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ABSTRACT

Federated Learning (FL) has emerged as a promising paradigm for collaborative
model training while preserving data privacy across decentralized participants. As
FL adoption grows, numerous techniques have been proposed to tackle its practical
challenges. However, the lack of standardized evaluation across key dimensions
hampers systematic progress and fair comparison of FL methods. In this work,
we introduce FLAT-Bench, a unified framework for analyzing federated learning
through two foundational dimensions: Adaptation and Trust. We provide an
in-depth examination of the conceptual foundations, task formulations, and open
research challenges associated with each theme. We have extensively benchmarked
representative methods and datasets for adaptation to heterogeneous clients and
trustworthiness in adversarial or unreliable environments. FLAT-Bench lays the
groundwork for systematic and holistic evaluation of federated learning with real-
world relevance. We will make our complete codebase publicly accessible and a
curated repository that continuously tracks new developments and research in the
FL literature.

1 INTRODUCTION

Deep learning has revolutionized numerous fields, leading to groundbreaking advancements across
various scientific domains, and has increasingly permeated industrial and societal applications. This
transformation is especially evident in areas such as computer vision (Deng et al., 2009; Russakovsky
et al., 2015a; Dosovitskiy et al., 2021; He et al., 2016; Xie et al., 2017; Huang et al., 2019; Yenduri
et al., 2024), natural language processing (Vaswani et al., 2017; Devlin et al., 2019), multi-modal
learning (Radford et al., 2021; Li et al., 2022; Zhang et al., 2023), and medical analysis (Chen et al.,
2023c). With increasing concerns around data sensitivity and privacy, several regulatory frameworks
have been introduced to regulate how data is collected and used (May & Sell, 2006; of Investigators
for Fairness in Trial Data Sharing, 2016; Voigt & dem Bussche, 2017; Pardau, 2018). As a result,
traditional centralized training approaches, which rely on aggregating raw data from multiple sources,
face significant deployment challenges in real-world applications. To address these constraints,
federated learning (FL) (Konečnỳ et al., 2016b;a; McMahan et al., 2017; Yang et al., 2019; Sun
et al., 2020; Hong & Chae, 2021; Yang et al., 2021) has gained traction as an effective paradigm
for privacy-aware collaborative learning. FL allows multiple participants to collaboratively train a
shared model without sharing their data. Clients locally update the model using their data, and only
the learned updates are sent to a central server, which aggregates them into a global model for further
refinement. This decentralized approach allows FL to support secure and privacy-preserving learning
across distributed data silos. Despite notable progress in FL research (Hard et al., 2018; Ju et al.,
2020; Zhuang et al., 2020; Guo et al., 2020; Liu et al., 2020a; Wu & Gong, 2021; Pati et al., 2022;
Chen et al., 2023b), the field still faces several open challenges. Two primary areas of concern are:

• Adaptation. In federated learning, data is often generated across diverse sources, naturally resulting
in non-independent and non-identically distributed (Non-IID) characteristics (N.Shoham et al., 2019;
N.Liu et al., 2019; K.Hsieh et al., 2020; T.Li et al., 2020a; X.Li et al., 2021; C.Wu et al., 2022; Y.Tan
et al., 2023). These discrepancies introduce two primary types of distribution shifts: i) Cross-Client
Distribution Shift: Each client typically operates on data with a distinct distribution, leading to
significant heterogeneity between participants. As a result, clients tend to optimize their local models
toward different empirical minima, which may conflict with one another (Q.Li et al., 2021a; M.Luo
et al., 2021; L.Zhang et al., 2021b; Y.Dandi et al., 2022; Z.Qu et al., 2022). This misalignment
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Table 1: Summary of existing works. Additional information can be found in Appendix C.

Adaptation Trust
Prior Works Generalization Robustness Fairness Benchmark

[arXiv’18], Y.Zhao (2018), [TIST’19] Yang et al. (2019), [WS4’20] V.Kulkarni et al. (2020), [arXiv’21] L.Zhang et al. (2021a)
✓[FGCS’22] X.Ma et al. (2022), [CSUR’23] M.Ye et al. (2023), [arXiv’23] Y.Li et al. (2023)

[NC’21] H.Zhu et al. (2021), [CSUR’22] Nguyen et al. (2022a), [FGCS’22] X.Ma et al. (2022)

[FGCS’21]V.Mothukuri et al. (2021), [SPM’20]T.Li et al. (2020c), [CSR’23]C.Xu et al. (2021) ✓ ✓

[FTML’21]P.Kairouz et al. (2021), [TKDE’21]Q.Li et al. (2021b) ✓ ✓ ✓ ✓

[arXiv’20]L.Lyu et al. (2020a), [TrustCom’22] J.Shi et al. (2022), [TNNLS’22] L.Lyu et al. (2022) ✓

[TKDE’21]Q.Li et al. (2021b), [arXiv’22] X.Liu et al. (2022), [arXiv’23] J.Shao et al. (2023) ✓ ✓ ✓

[TPAMI’24]Huang et al. (2024) [CVPR’24] Zhang et al. (2024) ✓ ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓

in optimization trajectories can hinder convergence and reduce the effectiveness of the aggregated
global model. ii) Out-of-Client Distribution Shift: Federated models are trained solely on data
from participating clients, and thus are biased toward the distributions present during training. When
deployed in unseen environments or encountering new clients (i.e., external domains), these models
often underperform due to their inability to generalize beyond the observed training distributions
(H.Yuan et al., 2022; X.Peng et al., 2020; Q.Liu et al., 2021; M.Jiang et al., 2023; L.Jiang & T.Lin,
2023). This issue limits the model’s robustness in real-world scenarios.

• Trust. Although FL preserves privacy, its decentralized structure makes it vulnerable: a few
compromised clients can poison local updates and skew global training. i) Byzantine Attacks: Clients
may send malicious updates by poisoning local data (data poisoning (B.VanRooyen et al., 2015;
B.Han et al., 2018)) or tampering with model weights (model poisoning (G.Baruch et al., 2019; C.Xie
et al., 2020b; M.Fang et al., 2020)), degrading model accuracy. ii) Backdoor Attacks: Adversaries
embed triggers in their updates so the global model misclassifies specific inputs while appearing
normal otherwise (X.Chen et al., 2017; C.Liao et al., 2018; T.Gu et al., 2019). Distributed trigger
schemes further evade detection by splitting patterns across clients (C.Xie et al., 2020a; X.Lyu et al.,
2023). In high-stakes applications such as medical imaging (Nguyen et al., 2022a), autonomous
driving (A.Nguyen et al., 2022), and fraud detection (W.Zheng et al., 2021), these threats demand
robust defenses and fair reward mechanisms to ensure long-term collaboration. iii) Privacy-Preserving
Adaptation: Adapting pretrained models to local tasks (e.g., via federated fine-tuning methods such as
LoRA (Hu et al., 2021)) must preserve data privacy while maintaining robustness under heterogeneous
client objectives (Li et al., 2020).

Despite growing interest in adaptation and trust, the absence of a unified evaluation framework
limits systematic progress. We address this by introducing a structured benchmark that consolidates
these challenges for robust, comparative assessment. As shown in Table 1, prior works often focus
on isolated FL challenges e.g., generalization (Y.Zhao, 2018), robustness (L.Lyu et al., 2020a),
or fairness (Y.Shi et al., 2023a) without offering unified perspectives. In contrast, our benchmark
holistically evaluates adaptation and trust (robustness and fairness) making our contributions threefold:

• We introduce FLAT-Bench, a unified benchmark that not only categorizes key federated learning
challenges across Adaptation and Trustworthiness, but also formalizes task settings, evaluation
criteria, and research gaps in current literature.

• We conduct extensive empirical evaluations covering adaptation and trust (robustness and fairness)
across diverse FL settings.

• We highlight future research directions and consolidate key datasets, tasks, and method trends to
guide actionable progress in federated learning deployments.

2 ADAPTIVE FEDERATED LEARNING

Adaptive Federated Learning tackles generalization and personalization across diverse clients. It
balances global performance with client-specific adaptation using techniques like meta-learning and
fine-tuning, enabling effective deployment in Non-IID settings such as healthcare and cross-device
systems.

Cross Calibration. In the case of Cross-Client Shift challenge, client data is often distributed in a
highly skewed manner, which results in inconsistencies between local training goals. Consequently,
each client updates its model based on a distinct local optimum, resulting in divergence of optimization
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Table 2: Overview of Key Attributes in Reviewed Techniques for Cross Calibration (See § 2).

Method Venue Core Idea

Global Neural Network
Drawback: Linear growth in local computational load
FedProxT.Li et al. (2020a) [MLSys’20] ℓ2-based constraint on updates
SCAFFOLDKarimireddy et al. (2020) [ICML’20] Gradient correction via control variates
MOONQ.Li et al. (2021a) [CVPR’21] Contrastive learning in feature space
FedNTDG.Lee et al. (2022) [NeurIPS’22] Decoupled approach to knowledge transfer
FedSegMiao et al. (2023) [CVPR’23] Contrastive strategy at pixel-level granularity
GeFLKang et al. (2024) [arXiv’24] Aggregate global knowledge across users

Global Statistical Cues
Drawback: Heavily dependent on comprehensive data diversity
FedProcX.Mu et al. (2021) [arXiv’21] Use of prototype similarity for contrast
HarmoFL M.Jiang et al. (2022) [AAAI’22] Employs signal amplitude normalization
FedFA T.Zhou & E.Konukoglu (2023) [ICLR’23] Data augmentation via Gaussian modeling
FPLHuang et al. (2023) [CVPR’23] Prototype refinement using clustering
FedSBSoltany et al. (2025) [ICASSP’25] Utilizes label smoothing to prevent overfitting

Augmented Architectures
Drawback: Introduces integration issues and added overhead
FedMLBJ.Kim et al. (2022) [ICML’22] Multi-branch architecture for flexibility
FedCGANY.Wu et al. (2022) [IJCAI’22] GAN-based synthetic data generation
ADCOLQ.Li et al. (2023) [ICML’23] Generator that learns client representations
DaFKDH.Wang et al. (2023) [CVPR’23] Introduces a discriminator for distillation
CAFAKouda et al. (2025) [FGCS’25] Leverages computational capacities for local training

Self-Regulated Learning
Drawback: Hyperparameter tuning instability, risk of forgetting
FedRSLi & Zhan (2021) [KDD’21] Limits softmax confidence levels
FedAlign M.Mendieta et al. (2022) [CVPR’22] Ensures final layer stability via Lipschitz constraints
FedSAM Z.Qu et al. (2022) [ICML’22] Applies sharpness-aware optimization
FedLC Zhang et al. (2022) [ICML’22] Adjusts logits using class-wise probability
FedDecorr Y.Shi et al. (2023b) [ICLR’23] Reduces inter-feature redundancy
FedVR-ALThakur et al. (2024) [arXiv’24] Variance reduction and adaptation for non-convex optimization

