4)

0 10000 20000 30000 40000 50000 60000 70000
Step

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Lo
ss

Loss(400M)
Pred(400M)
Loss(100M)
Pred(100M)
Loss(25M)
Pred(25M)

Figure 15: Loss curves trained with constant LR schedules. Left: The learning rates of schedules
range from 3.0 × 10−4 to 3.6 × 10−3. The total step number is 14400. The loss curves are all fit
with Equation (5). The mean MSE is 1.55× 10−5 and the mean coefficient of determination (R2) is
0.9976. Right: Model sizes include 25M, 100M, and 400M. The total step number is 72000 and LR
is 3.0× 10−4. The mean MSE is 8.04× 10−5 and the mean R2 is 0.9947.

obtained by further exploring the loss reduction term LD(t). To see this, we take SGD as an example.
In theory, if the learning rates used in training η1, . . . , ηT are small, then SGD is known to be a
first-order approximation of its continuous counterpart (Li et al., 2017; Cheng et al., 2020; Elkabetz
& Cohen, 2021), gradient flow, which evolves the parameters θ(τ) according to the differential
equation, dθ(τ)

dτ = −∇L(θ(τ)), where ∇L(θ) stands for the gradient of the loss function at θ, and τ
is a continuous time variable. In this continuous approximation, the step t of SGD corresponds to
the evolution of θ(τ) for a small continuous time interval of length ηt. When the LRs are extremely
small, the parameter after t steps of SGD should be close to θ(τ) with τ =

∑t
k=1 ηk. This motivates

us to match the learning rate sum
∑t

k=1 ηk between the two training processes to approximate the
loss curve. This argument can be extended to other optimization algorithms, such as Adam (Ma
et al., 2022). However, these continuous approximations can be loose for realistic LR schedules, thus
necessitating a more detailed analysis of the loss reduction term LD(t).

20

D.3 Incorporating the Warmup Stage.

In practice, many learning rate schedules include a warmup stage where the learning rate gradually
increases from zero to a peak value. To incorporate the effect of this stage, we can change the
definition of auxiliary process to include the same warmup stage before using the constant learning
rate. Then similar to the argument in Section 2.1, letting W be the sum of learning rates in the
warmup stage, we can change the auxiliary loss formula to L̂const(Z(t)) = L0 +A · (W +S1(t))

−α.
Our multi-power law then becomes

L(T) ≈ L0 +A · (W + S1(t))
−α −

t∑
k=2

B(ηk−1 − ηk)(1− (Cη−γ
k Sk(t) + 1)−β). (18)

This is the actual law we use in experiments since practical schedules often include a warmup stage.

E Two-Stage Experiments (Section 2.2)

In this section, we show the details of the investigation of the variation of coefficients of the power
law of two-stage LR schedules.

Experiment Setting and Law Fitting. The default setting is ηA = 3 × 10−4, ηB = 3 × 10−5,
TA = 8000. In the ablation experiment, ηA ranges from 5 × 10−5 to 1 × 10−3, ηB ranges from
4 × 10−5 to 2.9 × 10−4, and TA ranges from 4000 to 28000. The second stage lengths range
from 1000 to over 6000. We follow Hoffmann et al. (2022) to utilize Huber loss as the objection
function (Huber, 1992),

min
Θ

∑
x

Huberδ(log L̂DΘ(TA + x)− log LD(TA + x)),

where Θ = {B̃, C̃, β}, and we set δ = 1× 10−2. For each experiment, we use the Adam optimizer
with a learning rate at 1× 10−4, and total steps of 20000. Here we do not conform to the L-BFGS
algorithm due to the function form of U(s). The parameters are initialized based on the estimation of
asymptotic values of loss reduction and the slopes at the beginning of the second stage.

Fixed β Results. We propose a function form in Equation (6) to fit the loss reduction curve. The
form guarantees the loss reduction zero when there is no LR reduction and fits with a power law. To
explore the coefficient relation with the learning rate, we first investigate the coefficients fit in the
ablation experiments. For the sake of further derivation and based on the fitted coefficients in the
experiments, we fix the exponent β as LR-independent parameter 0.4. Then we re-fit the loss curves
given β = 0.4 to validate the power form holds and further investigate the dependency of different
parameters on the ηA, ηB, and TA. The relation pattern is presented in Figure 4. Part of the two-stage
schedules experiments are shown in Figure 16, including the ablations over the first stage as well as
the second stage learning rates. Although β is fixed, the error margin is feasible for further derivation.

