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Abstract
Random probabilities are a key component to
many nonparametric methods in Statistics and
Machine Learning. To quantify comparisons
between different laws of random probabilities
several works are starting to use the elegant
Wasserstein over Wasserstein distance. In this
paper we prove that the infinite dimension-
ality of the space of probabilities drastically
deteriorates its sample complexity, which is
slower than any polynomial rate in the sample
size. We propose a new distance that preserves
many desirable properties of the former while
achieving a parametric rate of convergence.
In particular, our distance 1) metrizes weak
convergence; 2) can be estimated numerically
through samples with low complexity; 3) can
be bounded analytically from above and below.
The main ingredient are integral probability
metrics, which lead to the name hierarchical IPM.

1. Introduction
In this work we discuss distances between laws of random
probabilities, that is, probability measures on spaces of prob-
ability measures. Our motivation comes from nonparametric
methods in Statistics and Machine Learning, often referred
to as distribution-free in that they do not rely on strong as-
sumptions on the underlying distribution of the data. The
need for flexibility has inspired a wealth of both frequentist
and Bayesian nonparametric models, which often share the
use of random probability measures to make inference on
the distribution of the data. The randomness, however, is
of different nature. Frequentist methods build estimators
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whose randomness is only due to the randomness of the data.
Standard examples include, e.g., empirical processes, his-
tograms, bootstrapping, kernel density estimators, splines,
and wavelets (see, e.g, Wasserman (2006) and references
therein). In a Bayesian setting the distribution of the data
is treated as the unknown parameter, and thus modeled as
a random probability P̃ . The posterior is the distribution
of P̃ conditionally on the observed data, thus in principle
its randomness does not stem from the data but from the
uncertainty about the parameter. The most popular random
probability in Bayesian nonparametrics is the Dirichlet pro-
cess (Ferguson, 1973), though many useful generalizations
are available in the literature, including species sampling
processes, normalized completely random measures, stick-
breaking processes, and kernel mixtures (see, e.g, Ghosal &
van der Vaart (2017) and references therein).

Several interesting theoretical and applied findings in non-
parametric inference may be framed as approximations of
some distribution of interest. These include approximation
to a ground truth, as in the study of consistency, to the
distribution of another population, as in two-sample tests,
to another posterior, as in the merging of opinions, or to
the exact but unattainable posterior, as in (Markov chain)
Monte-Carlo or other finite-dimensional approximations. In
most of these problems to quantify the quality of the ap-
proximation one needs a distance between laws of random
probabilities, a.k.a., probability distributions on spaces of
probability distributions. Such a distance should ideally
satisfy the following properties:

1. Metrization of weak convergence. Many of the most
common random probabilities, such as empirical pro-
cesses and Dirichlet processes, are almost surely dis-
crete and are typically mutually singular. Weak con-
vergence provides meaningful comparisons between
distributions with different supports.

2. Numerical estimation through samples. Frequently
in applications the exact distribution of the random
probability is not known and thus the distance must
be approximated numerically through samples, with
both low sample complexity (the approximation error
as the sample size increases) and low computational
complexity (the speed of the algorithm as the sample
size increases).
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3. Analytical upper and lower bounds. To prove asymp-
totic statements and to perform theoretical comparisons
with numerical estimations, one needs analytical ex-
pressions that capture the most meaningful behavior of
the distance.

A natural candidate is the Wasserstein distance on P(P(X)),
the space of laws of random probabilities on the sample
space X. Indeed, the Wasserstein distance on a Polish space
X makes the space of probabilities P(X) a Polish space (cfr.
Remark 7.1.7 in Ambrosio et al. (2008)). Thus, one can
build a Wasserstein distance on P(P(X)) using the Wasser-
stein distance on P(X) as ground metric. We refer to the
induced metric as Wasserstein over Wasserstein distance,
also known under the name Hierarchical Optimal Transport
distance in the optimal transport community. This elegant
and intuitive metric has been recently independently de-
fined and used in many different contexts, including the
analysis of convergence of the mixing measure in Bayesian
hierarchical mixture models (Nguyen, 2016), to measure
the similarity measure between documents in topic mod-
els (Yurochkin et al., 2019; Bing et al., 2022b;a), for joint
clustering of observations and their distributions (Ho et al.,
2017), as training loss in generative adversarial networks on
images (Dukler et al., 2019), and to measure the discrepancy
between datasets for classification tasks (Alvarez-Melis &
Fusi, 2020).

In this work we show that though it is indeed possible to
estimate the Wasserstein over Wasserstein distance numeri-
cally through samples, the infinite dimensionality of P(X)
drastically deteriorates its sample complexity, which can be
slower than any polynomial rate of the sample size (Theo-
rem 4.1). A classical workaround to the curse of dimension-
ality in optimal transport is to use entropic regularization
(Mena & Niles-Weed, 2019) but it is unclear if it would be
enough here, as the base space P(X) is infinite-dimensional.
Since in practice a very large sample size may not be avail-
able or, more often, it may lead to an insurmountable com-
putational burden, we propose a new distance between the
laws of random probabilities that can achieve a parametric
rate of convergence (Definition 2.4 and Theorem 4.4). One
of the main ingredients we use are integral probabilities met-
rics (Müller, 1997), and for this reason we call our distance
hierarchical IPM. The hierarchical IPM is dominated by
the Wasserstein over Wasserstein distance, and thus retains
all analytical upper bounds of the former. We also provide
a general strategy to compute lower bounds and use them
to recover closed-form expressions of the Wasserstein over
Wasserstein distance when applied to empirical measures,
to Dirichlet processes, and to the more general species sam-
pling processes (Theorem 3.5). Moreover, in Theorem 3.1
we show that our distance metrizes the weak convergence on
compact spaces. This completes our list of desirable proper-
ties for a distance on the laws of random probabilities. Note

that the analysis we conduct here is valid for a fairly general
class of IPMs, but the choice of the underlying function
space affects the computational and statistical properties of
our distance and may be chosen depending on its intended
use.

The Dirichlet process is the cornerstone of Bayesian non-
parametrics. It provides the law for a random probability
that has been effectively used to build priors and derive
posteriors for infinite-dimensional parameters (see Ghosal
& van der Vaart (2017) and references therein). Its infinite
dimensionality provides elegant and interpretable analytical
properties that are less prone to computational algorithms.
For this reason, a wealth of finite-dimensional approxima-
tions has been developed, each of which recovers the Dirich-
let process as a limit. Whereas limiting behaviours are typi-
cally well-studied, approximation errors at the level of the
random probability are rarely available. To our knowledge,
these have been only carried out for almost-sure trunca-
tions of the random measures (see, e.g., Muliere & Tardella
(1998); Ishwaran & Zarepour (2000); Ishwaran & James
(2001); Arbel et al. (2019)) but not for distributional ap-
proximations, where the error is usually studied in terms
of the L1 distance between the marginal densities of the
data distribution induced by specific Bayesian models (see,
e.g., Ishwaran & Zarepour (2000; 2002); Campbell et al.
(2019); Lijoi et al. (2020); Nguyen et al. (2023)). As an
application of our findings, we use both the Wasserstein
over Wasserstein distance and our HIPM to investigate the
quality of some of the most common finite-dimensional ap-
proximations, namely the Dirichlet multinomial process, the
truncated stick-breaking, and the hierarchical empirical mea-
sure. We provide numerical estimation of the approximation
error and are able to compute non-asymptotic analytical er-
ror bounds that provide new rules-of-thumb for deciding the
best one to use in practice.

In summary, the main contributions of our work are i) draw-
ing attention on the need for a distance between the laws
of random probabilities; ii) showing that the sample com-
plexity of the Wasserstein over Wasserstein distanceWW
can be slower than any polynomial rate in the sample size
(Section 4); iii) proposing a new distance, the hierarchical
IPM, which is strongly related toWW but with better sam-
ple complexity (Sections 2 and 4) ; iv) using our distance
to provide closed-form expressions forWW on empirical
measures and on species sampling processes (Section 3); iv)
proposing a gradient ascent algorithm to compute our dis-
tance (Section 5); v) applying our distance to select the most
suitable finite-dimensional approximation of the Dirichlet
process in Bayesian nonparametrics (Section 6).
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2. Background and main definition
Let (X, dX) be a Polish (metric, complete and sep-
arable) space with a bounded diameter diam(X) =
supx,y∈X dX(x, y), e.g. a compact subset of Rd endowed
with the Euclidean distance. We focus on probability distri-
butions on the space P(X) of probabilities on X, denoted
by P(P(X)). Elements of P(X) will usually be denoted as
P , whereas elements of P(P(X)) will usually be denoted
by Q. Random elements on these spaces are distinguished
by a ∼, e.g. P̃ denotes a random probability. For any mea-
surable function f on X, P (f) =

∫
X f dP . For a X-valued

random variable X we denote its law by L(X) ∈ P(X).
We write d

= for equality in distribution of random variables,
that is, X d

= Y if L(X) = L(Y ). Eventually, we denote by
E the expectation of random variables, and we use EX to
emphasize the source of randomness.

We define distances between the laws of random probabili-
ties by using two baseline ingredients: integral probability
metrics (Zolotarev, 1984; Müller, 1997) and the Wasserstein
distance on a generic bounded Polish space (Y, dY), which
in this work will be either X or the space of probabilities
P(X) with a suitable metric.
Definition 2.1. Let F be a class of R-valued bounded mea-
surable functions on a Polish space (Y, dY). The integral
probability metric (IPM) between P1, P2 ∈ P(Y) is

IF (P1, P2) = sup
f∈F
|P1(f)− P2(f)|.