Method Venue Core Idea

Collaborative Data Sharing
Drawback: Assumes prior availability of suitable external data
DC-Adam P.Tian et al. (2021) [CS’21] Initial warm-up using pre-distributed data
FEDAUX F.Sattler et al. (2021) [TNNLS’21] Auxiliary data for pretraining and distillation
ProxyFLKalra et al. (2023) [NatureComms’23] Shares proxy models across clients
ShareFLShao et al. (2024) [arXiv’23] Review on collaborative data sharing in FL
FedSPDLin et al. (2024) [arXiv’24] Clustering-based framework enabling consensus for distinct data clusters

Data Augmentation for FL
Drawback: May reduce data variety, can cause privacy issues
FedMixT.Yoon et al. (2021) [ICLR’21] Mixup of averaged samples across clients
FEDGENZ.Zhu et al. (2021) [ICML’21] Uses ensemble generators for diversity
FedInverseWu et al. (2024) [ICLR’24] Investigates inversion attacks and defenses
FLeaXia et al. (2024) [KDD’24] Privacy-preserving feature augmentation techniques

Sample Filtering in FL
Drawback: Risk of unfair exclusion at client/data level
FedACSWang et al. (2021) [IWQOS’21] Detects and excludes poisoned data via clustering
SafeX.Xu et al. (2022) [TII’22] Prefers clients with lower distributional skew
FedBalancer Shin et al. (2022) [MobiSys’22] Prioritizes fair data sampling across devices
FedrtidYang et al. (2024) [Cybersecurity’24] Introducing random client participation and adaptive time constraints

Aggregation Reweighting at Server
Drawback: Requires thorough dataset quality evaluation
FEDBEChen & Chao (2021) [ICLR’21] Uses Bayesian ensembles for aggregation
ElasticDengsheng et al. (2023) [CVPR’23] Aggregates via parameter sensitivity interpolation
FFADilley et al. (2024) [arXiv’24] Novel metrics that consider client participation and aggregation methods

Server-Side Adaptive Methods
Drawback: Needs auxiliary data and aligned training objectives
FedMD Li & Wang (2019) [NeurIPS’19] Distills from local classifiers on proxy data
FedDF Lin et al. (2020) [NeurIPS’20] Combines knowledge from diverse client models
FedGKTHe et al. (2020) [NeurIPS’20] Shares group knowledge across clients
FedOPTReddi et al. (2021) [ICLR’21] Adaptive optimization on central server
FCCL Huang et al. (2022) [CVPR’22] Cross-correlation for representation alignment

directions. Existing approaches primarily aim to mitigate this divergence by adjusting client updates
from three key perspectives, as shown in Table 2.

Client Regularization. Federated methods that seek to align client updates with a shared global
objective can be broadly classified into four categories. First, global neural network guidance directly
incorporates the aggregated model into each client’s local update either via parameter-sensitivity
constraints (e.g., FedProx (T.Li et al., 2020a), FedCurv (N.Shoham et al., 2019), FedDyn (Acar
et al., 2021)) or by penalizing divergence from global predictions (e.g., MOON (Q.Li et al., 2021a),
FedUFO (L.Zhang et al., 2021b)) at the cost of increased computation that scales with model size.
Second, global statistical cues approaches construct class-wise summaries (e.g., prototypes (X.Mu
et al., 2021), Gaussian descriptors (M.Luo et al., 2021), spectral signatures (M.Jiang et al., 2022))
or aggregate feature representations (Peng et al., 2022) to provide finer-grained guidance, though
their reliability depends on the diversity and richness of client data. Third, augmented architectures
introduce supplementary modules such as GAN-based generators (Z.Zhu et al., 2021; H.Wang et al.,
2023) or parallel “global” branches (He et al., 2020; J.Kim et al., 2022) to counter client drift,
but these often require architectural compatibility and increase communication overhead. Finally,
self-regulated learning leverage self-distillation (Yu et al., 2021) or reweighted loss functions (Li &
Zhan, 2021; Y.Shi et al., 2023b) to stabilize local training without extra communication, though their
effectiveness can be highly sensitive to hyperparameters, especially under extreme data heterogeneity.

Client Augmentation. To mitigate client data heterogeneity, FL methods can be broadly grouped
into three strategies. First, collaborative data sharing exchanges labeled or unlabeled examples or
models among clients to promote knowledge transfer. Approaches like DC-Adam (P.Tian et al.,
2021) and FEDAUX (F.Sattler et al., 2021) use warm-up phases or auxiliary pretraining, while others
like ProxyFL (Kalra et al., 2023) share proxy models to enable indirect data knowledge exchange.
ShareFL (Shao et al., 2024) provides a comprehensive review, and FedSPD (Lin et al., 2024) enables
inter-client clustering to reach consensus among data-similar clients. However, these strategies
assume the availability of meaningful and appropriately matched auxiliary data, which may not
always be feasible. Second, data augmentation enhances local datasets to simulate more diverse
conditions. Methods like FedMix (T.Yoon et al., 2021) mix local data representations across clients,
FEDGEN (Z.Zhu et al., 2021) employs ensemble generators to synthesize informative samples, and
FedInverse (Wu et al., 2024) explores the privacy implications of such augmentations. FLea (Xia
et al., 2024) applies privacy-preserving feature augmentation techniques. While useful, these methods
can reduce diversity or inadvertently leak private data through reconstruction or overfitting. Third,
sample filtering avoids direct data sharing or augmentation by selecting clients or samples deemed
more trustworthy. For example, FedACS (Wang et al., 2021) and Safe (X.Xu et al., 2022) cluster data
or prioritize lower-skew clients, respectively. FedBalancer (Shin et al., 2022) balances fairness by
allocating sampling quotas, and Fedrtid (Yang et al., 2024) introduces random client participation
with adaptive timing to reduce resource burden and enhance robustness. However, these methods risk
marginalizing clients with less “mainstream” data, undermining fairness.
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Table 3: Overview of key properties of the evaluated methods for Unknown Generalization (see
§ 2). The symbols ⋆ and ◦ indicate possible privacy exposure and modifications to the model
architecture, respectively.

Federated Domain Adaptation
Methods Venue Highlight Limitation
FADA X.Peng et al. (2020) [ICLR’20] Adversarial alignment ◦: Uses GAN Goodfellow et al. (2014)
COPA G.Wu & S.Gong (2021) [ICCV’21] Shared encoder, task heads ◦: Needs IBN X.Pan et al. (2018)
AEGR G.Li et al. (2023) [ICME’23] Pseudo-label tuning ⋆: Exposed to PGD A.Madry et al. (2017)
FedGP Dai et al. (2024) [ICLR’24] Gradient projection aggregation Requires projection tuning
FedRF-TCA Feng et al. (2025) [TKDE’25] Random features for efficiency May underperform on complex domains

Federated Domain Generalization
Methods Venue Highlight Limitation
FedDG Q.Liu et al. (2021) [CVPR’21] Frequency-based sharing ⋆: Reveals amplitude
CCST Chen et al. (2023a) [WACV’23] Client-wise style mixing ⋆: Leaks style cues
CSAC J.Yuan et al. (2023) [TKDE’23] Semantic layer fusion ◦: Adds attention
FedSB Soltany et al. (2025) [ICASSP’25] Label smoothing and balanced training Careful tuning of smoothing parameters
FedCGA Liu et al. (2024b) [ICME’24] Global consistent augmentation Assumes availability of diverse styles

Server Operation. To better handle heterogeneous client updates, federated learning can adapt
aggregation dynamics at the server. One direction is aggregation reweighting, where clients are
weighted based on factors beyond static proportions. For instance, FEDBE (Chen & Chao, 2021) uses
Bayesian ensembling, Elastic (Dengsheng et al., 2023) reweights updates using gradient sensitivity,
and FFA (Dilley et al., 2024) introduces fairness-aware metrics to evaluate participation and aggrega-
tion impacts. While these improve personalization and convergence, they rely on costly evaluations
of data quality or model variance. A complementary direction is server-side adaptive optimization,
where the central model is refined using external data or tailored learning rules. Methods like FedMD
(Li & Wang, 2019), FedDF (Lin et al., 2020), and FedGKT (He et al., 2020) distill knowledge across
clients using proxy data. FedOPT (Reddi et al., 2021) adapts server-side optimization rules, while
FCCL (Huang et al., 2022) aligns representations using cross-correlation signals. Though effec-
tive, such approaches often require additional datasets and tuned objectives, which may complicate
real-world deployment.

Unknown Generalization. Prior studies have shown that deep neural networks often overfit
their training data and produce overly confident outputs (C.Guo et al., 2017; B.Lakshminarayanan
et al., 2017b). We summarize the essential characteristics of various solutions addressing Unknown
Generalization in Table 3. Such overconfidence can prove detrimental in practice (D.Amodei et al.,
2016), as even slight distributional shifts between training and deployment data may lead to substantial
performance degradation (B.Lakshminarayanan et al., 2017a; Y.Ovadia et al., 2019). In federated
learning, the majority of the work concentrates on boosting in-distribution accuracy across clients,
with limited attention paid to how models generalize to novel, out-of-federation domains (D.Peterson
et al., 2019; X.Peng et al., 2020; Q.Liu et al., 2021; H.Yuan et al., 2022). Approaches addressing
this gap can be categorized according to when they gain access to out-of-distribution data: Federated
Domain Adaptation (FDA) and Federated Domain Generalization (FDG). FDA methods incorporate
unlabeled target-domain samples during training to reduce distribution shift, and can be broadly
categorized into alignment-based approaches which enforce feature consistency through contrastive
losses (Y.Wei et al., 2022; Y.Wei & Y.Han, 2023), knowledge-distillation alignment (H.Feng et al.,
2021; Z.Niu et al., 2023; X.Liu et al., 2023), adversarial adaptation (G.Li et al., 2023), or gradient
matching (Zhu et al., 2022; Zeng et al., 2022) and disentanglement-based methods, which split
the model into shared and domain-specific components via adversarial losses (X.Peng et al., 2020;
L.Huang et al., 2011), multi-expert gating (Zec et al., 2020), or separate classifiers (G.Wu & S.Gong,
2021). In contrast, FDG seeks to train on heterogeneous client data and generalize directly to unseen
domains, using either invariant optimization techniques, such as spectrum alignment (Q.Liu et al.,
2021), style normalization (Chen et al., 2023a), barycenter-based feature fusion (Zhou et al., 2023),
or specialized architectural blocks (GANs (L.Zhang et al., 2021a), AdaIN (Chen et al., 2023a), IBN
(G.Wu & S.Gong, 2021)) or invariant aggregation schemes that reweight or calibrate server-side
model fusion to balance domain performance (R.Zhang et al., 2023; Duan et al., 2023; J.Yuan et al.,
2023).