0 1000 2000 3000 4000 5000 6000
Step

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Lo
ss

 R
ed

uc
tio

n

Average Error: 2.75e-06
loss reduction
pred
loss reduction
pred 5

10
15
20
25
30

40

60

100

A
 (x

10
5)

0 1000 2000 3000 4000 5000 6000
Step

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

 R
ed

uc
tio

n

Average Error: 4.99e-06
loss reduction
pred
loss reduction
pred

4

7

12

16

18

22

26

29

B
 (x

10
5)

Figure 16: Left: Varying ηA, the loss reductions over steps x of two-stage LR schedules; Right:
Varying ηB, the loss reductions over steps x of two-stage LR schedules.

21

F Details of Validation Experiments (Section 3)

Training Set, Test Set, and Model Training Settings. The validation experiments are framed as a
machine learning task, where the loss curves in the training set are used to fit the multi-power law,
which is then evaluated on the test set to report prediction accuracy.

The default training set consists of three loss curves: one trained with a cosine learning rate schedule,
one with a constant learning rate schedule, and one with a two-stage learning rate schedule. The
default test set includes unseen learning rate schedule types, loss curves over longer horizons, and
more extreme two-stage learning rate schedules. Detailed descriptions of the training and test sets are
provided in Table 6. Unless otherwise specified, the ending learning rate is set to 1/10 of the peak
learning rate (3× 10−5 by default). The warmup phase spans 2,160 steps, but as the focus is on the
post-warmup phase, only the post-warmup sections are used for fitting (Hu et al., 2024; Tissue et al.,
2024).

The loss curves used in these experiments are generated from training the Llama2 model. The batch
size is fixed at 128, and the sequence length is set to 4,096 across all configurations, resulting in
0.5M tokens per step. To simplify, data volume is described in terms of steps, where 10,000 steps
consume 5B tokens. Validation loss is used as the default performance measure. Detailed model
training hyperparameters are listed in Table 7, and a summary of the model series parameters used in
the experiments is presented in Table 8.

Set Schedule Type Total Lengths ηB/ηA

Training
Constant 24000
Cosine 24000

Two-stage 16000 0.3

Test

WSD 24000
WSDLD 24000

Two-stage 16000 0.1
Two-stage 16000 0.6
Constant 72000
Cosine 72000

Table 6: Summary of training and test sets.

Default Hyperparameter Value
Sequence Batch Size 128
Sequence Length 4096
Optimizer Type AdamW
Beta1 0.9
Beta2 0.95
Epsilon 1× 10−8

Weight Decay 0.1
Gradient Clipping 1.0
Peak Learning Rate 3× 10−4

Final Learning Rate 3× 10−5

Warmup Steps 2160
Table 7: Hyperparameters related to model training.

Fit the Multi-power Law. Similar to the two-stage fitting, we utilize the Huber loss as the objective
function (Huber, 1992),

min
Θ

∑
t

Huberδ(logLΘ(t)− logLgt(t)), (19)

where Θ = {A,B,C, α, β, γ, L0}, δ = 1× 10−3 and Lgt(t) denotes the ground truth of validation
losses. We adopt the Adam optimizer, with a learning rate at 5× 10−3 for the index parameters that

22

7500 10000 12500 15000 17500 20000 22500
Step

3.30

3.35

3.40

3.45

3.50

3.55

Lo
ss 20000 21000 22000 23000

3.30

3.32

3.34

Learning Rate
Loss
Multi-power
One-power

0.5

1.0

1.5

2.0

2.5

Le
ar

ni
ng

 R
at

e
(x

10
4)

6000 8000 10000 12000 14000 16000
Step

2.85

2.90

2.95

3.00

3.05

Lo
ss 13000 13500 14000 14500 15000 15500

2.84

2.86

2.88

Learning Rate
Loss
Multi-power
One-power 1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

