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Abstract

Bayesian optimization (BO) algorithms form a class of surrogate-based heuristics,
aimed at efficiently computing high-quality solutions for numerical black-box
optimization problems. The BO pipeline is highly modular, with different design
choices for the initial sampling strategy, the surrogate model, the acquisition func-
tion (AF), the solver used to optimize the AF, etc. We demonstrate in this work
that a dynamic selection of the AF can benefit the BO design. More precisely,
we show that already a naive random forest regression model, built on top of
exploratory landscape analysis features that are computed from the initial design
points, suffices to recommend AFs that outperform any static choice, when con-
sidering performance over the classic BBOB benchmark suite for derivative-free
numerical optimization methods on the COCO platform. Our work hence paves a
way towards AutoML-assisted, on-the-fly BO designs that adjust their behavior on
a run-by-run basis.

1 Introduction

In optimization we often encounter black-box problems having no explicit formulation of the un-
derlying function or its derivatives. To identify high-quality solutions for such functions, black-box
algorithms rely on an iterative process of querying the quality of the solution candidates it suggests,
and adjusting their strategy to obtain the next set of candidate solutions. This process is particularly
challenging when the maximal number of evaluations that can be made before a final recommendation
is expected is very small compared to the size of the design space.

A standard approach for such settings is Bayesian optimization (BO) [Mockus| 2012], a family of
surrogate-based optimization algorithms that obtains its candidate solutions via the following process:
a first set of candidates, known as the initial design or design of experiment (DoE), is obtained from a
classic sampling strategy, e.g., (quasi-)random distributions or space filling designs. After evaluation,
these points are used to build a surrogate model, an approximation of the unknown objective function
capturing the uncertainty. An acquisition function (AF) (also: infill criterion) determines which
point to sample next based on the predicted mean and variance of the surrogate model, requiring
no evaluations of the true problem. As long as the budget is not exhausted, the surrogate model is
updated and the algorithm repeats the last steps.

All steps of the BO pipeline are subject to different design choices, impacting its performance
[Lindauer et al., 2019, Cowen-Rivers et al., 2021} Bossek et al.,|2020]]. Of particular importance for
the overall BO performance is the balance between exploration and exploitation to efficiently find
the optimal solution, which is strongly influenced by the choice of the AF. Although many different
AFs have been introduced (e.g., Probability of Improvement (PI), Expected Improvement (EI), Upper
Confidence Bound (UCB) [Forrester et al.l 2008]] and Thompson Sampling (TS) [Thompsonl [1933])),

6th Workshop on Meta-Learning at NeurIPS 2022, New Orleans.



Initial ELA Perf AF
nitia - erformance —| AF Selector |——m
Design Features Regression Schedule

Figure 1: How to select acquisition function (AF) schedules Based on the evaluated initial design
of a BO run, we compute the ELA features. With those we query a trained RF and observe the
predicted performance of each AF schedule. The Acquisition Function Selector returns the AF
schedule with the best predicted performance to use for surrogate-based evaluations.

there are no guidelines on how to select the most appropriate AF given the characteristics of the
problem at hand. Furthermore, AF design decisions have predominantly considered a static choice
over the entire BO procedure. Only few works have considered dynamic choices when selecting
AFs [Hoffman et al., 2011} [Kandasamy et al., |2020, [Cowen-Rivers et al., [2021]], and similarly to
insights obtained in other domains of optimization, have shown the potential of opting for dynamic
combinations AF rather than a static choice.

Orthogonal to this, performance gains may also be possible through the application of algorithm
selection (AS) techniques [Rice, |1976]. Given sufficiently heterogeneous problem instances, and
based exclusively on their characteristics, choosing different AFs or AF schedules might result
in better performance than applying the same AF (schedule) to all problems, which is known as
per-instance algorithm selection (PIAS) [Kerschke et al., 2019]]. More importantly, we observe that
the properties of the initial design itself further influence the choice of the AF, so we may want
to select different AFs per run, even for the same problem instance. This is in line with per-run
algorithm selection, as suggested in [Jankovic et al.| 2022| [Kostovska et al.,|2022] for a portfolio of
iterative optimization heuristics.

Motivated by recent insights from the AS domain, we aim to understand the interplay between the
problem (characterized through the initial design), the choice of the AF (schedule), and the BO
performance. To this end, we benchmark our approach on a test suite of well-established black-box
numerical optimization problems, the BBOB functions of the COCO framework [Hansen et al.|
2021]). We build and train a model, called the Acquisition Function Selector (AFS) (Figure|[I), which
automatically selects the best suited AF (schedule) for a certain problem. To represent problems, we
employ exploratory landscape analysis (ELA) [Mersmann et al.,[2011]. ELA is a framework for the
extraction and computation of low-level numerical landscape features of black-box problems (related
to e.g., multimodality, separability, conditioning, presence of plateaus, etc.) from sampled points and
their evaluations. Here, we use the evaluated initial design for computing the ELA features. Since
BO anyway evaluates the initial design before starting the surrogate-based optimization process, the
use of ELA features comes at no evaluation cost. Our AF schedules are composed of either PI (more
exploitative), EI (more explorative) or combinations of both.