3 TRUSTWORTHY FEDERATED LEARNING

Trustworthy Federated Learning centers on robustness and fairness. Robustness addresses threats
from adversarial clients or corrupted updates, while fairness ensures equitable performance across
heterogeneous users. Together, they define the trust boundary essential for FL deployment in sensitive
domains like healthcare and finance.

Byzantine Tolerance. To guard against Byzantine clients, robust aggregation methods can be
grouped into three families: distance-based tolerance, which detects and discards updates that deviate
strongly from the group consensus (e.g., Krum (Blanchard et al., 2017), FoolsGold (Fung et al., 2018),
FABA (Q.Xia et al., 2019)); statistical-based tolerance, which applies robust estimators such as the
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geometric median or trimmed means to filter outliers without tracking individual contributions (e.g.,
RFA (K.Pillutla et al., 2022), Bulyan (R.Guerraoui et al., 2018)); and proxy-based tolerance, which
uses a small, clean auxiliary dataset to score and weight client updates by their performance on trusted
samples (e.g., Sageflow (J.Park et al., 2021), FLTrust (X.Cao et al., 2021b)). Similarly, mitigating
backdoor attacks has led to three main defense paradigms: post-hoc model sanitization, where the
aggregated model is fine-tuned or distilled on clean data to erase backdoors (e.g., FedPurning (C.Wu
et al., 2020), FedDF (Lin et al., 2020)); aggregation-time filtering, which extends Byzantine defenses
to remove poisoned updates during server aggregation (e.g., DimKrum (Z.Zhang et al., 2022), RLR
(Ozdayi et al., 2021)); and certified defenses, which construct provable guarantees by maintaining
multiple model variants or applying randomized smoothing so that small client perturbations cannot
alter predictions (e.g., ProvableFL (X.Cao et al., 2021a), CRFL (C.Xie et al., 2021)). Each category
trades off different assumptions, computational costs, and requirements for auxiliary data or statistical
priors, and their effectiveness can degrade significantly under real-world heterogeneity. Table 4
summarizes the essential characteristics of Byzantine Tolerance solutions discussed above.

Table 4: Key characteristics of the reviewed
Byzantine Tolerance solutions as discussed in
(§ 3).

Methods Venue Highlight

Distance Base Tolerance
Limitation: Poor handling of data heterogeneity
Multi Krum Blanchard et al. (2017) [NeurIPS’17] Selects gradients using Krum rule
FoolsGold Fung et al. (2018) [arXiv’18] Detects sybils via similarity scores
DnC Shejwalkar & Houmansadr (2021) [NDSS’21] Uses SVD to isolate abnormal updates
RED-FL Herath et al. (2023) [GlobConET’23] Distance-based method to assign weights to client updates
FedWad Rakotomamonjy et al. (2024) [ICLR’24] Compute Wasserstein distances

Statistics Distribution Tolerance
Limitation: Depends on strong mathematical assumptions
Trim Median D.Yin et al. (2018) [ICML’18] Applies trimmed mean per dimension
Bulyan R.Guerraoui et al. (2018) [ICML’18] Selects top vectors, aggregates per axis
RFA K.Pillutla et al. (2022) [TSP’22] Iterative median via Weiszfeld approach
OPDS-FL Liu et al. (2023b) [NeurIPS’23] Measure data heterogeneity across clients
DFL-FS Chen et al. (2024) [ICME’24] Address long-tailed and non-IID data distributions
FD-PerFL Mclaughlin & Su (2024) [NeurIPS’24] Feature distributions for personalized federated learning

Proxy Dataset Tolerance
Limitation: Needs trusted data and client similarity
FLTrust X.Cao et al. (2021b) [NDSS’21] Uses trusted seed and ReLU score
Sageflow J.Park et al. (2021) [NeurIPS’21] Adjusts weights via entropy and loss
ProxyZKP Li et al. (2024) [ScientificReports’24] Zero-knowledge proofs with polynomial proxy models

Collaboration Fairness. In federated learning,
fair contribution evaluation is critical to reward
clients in proportion to their inputs while re-
specting data privacy (L.Lyu et al., 2020d;b). A
common strategy is individualized evaluation,
where each client’s score is derived from locally
available signals such as data acquisition cost
(J.Zhang et al., 2020), economic incentives (e.g.,
contract theory (J.Kang et al., 2019), Stackel-
berg models (M.Simaan & Cruz, 1973)), com-
pute bids (Thi Le et al., 2021), or performance-
based reputations computed via local validation
(L.Lyu et al., 2020c) or update divergence from
the global model (Li et al., 2021). However, this
approach assumes honest reporting and can pe-
nalize clients with non-IID or smaller datasets.
An alternative is marginal contribution estima-
tion via cooperative game theory, notably Shapley value approximations (Shapley, 1997; Garrido-
Lucero et al., 2024; X.Xu et al., 2021). Methods like Cosine-Gradient Shapley (CGSV) (X.Xu et al.,
2021) and FEDCE (Jiang et al., 2023) evaluate each client’s impact on model performance, but suffer
from exponential complexity and often require auxiliary validation data, limiting their scalability in
large-scale federations.

Performance Fairness. Performance imbalance in federated learning arises when the global model
disproportionately favors clients with abundant or homogeneous data, leaving underrepresented
participants with subpar accuracy. To mitigate this, two main classes of methods have emerged:
(i) fairness-aware optimization, which embeds fairness constraints directly into each client’s local
loss—for example, min–max formulations such as AFL (M.Mohri et al., 2019) and loss-penalizing
schemes like qFFL (T.Li et al., 2020b), or multi-objective descent approaches such as FedMGDA
(Z.Hu et al., 2020) and FCFL (Cui et al., 2021) to uplift the worst-performing clients; and (ii) fair
aggregation reweighting, which dynamically adjusts server-side combination weights based on client-
level signals (e.g., gradient conflict in FedFV (Z.Wang et al., 2021) or variance of generalization gaps
in FedCE (Jiang et al., 2023; Ezzeldin et al., 2023)). While optimization-based strategies can improve
the tail accuracy, they often assume honest reporting and can degrade overall utility; reweighting
methods reduce skew via stale or auxiliary risk estimates, but incur extra synchronization overhead
and may require validation data.

4 BENCHMARK SETUP

Label Skew Datasets. A common approach in current studies to emulate Label Skew scenarios
involves using the Dirichlet distribution, denoted as Dir(β) (Appendix A.2.1), for experimental
purposes (Li et al., 2018; 2021). In this context, β > 0 acts as a concentration parameter that dictates
the extent of class imbalance. Smaller values of β cause a sharper disparity between local and global
class distributions, intensifying data heterogeneity among clients. • Cifar-10 (Krizhevsky et al.,
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Figure 1: Test accuracy over 100 communication rounds on Cifar-10, Cifar-100, MNIST, and Fashion-
MNIST datasets under Dirichlet distribution with β = 0.5.

Caltech(Ca)

Webcam(W)

Amazon(Am)

Dslr(D)
Office-Caltech

USPS(U)

SYN(SY)

MNIST(M)

SVHN(SV)
Digits

Art Painting(AP)

Cartoon(C) Sketch(S)

Photo(Ph)

PACS

Dslr(D)Amazon(AM)

Webcam(W)
Office-31

Figure 2: Visualization for Digits (Y.LeCun et al., 1998; Hull, 1994; Y.Netzer et al., 2011; Kingma
& Welling, 2013), Office Caltech (Fei-Fei et al., 2007), PACS , and Office31 (Saenko et al., 2010).
Refer to § 4.

2009) contains 50, 000 images for training and 10,000 images for the validation. Its image size is 32
× 32 within 10 categories. • Cifar-100 (Krizhevsky et al., 2009) is a famous image classification
dataset, containing 32 × 32 images of 100 categories. Training and validating sets are composed of
50,000 and 10,000 images. • Tiny-ImageNet (Russakovsky et al., 2015b) is the subset of ImageNet
with 100K images of size 64 × 64 with 200 classes scale. • Fashion-MNIST (Xiao et al., 2017)
includes 70, 000 28× 28 grayscale fashion product images with ten categories. Figure 1 illustrates
test accuracy over 100 communication rounds for various federated learning methods on Cifar-10,
Cifar-100, MNIST, and Fashion-MNIST under a Dirichlet distribution with β = 0.5. Figure 2
provides an overview of the datasets involved.

Domain Skew & Out-Client Shift Datasets. Both Domain Skew and Out-Client Shift scenarios
involve datasets originating from different domains, where the main distinction lies in how evaluation
is conducted. In Domain Skew, each client has domain-specific feature variations, as described in
Appendix A.2.1. In contrast, Out-Client Shift adopts a leave-one-domain-out evaluation strategy,
where one domain is treated as the unseen target client and the remaining domains are used collectively
as sources for training. Examples from federated domain datasets are illustrated in Figure 2. • Office
Caltech combines samples from the Office dataset and Caltech256 (Fei-Fei et al., 2007), focusing on
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Table 5: Performance under Label Skew conditions on Cifar-10, Cifar-100, MNIST, and Fashion-
MNIST datasets, measured using AU , and E (with β = 0.5) as defined in Appendix A.2.1. Bold
indicates the highest value, underline marks the second-best, and "/" denotes zero or NaN. See
Appendix E.1 for metric details and Appendix E.3 for further insights.