7000 8000 9000 10000 11000 12000 13000 14000
Step

3.400

3.425

3.450

3.475

3.500

3.525

3.550

Lo
ss 11500 12000 12500 13000 13500 14000

3.39

3.40

3.41

3.42

3.43

Learning Rate
Loss
Multi-power
One-power 1.8

2.0

2.2

2.4

2.6

2.8

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

10000 20000 30000 40000 50000 60000 70000
Step

2.6

2.7

2.8

2.9

3.0

Lo
ss 60000 62500 65000 67500 70000

2.60

2.62

2.64

2.66

2.68

Learning Rate
Loss
Multi-power
One-power

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

7500 10000 12500 15000 17500 20000 22500
Step

2.95

3.00

3.05

3.10

3.15

3.20

3.25

Lo
ss 20000 21000 22000 23000

2.94

2.96

2.98

3.00

3.02

3.04

Learning Rate
Loss
Multi-power
One-power

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

10000 20000 30000 40000 50000 60000 70000
Step

2.95

3.00

3.05

3.10

3.15

3.20

3.25

Lo
ss 60000 62500 65000 67500 70000

2.935

2.940

2.945

2.950

Learning Rate
Loss
Multi-power
One-power 2.85

2.90

2.95

3.00

3.05

3.10

3.15

Le
ar

ni
ng

 R
at

e
(x

10
4)

Figure 17: Details of fitting and prediction. The subfigures illustrate loss curve fitting (training
set) and prediction (test set) for various configurations. (X,Y) indicates the subfigure at row X ,
column Y . The columns in the accompanying table describe: F/P for Fitting (F) or Prediction (P),
Model Size (M), Step Length (S), and Learning Rate Schedule (LRS). Details of each subfigure
are provided below:

(X,Y) F/P Model Size (M) Step Length (S) LR Schedule (LRS)

(1, 1) F 25M 24,000 Cosine
(1, 2) F 400M 16,000 2-stage (3× 10−4 → 9× 10−5)
(2, 1) P 25M 16,000 2-stage (3× 10−4 → 1.8× 10−4)
(2, 2) P 400M 72,000 Cosine
(3, 1) P 100M 24,000 WSD
(3, 2) P 100M 72,000 Constant

23

Codename Embedding Dimension #Heads #Layers #Non-embeddings #Params

25M 640 5 5 25 89
100M 1024 8 8 101 205
400M 1536 12 12 340 493

1B 2048 36 16 822 1026

Table 8: The model series used in all the experiments. Hoffmann et al. (2022) utilizes the number
of non-embedding parameters (#Non-embeddings) to count model sizes, while Kaplan et al. (2020)
counts the total number of parameters (#Params). The unit of the Parameter is M in this table.

are α, β, and γ in our law, and 5× 10−2 for the coefficient or constant parameters, that are A, B, C
and L0 in our law. We also take a learning rate at 1× 10−5 and 1× 10−6 with initialization as the
previous fitting parameters. We select the result with lower training loss from the first optimization
result and the second one. Each optimization takes over 5× 104 steps. For 400M results, we find
that A = 0.658, B = 614.3, C = 0.164, α = 0.421, β = 0.883, γ = 0.564, L0 = 2.524. For 100M
cases, we have A = 0.592, B = 521.4, C = 0.242, α = 0.460, β = 0.604, γ = 0.647, L0 = 2.792.
Part of fitting and prediction examples are shown in Figure 17.

Fit the Momentum Law. We mainly follow the approach proposed by Tissue et al. (2024). The
objective function follows Equation (19) and we adopt the L-BFGS algorithm to minimize it. For a
fair comparison, we grid search over its hyperparameter λ in {0.95, 0.99, 0.995, 0.999, 0.9995} and
select the best hyperparameter based on the fitting accuracy over the training set. We also evaluate
the law over the full test set listed in Table 6. The prediction accuracy comparison between our
multi-power law and the momentum law is shown in Table 5.

G Details of Optimized LR schedule (Section 4)

Details of Optimizing the Surrogate Objective. To make the optimization more stable, we define
the following quantities dη := {dη1, dη2, . . . , dηT }, where dηi := ηi−1 − ηi. Thus we can conduct
optimization with an easier constraint over mindη L̃Θ̂(dη). Notice that ηi = η0 −

∑i
k=1 dηk

and η is one-to-one with dη. We can denote L̃Θ̂(dη) = LΘ̂(η). So now, instead of directly
optimizing minη LΘ̂(η) in Equation (12), we can conduct optimization with an easier constraint over
mindη L̃Θ̂(dη), which is,

min
dη

L̃Θ̂(dη)

s.t.,

T∑
i=1

dηi ≤ η0, ∀1 ≤ 1 ≤ T,

0 ≤ dηi.