A finite IPM is a distance whenever F separates probabil-
ities on Y, i.e. if P1(f) = P2(f) for every f ∈ F implies
that P1 = P2. IPMs encompass many well-established
distances between probability measures, including the total
variation distance, the Maximum Mean Discrepancy (MMD)
for a characteristic kernel and the Wasserstein distance of
order 1, which is recovered when F = Lip1(Y,R) is the
class of 1-Lipschitz functions on (Y, dY) (Sriperumbudur
et al., 2012). By duality (see Remark 6.5 in (Villani, 2008))
the Wasserstein distance can also be expressed as an infi-
mum over all couplings as follows. We recall that a coupling
between two probabilities P1, P2 on a Polish space (Y, dY)
is the law of any random vector (Y1, Y2) on the product
space Y × Y such that Y1 ∼ P1 and Y2 ∼ P2. We denote
by Γ(P1, P2) the set of couplings between P1 and P2.
Definition 2.2. The Wasserstein distance of order p between
P1, P2 ∈ P(Y) is

Wp(P1, P2)
p = inf

γ∈Γ(P 1,P 2)
E(Y1,Y2)∼γ(dY(Y1, Y2)

p).

We focus on p = 1 because of its link with IPMs and for
simplicity we denote the Wasserstein of order 1 on X as
W . When referring to the Wasserstein distance between
the laws of two random variables Y1, Y2 we will sometimes
omit the law L and writeW(Y1, Y2) =W(L(Y1),L(Y2)).

When the space of probabilities P(X) endowed with an IPM
is a metric space, the Wasserstein distance over this IPM
naturally defines a distance between the laws of random
probabilities. For an IPM IF we denote by Lip1(IF ) =
Lip1((P(X), IF ),R) the class of IF -Lipschitz functions
h : P(X) → R s.t. |h(P1) − h(P2)| ≤ IF (P1, P2) for
every P1, P2 ∈ P(X).
Definition 2.3. Let IF be an IPM on X. Then for any
Q1,Q2 ∈ P(P(X)) we define

WF (Q1,Q2) = inf
γ∈Γ(Q1,Q2)

E(P̃1,P̃2)∼γ(IF (P̃1, P̃2))

= sup
h∈Lip1(IF )

|Q1(h)−Q2(h)|

We callWF the Wasserstein over IPM distance.

For F = Lip1(X,R), Lip1(IF ) = Lip1(W) is the class of
Wasserstein-Lipschitz functions on P(X). We thus recover
the Wasserstein over Wasserstein distance, which we denote
asWW . As discussed in the introduction and investigated
in Section 4, the statistical properties ofWW are not satis-
factory and for this reason we propose a new, yet related,
distance. The main idea is that for a random probability
P̃ , the laws of the integrals P̃ (f), where f is a continu-
ous bounded function, are probabilities on R and they are
enough to characterize the law of P̃ (cfr. Theorem 4.11 in
Kallenberg (2017)).

Definition 2.4. Let IF be an IPM on X. Then for any
Q1,Q2 ∈ P(P(X)) we define

dF (Q1,Q2) = sup
f∈F
W(L(P̃1(f)),L(P̃2(f))),

where P̃i ∼ Qi for i = 1, 2. We call dF the hierarchical
integral probability metric (HIPM).

Conditions guaranteeing that dF is a distance, together with
a characterization of the topology it generates, can be found
below in Theorem 3.1. In the following we will devote much
attention to F = Lip1(X,R). The corresponding metric dF
will be compactly denoted dLip and we refer to it as the
Lipschitz HIPM.

Note that an analogy can be made with the max-sliced
Wasserstein distance (Deshpande et al., 2019) as dF is the
maximal one-dimensional Wasserstein distance between
the “projections” of Q1, Q2 onto P(R) via the maps
Q 7→ L(P̃ (f)), with P̃ ∼ Q. Another point of view is
to see dF as an IPM on P(X): by expressing the Wasser-
stein distance on R as an IPM we observe that

dF (Q1,Q2) = sup
h∈F
|Q1(h)−Q2(h)|,

where here the class of functions F from P(X) to R is

F = {P 7→ g(P (f)) : f ∈ F and g ∈ Lip1(R)}.
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Thus bothWF and dF are special cases of IPMs on P(X),
whose corresponding classes of functions, Lip1(IF ) and F
respectively, satisfy F ⊂ Lip1(IF ). Intuitively, the class
F is much smaller than Lip1(IF ), and this is explains the
better sample complexity of dLip. This will be precisely
quantified in terms of Rademacher complexity in Section 4.
On the other hand, under reasonable assumptions both dis-
tances metrize the same topology, as discussed in Section 3.

We conclude this section by recalling the paradigmatic exam-
ple of a random probability: the Dirichlet process (Ferguson,
1973), which will be useful both in the study of the sample
complexity of the Wasserstein over Wasserstein distance
in Section 4, and in Section 6. We introduce it through its
stick-breaking representation (Sethuraman, 1994).

Definition 2.5. A random probability P̃ has a Dirichlet
process distribution with concentration α > 0 and base
probability P0 ∈ P(X), written P̃ ∼ DP(α, P0), if

P̃
d
=

+∞∑
i=1

JiδXi
,

where Xi
iid∼ P0 are independent of Vi

iid∼ Beta(1, α), and
Ji = Vi

∏i−1
j=1(1 − Vj). The {Ji}i are termed the stick-

breaking weights.

3. Topological and metric properties
In this section we prove that our distance metrizes the
desired topology and explain its relation to the more-
established Wasserstein over Wasserstein distance. We write
(Cb(X),L∞) for the space of continuous and bounded func-
tions endowed with the supremum norm. We recall that
a sequence (Pn)n of probability laws on a Polish space is
said to converge weakly to P if for every f ∈ Cb(X), Pn(f)
converges pointwise to P (f). This turns P(X) into a Polish
space, see Remark 7.1.7 in Ambrosio et al. (2008). Thus we
can endowP(P(X)) with the weak convergence whenP(X)
itself is endowed with weak convergence. Remarkably, one
can prove (cfr. Prohorov (1961); von Waldenfels (1968);
Harris (1971) and Theorem 4.11 in Kallenberg (2017)) that
a sequence (Qn)n of laws of random probabilities con-
verges weakly to Q if and only if for every f ∈ Cb(X),
the sequence of real-valued random variables P̃n(f), for
P̃n ∼ Qn, converges weakly to P̃ (f), for P̃ ∼ Q.

Theorem 3.1. If IF is bounded and metrizes the weak con-
vergence on P(X) thenWF metrizes the weak convergence
on P(P(X)). If in addition {af + b : a, b ∈ R, f ∈ F}
is dense in (Cb(X),L∞) then dF also metrizes the weak
convergence on P(P(X)).

In the compact case the requirement of density can be
checked with the following lemma.

Lemma 3.2. Assuming X compact, let F a class of func-
tions which is absolutely convex (that is, convex and such
that af ∈ F for any |a| ≤ 1 and f ∈ F) and such that IF
is a distance. Then {af + b : a, b ∈ R, f ∈ F} is dense
in (Cb(X),L∞).

Note that we can always inflate F so that it becomes abso-
lutely convex but the IPM IF stays the same: see Theorem
3.3 in Müller (1997). As examples, dLip metrizes weak
convergence if X is compact and so does dF if IF is a
MMD distance for a c-universal kernel (by definition of
universality, see Sriperumbudur et al. (2011)).

We move on to the study of analytical upper and lower
bounds of these distances. For a random probability P̃
we denote by E(P̃ ) the deterministic mean measure which
satisfies E(P̃ )(A) = E(P̃ (A)) for any measurable set A.

Proposition 3.3. LetWF denote the Wasserstein over IF
distance. Then if P̃i ∼ Qi for i = 1, 2,

IF (E(P̃1),E(P̃2)) ≤ dF (Q1,Q2) ≤ WF (Q1,Q2).

It is easy to see that the inequalities are tight. Indeed, when
Q1 = δP1

, and Q2 = δP2
for some (deterministic) probabil-

ity measures P1, P2,

IF (P1, P2) = dF (Q1,Q2) =WF (Q1,Q2).

In particular, for F = Lip1(X,R) our distance dLip is al-
ways a lower bound to the Wasserstein over Wasserstein
distanceWW . The next result provides a general condition
for equality to hold. We recall that T : X→ X is an optimal
transport map if its graph is a c-cyclically monotone subset
of X × X, in the sense of Definition 5.1 in Villani (2008).
Moreover, if P ∈ P(X), T#P (A) = P (T−1(A)) is the
push-forward measure of P by the map T . In the following
we writeWW(P̃1, P̃2) in place ofWW(L(P̃1),L(P̃2)).

Lemma 3.4. Let T : X 7→ X be an optimal transport map.
If T#P̃1

d
= P̃2,

WW(P̃1, P̃2) = dLip(P̃1, P̃2) =W(E(P̃1),E(P̃2)).

We now state a corollary of Lemma 3.4 that shows its far
reach. Let P̃1 and P̃2 be two discrete random probabilities

P̃1 =
∑
j≥1

J
(1)
j δ

X
(1)
j

, P̃2 =
∑
j≥1

J
(2)
j δ

X
(2)
j

,

such that (a) the jumps are independent of the atoms, i.e.,
(J

(i)
j )j≥1 ⊥ (X

(i)
j )j≥1; for i = 1, 2; (b) the atoms are i.i.d.

from base distributions P1, P2 respectively, i.e. X(i)
j

iid∼ Pi

for i = 1, 2; (c) the jump distribution of P̃1 and P̃2 are the
same, i.e. (J (1)

j )j≥1
d
= (J

(2)
j )j≥1..
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Theorem 3.5. Let P̃1 and P̃2 be s.t. (a), (b), (c) hold. Then,

WW(P̃1, P̃2) = dLip(P̃1, P̃2) =W(P1, P2).

