REVISITING PROMPT OPTIMIZATION WITH LARGE REASONING MODELS—A CASE STUDY ON EVENT EXTRACTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Reasoning Models (LRMs) such as DeepSeek-R1 and OpenAI o1 have demonstrated remarkable capabilities in various reasoning tasks. Their strong capability to generate and reason over intermediate thoughts has also led to arguments that they may no longer require extensive prompt engineering or optimization to interpret human instructions and produce accurate outputs. In this work, we aim to systematically study this open question, using the structured task of event extraction for a case study. We experimented with two LRMs (DeepSeek-R1 and o1) and two general-purpose Large Language Models (LLMs) (GPT-40 and GPT-4.5), when they were used as task models or prompt optimizers. Our results show that on tasks as complicated as event extraction, LRMs as task models still benefit from prompt optimization, and that using LRMs as prompt optimizers yields more effective prompts. Our finding also generalizes to tasks beyond event extraction. Finally, we provide an error analysis of common errors made by LRMs and highlight the stability and consistency of LRMs in refining task instructions and event guidelines.

1 Introduction

In recent years, Large Language Models (LLMs) have demonstrated remarkable capabilities across various natural language processing tasks. However, their proficiency in complex reasoning tasks has often been limited (Zhou et al., 2022). To address this, a new class of models, known as Large Reasoning Models (LRMs), has emerged, focusing on enhancing reasoning abilities through advanced training methodologies. Two prominent examples are DeepSeek-R1 (Guo et al., 2025) and OpenAl's o1 (Zhong et al., 2024), both setting new standards in various reasoning tasks.

The advent of these advanced reasoning models has sparked discussions (Wang et al., 2024a; OpenAI, 2025; Mantaras, 2025; Together AI, 2025; Menendez et al., 2025) about the necessity of prompt optimization—the process of refining

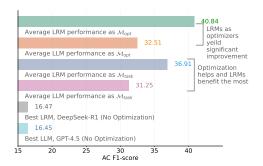


Figure 1: Summary of our main results, where LRMs and LLMs are used as either the task model (\mathcal{M}_{task}) or the optimizer (\mathcal{M}_{opt}) in prompt optimization, and we observed a strong advantage of LRMs over LLMs.

input prompts to guide model outputs effectively (Zhou et al., 2022; Yang et al., 2024; Srivastava et al., 2024; Agarwal et al., 2024; Guo et al., 2024; Fernando et al., 2024; Li et al., 2025). Traditionally, prompt optimization has been crucial for enhancing LLM performance, with frameworks like PromptAgent (Wang et al., 2024b) and OPRO (Yang et al., 2024) automating the creation and refinement of prompts through iterative feedback and strategic planning. However, the inherent reasoning capabilities of LRMs raise questions about whether such prompt optimization techniques are equally beneficial for these models. While previous studies have demonstrated the effectiveness of prompt optimization in improving LLM performance, there is a notable gap in research focusing on its impact on LRMs. Moreover, many existing prompt optimization studies focus on tasks where zero-shot

baselines already perform well, whereas recent work, such as Gao et al. (2024), demonstrates that even powerful models like GPT-4 struggle with Information Extraction tasks, underscoring the need for more targeted and optimized prompting strategies.

To fill this gap, we conduct the first systematic study of prompt optimization with LRMs and compare their performance with LLMs. In particular, we experimented with these models on a challenging task, i.e., end-to-end event extraction (EE), a structured prediction task of information extraction that requires identifying and classifying event triggers and arguments within text. EE poses unique challenges: models must follow schema constraints, handle coreference, and balance precision with recall, all of which demand nuanced reasoning. We evaluated four models, two LRMs (DeepSeek-R1, o1) and two LLMs (GPT-4.5, GPT-40) as both task models and prompt optimizers within a Monte Carlo Tree Search (MCTS) framework (Wang et al., 2024b). This setup allows us to examine both task performance and prompt optimization quality under a consistent setting.