In practice, we find we can solve the optimization problem with a relaxed constraint,

min
dη

L̃Θ̂(dη)

s.t., 0 ≤ dηi ≤ η0.

The optimized results dη also satisfy the constraint
∑T

i=1 dηi ≤ η0, ∀1 ≤ 1 ≤ T . The constraints
are forced by clipping. Our optimization is applied to the law fitted over the training set mentioned in
Appendix F. Regarding the optimization details, we use the Adam optimizer with a constant learning
rate. The learning rate scale is searched ranging from 2 × 10−8 to 1 × 10−9 and the optimization
step number ranges from 50000 to 200000 for better convergence.

Decay Ratio Details. Following Hu et al. (2024), we take the decay function of both exponential
decay and linear decay. We grid search over 3000, 4000, 5000, 6000 and 7000 to find that the best
decay step number is 6000, with a total steps of 24000. The ending learning rate is set to 1/10 of the
peak learning rate following Hu et al. (2024). According to Figure 1, we find that the decay ratio of
our optimized learning rate schedule aligns with the grid-searched WSD. The ending learning rate is
lower than the empirical one and the decay shape is between linear and exponential functions.

24

5000 10000 15000 20000 25000
Step

1

2

3

4

Le
ar

ni
ng

 R
at

e
(x

10
4)

Const
Cosine
Two-Stage

B = 1.2 × 10 4

5000 10000 15000 20000 25000
Step

3.4

3.6

3.8

Lo
ss

loss
pred

5000 10000 15000 20000 25000
Step

1

2

3

4

Le
ar

ni
ng

 R
at

e
(x

10
4)

Two-Stage
B = 4 × 10 5

WSD
WSDLD

5000 10000 15000 20000 25000
Step

3.4

3.6

3.8

Lo
ss

loss
pred

0 1 2 3 4 5 6 7
Step (x104)

1

2

3

4

Le
ar

ni
ng

 R
at

e
(x

10
4)

Const
Cosine

0 1 2 3 4 5 6 7
Step (x104)

3.2

3.4

3.6

3.8

4.0

Lo
ss

Const loss
Const pred
Cosine loss
Cosine pred

5000 10000 15000 20000 25000
Step

2

4

6

Le
ar

ni
ng

 R
at

e
(x

10
4)

Const
Cosine

5000 10000 15000 20000 25000
Step

3.4

3.6

3.8

Lo
ss

loss
pred

5000 10000 15000 20000 25000
Step

2

4

6

Le
ar

ni
ng

 R
at

e
(x

10
4)

Two-Stage
B = 6 × 10 5

WSD
WSDLD

5000 10000 15000 20000 25000
Step

3.4

3.6

3.8

Lo
ss

loss
pred

0 1 2 3 4 5 6 7
Step (x104)

2

4

6

Le
ar

ni
ng

 R
at

e
(x

10
4)

Const
Cosine

0 1 2 3 4 5 6 7
Step (x104)

3.2

3.4

3.6

3.8

Lo
ss

Const loss
Const pred
Cosine loss
Cosine pred

Figure 18: Ablation over peak learning rates. Left: the learning rates of the schedules; Right: the
loss curves of schedules. Updown: the first three rows are the results for the peak learning rate at
4× 10−4 and the last three rows are for the peak learning rate at 6× 10−4. For each set of the three
rows, the first row shows the fitting on the training set, the second row shows the prediction over
unseen schedules and the third row shows the extrapolation on a long horizon loss curve.