Cifar-10 Cifar-100 MNIST Fashion-MNIST
Methods

1.0 0.5 0.3 0.1 E 1.0 0.5 0.3 0.1 E 1.0 0.5 0.3 0.1 E 1.0 0.5 0.3 0.1 E

FedAvg McMahan et al. (2017) 70.64 66.96 63.92 60.43 0.354 68.47 69.72 69.21 68.92 0.213 99.44 99.37 99.13 98.76 0.602 89.94 89.87 83.82 90.15 0.462
FedProx T.Li et al. (2020a) 71.22 67.16 64.88 61.03 0.423 72.37 70.19 63.48 67.4 0.773 99.15 99.41 99.32 98.73 0.114 89.87 89.97 88.69 83.57 0.524
SCAFFOLD Karimireddy et al. (2020) 70.77 68.33 68.34 60.83 / 71.91 72.76 69.82 68.24 / 99.41 99.12 98.95 96.95 / 89.83 89.73 88.32 81.27 /
FedNova Wang et al. (2020) 70.94 67.06 66.42 64.05 / 70.12 67.11 63.86 27.91 / 99.42 99.29 99.22 99.88 / 90.20 89.81 89.03 84.39 /
MOON Q.Li et al. (2021a) 69.73 68.07 66.48 61.71 0.063 71.47 69.51 69.09 65.53 0.412 99.51 99.36 99.17 98.02 0.324 90.52 90.11 88.95 82.92 0.614
FedRS Li & Zhan (2021) 70.14 66.036 63.89 59.47 0.184 69.81 68.53 67.32 67.16 0.637 99.34 99.33 99.23 98.93 0.333 90.01 89.40 88.47 77.54 0.579
FedDyn Acar et al. (2021) 70.59 67.80 64.39 60.52 0.488 71.48 71.25 70.28 66.81 0.583 99.48 99.31 99.10 98.71 0.059 90.24 89.97 88.59 82.92 0.533
FedOPT Reddi et al. (2021) 70.44 66.70 65.95 63.10 / 69.40 68.52 67.57 67.26 / 99.32 99.11 98.92 98.13 / 90.06 89.65 88.79 83.41 /
FedProto Tan et al. (2022) 69.75 65.05 56.45 48.74 0.319 70.07 70.83 68.32 67.36 0.759 99.44 99.26 99.12 98.69 0.323 90.17 90.07 88.73 83.26 0.444
FedNTD G.Lee et al. (2022) 51.43 35.06 37.37 22.18 0.647 32.48 28.92 24.36 21.21 0.492 85.47 31.41 78.87 30.18 0.930 83.67 79.23 70.12 52.04 0.782

Table 6: Quantitative Domain Skew results in term of AU , Au, E , and V (Defined in E.3) on
Digits, Office Caltech, and PACS. Refer to § 4.1.

Digits Office Caltech PACS
Methods

M U Svz Sy AU E V Am Ca D W AU E V P AP Ct Sk AU E V
FedAvg McMahan et al. (2017) 90.40 60.30 34.68 46.99 58.09 0.024 4.35 81.99 73.21 79.37 67.93 75.62 0.653 0.379 76.09 64.19 83.50 89.40 78.30 0.279 0.911
FedProx T.Li et al. (2020a) 95.03 63.25 34.50 44.60 59.34 0.059 5.44 85.26 75.08 84.67 75.17 80.23 0.717 0.273 79.26 69.86 80.51 90.82 80.19 0.170 0.612
SCAFFOLD Karimireddy et al. (2020) 97.79 94.45 26.64 90.69 77.39 / 8.93 39.79 42.50 78.02 70.69 57.75 / 0.281 61.95 45.44 58.87 54.64 55.25 / 0.383
MOON Q.Li et al. (2021a) 92.78 68.11 33.36 39.28 58.36 0.287 5.72 84.42 75.98 84.67 68.97 78.51 0.678 0.539 74.44 64.19 83.92 89.17 77.93 0.321 0.924
FedDyn Acar et al. (2021) 88.91 60.34 34.57 50.72 58.65 0.161 4.06 84.02 72.59 77.34 68.97 75.72 0.824 0.430 78.17 64.29 82.27 89.93 78.66 0.129 0.881
FedOPT Reddi et al. (2021) 92.71 87.62 31.32 87.92 74.89 / 6.37 79.05 71.96 89.34 74.48 78.71 / 0.480 78.66 67.66 82.41 83.68 78.12 / 0.410
FedProto Tan et al. (2022) 90.54 89.54 34.61 58.00 68.18 0.558 5.47 87.79 75.98 90.0 79.31 83.27 0.556 0.410 85.63 73.69 83.57 91.14 83.51 0.540 0.411
FedNTD G.Lee et al. (2022) 52.31 58.07 18.03 97.29 56.43 0.800 7.90 10.95 10.89 14.67 10.34 11.71 0.911 0.601 16.77 18.23 28.47 93.18 39.16 0.642 9.932
Framework for the Performance Fairness Setting § 3
AFL M.Mohri et al. (2019) 96.58 90.72 32.90 87.56 76.94 0.64 6.57 85.33 73.79 80.21 68.93 77.06 0.775 0.517 85.76 72.92 83.16 87.08 82.23 0.90 0.329

10 shared categories across four domains: Amazon (Am), Caltech (Ca), DSLR (D), and Webcam
(W). • Digits features handwritten and synthetic digit recognition across four domains: MNIST
(M) (Y.LeCun et al., 1998), USPS (U) (Hull, 1994), SVHN (Svz) (Netzer et al., 2011), and SYN
(Sy) (Kingma & Welling, 2013), each with ten digit classes. • Office31 (Saenko et al., 2010) includes
31 object categories commonly seen in office environments, such as monitors, keyboards, and filing
cabinets, spread across three domains: (Am, D, and W). • PACS comprises four stylistically varied
domains: Photo (P), Art Painting (AP), Cartoon (Ct), and Sketch (Sk).

4.1 ADAPTATION BENCHMARK

Evaluation Metrics. The metric AU , known as Cross-Client Accuracy, is used to evaluate perfor-
mance in Cross-Client Shift scenarios, including both Label and Domain Skew settings. We further
denote Out-Client Accuracy AO under Out-Client Shift for generalizable performance evaluation.

Results: Federated learning has been extensively explored in various settings, including Label Skew,
Domain Skew, and Out-Client Shift. For the Label Skew scenario, we consider four widely used
datasets: Cifar-10 (Krizhevsky et al., 2009), Cifar-100 (Krizhevsky et al., 2009), MNIST (Y.LeCun
et al., 1998), and Fashion-MNIST (Xiao et al., 2017). The performance of ten methods on these
datasets is summarized in Table 5. These methods range from the foundational FedAvg (McMahan
et al., 2017), introduced in 2017, to more recent and sophisticated solutions (G.Lee et al., 2022). For
a more detailed comparison, we also provide a visualization of the training curves, illustrating test
accuracy trends during training under β = 0.5. In the case of the Domain Skew scenario, we leverage
three widely used federated benchmarks: Digits (Y.LeCun et al., 1998; Hull, 1994; Y.Netzer et al.,
2011; Netzer et al., 2011), Office Caltech (Fei-Fei et al., 2007; Saenko et al., 2010), and PACS. As
shown in Table 6, methods like SCAFFOLD (Karimireddy et al., 2020) and FedProto (Tan et al.,
2022) demonstrate relatively competitive performance across these datasets. In the Out-Client Shift
setting, we evaluate Federated Domain Adaptation(FDA) and Federated Domain Generalization
paradigms. FDA leverages unlabeled target distributions during training, improving Out-Client
Accuracy. For example, KD3A achieves 67.16 accuracy on Office Caltech, demonstrating strong
generalization to unseen domains.

4.2 TRUSTWORTHINESS BENCHMARK

Evaluation Metrics for Robustness. Au
Byz represents the test accuracy when subjected to Byzantine

Attack conditions. Consequently, the metric Accuracy Decline Impact I quantifies the drop in
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Table 7: Quantitative Byzantine Attack results in term of Au, Au
Byz , and I (Appendix E.2)

on Cifar-10, MNIST, and Fashion-MNIST scenarios. FLTrust and Sageflow utilizes SVHN as the
proxy. The local optimization is FedProx T.Li et al. (2020a) with µ=0.01. See Byzantine Tolerance
comparison in § 4.2.

Cifar-10 Fashion-MNIST MNIST USPS
β=0.5 β=0.3 β=0.5 β=0.3 β=0.5 β=0.3 β=0.5 β=0.3

Υ=0.2 Υ=0.4 Υ=0.2 Υ=0.4 Υ=0.2 Υ=0.4 Υ=0.2 Υ=0.4 Υ=0.2 Υ=0.4 Υ=0.2 Υ=0.4 Υ=0.2 Υ=0.4 Υ=0.2 Υ=0.4
Methods

Au
Byz Au

Byz I Au
Byz Au

Byz I Au
Byz Au

Byz I Au
Byz Au

Byz I Au
Byz Au

Byz I Au
Byz Au

Byz I Au
Byz Au

Byz I Au
Byz Au

Byz I

FedProx T.Li et al. (2020a) Au :67.16 Au :64.88 Au :89.97 Au :88.69 Au :99.41 Au :99.32 Au :96.70 Au :96.69
Pair Flipping
Multi Krum Blanchard et al. (2017) 50.21 46.85 20.31 46.99 43.91 20.82 82.20 47.59 42.38 80.79 82.51 6.18 10.18 11.35 88.06 10.43 11.35 87.97 50.83 93.52 3.18 93.41 51.11 45.58
Bulyan R.Guerraoui et al. (2018) 46.88 44.06 20.68 10.00 10.00 54.88 82.62 80.76 9.21 78.00 73.57 15.12 97.01 98.18 1.23 93.21 92.13 7.19 93.21 92.13 4.57 86.04 87.20 9.49
Trim Median D.Yin et al. (2018) 51.70 45.77 21.39 19.94 10.67 54.21 84.18 78.09 11.88 81.76 77.89 10.8 98.57 94.62 4.79 93.25 92.90 6.42 94.85 94.33 2.37 91.72 92.05 0.64
FoolsGold Fung et al. (2018) 60.09 56.80 10.36 50.81 57.98 6.90 86.97 86.07 3.90 85.65 81.50 7.19 97.25 97.80 1.61 98.05 97.22 2.10 77.69 91.77 4.93 87.90 77.23 19.46
DnC Shejwalkar & Houmansadr (2021) 62.67 58.38 8.78 60.41 59.96 4.92 87.54 87.76 2.21 87.22 88.24 0.45 99.33 99.07 0.34 98.85 98.70 0.62 95.94 95.16 1.54 95.07 95.08 1.61
FLTrust X.Cao et al. (2021b) / / / / / / / / / / / / 11.35 11.35 88.06 11.35 78.68 20.64 13.15 13.15 83.55 13.15 13.15 83.54
Sageflow J.Park et al. (2021) / / / / / / / / / / / / 99.28 99.03 0.38 99.02 98.73 0.59 95.36 94.34 2.36 96.15 95.37 1.32
RFA K.Pillutla et al. (2022) 66.84 66.31 0.85 62.28 61.54 3.34 89.67 89.73 0.24 88.18 88.73 -0.04 99.12 99.10 0.31 98.97 98.91 0.41 96.12 95.56 1.14 96.30 96.08 0.61