Theorem 3.5 holds both for probabilities with a finite and an
infinite number of atoms. In particular, the assumptions (a)
and (b) are the ones that define the notable class of species
sampling processes (Pitman, 1996). This is a very gen-
eral class of random probabilities which encompasses, e.g.,
empirical measures, the Dirichlet process, the Pitman-Yor
process (Pitman & Yor, 1997), homogeneous normalized
completely random measures (Regazzini et al., 2003): The-
orem 3.5 applies to all these examples. The contribution is
two-fold: on the one hand it shows that in many cases our
distance coincides withWW , making it a good alternative,
on the other it provides the exact expression ofWW in many
interesting scenarios. We point out two useful corollaries.

Corollary 3.6. Let X1, . . . , Xn
iid∼ P1 and Y1, . . . , Yn

iid∼
P2. Then,

WW

(
L

(
1

n

n∑
i=1

δXi

)
,L

(
1

n

n∑
i=1

δYi

))
=W(P1, P2).

Corollary 3.6 highlights the crucial role of the dependence
across samples {Xi}i and {Yi}i in estimatingW(P1, P2).
Whereas it is known that with independent samples the bias
goes slowly to zero when n increases and suffers the curse
of dimensionality, considering perfectly coupled atoms re-
moves the bias. We thus expect partial forms of dependence
across samples to also reduce the bias.
The next result focuses on the Dirichlet process (Defini-
tion 2.5).
Corollary 3.7. For P1, P2 ∈ P(X) and α > 0,

WW(DP(α,P1),DP(α,P2)) =W(P1,P2).

This recovers the prominent identity in Nguyen (2016,
Lemma 3.1). The author addresses it as a ‘remarkable iden-
tity of the Dirichlet process’ - our result extends it to all
species sampling models.

Another useful feature of F = Lip1(R,R) is that the iden-
tity function f(x) = x belongs to F . Then a natural lower
bound to dLip, and thusWW , is the standard Wasserstein
distance between the random means: for P̃i ∼ Qi,

W
(∫

R
xdP̃1(x),

∫
R
xdP̃2(x)

)
≤ dLip(Q1,Q2). (1)

4. Sample complexity

Let P̃1, . . . , P̃n
iid∼ Q and consider the empirical estimator

Q̃(n) =
1

n

n∑
i=1

δP̃i
.

We have introduced a third level of randomness: Q̃(n)

is a random variable taking values in P(P(X)), with
the randomness coming from P̃1, . . . , P̃n. The extension
of Glivenko-Cantelli theorem to general Polish spaces
(Varadarajan, 1958) ensures that Q̃(n) converges weakly to
Q almost surely (a.s.). By Theorem 3.1, bothWW(Q̃(n),Q)
and dLip(Q(n),Q) converge to zero a.s. as the sample size
n diverges. Yet, we prove that there is a crucial difference
in their convergence rate: whereas the convergence of the
former is slower than polynomial, the latter can achieve
parametric rate of convergence.

Theorem 4.1. Let X a bounded subset of Rd. Then there
exist constants C, N depending on d and diam(X) such
that, for n ≥ N , for any Q ∈ P(P(X))

E(WW(Q̃(n),Q)) ≤ C
log(log(n))

log(n)
.

Moreover let Q = DP(α, P0) be the law of a Dirichlet
process for α > 0 and P0 ∈ P(X) whose support has a
non-empty interior. Then for every γ > 0 there exists cγ > 0
such that, at least for n large enough,

E(WW(Q̃(n),Q)) ≥ cγn
−γ .

On the other hand we show that dF has parametric conver-
gence rate when X ⊆ R under some uniformly bounded
condition on F with respect to the supremum norm. We
give a slightly weaker condition in terms of F∗ = {f∗ =
f − f(x0) s.t. f ∈ F} for a fixed x0 ∈ X. This will allow
one to treat the case F = Lip1(X,R), as Lip∗1(X,R) is uni-
formly bounded whereas Lip1(X,R) contains all constant
functions.

Lemma 4.2. Let F∗ = {f∗ = f − f(x0) s.t. f ∈ F} be
uniformly bounded by K in the supremum norm, for a fixed
x0 ∈ X. Then for every Q ∈ P(P(X)),

E(dF (Q̃(n),Q)) ≤ 320 log(2)K√
n

+ inf
ϵ>0

{
4ϵ+

64√
n

∫ K

ϵ/4

√
logN

(
δ

2
;F∗,L∞

)
dδ

}
,

where N(·;F∗,L∞) is the covering number of F∗ with
respect to the supremum norm.

Lemma 4.2 reduces the convergence rate of the HIPM to the
convergence rate of the corresponding IPM (the infimum
in the right hand side) as the first term coming from the
“hierarchical” part of the distance goes to zero at the para-
metric rate 1/

√
n. The infimum is already well-studied for

a variety of classes, in particular for F = Lip1(X,R) when
X is a subset of Rd.

Theorem 4.3. Let F = Lip1(X,R) with X a bounded
subset of Rd. Then there exists a constant Cd > 0 depending

5



Hierarchical Integral Probability Metrics

on d and diam(X) but not on n, such that, at least for n
large enough,

E(dLip(Q̃(n),Q)) ≤


C1n

−1/2 if d = 1,

C2n
−1/2 log(n) if d = 2,

Cdn
−1/d if d > 2.

In practice, to compute the HIPM distance between
two empirical distributions we need that the realizations
P̃1, . . . , P̃n

iid∼ Q are almost surely discrete and with a fi-
nite number of atoms. When this is not the case we may
approximate P̃i through the empirical distribution of an
exchangeable sequence whose de Finetti measure is P̃i,
namely X

(i)
1 , . . . , X

(i)
m |P̃i

iid∼ P̃i. By de Finetti’s theorem
P̃i,(m) = 1

m

∑m
j=1 δX(i)

j
→ P̃i weakly almost surely. A

hierarchical empirical estimator can then be defined as

Q̃(n,m) =
1

n

n∑
i=1

δP̃i,(m)
. (2)

Theorem 4.4. Let F = Lip1(X,R) with X a bounded sub-
set of Rd. Then there exist a constant Cd > 0, not depend-
ing on n or m, such that E(dLip(Q̃(n,m),Q)) is smaller or
equal to

C1(n
−1/2 +m−1/2) if d = 1,

C2(n
−1/2 log(n) +m−1/2 log(m)) if d = 2,

Cd(n
−1/d +m−1/d) if d > 2.

5. Numerical estimation of the distances
In this section we focus on random measures that are fully
discrete. That is, we consider Q1,Q2 ∈ P(P(X)) such that

Qk =
1

n

n∑
i=1

δPk
i
,

for k = 1, 2. Here n is the number of distinct probabilities
in the support of Q1, Q2. Each of the probabilities P k

i is
also discrete and reads

P k
i =

1

m

m∑
i=1

ωk
i,jδXk

i,j
with

m∑
j=1

ωk
i,j = 1. (3)

Thus m is the number of atoms in each probability and we
allow for non-uniform weights ωk

i,j for each atom as it will
be useful in Section 6. The measures Q1, Q2 can each be
summarized as a n × m × 2 array containing the atoms
Xk

i,j and the weights ωk
i,j . Extensions to different values

of n for Q1 and Q2 and to a number m of atoms which
may depend on i ∈ {1, . . . , n} are possible, but we stick
to this setting for the sake of simplicity. In this section we
discuss how to output (an approximation of)WW(Q1,Q2)
or dLip(Q1,Q2).

Wasserstein over Wasserstein. We follow Definition 2.3:
we first need to compute the pairwise Wasserstein distance
between P 1

i1
and P 2

i2
for any i1, i2, and then solve the n×n

optimal transport problem whose cost matrix is given by
the pairwise Wasserstein distances. This was already used
e.g. in Yurochkin et al. (2019) and we refer to Appendix B
for the pseudocode. The only requirement is a package to
solve the optimal transport problem. Assuming that the
space X is a subset of R, so that the inner optimal transport
problems are just sorting problems, solving the n×n optimal
transport exactly requires O(n3 log(n)) operations (Orlin,
1997). Thus this algorithm outputs the exact distance in
O(n2m log(m) + n3 log(n)) operations.

Lipschitz HIPM in dimension one. We approximate
our new distance dLip(Q1,Q2), as in Definition 2.4 with
F = Lip1(X,R). We need to find a supremum over the
space of Lipschitz functions Lip1(X,R), and we will resort
to a gradient ascent algorithm. We restrict X to be one-
dimensional, so that X = [a, b]. Higher dimensions would
require a more careful parametrization of Lip1(X,R), e.g.
with neural networks, but we leave this investigation for
future work.

To evaluate P k
i (f) for k = 1, 2 and i = 1, . . . , n, we only

need the values of f on {Xk
i,j}, that is on 2nm points. The

requirement f ∈ Lip(X,R) corresponds to 2nm − 1 con-
straints of the form |f(X) − f(X ′)| ≤ |X −X ′| for con-
secutive atoms X,X ′. As we will run a gradient ascent
with the function f as unknown, this can become quickly
prohibitive. For this reason, we will rather project the atoms
of each measure on a fixed grid of stepsize ∆x. Let M be
the number of grid points and Y1, . . . , YM be the grid points
over [a, b]. We consider P k

i given by

P k
i =

M∑
q=1

ωk
i,qδYq

, with
M∑
q=1

ωk
i,q = 1, (4)

which is a specific instance of (3) with common atoms.
Each random measure is now described by a nM array
of weights ω1

i,q and ω2
i,q. If P k

i is given by the form (3),
by projecting each atom Xk

i,j onto the closest point on the
grid Y1, . . . , YM , it is possible to approximate it with a
probability measure of the form (4), up to an error ∆x in
Wasserstein distance. As we would anyway have a statistical
error of size n−1/2 + m−1/2 if we are in the setting of
Section 4 (see Theorem 4.4), the rationale is that adding an
error ∆x is reasonable if ∆x ≍ n−1/2 + m−1/2, that is,
M ≍ min(n1/2,m1/2).