Our key insights are that (i) already a selector built on top of a naive random forest regression model
outperforms any static AF schedule, (ii) the choice of the AF model should depend on the problem
instance, but also on the characteristics (and in particular the quality) of the initial design, and (iii) the
schedules that switch from EI to PI improve over static EI and PI.

2 Experiments

Building our Acquisition Function Selector (AFS) (see Figure [I)) consists of two steps. First, we
gather performance data of our seven AF schedules (static EI, static PI, and five dynamic ones:
random, round robin, as well as three variants of explore-exploit schedules that switch from EI to PI
after 25 %, 50 % and 75 % of the budget). Second, we train our AFS in the following way. We build
a multi-target regression model that maps the ELA features of the initial design to the performance of
each AF schedule. Our AFS then selects the schedule with the best predicted performance.

We evaluate our schedules on the 24 single-objective noiseless BBOB functions of the COCO
benchmark [[Hansen et al., 2021]] in dimension 5 and 5 instances with 60 seeds). The size of the initial
design is set to 10d = 50 data points and a budget of 40d = 100 function evaluations is used for the
surrogate-based optimization part. The initial design is the same for every seed, so every schedule sees
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Figure 2: AFS selecting between static PI and EI adopts the shape of the better performing schedule
and ranks first.

the same initial design. We adapt SMAC3 [Lindauer et al.,[2022]] to enable dynamic AF schedules
and we use a Gaussian Process (GP) as surrogate model. We extract ELA features based on samples
of the initial design and their function evaluations using the f1acco library [Kerschke and Trautmann)
[2019]. Among the 300 features (grouped in sets) in the library, we choose 38 cheap-to-compute
features not requiring further function evaluations, namely those from y-Distribution, Meta-Model,
Dispersion, Information Content and Nearest-Better Clustering feature sets, following practices in
the literature [Belkhir et al.| 2016} Jankovic et al., 2021]. In our setup, ELA feature computation for
an initial design of 50 points takes about 0.4 s, which is negligible compared to an expensive function
evaluation. In this work, we restrict our attention to continuous problems, but ELA may also work
well for discrete (and possibly mixed-integer) search spaces [Pikalov and Mironovich, [2022]. We
then train a standard random forest (RF) {1995 [Pedregosa et al., 201 1] model (70/30 train/test
split) to regress the performance (log regret, normalized per problem) for each schedule based on the
input ELA features. The schedule with the best predicted performance is selected by the AFS.

All experiments were conducted on a Slurm CPU cluster with 1592 CPUs available across nodes.
For visualization, we consider the log-regret of the incumbent (best evaluated search point) and only
visualize the evaluations proposed by BO, omitting the initial design. In the violin plots, the log-regret
of the final incumbents of all 60 seeds are normalized to [0, 1] per BBOB function. In the convergence
plots, the log-regret of the incumbents are normalized across runs to [0, 1] per BBOB function, and
the means with the 95 % confidence intervals are shown. Ranking is computed per run, i.e. per seed,
BBOB function and instance. The AFS is assigned the same rank as the schedule it chose. We only
plot performance on the test data. The plots for each function can be found in Appendix [B] You can
find the repository here: https://github.com/automl/B0-AFS.

Results Before we learn to select from our portfolio containing static and dynamic schedules, we
first consider selecting either static PI or static EI. We can observe that AFS adopts the shape of the
better performing acquisition function (Figures [2a]and [2b) and aggregated over all functions ranks
first (Figure 2c), demonstrating the potential to select between AFs based on the initial design. We
then extend the AFS to select between all seven proposed schedules. We introduce the virtual best
solver (VBS), which is our oracle, always selecting the best schedule per run. The general optimal
choice of static or dynamic AF schedules depends on the problem at hand (see figures in Appendix [B].
As a rule of thumb, switching from EI to PI after a certain percentage of the budget of total number
of function evaluations is beneficial and can boost performance, see Figure [3] However, the optimal
switching point is highly problem-dependent and likely run-dependent. On average, switching after
25 % seems to be a viable general rule if the problem’s properties are unknown. Moreover, due to
the initial design, we gain information about the problem landscape based on ELA features for that
specific run. Already with a simple, non-tuned RF, we are able to select well-performing schedules
with the AFS. In this case, the AFS (apart from the VBS) also shows the best anytime-performance
which is not necessarily guaranteed as the AFS is trained on the final performance of the other
schedules. Again, we rank across all functions and instances and observe that the mass of ranks for
AFS is centered on the first, in contrast to all other schedules, see Figure El In summary, our AFS is
able to propose appropriate schedules from a portfolio based on the initial design per run.