Symmetry Flipping
Multi Krum Blanchard et al. (2017) 52.18 46.48 20.68 49.03 50.56 14.32 81.87 85.52 4.45 82.14 81.76 6.93 10.02 91.76 7.65 11.35 92.72 6.60 81.20 93.06 3.64 84.12 93.79 2.90
Bulyan R.Guerraoui et al. (2018) 50.73 38.38 28.78 14.55 27.01 37.87 84.15 82.15 7.82 79.51 74.93 13.76 97.16 97.52 1.89 87.10 91.66 7.66 91.46 89.71 6.99 89.94 87.93 8.76
Trim Median D.Yin et al. (2018) 53.24 49.82 17.34 34.46 39.24 25.64 84.61 84.39 5.58 80.49 81.48 7.21 98.50 98.08 1.33 92.16 96.25 3.07 93.46 92.23 4.47 93.32 93.70 2.99
FoolsGold Fung et al. (2018) 61.37 59.34 7.82 58.35 54.97 9.91 69.15 86.30 3.67 82.34 84.27 4.42 98.46 97.77 1.64 95.90 90.45 8.87 83.02 78.07 18.63 75.72 73.92 22.77
DnC Shejwalkar & Houmansadr (2021) 62.57 58.12 9.04 61.94 59.51 5.37 88.15 87.23 12.74 86.33 87.83 0.86 99.31 98.99 0.42 98.63 98.63 0.69 95.86 94.70 2.00 94.98 93.64 3.05
FLTrust X.Cao et al. (2021b) / / / / / / / / / / / / 11.35 70.09 29.32 11.35 67.29 32.03 60.41 52.83 43.87 59.31 13.15 83.54
Sageflow J.Park et al. (2021) / / / / / / / / / / / / 98.86 98.75 0.66 98.51 98.31 1.01 94.08 92.32 4.38 95.33 92.93 3.76
RFA K.Pillutla et al. (2022) 63.43 61.67 5.49 62.78 60.13 4.75 89.44 88.30 11.67 87.73 87.49 1.20 99.00 99.06 0.35 98.78 98.65 0.67 95.80 94.57 2.13 95.98 95.47 1.22

Random Noise
Multi Krum Blanchard et al. (2017) 10.00 13.06 54.1 29.25 14.11 50.77 10.00 21.71 68.26 75.55 25.60 63.09 11.35 13.42 85.99 11.35 21.04 78.28 89.25 15.07 81.63 13.15 26.79 69.90
Bulyan R.Guerraoui et al. (2018) 51.04 51.34 15.82 42.09 49.29 15.59 82.70 87.24 2.73 81.70 86.43 2.26 98.74 98.63 0.78 91.95 98.32 1.00 94.27 94.51 2.19 92.59 95.34 1.35
Trim Median D.Yin et al. (2018) 53.87 51.92 15.24 50.24 50.21 14.67 85.94 85.66 4.31 82.32 85.61 3.08 98.86 98.85 0.56 94.36 98.18 1.14 94.80 13.15 83.55 95.66 95.59 1.10
FoolsGold Fung et al. (2018) 50.01 32.85 34.31 49.60 27.45 37.43 85.98 35.82 54.15 76.86 83.58 5.11 98.46 37.62 61.79 87.91 78.90 20.42 85.36 22.55 74.15 54.10 55.92 40.77
DnC Shejwalkar & Houmansadr (2021) 59.64 56.95 10.21 60.00 56.45 8.43 87.81 87.72 2.25 87.26 87.66 1.03 99.31 98.97 0.44 98.78 98.85 0.47 95.73 94.60 2.10 95.31 94.28 2.41
FLTrust X.Cao et al. (2021b) / / / / / / / / / / / / 11.35 11.35 88.06 11.35 11.35 87.97 36.53 13.15 83.55 13.15 13.15 83.54
Sageflow J.Park et al. (2021) / / / / / / / / / / / / 98.76 96.75 2.66 93.14 89.85 9.47 92.40 78.20 18.50 86.02 75.63 21.06
RFA K.Pillutla et al. (2022) 56.37 10.64 56.52 55.88 15.45 49.43 87.11 64.10 25.87 85.32 72.30 16.39 99.15 95.40 4.01 98.26 94.01 5.31 94.67 67.49 29.21 95.35 53.08 43.61

Min-Sum
Multi Krum Blanchard et al. (2017) 10.00 10.90 56.26 42.20 10.02 54.86 10.00 11.02 78.95 80.78 10.00 78.69 11.35 23.17 76.24 10.43 11.35 87.97 13.15 15.96 80.74 13.15 13.15 83.54
Bulyan R.Guerraoui et al. (2018) 51.49 51.00 16.16 42.99 40.07 24.81 84.64 85.84 4.13 80.23 84.21 4.48 98.60 94.38 5.03 92.40 90.14 9.18 94.88 85.91 10.79 92.91 93.36 3.33
Trim Median D.Yin et al. (2018) 53.62 53.71 13.45 49.58 51.76 13.12 84.64 85.71 4.26 83.24 85.41 3.28 98.77 98.76 0.65 96.80 92.90 6.42 95.12 95.75 0.95 94.22 95.45 1.24
FoolsGold Fung et al. (2018) 52.26 10.00 57.16 47.83 10.00 54.88 80.58 14.80 75.17 80.20 19.36 69.33 97.18 16.87 82.54 98.71 97.22 2.10 69.49 15.04 81.66 64.16 13.12 83.57
DnC Shejwalkar & Houmansadr (2021) 61.11 55.52 11.84 60.29 55.83 9.05 87.63 87.80 2.17 87.25 88.01 0.68 99.19 99.20 0.21 98.80 98.70 0.62 95.34 94.51 2.19 94.93 95.35 1.34
FLTrust X.Cao et al. (2021b) / / / / / / / / / / / / 61.57 12.99 86.42 11.35 11.35 87.97 13.15 15.04 81.66 13.15 14.09 82.60
Sageflow J.Park et al. (2021) / / / / / / / / / / / / 98.59 92.85 6.56 92.30 85.01 14.31 87.07 14.09 82.61 81.95 50.59 46.1
RFA K.Pillutla et al. (2022) 51.90 11.40 55.76 60.29 14.22 50.66 87.40 22.83 67.14 85.71 61.18 27.51 99.05 94.39 5.02 98.80 98.91 0.41 94.65 71.23 25.47 94.93 57.83 38.86

performance relative to standard (benign) federated learning. Likewise, Attack Success Rate Ru

measures model behavior on datasets affected by backdoor attacks.

Results: Table 7 summarizes the experimental outcomes for various Byzantine Tolerance strategies
under Byzantine Attack scenarios. The evaluation is conducted on four widely used datasets: Cifar-10,
Fashion-MNIST, MNIST, and USPS. We examine two categories of data poisoning attacks, specifi-
cally Data-Based Byzantine Attack techniques: Pair Flipping and Symmetry Flipping. Additionally,
we investigate two model poisoning approaches under Model-Based Byzantine Attack, namely Ran-
dom Noise and Min-Sum. The selected Byzantine Tolerance approaches fall into three categories:
Distance Base Tolerance, Statistics Distribution Tolerance, and Proxy Dataset Tolerance. Among
them, DnC demonstrates comparatively strong resilience across all attack types. In contrast, methods
under the Proxy Dataset Tolerance category exhibit notable limitations, often requiring external proxy
data. Table 8 presents the results for Backdoor Attack namely two prevalent variants: Bac and Sem
Bac. Additionally, we assess the robustness of two prominent Backdoor Defense techniques, namely
RLR (Ozdayi et al., 2021) and CRFL (C.Xie et al., 2021), having effective defense capabilities against
backdoor threats.

Evaluation Metrics for fairness. As described in § A.2.1, Contribution Match Degree (E) and
Performance Deviation (V) are metrics specifically designed to assess Performance Fairness..

Results: As shown in Table 5 and Table 6, few of the existing federated optimization takes the
Collaboration Fairness into federated objective account. Besides, fairness is also largely impeded
under large local data distribution diversity, such as the Domain Skew. Regarding the Performance
Fairness, existing methods focus on minimizing the weighted empirical loss and thus bring the
imbalanced performance. Notably, global network utilization and server adaptive optimization seem
to alleviate the imbalanced performance on the multiple domains roundly.

5 FUTURE OUTLOOK

(1) Summary of Experimental Observations. Our evaluation surfaces key trends and gaps across
federated learning methods: • Reproducibility Dilemma. Many FL studies lack transparent ex-
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Table 8: Quantitative Backdoor Attack results in term of Au and Ru on Cifar-10, MNIST, and
USPS. The local optimization algorithm is FedAvg McMahan et al. (2017). We consider two types
of backdoor attacks and abbreviate them as Bac X.Chen et al. (2017) and Sem Bac E.Bagdasaryan
et al. (2020). - means that these solutions are not applicable to these evaluations. Refer to § 4.2 for
Backdoor Defense discussion.

Cifar-10 MNIST USPS
0.5 0.3 0.5 0.3 0.5 0.3

Bac Sem Bac Bac Sem Bac Bac Sem Bac Bac Sem Bac Bac Sem Bac Bac Sem Bac
Methods

Au Ru Au Ru Au Ru Au Ru Au Ru Au Ru Au Ru Au Ru Au Ru Au Ru Au Ru Au Ru

Focus on Byzantine Tolerance § 3
Bulyan R.Guerraoui et al. (2018) 47.61 28.73 44.61 17.12 - - 11.12 19.56 96.95 14.77 92.13 0.45 87.70 11.13 87.86 0.10 93.32 10.95 93.52 11.32 87.79 10.83 85.14 1.56
Trim Median D.Yin et al. (2018) 51.34 22.49 52.21 13.70 - - 14.78 51.66 98.07 99.18 98.44 0.16 96.65 89.42 96.72 0.61 94.62 71.52 94.24 4.82 92.05 84.17 94.77 2.40
FoolsGold Fung et al. (2018) 60.69 62.54 60.50 13.06 58.58 56.85 59.84 12.56 82.20 91.61 98.45 0.59 92.88 98.06 97.00 1.52 89.66 90.24 83.21 10.11 76.56 86.14 94.77 2.40
DnC Shejwalkar & Houmansadr (2021) 59.30 23.07 61.40 12.88 60.03 42.79 59.80 9.76 99.26 10.39 99.13 0.20 98.53 10.46 98.79 0.29 95.75 9.62 95.11 2.89 96.14 16.89 94.86 1.81
FLTrust X.Cao et al. (2021b) / / / / / / / / 95.31 8.71 97.84 0.00 92.55 10.03 97.43 0.30 71.67 17.69 59.83 20.96 63.20 5.29 63.20 5.29
Sageflow J.Park et al. (2021) / / / / / / / / 99.17 98.70 99.21 0.53 99.03 98.05 98.83 1.27 96.07 73.63 96.20 3.61 96.83 86.39 96.02 2.65
RFA K.Pillutla et al. (2022) 64.90 74.31 63.90 11.54 60.36 75.57 62.75 14.76 99.09 99.09 99.12 0.32 99.11 98.88 98.84 0.39 95.89 2.28 95.75 3.13 97.04 39.59 95.89 2.28