We now expand Definition 2.4 in this setting. By Birkhoff
theorem we rewrite the optimal transport problem as an
infimum over permutations, and the optimal permutation
can be found very efficiently by sorting; see Remark 2.2.27
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Figure 1. Distances between independent realizations of Q̃(n,m) and Q̃′
(n,m) in (2). We fix m = 5000 and let n evolve. Computations are

repeated over 24 realizations, with errors corresponding to one standard deviation. In the left plot Q = DP(1,P1) and Q′ = DP(1,P2)
with P1 = Unif([−1/2, 1/2]), P2 = 1/2Unif([−1,−3/4]) + 1/2Unif([3/4, 1]) so that WW(Q,Q′) = W(P1, P2) = 5/8. In the
right plot (in log-log scale) Q = Q′ = DP(1,Unif[0, 1]).

in Peyré & Cuturi (2019). We replace the function f ∈
Lip1([a, b],R) by a vector f ∈ RM corresponding to fq =
f(Yq) the evaluation of f on grid points. The distance can
be rewritten as

sup
f∈RM

G(f)

such that |fq+1 − fq| ≤ ∆x ∀q ∈ {1, . . . ,M − 1},

where, by denoting S(n) the permutations of {1, . . . , n},

G(f) := inf
σ∈S(n)

1

n

n∑
i=1

∣∣∣∣∣
M∑
q=1

(ω1
i,q − ω2

σ(i),q)fq

∣∣∣∣∣ .
The constraints correspond to f being the restriction of a
function in Lip1(X,R) and they define a convex set. The
function G we maximize is piece-wise linear. Being an infi-
mum of convex functions, it is neither convex nor concave:
we have left the realm of convex optimization. However, the
gradient can be easily found, as explained in Appendix B.
Thus we use a gradient ascent algorithm to perform maxi-
mization of G, but we have no guarantee of finding a global
maximizer (in practice, we start with different random ini-
tializations). As the function is piece-wise linear there is
no canonical stepsize for the gradient ascent, thus we im-
plemented the following: starting from the gradient as an
ascent direction, we first project it orthogonally on the set of
ascent directions that preserve the convex constraint. Along
this new direction, we perform a line search to move enough
for the function to increase, and we stop if the increase
is too small. We also do a linear change of variables and
rather parametrize the function f by its derivative g (that

is fq =
∑

q′<q ∆xgq′ for any q) to simplify the Lipschitz
constraint in a box constraint. The details and pseudocode
can be found in Appendix B.

Experiments. To illustrate our code and the results of Sec-
tion 4 we consider the setting where the discrete measures
Q1 and Q2 are realizations of the empirical hierarchical
estimators Q̃(n,m), Q̃′

(n,m) in (2) of two Dirichlet processes,
Q and Q′ respectively.

We first consider Q = DP(P1, α) and Q′ = DP(P2, α)
so that by Corollary 3.7 WW(Q,Q′) = dLip(Q,Q′) =
W(P1, P2). We fix m large and check that, as n increases,
the distances between realizations of Q̃(n,m) and Q̃′

(n,m)

indeed converge towards the true value. We also report the
lower bound (1) for completeness, and we observe that in
this scenario it is informative but it is not tight. The results
are displayed in the left plot of Figure 1.

To further emphasize the difference betweenWW and dLip,
we also consider the case where Q1 and Q2 are indepen-
dent realizations of the same Q̃(n,m), where Q is taken
to be a Dirichlet process. We expect WW(Q1,Q2) and
dLip(Q1,Q2) to go to zero. We fix m large and study the
convergence as n→ +∞. We see that convergence is faster
for dLip than for WW as predicted by our theory of Sec-
tion 4. We also report the lower bound (1), and observe that
it almost coincides with dLip in this case. The results are
reported in the right plot of Figure 1.

The algorithms were implemented in Julia. Computations
were performed on the CPU of a standard 6-core laptop and
we report execution time in the appendix. As computations

7
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were repeated on multiple realizations of Q̃n,m and Q̃′
n,m,

we only keep cases where the distance for a single realiza-
tion can be computed in less than one minute. This explains
why some values of n are missing forWW in Figure 1. The
code is available at the following address:

https://github.com/HugoLav/HierarchicalIPM

6. Application: Approximation errors for the
Dirichlet process

We consider three popular finite-dimensional approxima-
tions of the Dirichlet process (Definition 2.5). Each approx-
imation is indexed by a finite number of atoms N and, as N
goes to +∞, it converges to a DP(α,P0).

1. Dirichlet multinomial process

P̃1|X1, . . . , XN ∼ DP

(
α,

1

N

N∑
i=1

δXi

)
, Xi

iid∼ P0.

It is equivalent to P̃1 =
∑N

i=1 JiδXi
where the jumps

(J1, . . . , JN ) ∈ RN follow a Dirichlet distribution of
parameter (α/N, . . . , α/N) while the atoms are i.i.d.
with law P0.

2. Truncated stick-breaking process

P̃2 =

N−1∑
i=1

JiδXi
+

(
1−

N−1∑
i=1

Ji

)
δXN

,

where Xi
iid∼ P0 and J1, . . . , JN−1 are the first N − 1

stick-breaking weights (see Definition 2.5).

3. The dependent or hierarchical empirical measure

P̃3 =
1

N

N∑
i=1

δYi
,

where Y1, . . . , YN |P̃
iid∼ P̃ and P̃ ∼ DP(α,P0). We

already considered it in Section 4.

The empirical measure is less established in the Bayesian
nonparametric literature as a finite-dimensional approxima-
tion of the Dirichlet process. Its atoms are exchangeable
but not independent and they can be sampled through the
Pólya urn or Chinese restaurant process scheme (Blackwell
& MacQueen, 1973). In the following we use both analyti-
cal and empirical arguments to show that in many regimes
it provides similar approximation errors to the widely used
multinomial Dirichlet process, which has been indepen-
dently defined by many different authors (see Section 4 of
Ishwaran & Zarepour (2002)). We state our results in terms
of upper bounds ofWW which, thanks to Proposition 3.3,
are also upper bounds of our distance dLip.

Proposition 6.1. If P̃ ∼ DP(α,P0) with P0 ∈ P(X),

WW(P̃ , P̃1) ≤ E
(
W
(
P0,

1

N

N∑
i=1

δXi

))
,

WW(P̃ , P̃2) ≤ E(dX(X1, X2))

(
α

α+ 1

)N

,

WW(P̃ , P̃3) ≤ EP̃

(
W
(
P̃ ,

1

N

N∑
i=1

δYi

))
,

where X1, . . . , XN
iid∼ P0 and Y1, . . . , YN |P̃

iid∼ P̃ .
In particular if P0 ∈ P(R) and F0 denotes its c.d.f.,

WW(P̃ , P̃1) ≤
1√
N

∫ +∞

−∞

√
F0(x)(1− F0(x))dx,

WW(P̃ , P̃2) ≤ 2

(
α

α+ 1

)N ∫ +∞

−∞
F0(x)(1− F0(x))dx,

WW(P̃ , P̃3) ≤
√

α

N(α+ 1)

∫ +∞

−∞

√
F0(x)(1− F0(x))dx.

Proposition 6.1 sheds light on a number of interesting prop-
erties. The Dirichlet multinomial process has polynomial
convergence rate in the number of atoms N , whereas the
stick-breaking has exponential convergence rate. However,
this rate depends on α and for a diverging sequence of α it
may fail to converge. The exponential convergence of the
stick-breaking approximation can also be captured by mo-
ment summaries of the truncation error, as described e.g. in
Ishwaran & Zarepour (2000), where it is also underlined that
“there appears to be no simple method for assessing the ade-
quacy” of the Dirichlet multinomial approximation. More-
over, the potentially critical regime for the stick-breaking
(α→ +∞) is rarely mentioned in the literature. This is not
an uncommon situation since if we consider n conditionally
i.i.d. observations with de Finetti measure P̃ , the posterior
is a Dirichlet process with concentration parameter α+ n,
which thus diverges ≍ n. In particular, when approximat-
ing the posterior arising from a sequence of conditionally
i.i.d. observations with a Dirichlet process prior one should
always choose N diverging faster than the number of ob-
servations n, which can be a problem with large sample
sizes. On the contrary, the approximation of the Dirichlet
multinomial and of the empirical measures do not show this
high dependence on α but they are negatively affected by an
increasing dimension of the space. Interestingly, the upper
bounds for the Dirichlet multinomial and the hierarchical
empirical measure are quite similar, and this similarity is
also confirmed by the simulations.

Practical conclusions. Our study led to the following
practical advice when using an approximation of the Dirich-
let process. If one is approximating a Dirichlet processes
with large concentration parameter, as in the case of pos-
teriors for a large dataset arising from a conditionally i.i.d.
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Figure 2. Distance from a DP(α,P0) for finite-dimensional approximations with N atoms: Dirichlet multinomial (P̃1), truncated stick
breaking (P̃2), and hierarchical empirical measure (P̃3). The base measure P0 is uniform over [0, 1]. In the left plot N = 50 is fixed, and
α varies; in the right plot α = 50 is fixed, and N varies. The solid line is the distance dLip, while the dashed lines are the upper bounds of
Proposition 6.1.

model directed by a Dirichlet process, the Dirichlet multi-
nomial process and the hierarchical empirical measure will
provide similar and more reliable approximations than the
truncated stick-breaking, as depicted in the left plot of Fig-
ure 2. On the other hand if the observations live in a high-
dimensional space or if we can afford taking N consistently
larger than the concentration parameter, the stick-breaking
will tend to provide better approximations, as depicted in
the right plot of Figure 2.