25

5000 10000 15000 20000 25000
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Cosine
WSDLD
WSD
Opt

5000 10000 15000 20000 25000
Step

3.4

3.6

3.8

4.0

Lo
ss

19000 20000 21000 22000 23000
3.26

3.28

3.30

3.32

3.34

Cosine
WSDLD
WSD
Opt

5000 10000 15000 20000 25000
Step

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Cosine
WSDLD
WSD
Opt

5000 10000 15000 20000 25000
Step

3.0

3.2

3.4

3.6

3.8

Lo
ss

19000 20000 21000 22000 23000

2.94

2.96

2.98

3.00

3.02

3.04

Cosine
WSDLD
WSD
Opt

Figure 19: Our optimized LR schedules and their loss curve compared with Cosine, WSD, and
WSDLD schedules. The total step number is 24000. The decay step number of WSD and its variant
is 4000. Upper: 25M; Lower: 100M; Left: Learning rates over step; Right: Losses over step.

Optimized Schedule of Longer Horizons and Different Model Sizes Apart from the optimized
LR schedules shown in Figure 1 and Figure 19, we further validate the optimized schedules of
longer horizons and different model sizes. We optimize the LR schedules of 72000 steps based on
the multi-power law fit over the training set. The training set conforms to the default setting only
containing curves with lengths no longer than 24000, and we conduct experiments from 25M to 400M.
As shown in Figure 20, the resulting schedules are also in the shape of WSD schedules, consisting of
a stable phase and a decay phase. We compare the loss curves of the optimized LR schedules with
those of commonly used Cosine LR schedules, we find that the optimized LR schedules outperform
the Cosine LR schedules across different model sizes.

Zero-Ending Learning Rate Experiments. The optimized schedules consistently outperform
WSD variants with “zero-ending" learning rates. As shown in Figure 21, we compare WSD(LD)
variants with near-zero ending learning rates, the optimized schedules, and the original WSD(LD)
schedules. In this experiment, the ending learning rate is set to 3 × 10−7, which is 1/100 of the
previous setting. Notably, a lower ending learning rate does not consistently lead to improved final
loss. For example, the final loss of the WSD schedule increases with a near-zero ending learning
rate. This suggests a complex interaction between the ending learning rate and the decay function,
highlighting the challenges of jointly optimizing these hyperparameters in WSD schedules. In
this context, the optimized schedule demonstrates its advantage by reducing the need for extensive
hyperparameter tuning in WSD variants.

26

0 10000 20000 30000 40000 50000 60000 70000
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Cosine
Opt(25M)
Opt(100M)
Opt(400M)
Loss
Learning Rate

50000 55000 60000 65000 70000
Step

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

Lo
ss

Figure 20: Left: optimized LR schedule vs Cosine LR schedule. The total step number is 72000, and
model sizes range from 25M to 400M. Right: The loss curves of optimized schedules and Cosine
schedules.

5000 10000 15000 20000 25000
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

WSDLD
WSDLD(ZE)
WSD
WSD(ZE)
Opt

5000 10000 15000 20000 25000
Step

3.4

3.6

3.8

4.0

Lo
ss

19000 20000 21000 22000 23000
3.26

3.28

3.30

3.32

3.34

WSDLD
WSDLD(ZE)
WSD
WSD(ZE)
Opt

Figure 21: The comparison between the optimized schedules with the WSD variants with end LR as
0. WSD (ZE) and WSDLD (ZE) represent the WSD and WSDLD variants with ending learning rate
as 3× 10−7, approximately “zero” ending LR compared to default 3× 10−5. Left: the learning rate
comparison; Right: the loss comparison.

27

	Introduction
	Empirical Derivation of the Multi-Power Law
	Our Approach: Learning Rate Sum Matching
	Case 1: Two-stage Learning Rate Schedule
	Case 2: Multi-Stage Leaning Rate Schedule
	General Case

	Empirical Validation of the Multi-Power Law
	Results
	Comparison with Baselines

	The Multi-power Law Induces Better LR Schedules
	Method
	Results

	Conclusions and Future Directions
	Discussion
	Simplification of Formula, Usage and Fitting.
	Simplification of Formula
	Approximation of Decay Function
	The Selection of Training Set

	Related Work
	Discussions of Multi-Power Law Derivation (sec:approachsection)
	Chinchilla Data Scaling Laws for the Final Loss Prediction.
	Motivation: Continuous Approximations of the Training Dynamics.
	Incorporating the Warmup Stage.

	Two-Stage Experiments (sec:two-stage)
	Details of Validation Experiments (Section 3)
	Details of Optimized LR schedule (sec:opt-lr-schedule)