Focus on Backdoor Defense
RLR Ozdayi et al. (2021) 51.65 28.83 50.37 10.60 - - 44.80 20.74 94.77 10.54 93.11 0.40 91.11 22.69 92.94 0.35 89.20 10.78 92.00 12.65 87.00 10.27 82.15 1.44
CRFL C.Xie et al. (2021) 59.27 63.29 58.59 9.52 52.27 59.50 52.62 11.66 98.93 33.86 98.89 0.43 98.44 26.28 98.08 0.91 94.96 49.77 95.31 3.61 95.38 62.98 94.36 1.32

perimental setups and open-source code. The inconsistency in datasets and models complicates
fair comparisons, undermining reproducibility. • Computational Efficiency Gap. Despite strong
accuracy claims, most methods overlook memory and runtime overheads. In real-world deployments,
especially cross-device (Hard et al., 2018) and cross-silo (Yoo et al., 2021; Yang et al., 2019) settings,
efficiency is often a limiting factor. • Fragmented Solutions. FL research often targets isolated issues
like heterogeneity (X.Ma et al., 2022), robustness (J.Shi et al., 2022), or fairness (Y.Shi et al., 2023a),
lacking unified solutions that balance performance, trust, and efficiency.

(2) Open Issues and Future Opportunities. • Building a Reasoning Benchmark. Our work
highlights reasoning as a critical next frontier for FL evaluation. Future efforts should focus on estab-
lishing dedicated benchmarks and defining evaluation criteria for trace coherence, faithfulness, and
privacy-preserving reasoning across decentralized clients. • Towards Reproducibility. FLAT-Bench
introduces a unified taxonomy, standard protocols, and open-source assets to enhance comparability.
Future work should prioritize consistent baselines and transparent reporting practices. • Advancing
Efficiency. While optimizations like quantization, pruning, and homomorphic encryption (Shao
et al., 2024) have emerged, trade-offs remain. Future FL systems must balance speed, scalability,
and security to support edge-centric applications. • Toward Holistic Evaluation. We advocate for
comprehensive benchmarks that jointly assess generalization, robustness, fairness, reasoning, and
efficiency across diverse modalities including video and multimodal settings to close the gap between
research and deployment.

6 CONCLUSION

We present FLAT-Bench, the first comprehensive benchmark designed to systematically evaluate
federated learning (FL) across two foundational pillars: Adaptation and Trust. Our benchmark
organizes a broad range of FL methods by task settings, learning strategies, and their respective
contributions, offering a structured lens through which to assess progress in the field. Through
extensive empirical evaluation across eight widely used FL datasets, FLAT-Bench reveals key trends,
challenges, and performance bottlenecks, shedding light on critical areas for improvement. By
surfacing these insights, FLAT-Bench lays a solid foundation for the development of more robust,
trustworthy, and adaptable federated learning systems, ultimately supporting both future research and
real-world deployment.

7 LIMITATIONS

Despite its contributions, FLAT-Bench has limitations. Benchmarking reasoning capabilities in
large language models (LLMs) remains an open challenge, particularly in federated settings where
reasoning trajectories can vary significantly across clients. Our benchmark underscores this gap and
highlights the urgent need for unified, standardized metrics to evaluate the coherence, faithfulness, and
adaptability of distributed reasoning. Addressing this limitation is essential for advancing trustworthy
FL systems, especially in domains that demand transparent and interpretable model behavior.

9
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APPENDIX

A BACKGROUND

A.1 HISTORY AND TERMINOLOGY

Federated learning enables multiple parties to jointly train a shared model without exchanging their
raw data, preserving privacy and reducing communication overhead. Early formulations include
client-server optimization schemes and federated averaging algorithms (Konečnỳ et al., 2016a;b;
McMahan et al., 2017). Depending on how data are partitioned across participants, FL methods are
typically divided into three paradigms (H.Zhu et al., 2021; Rodríguez-Barroso et al., 2023):

• Horizontal Federated Learning (HFL): All clients hold data with the same feature space
but on different samples. They collaboratively update a global model by sharing parameter
updates while keeping each local dataset private (McMahan et al., 2017; Miao et al., 2023).

• Vertical Federated Learning (VFL): Participants possess complementary features for the
same set of entities. Secure protocols are used to jointly compute model updates on aligned
samples without revealing individual feature values (Liu et al., 2022; Wei et al., 2022).

• Federated Transfer Learning (FTL): When both feature spaces and sample sets differ
across clients, FTL applies transfer learning techniques—such as knowledge distillation or
representation mapping—to enable knowledge sharing between heterogeneous domains (Liu
et al., 2020b; Saha & Ahmad, 2021).

In this work, we concentrate on four fundamental properties of horizontal federated learning (HFL)1

and present a unified evaluation framework under the HFL setting: Generalization (GFL). Due to
the non-IID nature of client data, federated models must contend with both cross-client distribution
shifts—where local empirical risks diverge across participants—and out-of-client distribution shifts,
which capture discrepancies between seen and unseen client populations (Li et al., 2019; X.Peng
et al., 2020; Q.Liu et al., 2021). These phenomena hinder both convergence speed and test-time
performance when models are deployed on new or held-out clients. Robustness (RFL). Federated
learning’s decentralized paradigm exposes it to adversarial manipulation. On one hand, Byzantine
attacks corrupt either local training data or uploaded updates to derail global aggregation (L.Huang
et al., 2011; Damaskinos et al., 2018). On the other, backdoor attacks stealthily inject triggers into
client updates so that the global model behaves normally on benign inputs but misclassifies targeted
samples (Sun et al., 2019; E.Bagdasaryan et al., 2020). Fairness (FFL). Equitable participation and
performance are critical to sustain federated collaborations. Collaborative fairness addresses how to
reward clients proportionally to their computational effort and data value (T.Song et al., 2019; Nguyen
et al., 2022b), while performance fairness ensures that the global model does not systematically
underperform on underrepresented or marginalized client distributions (M.Mohri et al., 2019; Cui
et al., 2021). By benchmarking these two axes: generalization and robustness under a common HFL
protocol, we aim to provide a comprehensive assessment of federated methods and elucidate their
trade-offs for real-world, privacy-sensitive deployments.

A.2 PROBLEM FORMULATION

We consider a horizontal federated learning setting with M clients, indexed by i=1, . . . ,M , each
holding a private dataset Di of size Ni = |Di|. Each example (x, y)∈Di is drawn from a client-
specific distribution Pi(x, y). Our goal is to train a shared model

w = f ◦ g,
where f : X → Rd is a feature extractor mapping inputs x to d-dimensional embeddings h = f(x),
and g : Rd → R|C| is a classifier producing logits z = g(h) over the label set C.

Federated learning seeks the global parameter w∗ that minimizes a weighted combination of local
empirical risks:

w∗ = argmin
w

M∑
i=1

αi Li(w;Di), (1)

1We use “HFL” to denote horizontal federated learning.
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where Li(w;Di)=
1
Ni

∑
(x,y)∈Di

ℓ
(
g(f(x)), y

)
is the average loss on client i, and the mixing weights

satisfy
∑

i αi = 1 (commonly αi = Ni/
∑

j Nj or αi = 1/M ).

Training proceeds in communication rounds, each consisting of three phases:
1. Broadcast: w

(t)
i = w(t−1) ∀ i,

2. Local Update: w
(t)
i ← argmin

wi

E(x,y)∼Di

[
ℓ
(
g(f(x;wi)), y

)]
,

3. Aggregation: w(t) =

M∑
i=1

αi w
(t)
i .

(2)

Here, step 1 distributes the current global model to all clients; step 2 performs one or more epochs
of local optimization (e.g. via SGD) on each Di; and step 3 fuses client updates into the new global
model. This iterative protocol continues until convergence or a stopping criterion is met (McMahan
et al., 2017; T.Li et al., 2020a).“‘

A.2.1 DATA HETEROGENEITY IN FEDERATED LEARNING

In real-world federated setups, each client’s dataset Di is drawn from its own distribution Pi(x, y),
leading to non-IID data across the network (T.Li et al., 2020a; Q.Liu et al., 2021; Qu et al., 2021). We
often decompose Pi(x, y) = Pi(y)Pi(x | y) and distinguish two principal forms of heterogeneity:

• Label shift: Clients differ in their label marginals but share the same class-conditional
features:

Pi(y) ̸= Pj(y), Pi(x | y) = Pj(x | y).
A common simulation uses Dirichlet sampling (Kotz et al., 2004) to skew Pi(y).

• Feature shift: All clients have the same label distribution but observe different feature
patterns for each class:

Pi(y) = Pj(y), Pi(x | y) ̸= Pj(x | y).

This arises, for example, when imaging devices vary across hospitals (X.Li et al., 2021).

Beyond these in-network shifts, out-of-client shift refers to the performance degradation when
deploying the federated model on entirely new data sources Po(x, y) ̸= Pi(x, y), despite matching
label marginals:

Po(y) = Pi(y), Po(x | y) ̸= Pi(x | y).
Such unseen domain shifts underscore the need for federated methods that generalize beyond the
participating clients (H.Yuan et al., 2022).

A.2.2 ADVERSARIAL THREATS IN FEDERATED LEARNING

In federated settings, untrusted participants may launch attacks that compromise model integrity. We
categorize these into two broad classes:

1. Byzantine (Untargeted) Attacks Here, adversaries aim to simply degrade overall model accu-
racy without a specific target outcome (Blanchard et al., 2017; R.Guerraoui et al., 2018; Damaskinos
et al., 2018). Two common strategies are:

• Data Poisoning: Malicious clients corrupt their local training data before participating. For
example, in symmetric label noise (SymFlip), each label is flipped to any other class with
equal probability ϵ/(|C|−1):

Tsym(i, j) =

{
1− ϵ i = j,

ϵ
|C|−1 i ̸= j,

while in pair-flip noise (PairFlip) labels are only swapped among semantically similar
classes (B.VanRooyen et al., 2015; B.Han et al., 2018).
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• Model Poisoning: Rather than tampering with data, adversaries directly alter their client
updates. Examples include:

– Random-Noise: Substituting the true gradient ∇k with random values (e.g., Gaussian
noise).