Limitations
Our work presents some limitations from the computational
and theoretical point of view. Our numerical method is
restricted to a one-dimensional space and one should be
careful in drawing delicate conclusions based on the nu-
merical evaluation of the distance, as it relies on gradient
ascent over a non-concave objective and thus it does not
come with a guarantee of convergence. From a theoretical
perspective, the sample complexity is derived for probabili-
ties on a space with a bounded metric. Finally, we still lack
a good understanding of the qualitative difference between
the Wasserstein over Wasserstein distance and the HIPM.
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A. Proofs
Proof of Theorem 3.1

The distanceWF metrizes weak convergence. ThatWF metrizes weak convergence over P(P(X)) is a simple consequence
of Remark 7.1.7 in Ambrosio et al. (2008) and the fact that (P(X), IF ) has a bounded diameter by assumption.

The distance dF metrizes weak convergence. Let Qn a sequence in P(P(X)), and Q ∈ P(P(X)). We also write P̃n, P̃ for
random measures with P̃n ∼ Qn and P̃ ∼ Q.

We first assume that dF (Qn,Q) converges to 0 as n→ +∞. In particular for any g ∈ F , we know thatW(P̃n(g), P̃ (g))
converges to zero. This easily extends to any g in F ′ = {af + b : a, b ∈ R, f ∈ F}. We extend to Cb(X) by our density
assumption. If f ∈ Cb(X) is any continuous and bounded function and ε > 0, by assumption we can find g ∈ F ′ with
∥f − g∥∞ ≤ ε. With the triangle inequality we easily obtain

W(P̃n(f), P̃ (f)) ≤ W(P̃n(f), P̃n(g)) +W(P̃n(g), P̃ (g)) +W(P̃ (g), P̃ (f)) ≤ W(P̃n(g), P̃ (g)) + 2ε.

As n→ +∞, the first term in the right hand side converges to 0. As ε can then be chosen arbitrary we have proved that
W(P̃n(f), P̃ (f)) converges to 0 as n → +∞ for any continuous and bounded function f . Convergence in W implies
converges in law, thus the random variable P̃n(f) converges in law to P̃ (f). This concludes the proof of weak convergence
of Qn to Q.

Conversely assume the weak convergence of Qn to Q. Using Proposition 3.3, we know that dF (Qn,Q) ≤ WF (Qn,Q).
The first part of the present theorem yields that the right hand side goes to zero, and thus so does the left hand side.

Proof of Lemma 3.2

The proof strategy relies on the Hahn-Banach theorem and is similar to the one used to prove density results in the context
of MMD distances, see e.g. Proposition 2 in Sriperumbudur et al. (2011).

Step 1. Characterization as linear span. Using the absolute convexity ofF , we prove thatF ′ = {af+b : a, b ∈ R, f ∈ F}
coincides with the linear span of F ∪ {1}, where 1 denotes the constant function equal to 1. First we observe that F ′ is a
vector space. Indeed, for any a1, a2 ∈ R and f1, f2 ∈ F ,

a1f1 + a2f2 = (|a1|+ |a2|)
(

a1
|a1|+ |a2|

f1 +
a2

|a1|+ |a2|
f2

)
belongs to F ′ since by absolute convexity a1/(|a1| + |a2|)f1 + a2/(|a1| + |a2|)f2 ∈ F . It easily follows that for any
a1, a2 ∈ R and f1, f2 ∈ F ′, a1f1 + a2f2 ∈ F ′ and thus F ′ is a vector space. As in addition F ∪ {1} ⊆ F ′, we see that F ′

also contains the linear span of F ∪ {1}. The other inclusion easily holds, and thus there is equality.

Step 2. Density of the linear span in Cb(X). By a corollary of the Hahn-Banach theorem, see Theorem 5.19 in Rudin
(1987), it is enough to prove that any continuous linear form σ on (Cb(X),L∞) that vanishes on F ∪ {1} is necessarily
identically zero. As X is compact, the Riesz theorem (see e.g. Theorem 2.14 in Rudin (1987)) guarantees that any such σ is
characterized by a finite signed measure, which we denote σ as well, i.e. σ(f) =

∫
X fdσ. We write σ = σ+ − σ− for its

Jordan decomposition into a positive and a negative part. As σ(1) = 0, we deduce that σ+(X) = σ−(X). If σ+(X) = 0
then σ+ = σ− = σ = 0 and we are done. If not, up to dividing σ by σ+(X), we can assume that σ+(X) = σ−(X) = 1,
that is, σ+ and σ− are probability distributions over X. Since σ vanishes on F , σ+(f)− σ−(f) = 0 for any f ∈ F , which
implies IF (σ+, σ−) = 0. As IF is distance, we obtain σ+ = σ−. This implies σ = 0 and concludes the proof.

Proof of Proposition 3.3

Take P̃1, P̃2 distributed according to Q1 and Q2 respectively. Given the definition of the two distances and the linearity of
the integral, the property we want to prove is

sup
f∈F
|E(P̃1(f))− E(P̃2(f))| ≤ sup

h∈F
|Q1(h)−Q2(h)| ≤ sup

h∈Lip1(IF )

|Q1(h)−Q2(h)|,

where we recall that
F = {P 7→ g(P (f)) : f ∈ F and g ∈ Lip1(R)}.

Following the definition we see that F ⊂ Lip1(IF ) thus the second inequality holds. Then we notice that for any f ∈ F
there holds E(P̃i(f)) = Qi(hf ) for i = 1, 2 with hf : P 7→ P (f) ∈ F. The first inequality easily follows.

12
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Proof of Lemma 3.4

Let Pi = E(P̃i). The fact thatW(P1, P2) ≤ WW(L(P̃1),L(P̃2)) follows from Proposition 3.3 and was also proved in
Lemma 3.1 of Nguyen (2016). We prove thatW(P1, P2) ≥ WW(L(P̃1),L(P̃2)). Let T be the optimal transport map such
that T#P̃1

d
= P̃2. Then by considering the coupling (P̃1, T#P̃1),

WW(L(P̃1),L(P̃2)) ≤ EP̃1
(W(P̃1, T#P̃1)) = EP̃1

(EX|P̃1∼P̃1
(|X − T (X)| | P̃1),

since T is an optimal transport map. If X|P̃1 ∼ P̃1 then X ∼ E(P̃1) = P1. Thus by the tower property, the right hand side
is equal to EX∼P1

(|X−T (X)|). We observe that T#P̃1 = P̃2 a.s. implies that T#P1 = P2. Indeed, P2(A) = E(P̃2(A)) =

E(P̃1(T
−1(A)) = P1(T

−1(A)) = T#P1(A). Since T is an optimal transport map, EX∼P1(|X − T (X)|) = W(P1, P2).
Thus,WW(L(P̃1),L(P̃2)) ≤ W(P1, P2) and the conclusion follows.

Proof of Theorem 3.5

If there exists T an optimal transport map between P1 and P2, by assumptions (a), (b), and (c) it follows that

T#P̃1 =
∑
j≥1

J
(1)
j δ

T (X
(1)
j )

d
= P̃2.

We can apply Lemma 3.4 and the conclusion follows.

Consider now the case when an optimal transport map T does not exist and let γ be the optimal coupling on X×X between
P1 and P2. We build the following coupling between L(P̃1) and L(P̃2)

(P̃1, P̃2) =

(∑
j≥1

JjδY (1)
j

,
∑
j≥1

JjδY (2)
j

)
,

where {Jj} have the same distribution as {J (1)
j } and {J (2)

j }, and they are independent from (Y
(1)
j , Y

(2)
j )

iid∼ γ. Then

WW(P̃1, P̃2) ≤ E
(
W
(∑

j≥1

JjδY (1)
j

,
∑
j≥1

JjδY (2)
j

))
≤ E

(∑
j≥1

JjdX(Y
(1)
j , Y

(2)
j )

)
=
∑
j≥1

E(Jj)E(dX(Y (1)
j , Y

(2)
j )).

Since (Y
(1)
j , Y

(2)
j )

iid∼ γ is the optimal coupling between P1 and P2,∑
j≥1

E(Jj)E(d(Y (1)
j , Y

(2)
j )) =W(P1, P2)E

(∑
j≥1

Jj

)
=W(P1, P2).

This proves thatWW(P̃1, P̃2) ≤ W(P1, P2). The other inequality follows from Proposition 3.3.

Proof of Theorem 4.1: the upper bound

Step 1: reducing to an estimation of Rademacher complexity. The quantity of interest can be written, following the definition,

E(WW(Q̃(n),Q)) = E

(
sup

h∈Lip∗
1(W)

∣∣∣Q̃(n)(h)−Q(h)
∣∣∣) ,

where Lip∗1(W) is the class of functions defined over P(X) which are 1-Lipschitz with respect with the Wasserstein distance
and vanish on a distinguished measure P0, which will not play a role. The original definition is stated with Lip1(W) but
clearly replacing by Lip∗1(W) does not change the value. The gain is that the class Lip∗1(W) is uniformly bounded as X
is bounded. The classical symmetrization argument (see e.g. Lemma 2.3.1 in Vaart & Wellner (1996) or Section 4.2 in
Wainwright (2019)) yields

E(WW(Q̃(n),Q)) ≤ 2Rn(Lip
∗
1(W)),

where the Rademacher complexity of the class Lip∗1(W) is defined as

Rn(Lip
∗
1(W)) = EP̃1:n,ϵ1:n

(
sup

h∈Lip∗
1(W)

∣∣∣∣1n
n∑

i=1

ϵih(P̃i)

∣∣∣∣), (5)

13
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being ϵ1, . . . , ϵn i.i.d. Rademacher random variables independent from P1, . . . , Pn, which are i.i.d. with law Q. Note that
we use EP̃1:n,ϵ1:n

as a shortcut for EP1,...,Pn,ϵ1,...,ϵn .