3 Conclusion and Future Work

Using a standard test bed for benchmarking single-objective numerical black-box optimization
techniques, the BBOB suite of the COCO environment, we have shown in this work that a per-run
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dence interval for the schedules from Table E

selection of the acquisition function can benefit the performance of Bayesian optimization (BO)
approaches. More precisely, we have seen that a landscape-aware selection of the AF, choosing
from a portfolio of seven different AF schedules, outperforms any static choice. This advantage was
realized with a naive random forest regression approach, and it seems likely that further improvements
can be expected from a proper model selection, e.g., using auto-sklearn [Feurer et al., 2020].
Our long-term objective is the development of modular BO algorithms that are trained to select their
modules, including the AF, on the fly, i.e., during the optimization process. Such dynamic algorithm
configuration (DAC) [Biedenkapp et al.} 2020} [2022] approaches were recently shown capable of
outperforming classic (static) hyperparameter optimization approaches. A key issue in the design of
DAC is the identification of features that the trained model can use to guide its selection. Our results
provide strong motivation to consider exploratory landscape analysis for this purpose. Blending the
ELA features with information obtained from the surrogate model clearly is a natural next step for
our work.

In our study, we have used a relatively large initial design size (10d points or 1/3 of the total budget).
Considering [Bossek et al.}[2020]], an intermediate decision whether to continue with the initial design
or to start the surrogate-based optimization should bring additional performance gains. To realize this
potential, a thorough investigation of suitable ELA features is needed, since some features cannot be
considered reliable when based on such comparatively small sample sizes [Belkhir et al., 2016].
We see our work as a continuation of the per-run algorithm selection approach suggested in
let all 2022] [Kostovska et al,[2022]]. In particular, we believe that it is not only the instance per se
that should guide the selection of algorithm components and configurations, but also the particular
trajectory that the algorithm follows in a particular run. In the future, we aim to develop a deeper
understanding for when to switch from initial design sampling to using explorative AFs or exploitative
ones. While in this first proof-of-concept study we have only considered EI and PI as AFs, in future
studies we intend to include other AFs such as Upper Confidence Bound (UCB) [Forrester et al.} 2008],

Top-Two Expected Improvement (TTEI) [2017], and Thompson Sampling (TS) [Thompson|
1933].
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A Acquisition Function Schedules

Name

Schedule

static (EI)
static (PI)
random

round robin

PI PI

EI PI

explore-exploit (0.25)
explore-exploit (0.5) EI EI PI PI
explore-exploit (0.75) EI EI EI PI

VBS (Virtual Best Solver) 4
AFS (AF Selector) X

Table 1: Schedule portfolio of PI, EI and their combinations. AFS is a selector that aims to predict
which of the first seven schedules is the best. VBS is a perfect selector and forms the ground truth for
AFS.

B Additional Results

In this section we provide all boxplot and convergence figures for each BBOB function. Please
note that because the VBS is selected based on final performance, it does not always show the best
anytime-performance.

We first present a more in-depth discussion of the results on specific BBOB functions, focusing on
the manually defined schedules. A first observation is that switching from EI to PI is in general
beneficial when the function landscape has an adequate global structure (F1-F19). Here, the only
exceptions are F5 and F19. F5 is a purely linear function, where EI performs best as it explores fast
in the beginning and exploits sufficiently fast later on because of the simplicity of the landscape. For
F19, we hypothesize that only PI is able to exploit a lucky initial design landing close to optima.

In addition, we can see that PI works well for uni-modal and quite smooth functions (F1-F14), while
performing even better when used after the switch. This observation is in line with PI’s exploitative
behavior. In these cases exploiting does not miss any other optima further away in the landscape.

In contrast, PI is in general worse than EI and also not beneficial after the switch for multi-modal
functions with weak global structure (F20-F24). Again, this is in line with our intuition because for
these functions we have many important basins of attraction that have to be discovered before starting
exploitation. The only exception is F23 (Figure[27), a rugged function with a high number of global
optima, where the probability of starting in a basin of attraction is high and thus exploitation is a
viable strategy. Also, the flatter the landscape the worse PI performs which can be also seen in F7
(slope with step, Figure [T).

Besides the static and the switching schedules, round robin switches from EI to PI and vice versa for
each new function evaluation. The round robin schedule creates a step-wise progress, but is never
the best strategy. Apparently, less frequent switching is preferable in order to take advantage of the
strengths of each AF. On average, the random schedule performs similarly to round robin, but with a
smoother progression. Most likely, the random schedule still switches too frequently for the AFs to
work effectively.

On F16 we observe that a late switch from EI to PI performs best, see Figure 20b] We can also nicely
spot the general boosts after switching after 25 %, 50 % and 75 %. F16 has a highly rugged and
moderately repetitive landscape with many local optima with evident quality difference. Therefore,
PI can be trapped in a bad local optimum if applied too early.
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