– Lie Attack: Crafting updates just beyond detection thresholds by adding a small multiple
of the benign update standard deviation (G.Baruch et al., 2019).

– Optimization-Aware Poisoning: Solving a max-loss subproblem to push the global
model away from its benign update trajectory (M.Fang et al., 2020).

– MinMax/MinSum Attacks: Adjusting the poisoned update so that its maximum (or sum)
distance to benign updates remains within the natural benign update spread (Shejwalkar
& Houmansadr, 2021).

2. Backdoor (Targeted) Attacks Here, the attacker embeds a hidden trigger so that when specific
patterns are present, the global model misclassifies inputs into a chosen target label, while preserving
normal performance otherwise (X.Chen et al., 2017; C.Liao et al., 2018). Concretely, poisoned clients
mix a trigger mask m and pattern Φ into a fraction of their examples:

x̃ = (1−m)⊙ x+m⊙ Φ,

and optimize a combined loss:

E(x,y)∼Di

[
L(wi, x, y)

]
+ λ E(x̃,yt)

[
L(wi, x̃, yt)

]
,

where yt is the attacker-specified target class and λ≥0 balances backdoor potency against clean-data
fidelity. Recent work has shown that distributing trigger fragments across multiple malicious clients
can evade standard defenses (C.Xie et al., 2020a; X.Lyu et al., 2023).

A.2.3 CLIENT INCENTIVES AND FAIRNESS

Federated learning relies on voluntary participation of clients with heterogeneous data and compute
resources. To maintain long-term engagement and equitable outcomes, two primary fairness concerns
must be addressed:

Reward Allocation (Reward Conflict) Clients incur varying costs (e.g., data labeling, computation)
and contribute unequally to the global model’s performance (X.Zhang et al., 2020; Y.Shi et al., 2023a).
A fair compensation scheme should grant higher rewards to those whose participation yields larger
marginal gains. We adopt the Shapley Value from cooperative game theory (Shapley, 1997; Bilbao,
2012; M.Davis & M.Maschler, 1965) to quantify each client’s contribution:

νi =
ρ

M

∑
S⊆{1,...,M}\{i}

A
(
wS∪{i}, u

)
−A

(
wS , u

)(
M−1
|S|

) ,

where A(wS , u) is the model accuracy on test set u when trained on clients in S, and ρ > 0 scales
the values.

Prediction Consistency (Prediction Biases) Data heterogeneity can cause the global model to
perform well on some client domains but poorly on others, leading to prediction bias (M.Mohri et al.,
2019; T.Li et al., 2020b). We measure this by the standard deviation of per-domain accuracies:

ζ = StdDev
(
{A(w,u)}u∈U

)
,

where U is the set of evaluation domains. Lower ζ indicates more uniform performance, while higher
ζ signals greater disparity among client groups.

B HYPERPARAMETERS

C RELATED WORK

Federated learning (FL) has spawned numerous survey papers in recent years. Early overviews (Yang
et al., 2019; T.Li et al., 2020c; Wahab et al., 2021; Q.Li et al., 2021b; P.Kairouz et al., 2021; Rodríguez-
Barroso et al., 2023) lay out the high-level principles and system challenges, but typically do not
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Table 9: Selected hyper-parameters for the various evaluated methods. Note that similar symbols
may represent different concepts across different approaches. Detailed explanations are provided in
Appendix F.2.

Method Hyper-Parameters

General FL Methods (Generalizable Federated Learning) . .§ 2

FedProx T.Li et al.
(2020a)

Proximal term µ = 0.01

SCAFFOLD Karim-
ireddy et al. (2020)

Server-side learning rate lr = 0.25

FedProc X.Mu et al.
(2021)

Contrastive temperature τ = 1.0

MOON Q.Li et al.
(2021a)

τ = 0.5 (temp), µ = 1.0 (proximal)

FedRS Li & Zhan
(2021)

Scaling factor α = 0.5

FedDyn X.Mu et al.
(2021)

Regularization strength α = 0.5

FedOpt Reddi et al.
(2021)

Global optimizer LR ηg = 0.5

FedProto Tan et al.
(2022)

Prototype regularizer λ = 2

FedLC Zhang et al.
(2022)

Scaling factor τ = 0.5

FedDC L.Gao et al.
(2022)

Penalty weight α = 0.1

FedNTD G.Lee et al.
(2022)

Temp τ = 1, Reg weight β = 1

FPL Huang et al.
(2023)

Contrastive temperature τ = 0.02

KD3A H.Feng et al.
(2021)

Confidence gate g ∈ [0.9, 0.95]

Robust FL Methods (Robust Federated Learning) . . . . . § 3

Multi-Krum Blan-
chard et al. (2017)

Byzantine tolerance Υ < 50%, Top-K: 5

Bulyan R.Guerraoui
et al. (2018)

Byzantine tolerance Υ < 50%

Trimmed Mean D.Yin
et al. (2018)

Evil client ratio Υ < 50%

FoolsGold Fung et al.
(2018)

Stability threshold ϵ = 10−5

DnC Shejwalkar &
Houmansadr (2021)

Sub-dim b = 1000, filter ratio c = 1.0

FLTrust X.Cao et al.
(2021b)

Public epochs E = 20

SageFlow J.Park et al.
(2021)

Threshold Eth = 2.2, exponent δ = 5

RFA K.Pillutla et al.
(2022)

Iterations E = 3

RLR Ozdayi et al.
(2021)

LR lr = 1.0, threshold τ = 4.0

CRFL C.Xie et al.
(2021)

Norm threshold ρ = 15, smoothing σ =
0.01

Fairness-Oriented FL Methods (Fair Federated Learning) . § 3

AFL M.Mohri et al.
(2019)

Regularization coefficient γ = 0.01

delve into detailed algorithmic solutions for specific FL problems. A large body of work addresses
distributional heterogeneity in FL. Several surveys (Y.Zhao, 2018; H.Zhu et al., 2021; Q.Li et al.,
2022; M.Ye et al., 2023; Y.Li et al., 2023) categorize approaches for label skew, feature skew, and
concept drift between clients, and compare client-level strategies such as local regularization (T.Li
et al., 2020a), personalized layers (Liu et al., 2024a), and meta-learning (Fallah et al., 2020). Do-
main adaptation in FL—where some target domain data are available during training—is surveyed
in (X.Peng et al., 2020; H.Yuan et al., 2022), highlighting adversarial alignment (G.Li et al., 2023)
and feature disentanglement (G.Wu & S.Gong, 2021). Out-of-distribution generalization methods,
which aim to perform well on unseen client distributions, are comparatively less reviewed but include
invariant optimization (Q.Liu et al., 2021) and robust aggregation schemes (Duan et al., 2023). FL’s
distributed nature makes it vulnerable to Byzantine and backdoor attacks. Surveys on adversarial
threats (L.Lyu et al., 2020a; J.Shi et al., 2022; J.Shao et al., 2023) classify untargeted data and model
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poisoning (e.g., (Blanchard et al., 2017; R.Guerraoui et al., 2018)) and targeted backdoors (Sun et al.,
2019; E.Bagdasaryan et al., 2020). Defense surveys (V.Mothukuri et al., 2021) compare robust aggre-
gation, anomaly detection, and certified defenses (X.Cao et al., 2021a; C.Xie et al., 2021). Fairness in
FL encompasses both equitable performance across client groups and fair reward allocation. Recent
reviews (Rafi et al., 2023; Y.Shi et al., 2023a) discuss methods that enforce uniform accuracy via
min–max optimization (M.Mohri et al., 2019; T.Li et al., 2020b) or multi-objective updates (Z.Hu
et al., 2020). Client-level incentive mechanisms based on reputations (L.Lyu et al., 2020c) and data
valuation via Shapley approximations (X.Xu et al., 2021; Jiang et al., 2023) are surveyed in (Q.Li
et al., 2021b). As FL moves into high-stakes domains, model transparency and reasoning become
critical. While most surveys focus on performance, a few emerging works (Liu et al., 2023a) explore
integrating chain-of-thought explanations into FL, and others (Song et al., 2021) survey symbolic
and knowledge-graph based federated models. However, there is no comprehensive survey that
brings together domain adaptation, generalization, robustness, fairness, and reasoning under a unified
evaluation framework. To fill these gaps, we present the first holistic survey and benchmark that
jointly examines domain adaptation, OOD generalization, adversarial robustness, fairness, and
reasoning in FL. We systematically categorize state-of-the-art methods in each dimension and provide
a unified empirical comparison across common benchmarks, offering both breadth and depth for
researchers and practitioners.

D OUTLINE

FLAT-Bench framework is organized around four key components, each addressing a foundational
aspect of federated learning. Adaptation focuses on techniques that enhance generalization across
diverse clients, including regularization, augmentation, and cross-domain calibration. Trust centers
on robustness in adversarial and unreliable environments, covering Byzantine resilience and fairness
across both collaboration and performance. The Benchmark module formalizes these dimensions
through standardized evaluations, enabling consistent comparisons across methods and datasets.
Finally, Outlook offers reflective insights, summarizing experimental findings and outlining future
research opportunities. Together, these pillars form a structured foundation for evaluating, comparing,
and advancing federated learning in real-world settings.
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E BENCHMARK METRICS

E.1 GENERALIZATION METRICS

We evaluate a federated model’s ability to handle distribution shifts in two scenarios: cross-client and
out-of-distribution.

Cross-Client Accuracy. Under cross-client heterogeneity, each client’s test set u may follow a
different distribution. We measure the standard Top-1 accuracy on each u as

Au =
1

|u|
∑

(x,y)∈u

1{argmaxw(x) = y},

and report the mean over a collection of held-out client sets U via

AU =
1

|U|
∑
u∈U

Au.

Results across held-out clients under various distribution shifts are summarized in Table 10.

Out-of-Distribution Accuracy. To assess performance on entirely unseen domains, we compute
Top-1 accuracy on a designated OOD test set O:

AO =
1

|O|
∑

(x,y)∈O

1{argmaxw(x) = y}.

E.2 ROBUSTNESS METRICS

In federated learning, adversarial participants can undermine the shared model through untargeted
(Byzantine) or targeted (backdoor) manipulations. We quantify defense effectiveness with two key
metrics:

Accuracy Degradation (I). For Byzantine resilience, compare the model’s clean accuracy Aclean
on domain u against its accuracy under attack Abyz. The degradation

I = Aclean −Abyz

measures how much performance is lost due to malicious updates.