Step 2: estimation of the Rademacher complexity via a covering number. As trying to get the sharpest rates would take us to
expressions which are not analytically tractable, we will only use the one step bound rather than the integral bound (see
Proposition 5.17 and Example 5.21 in Wainwright (2019)) which yields

Rn(Lip
∗
1(W)) ≤ inf

ϵ∈[0,ϵ0)

{
ϵ+

C1√
n

√
log N (ϵ,Lip∗1(W),L∞)

}
,

where ϵ0, C1 are two constants. Here N (ϵ,Lip∗1(W),L∞) is the covering number of the space of 1-Lipschitz functions
defined on P(X) with respect to L∞, the supremum norm on the space of functions defined on P(X). The original result is
stated with L∞ replaced with the L2 norm with respect to the empirical process, but is always dominated by L∞. To estimate
the covering number we then use the bound of Kolmogorov & Tikhomirov (1961) which is recalled in (3.1) of Sriperumbudur
et al. (2012): for a bounded metric space Y with metric dY, the covering number of Lip∗1(Y) the one-Lipschitz functions
with respect to the uniform norm can be estimated as

logN(ϵ,Lip∗1(Y),L∞) ≤ N

(
ϵ

4
,Y,dY

)
log

(
2

⌈
2diam(Y)

ϵ

⌉
+ 1

)
. (6)

Here and in the sequel, ⌈a⌉ is the integral value greater than a. Considering (Y, dY) = (P(X),W) we find

logN (ϵ,Lip∗1(W),L∞) ≤ N

(
ϵ

4
,P(X),W

)
log

(
2

⌈
2diam(P(X))

ϵ

⌉
+ 1

)
.

As diam(P(X)) = diam(X), what is left to do is to estimate the metric entropy ofP(X) when endowed with the Wasserstein
distance.

Step 3: estimating the covering number of the Wasserstein space. We claim that for any ϵ > 0

N

(
ϵ,P(X),W

)
≤ N

( ϵ
2
,X, dX

)⌈2diam(X)/ϵ⌉+1

. (7)

Indeed, let x1, x2, . . . , xA with A = N(ϵ/2,X, dX) an ϵ/2-covering of the space X. Let B = ⌈2diam(X)/ϵ⌉ and let us
consider Z the subset of P(X) made of probability measures supported on x1, x2, . . . , xA and such that the mass of each xj

belongs to {0, 1/B, . . . , (B − 1)/B, 1} for j = 1, . . . , A: the cardinality of Z is bounded by AB+1 and we will prove Z is
an ϵ-covering of P(X).

Take any P ∈ P(X). Then there is a probability measure P1 supported on x1, x2, . . . , xA such thatW(P, P1) ≤ ϵ/2: it is
obtained by projecting the mass of P onto the set x1, x2, . . . , xA. Then, by rounding up the mass of each atom xj , we can
find P2 a measure in Z such that ∥P1 − P2∥TV ≤ 1/B, being ∥ · ∥TV the total variation norm. Using the easy inequality
W(P1, P2) ≤ diam(X)∥P1 − P2∥TV (see Theorem 4 in Gibbs & Su (2002)) followed by the triangle inequality, we find
that

W(P, P2) ≤ W(P, P1) +W(P1, P2) ≤
ϵ

2
+

diam(X)
B

≤ ϵ

2
+

ϵ

2
= ϵ.

Thus Z is an ϵ-covering of P(X), and given the expression of its cardinality we obtain the estimate (7).

Step 4: conclusion with a well chosen ϵ. Chaining our estimates, we see that we can estimate the Rademacher complexity by

Rn(Lip
∗
1(W)) ≤ inf

ϵ∈[0,ϵ0)

{
ϵ+

C1√
n
N
( ϵ
2
,X,dX

)⌈2diam(X)/ϵ⌉/2+1/2

√
log

(
2

⌈
2diam(P(X))

ϵ

⌉
+ 1

)}
.

At this point we will not keep track of the explicit constant anymore. As X is a bounded set of Rd using Theorem 2.7.1 in
Vaart & Wellner (1996), we have N

(
ϵ
2 ,X, dX

)
≤ C2ϵ

−d for some constant C2. Injecting this in our estimate, for some
constant C1, C3, C4 large enough and up to decreasing ϵ0, we get

Rn(Lip
∗
1(W)) ≤ inf

ϵ∈[0,ϵ0)

{
ϵ+

C1√
n
exp

(
C3

ϵ
log

(
1

ϵ

))√
log

(
C4

ϵ

)}
. (8)

14



Hierarchical Integral Probability Metrics

Exact optimization of this expression in ϵ seems tricky and leads to intractable analytical expressions. Note however that if
ϵ ≲ 1/ log(n), then the expression C3/ϵ log(1/ϵ) in the argument of the exponential grows much faster than log(n), and so
the exponential grows much faster than any positive power of n. Thus if ϵ ≲ 1/ log(n) the second term in the right hand
side of (8) blows up to +∞. So we would look for ϵ = ϵn = βn/ log(n) with 1≪ βn ≪ log(n), and then we see that the
argument of the exponential reads

C3

ϵ
log

(
1

ϵ

)
= C3

log(n)

βn
(log(log(n))− log(βn)) ∼ C3

log(n) log(log(n))

βn
.

For this to grow slower than log(n) (so that the exponential grows polynomially) we need βn to grow at least as fast as
log(log(n)). Following this computation we choose

1

ϵ
=

1

3C3

log(n)

log(log(n))
,

which we can do for n large enough, and it will be the best we can do to bound the right hand side of (8). We claim that the
second term in the right hand side of (8) is negligible compare to the first one ϵ ≍ log(log(n))/ log(n). Indeed looking at
the argument of the exponential, as 1/ϵ ≤ log(n) for n large enough, we have

C3

ϵ
log

(
1

ϵ

)
≤ 1

3
log(n),

at least for n large enough. Thus the exponential is bounded by n1/3 (actually any exponent strictly smaller than 1/2 would
be enough). Moreover

√
log(C4/ϵ) ≤ nη for any η > 0 if n is large enough, and η = 1/12 will be sufficient for our

purposes. So for n large enough

C1√
n
exp

(
C3

ϵ
log

(
1

ϵ

))√
log

(
C4

ϵ

)
≤ C1√

n
· n1/3 · n1/12 = C1n

−1/12,

which is negligible compared to the first term which scales like log(log(n))/ log(n). Thus

Rn(Lip
∗
1(W)) ≤ C5 log(log(n))

log(n)

for some constant C5, at least if n is large enough. Plugging this into the first step yields the conclusion.

Proof of Theorem 4.1: the lower bound

Let P0 a measure on Rd whose support has non-empty interior. Let Q = DP(α, P0) be a Dirichlet process with parameters
α > 0 and P0. For any exponent γ > 0 we define D = ⌈1/γ⌉.

The support of P0 contains a ball in Rd. In particular we can find D disjoint and closed sets A1, . . . , AD in the support of
P0 each of them with non-empty interior. Let f1, . . . , fD : X→ R be 1-Lipschitz functions with support in A1, . . . , AD

respectively and which are not identically zero. E.g., we can set fi(·) = d(·,X \Ai) the distance to the complement of Ai.
We consider the embedding ι of P(X) into [0, 1]D given by

ι(P ) = (P (f1), . . . , P (fD)).

Our conclusion will follow by combining the two following claims: (1) as ι is a Lipschitz map, the rate at which
E(WW(Q̃(n),Q)) goes to zero is worse than the statistical rate of convergence for the embedded measures ι#Q̃(n), ι#Q;
(2) the embedded measures live in a Euclidean space of dimension D, for which the Wasserstein distance suffers the curse
of dimensionality, thus giving a lower bound on the rate.

Step 1: analysis of the embedding ι. The embedding ι : P(X)→ [0, 1]D is a Lipschitz map with respect to the Wasserstein-1
metric and the standard Euclidean distance: this is because the fi are 1-Lipschitz so that

∥ι(P1)− ι(P2)∥ =

√√√√ D∑
i=1

|P1(fi)− P2(fi)|2 ≤
√
D sup

f∈Lip1(X)
|P1(f)− P2(f)| =

√
DW(P1, P2).
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Integrating this inequality with (P̃1, P̃2) any coupling between (Q̃(n),Q), and minimizing over Q, we find

WW(Q̃(n),Q) = inf
(P̃n,P̃ )∈Γ(Q̃(n),Q)

E(W(P̃n, P̃ ))

≥ D−1/2 inf
(P̃n,P̃ )∈Γ(Q̃(n),Q)

E(∥i(P̃n)− i(P̃ )∥) ≥ D−1/2WEuc(ι#Q̃(n), ι#Q),

where theWEuc denotes the standard 1-Wasserstein distance on [0, 1]D with the Euclidean distance. Note that ι#Q̃(n) =

(ι#Q̃)(n) is the empirical estimator of ι#Q.

Step 2: analysis of the law of ι(P̃ ). Recall that P̃ ∼ Q follows a Dirichlet process of parameters α and P0. The law of
ι(P̃ ) = (P̃ (f1), . . . , P̃ (fD)) as a distribution on [0, 1]D is usually referred as the law of the vector of random means. We
use Theorem 10 in Lijoi & Regazzini (2004) to prove that ι#Q, the distribution of ι(P̃ ), is absolutely continuous with
respect to the Lebesgue measure on RD. This theorem requires f = (f1, . . . fD) to not be affinely αP0-degenerated, that
is, for every (v1, . . . , vD) ∈ RD \ {0}, the function x 7→

∑
i vifi(x) is not P0-a.s. a constant. This assumption is clearly

satisfied as the functions f1, . . . , fD are continuous, not identically zero, with disjoint support, each included in the support
of P0.

Step 3: conclusion with the curse of dimensionality of the Wasserstein distance. It is well understood that for an absolutely
continuous measure with respect to the Lebesgue measure on RD the rate of convergence cannot be better than n−1/D (see,
e.g., Proposition 2.1 in Dudley (1969)). Thus, given Step 2, there exists a constant cD > 0 such that

E
(
WEuc((ι#Q̃)(n), ι#Q)

)
≥ cDn−1/D.

Combining this with the result of Step 1,

E
(
WW(Q̃(n),Q)

)
≥ cDD−1/2 n−1/D.

The conclusion follows as D was chosen with 1/D ≤ γ.

Proof of Lemma 4.2

The starting point follows closely the proof of the upper bound of Theorem 4.1, as we reduce to the estimation of a
Rademacher complexity and then a covering number. By combining the definition of dF with the dual formulation of the
Wasserstein distance on R it holds

E(dF (Q̃(n),Q)) = E
(
sup
h∈F

∣∣∣Q̃(n)(h)−Q(h)
∣∣∣) ,

where the class F is define by

F = {h : P(X)→ R s.t. ∃f ∈ F ,∃g ∈ Lip1(R,R) s.t. h(P) = g(P(f))}.

Step 1: getting back to a bounded class. To go back to a bounded class we shift the functions by a constant. We define

F∗ = {h : P(X)→ R s.t. ∃f ∈ F∗,∃g ∈ Lip∗1([−K,K],R) s.t. h(P) = g(P(f))},

where F∗ = {f∗ = f − f(x0) s.t. f ∈ F}, with x0 a fixed point in X, K is its uniform bound, i.e., f(x) ≤ K for every
f ∈ F∗, and Lip∗1([−K,K],R) ⊆ Lip1(R,R) denotes the 1-Lipschitz functions g : [−K,K]→ R such that g(0) = 0. As
probability distributions all have the same mass, it is easy to check that the quantity of interest can be expressed as

E(dF (Q̃(n),Q)) = E
(
sup
h∈F∗

∣∣∣Q̃(n)(h)−Q(h)
∣∣∣) .

Moreover, as the function g ∈ Lip∗1([−K,K],R) are obviously bounded by K, we see that F∗ uniformly bounded by K
over X translates in F∗ uniformly bounded by K over P(X).
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Step 2: reducing to an estimation of a Rademacher complexity. After these preliminary remarks we start similarly to the
proof of Theorem 4.1: using the classical symmetrization argument (see e.g. Lemma 2.3.1 in (Vaart & Wellner, 1996) or
Section 4.2 in (Wainwright, 2019)) we obtain

E(dF (Q̃(n),Q)) ≤ 2Rn(F
∗),

where the Rademacher complexityRn(F
∗) is defined in (5).

Step 3: estimating the Rademacher complexity from above with a covering number By standard arguments using Dudley’s
entropy integral and the sub-Gaussianity of the Rademacher process (see, e.g., Theorem 5.22 and equation (5.48) in
Wainwright (2019)), as the functions in F∗ are uniformly bounded by K then the Rademacher complexity may be bounded
through an integral of the covering number of F∗ with respect to the empirical L2 metric, which is itself controlled by the
uniform norm L∞. Let us define N(δ;F∗,L∞) denote the δ-covering number of F∗ with respect to the uniform norm L∞.
Then the aforementioned results read

Rn(F
∗) ≤ inf

ϵ>0

{
2ϵ+

32√
n

∫ K

ϵ/4

√
logN(δ;F∗,L∞) dδ

}
.

We now bound N(δ;F∗,L∞) through the covering number of Lip∗1([−K,K],R) and F∗ with respect to the supremum
norm. Let g1, . . . , gA be a δ/2-covering for Lip∗1([−K,K],R) and let f1, . . . , fB be a δ/2-covering for F∗. In particular
A = N(δ/2,Lip∗1([−K,K],R),L∞) and B = N(δ/2,F∗,L∞). We claim that {hi,j(P ) = gi(P (fj))} is a δ-covering
for F∗. Indeed, for any h ∈ F∗ such that h(P ) = g(P (f)), let gi and fj such that respectively ∥gi − g∥L∞ ≤ δ/2 and
∥fj − f∥L∞ ≤ δ/2. Then

∥h− hi,j∥L∞ ≤ sup
P
|h(P )− hi,j(P )|

≤ sup
P
|g(P (f))− g(P (fj))|+ |g(P (fj))− gi(P (fj))|

≤ sup
P
|P (f)− P (fj)|+ sup

t
|g(t)− gi(t)|

≤ ∥fj − f∥L∞ + ∥gi − g∥L∞ =
δ

2
+

δ

2
= δ.

This shows that N(δ;F∗,L∞) ≤ AB. The quantity A, which is the δ/2 covering number of Lip∗1([−K,K],R), can be
estimated as log(A) ≤ log(2)⌈4K/δ⌉ (see e.g. p.93 in Kolmogorov & Tikhomirov (1961)). Thus

logN(δ;F∗,L∞) ≤ log(2)

⌈
4K

δ

⌉
+ logN

(
δ

2
;F∗,L∞

)
.

Plugging this back we obtain

2Rn(F
∗) ≤ inf

ϵ>0

{
4ϵ+

64√
n

∫ K

ϵ/4

√
log(2)

⌈
4K

δ

⌉
+ logN

(
δ

2
;F∗,L∞

)
dδ

}
.

By using the subadditivity of the square root, i.e.
√
a+ b ≤

√
a+
√
b for all a, b ≥ 0, the bounds of Step 2 and Step 3 yield

E(dF (Q̃(n),Q)) ≤
64
√

log(2)√
n

∫ K

0

√⌈
4K

δ

⌉
dδ + inf

ϵ>0

{
4ϵ+

64√
n

∫ K

ϵ/4

√
logN

(
δ

2
;F∗,L∞

)
dδ

}
To finish the proof we need only to estimate the prefactor of the parametric part, which we obtain by computing the first
integral on the right hand side. As ⌈4K/δ⌉ ≤ 4K/δ + 1 and again by subadditivity of the square root, it can be estimated
from above as ∫ K

0

√⌈
4K

δ

⌉
dδ ≤

∫ K

0

√
4K

δ
+ 1 ≤ 2

√
K

∫ K

0

δ−1/2 dδ +K = 5K.

The conclusion follows by chaining the estimates.
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Proof of Theorem 4.3

Thanks to Lemma 4.2 the proof now amounts to an evaluation of the covering number of the class F∗, which is standard
when studying statistical rates for IPM (Sriperumbudur et al., 2010; 2012). We report the reasoning for completeness.

When X is a bounded domain of Rd and F = Lip(X,R), Theorem 2.7.1 in Vaart & Wellner (1996) yields the existence of a
constant C1 depending on diam(X) such that logN(ϵ,Lip1(X),L∞) ≤ C1ϵ

−d. Substituting in the bound of Lemma 4.2
we obtain that there exists a constant C2, C3 such that

E(dLip(Q̃(n),Q)) ≤ C2√
n
+ inf

ϵ>0

{
4ϵ+

C3√
n

∫ 2K

ϵ/4

δ−d/2 dδ

}
.

To get the announced rate it is enough to optimize the expression in ϵ. For d = 1 then ϵ = 0 works as the function
f(δ) = δ−d/2 is integrable in zero; and for d ≥ 2 we can take ϵ = n−1/d.

Proof of Theorem 4.4

By using the triangle inequality,

E(dLip(Q̃(n,m)),Q)) ≤ E(dLip(Q̃(n,m), Q̃(n))) + E(dLip(Q̃(n),Q)).

Theorem 4.3 bounds the second term in the right hand side and so we only have to show that for every n,

E(dF (Q̃(n,m), Q̃(n))) ≤


C1m

−1/2 if d = 1,

C2m
−1/2 log(m) if d = 2,

Cdm
−1/d if d > 2,

where Cd does not depend on n and m. By definition of HIPM,

dLip(Q̃(n,m), Q̃(n)) = sup
f∈F
W
(
1

n

n∑
i=1

δP̃i,(m)(f)
,
1

n

n∑
i=1

δP̃i(f)

)
.

By coupling P̃i,(m)(f) with P̃i(f) we obtain a natural upper bound

E(dLip(Q̃(n,m), Q̃(n))) ≤ E
(
sup
f∈F

1

n

n∑
i=1

|P̃i,(m)(f)− P̃i(f)|
)

=
1

n

n∑
i=1

E
(
sup
f∈F
|P̃i,(m)(f)− P̃i(f)|

)
.

By Corollary 8 in Sriperumbudur et al. (2010) on the estimation of the Wasserstein distance of order 1 through the empirical
distribution,

E
(
sup
f∈F
|P̃i,(m)(f)− P̃i(f)|

∣∣∣∣P̃i

)
≤


C1m

−1/2 if d = 1,

C2m
−1/2 log(m) if d = 2,

Cdm
−1/d if d > 2,

whenever X ⊂ Rd is a bounded convex set with non-empty interior. The same inequality holds for any bounded set in Rd as
it can be embedded in a bounded convex set with non-empty interior. Since the upper bound does not depend on P̃i, by the
towering property we obtain the desired upper bound.