Backdoor Success Rate (R). To assess backdoor defenses, we inject a trigger into each test sample,
yielding (x̃, ỹ), and record the fraction that the global model misclassifies as the attacker’s target
label:

R =
1

|T̃ |

∑
(x̃,ỹ)∈T̃

1
{
argmaxw(x̃) = ỹ

}
,

where T̃ is the set of all poisoned examples.

E.3 FAIRNESS METRICS

In federated learning, participants incur varying costs and offer data of unequal value, making fair
reward allocation and uniform performance critical. The federated settings we experiment with are
outlined in Table 11. We capture these with two complementary metrics:

Contribution Impact (C). Rather than using static weights αi, we quantify each client’s real
influence on global accuracy by a leave-one-out procedure. Let w be the assembled global model and
wi the contribution from client i. Excluding i yields

w−i =
w − αi wi

1− αi
.
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Table 10: Performance under Out-Client Shift setting, reported using the metric AO, across the
Office Caltech, Digits, PACS, and Office31 benchmarks. Refer to § 4.1 for detailed analysis.

Office Caltech Digits PACS Office31
Methods

→Ca →Am →W →D AVG →M →U →Svz →Sy AVG →P →AP →Ct →Sk AVG →D →Am →W AVG

FedAvg McMahan et al. (2017) 58.12 67.47 43.10 80.00 62.17 32.60 47.20 13.91 13.54 26.81 52.28 46.16 60.74 51.12 52.57 14.28 8.93 21.51 14.90
FedProx T.Li et al. (2020a) 56.60 69.26 42.41 85.33 63.40 23.54 60.28 15.83 13.78 28.35 54.45 49.61 56.91 56.17 54.28 15.92 6.01 19.36 13.76
SCAFFOLD Karimireddy et al. (2020) 36.07 47.36 45.86 59.33 47.15 67.61 82.39 7.79 14.52 43.07 43.85 23.81 45.07 39.79 38.12 12.44 5.58 10.88 9.63
FedProc X.Mu et al. (2021) 47.41 60.84 42.41 66.66 54.33 24.34 43.37 10.15 13.09 22.73 56.94 30.95 56.02 49.94 48.46 19.39 4.91 10.38 11.56
MOON Q.Li et al. (2021a) 55.53 68.63 44.83 79.33 62.08 31.28 31.75 14.30 14.45 22.94 54.01 45.10 60.42 58.10 54.40 14.08 7.04 21.39 14.17
FedDyn Acar et al. (2021) 59.99 66.42 40.34 81.99 62.18 28.74 56.08 14.36 11.88 27.76 51.40 43.19 60.57 50.71 51.46 14.08 7.86 17.85 13.26
FedOPT Reddi et al. (2021) 52.67 55.68 60.34 69.33 59.50 59.35 62.62 17.59 15.22 38.69 57.64 39.19 45.92 49.50 48.06 19.38 6.90 18.73 15.00
FedProto Tan et al. (2022) 60.35 66.94 58.62 76.00 65.47 43.67 58.08 13.49 13.73 32.24 65.07 36.56 56.98 57.87 54.12 31.01 7.08 23.54 20.54
FedNTD G.Lee et al. (2022) 58.66 69.47 44.83 84.00 64.23 24.15 58.56 18.44 13.68 28.70 64.50 47.47 58.52 53.43 55.98 17.75 7.12 27.97 17.61

Design for Federated Domain Adaptation setting
COPA G.Wu & S.Gong (2021) 55.17 67.05 56.55 78.33 64.27 58.93 92.20 10.49 14.90 44.13 71.61 53.74 63.12 56.60 61.26 43.06 6.69 31.26 27.00
KD3A H.Feng et al. (2021) 54.73 70.00 68.61 75.33 67.16 83.91 97.46 14.33 34.03 57.43 76.99 56.91 67.63 55.70 64.30 44.28 8.04 37.08 29.80

Design for Federated Domain Generalization setting
COPA G.Wu & S.Gong (2021) 57.32 66.31 48.27 70.00 60.47 33.76 47.32 13.26 15.16 27.37 59.54 35.33 56.67 57.93 52.36 21.22 5.48 19.49 15.39
FedGA R.Zhang et al. (2023) 44.28 54.10 51.72 71.33 55.35 58.74 86.92 9.16 14.81 42.40 59.00 35.01 43.20 53.60 47.70 22.24 5.15 10.63 12.67

We measure the average accuracy over all test domains before and after removal,

∆i = Ā− 1

|U|
∑
u∈U

A−i
u ,

where Ā is the mean accuracy and A−i
u denotes performance on domain u without client i. Normaliz-

ing the vector ∆ = (∆1, . . . ,∆M ) and the weight vector α, we define the contribution score

C =
∆ · α

∥∆∥2 ∥α∥2
,

so that higher C indicates closer alignment between actual impact and nominal weights.

Accuracy Consistency (V). To evaluate how evenly the model serves all clients, we compute the
standard deviation of per-domain accuracies:

V =

√
1

|U|
∑
u∈U

(
Au − Ā

)2 × 100% .

A smaller V reflects more uniform performance across heterogeneous client distributions.

F BENCHMARK SETUP

F.1 DATA AUGMENTATION

To improve model robustness under data heterogeneity, we apply standard image transformations on
each client’s local data, implemented via PyTorch routines:

• RandomCrop(size): Crop a random patch of the specified size (e.g., 32× 32 or 224×
224).

• RandomHorizontalFlip(p): Flip images horizontally with probability p (default
p = 0.5).

• Normalize(mean, std): Scale pixel values to zero mean and unit variance using
dataset-specific mean and std vectors.

F.2 IMPLEMENTATION DETAILS

Optimization and Training Protocol. All methods are evaluated under a common protocol: each
client performs U = 10 local SGD epochs per communication round, using a batch size of 64,
momentum 0.9, and weight decay 10−5. The learning rate η and number of global rounds E vary by
task and are specified in Table 11. We choose E such that further rounds yield negligible improvement
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Table 11: Experiments Configuration of different federated scenarios. Image Size is operated
after the resize operation. |C| denotes the classification scale. |K| denotes the clients number. E is
the communication epochs for federation. B means the training batch size

Scenario Size |C| Network w Rate η |K| E B

Label Skew Setting § 4
Cifar-10 32 10 SimpleCNN 1e-2 10 100 64

Fashion-MNIST 32 10 SimpleCNN 1e-2 10 100 64

MNIST 32 10 SimpleCNN 1e-2 10 100 64

Cifar-100 32 100 ResNet-50 1e-1 10 100 64

Tiny-ImageNet 32 200 ResNet-50 1e-2 10 100 64

Domain Skew / Out-Client Shift Settings § 4
Digits 32 10 ResNet-18 1e-2 4/3 50 16

PACS 224 7 ResNet-34 1e-3 4/3 50 16

Office Caltech 224 10 ResNet-34 1e-3 4/3 50 16

Office-Home 224 65 ResNet-34 1e-3 4/3 50 16

across all algorithms. Experiments are implemented in PyTorch, are seeded for reproducibility and
run on NVIDIA RTX 3090 GPUs.

Model Architectures. For lightweight benchmarks, we adopt a simple CNN with two 5 × 5
convolutional layers (each followed by 2× 2 max-pooling), hereafter called SimpleCNN. Larger
datasets use ResNet variants (He et al., 2016). Exact layer counts and input resolutions per scenario
are detailed in Table 11.

Adversary Configurations. When simulating malicious clients, we vary the fraction of adversaries
Υ ∈ {0.2, 0.4}. For data-poisoning attacks (SymFlip, PairFlip), the corruption probability is
set to ϵ = 0.5. Model-poisoning strategies follow the parameter perturbation schemes described in
Section A.2.2.

G FUTURE WORK

Building on the state of the art, we identify several key challenges for next-generation federated
systems:

• Balancing Generalization and Robustness. Heterogeneous client data drives the need
for broad generalization, yet robustness mechanisms must detect and exclude malicious
contributions. When benign clients happen to hold atypical data, they risk being misclassified
as attackers, degrading overall performance. Future work should develop joint objectives
that preserve legitimate diversity while filtering adversarial behavior.

• Reconciling Generalization with Fairness. Optimizing for average accuracy across all
clients can obscure poor performance on minority distributions, whereas fairness aims for
uniform accuracy regardless of data volume or difficulty. Multi-objective formulations that
simultaneously maximize mean accuracy and minimize inter-client variance are needed to
avoid this “majority wins” trade-off.

• Synergies Between Robustness and Fairness. Accurate contribution metrics underpin
both robust outlier rejection and fair reward allocation. By integrating anomaly detec-
tion into incentive mechanisms, systems can ensure that low-contribution or malicious
clients are neither over-rewarded nor under-penalized, fostering both security and long-term
participation.

• Vertical FL with Generalization, Robustness, and Fairness. In vertical settings, clients
hold complementary feature views of the same entities. Aligning heterogeneous feature sets
without leaking private attributes remains an open problem. Moreover, attackers may exploit
feature inference or label inference attacks, demanding novel defenses such as secure multi-
party computation or homomorphic encryption. Finally, feature-level fairness—ensuring no
single view dominates the global model—requires new measures of contribution and bias
mitigation.

• Federating Large Pretrained Models. Fine-tuning massive foundation models on de-
centralized data promises strong personalization, but communication costs and intellectual
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property concerns pose significant barriers. Research should explore parameter-efficient up-
dates (e.g., adapters, low-rank updates), encrypted or compressed aggregation protocols, and
incentive schemes that protect model ownership while enabling collaborative improvement.

• Enabling Reasoning-Centric Personalization.
Current federated learning systems largely optimize for classification or regression tasks,
while neglecting reasoning capabilities such as multi-hop inference, commonsense logic, or
context-aware question answering. These tasks require richer representations and deeper
model understanding—often beyond local training signals. Future research should explore
reasoning-aware objectives, knowledge distillation across clients, and hierarchical model
structures that enable reasoning patterns to emerge across non-iid data distributions. Ad-
ditionally, curriculum-based or scaffolded training schedules tailored to client capabilities
may allow reasoning modules to be co-learned without centralized supervision.

30


	Introduction
	Adaptive Federated Learning
	Trustworthy Federated Learning
	Benchmark Setup
	Adaptation Benchmark
	Trustworthiness Benchmark

	Future Outlook
	Conclusion
	Limitations
	Background
	History and Terminology
	Problem Formulation
	Data Heterogeneity in Federated Learning
	Adversarial Threats in Federated Learning
	Client Incentives and Fairness


	Hyperparameters
	hLRelated Work
	hLOutline
	Benchmark Metrics
	Generalization Metrics
	Robustness Metrics
	Fairness Metrics

	Benchmark Setup
	Data Augmentation
	Implementation Details

	hLFuture Work