Proof of Proposition 6.1

Upper bounds for the Dirichlet multinomial P̃1. Note that we can write the law of P̃1 as

L(P̃1) = EX1:N

(
DP

(
α,

1

N

N∑
i=1

δXi

))
,

where we use X1:N as shortcut for X1, . . . , XN
iid∼ P0. By convexity of the Wasserstein distance (Theorem 4.8 in Villani

(2008)),

WW(P̃ , P̃1) ≤ EX1:N

(
WW

(
DP(α,P0),DP

(
α,

1

N

N∑
i=1

δXi

))
= EX1:N

(
W
(
P0,

1

N

N∑
i=1

δXi

))
,
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where the last equality holds by Corollary 3.7. The convergence rate of this quantity is well-studied in the literature when
X = Rd (see, e.g., Dudley (1969); Boissard & Gouic (2014); Fournier & Guillin (2015); Weed & Bach (2019); Bobkov &
Ledoux (2019) and references therein). In particular, if X = R Theorem 3.2 in Bobkov & Ledoux (2019) guarantees that

E
(
W
(
P0,

1

N

N∑
i=1

δXi

))
≤ 1√

N

∫ +∞

−∞

√
F0(x)(1− F0(x))dx.

Upper bounds for the truncated stick breaking P̃2. Given a random sequence (Ji)i≥1 of stick-breaking weights, and a
sequence (Xi)i≥1 of i.i.d. atoms, we can naturally build a coupling between L(P̃ ) and L(P̃2) via∑

i≥1

JiδXi
,

N−1∑
i=1

JiδXi
+

(
1−

N−1∑
i=1

Ji

)
δXN

 .

This provides a natural upper bound for the Wasserstein over Wasserstein distance. Using
∑

i Ji = 1 a.s., we rewrite it as

WW(P̃ , P̃2) ≤ E
(
W
(N−1∑

i=1

JiδXi
+

+∞∑
i=N

JiδXi
,
N−1∑
i=1

JiδXi
+

( +∞∑
i=N

Ji

)
δXN

))
.

By using the representation of the Wasserstein distance as an IPM,

W
(N−1∑

i=1

JiδXi
+

+∞∑
i=N

JiδXi
,

N−1∑
i=1

JiδXi
+

( +∞∑
i=N

Ji

)
δXN

)
= sup

f∈Lip1(X)

∣∣∣∣∣
+∞∑

i=N+1

Ji(f(Xi)− f(XN ))

∣∣∣∣∣ .
We then use the natural bound |f(Xi)− f(XN )| ≤ dX(Xi, XN ) independent of f . Note that (Xi, XN ) has the same law
as (X1, X2) by the i.i.d. assumption. Thus when we take the expectation:

WW(P̃ , P̃2) ≤ E

(
+∞∑

i=N+1

JidX(Xi, XN )

)
= E(dX(X1, X2))E

(
+∞∑

i=N+1

Ji

)
= E(dX(X1, X2))

(
α

α+ 1

)N

,

where the last equality follows from Section 3.2 of Ishwaran & James (2001). Moreover, when X = R the following identity
holds (cfr., e.g., Bobkov & Ledoux (2019))

E(|X1 −X2|) = 2

∫ +∞

−∞
F0(x)(1− F0(x))dx.

Upper bounds for the hierarchical empirical measure P̃3. The coupling that sends P̃ to the Dirichlet process that defines the
law of the atoms of P̃3 ensures that

WW(P̃ , P̃3) ≤ EP̃

(
W
(
P̃ ,

1

N

N∑
i=1

δXi

))
= EP̃

(
E
(
W
(
P̃ ,

1

N

N∑
i=1

δXi

)∣∣∣∣P̃)),
thanks to the tower property. By Theorem 3.2 in Bobkov & Ledoux (2019) it follows that

WW(P̃ , P̃3) ≤ EP̃

(
1√
N

∫ +∞

−∞

√
F̃ (x)(1− F̃ (x))dx

)
≤ 1√

N

∫ +∞

−∞

√
E(F̃ (x))− E(F̃ (x)2)dx,

where the last inequality holds by linearity of the expectation, Fubini’s Theorem, and Jensen’s inequality. Standard properties
of the Dirichlet process ensure that E(F̃ (x)) = F0(x) and E(F̃ (x)2) = Var(F̃ (x))+E(F (x))2 = (F0(x)(1−F0(x)))/(1+
α) + F0(x)

2. Thus the last term is equal to√
α

N(α+ 1)

∫ +∞

−∞

√
F0(x)(1− F0(x))dx.
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Algorithm 1 Computation ofWW

Routine needed: OT(A,a,b) which outputs the value of the transport problem with cost matrix A of size q× q and weights
a, b for the marginals.
Input: sizes n,m, data X1

i,j , X2
i,j , ω1

i,j , ω2
i,j

Initialize C = 0 of size n× n // Compute the cost matrix for the n× n transport problem
for i1, i2 = 1 to n do
B ← PairwiseDistance(X1

i1,·, X
2
i2,·)

Ci1,i2 ← OT(B, ω1
i1,·, ω

2
i2,·)

end for
Return: OT(C, 1/n1, 1/n1) // Solve the n× n transport problem

B. Additional information on the algorithms
B.1. Wasserstein over Wasserstein

In Algorithm 1 we present the pseudocode for computing the Wasserstein over Wasserstein distance as described in Section 5.

B.2. Lipschitz HIPM in dimension one

We expand on the gradient ascent algorithm for our new distance dLip. Recall that we are solving the optimization problem:

sup
f∈RM

G(f) (9)

such that |fq+1 − fq| ≤ ∆x ∀q ∈ {1, . . . ,M − 1},

where G(f) := inf
σ∈S(n)

1

n

n∑
i=1

∣∣∣∣∣
M∑
q=1

(ω1
i,q − ω2

σ(i),q)fq

∣∣∣∣∣ .
The function G is piece-wise linear. On each “facet”, that is, when there exists a unique permutation σ∗ which realizes the
infimum, and when each term (ω1

i,q −ω2
σ(i),q)fq is either strictly positive or strictly negative, then we can easily compute the

gradient. It reads: for any coordinate q,

∇qG(f) =
1

n

n∑
i=1

(ω1
i,q − ω2

σ∗(i),q) sign

 N∑
q′=1

(ω1
i,q′ − ω2

σ∗(i),q′)fq

 .

If σ∗ is not unique or (ω1
i,q − ω2

σ(i),q) vanishes the gradient may not exist, but in practice we ignore these degenerate cases.
We further rewrite the problem by parametrizing the function f rather by its derivative to simplify the Lipschitz constraint.
Let g ∈ RM−1 and consider the M × (M − 1) matrix

A = ∆x


0 0 . . . . . . 0
1 0 . . . . . . 0

1 1 0
. . .

...
...

. . . 0
1 1 . . . 1 1

 .

We consider f = Ag, that is, fq =
∑

q′<q ∆xgq′ for any q. Specifically we define Ĝ(g) = G(Af), so that problem (9) can
be rewritten as sup Ĝ(g) for g ∈ [−1, 1]M−1. The gain is that the constraint on g is a very simple box constraint. Moreover
the gradient can be easily computed via∇Ĝ(g) = A⊤∇G(Af).

We implemented the following gradient ascent. Given g admissible we find an ascent direction a by orthogonally projecting
∇Ĝ(g) on the set of vectors that preserves the box constraint. This can be easily done: starting with a = ∇Ĝ(g), we set
aq = 0 if gq = 1 and ∇qĜ(g) > 0 (respectively if gq = −1 and ∇qĜ(g) < 0). We then find tmax the largest t ≥ 0 such
that g + ta ∈ [−1, 1]M , and we use a backtracking linesearch to find t ∈ [0, tmax] such that G(g + ta) increases enough
(Armijo, 1966). We stop the loop if the expected increase, that is, a⊤∇Ĝ(g), is too small.
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Figure 3. Execution time (in seconds) for several configurations of the parameters n, m and M . The setting corresponds to the one
of Figure 1 top (for the solid lines) and Figure 1 bottom (for the dashed lines). Computations are repeated 12 times and the averaged
execution time is reported.

As we have no guarantee of finding a global maximizer we run the gradient ascents with several different initializations.
We usually include the initialization f = Id, that is, g = (1, 1, . . . , 1) in at least one of the runs, which is related to the
bound (1). This is summarized in the Algorithm 2.

Algorithm 2 Computation of an approximation of dLip
Input: sizes n,M , data ω1

i,q , ω2
i,q , stepsize ∆x,

Parameters: number of initializations ninit, number of steps nstep, tolerance ε
for s = 1 to ninit do
g← Random Initialization or g← (1, 1, . . . , 1)
repeat
a← ∇Ĝ(g) // Ascent direction
for q = 1 to M − 1 do

if gq = ±1 then ±aq = min(0,±aq) end if // Projection of the ascent direction
end for
tmax ← sup{t ≥ 0 : g + ta} ∈ [−1, 1]M−1

t← tmax // Backtracking line search
while G(g + ta) < G(g) + ta⊤∇Ĝ(g)/2 do

t← t/2
end while
g← g + ta // Update of the gradient ascent

until a⊤∇Ĝ(g) ≤ ε or loop done nstep times
Store Ĝ(g)

end for
Return: Maximum Ĝ(g) among the ninit runs

B.3. Execution time

Computations were performed on the CPU of a standard laptop with a 6-core 2.10GHz AMD Ryzen 5 5500U processor
with 8Go of RAM. We report in Figure 3 the execution time of the computation ofWW and (the approximation of) dLip.
We do so for different values of n, m and also M the number of grid points in the setting of Figure 1. Whereas the time for
computingWW grows quickly with n and is quite insensible to the input measures, we see on the other hand that M and the
input measures are the sensible parameters for dLip. The input measures determine the optimal f , and this is likely to affect
the convergence of the gradient ascent. Though dLip is unsurprisingly slow to compute when M is large, recall from that
from our error analysis it is natural to take M ≍ m1/2, thus moderately large.
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