Our experimental results (Fig. 1) show that LRMs benefit substantially from prompt optimization, even when the training set for optimization is small, and they outperform LLMs in both task performance (as a task model) and optimization effectiveness (as a prompt optimizer). When used as optimizers, LRMs produce more precise prompts that align with human annotation heuristics, leading to faster convergence and lower variance in MCTS. Our error analysis further shows that these optimized prompts reduce common mistakes such as implicit trigger overgeneration or argument span drift. While DeepSeek-R1 as a prompt optimizer yields the most effective and concise prompts, prompt length alone is not predictive, i.e., different task models prefer different prompt styles. To test generality, we apply the same optimization framework to two tasks beyond EE, i.e., Geometric Shapes (Suzgun et al., 2022) and NCBI Disease NER (Doğan et al., 2014). In both, LRMs again show the largest gains, confirming that our findings extend beyond schema-based tasks.

2 RELATED WORKS

Prompt optimization has become an essential direction in adapting LLMs for downstream tasks without modifying their weights. For models with accessible internal states, such as open-source LLMs, prior work has explored soft prompt tuning (Li & Liang, 2021; Lester et al., 2021; Wang et al., 2023b; Hu et al., 2022) and gradient-based search methods that directly adjust prompt embeddings (Shin et al., 2020; Wen et al., 2023). Reinforcement learning has also been applied to optimize prompts through interaction-based feedback (Deng et al., 2022; Zhang et al., 2023).

However, these approaches are not applicable to closed-source LLMs accessed via APIs, where gradients and internal representations are unavailable. As such, research has focused on black-box, gradient-free techniques that rely on prompt perturbation and scoring. Many of these methods operate in an iterative loop: starting from an initial prompt, they generate variants, evaluate them on held-out examples, and retain the best one for the next round. Variants can be created through phrase-level edits (Prasad et al., 2023), back-translation (Xu et al., 2022), evolutionary operations (Guo et al., 2024; Fernando et al., 2024), or by prompting another LLM to rewrite the prompt based on model errors (Zhou et al., 2022; Pryzant et al., 2023; Srivastava et al., 2024; Wang et al., 2024b). Structured strategies such as Monte Carlo search (Zhou et al., 2022), Gibbs sampling (Xu et al., 2024), and beam search (Pryzant et al., 2023) have been explored to improve the efficiency of exploration.

More recent efforts have proposed structured prompt optimization. APE (Zhou et al., 2022) uses Monte Carlo Tree Search (MCTS) to explore the prompt space, while PromptBreeder (Fernando et al., 2024) and EvoPrompt (Guo et al., 2024) evolve prompts using feedback-driven mutation strategies. OPRO (Yang et al., 2024) employs mutation-based search guided by model performance. Other systems, such as PromptWizard (Agarwal et al., 2024) and Gödel Machine (Yin et al., 2025), incorporate self-evolving mechanisms in which the LLM iteratively generates, critiques, and refines its own prompts and examples.

While these approaches are promising, they have so far been applied exclusively to large, general-purpose LLMs. To the best of our knowledge, our work is the first to investigate prompt optimization for LRMs. Furthermore, we introduce and study this framework in the context of a structured prediction task, event extraction, which poses distinct challenges compared to typical mathematical or reasoning tasks explored in prior work (Zhou et al., 2022; Srivastava et al., 2024).

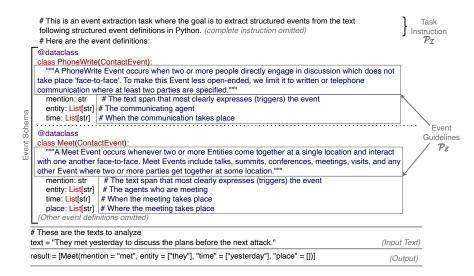


Figure 2: An example prompt for end-to-end Event Extraction (EE) used in our experiments, consisting of a task instruction and an event schema. The event schema contains information about the labels that are represented as Python classes and event guidelines defining both the event classes and the arguments. In prompt optimization, we refine both the task instruction and event guidelines (shown for two events; others omitted due to space limits) to generate more effective prompts for the task model.

3 METHODOLOGY

3.1 PROBLEM SETUP

Discrete prompt optimization aims to refine task-specific prompts for a task LLM \mathcal{M}_{task} to improve its performance without modifying the model weights. In this study, we analyze whether LRMs benefit from prompt optimization in the context of end-to-end EE. The task consists of trigger extraction, which involves identifying event trigger spans and classifying their event types, and argument extraction, which requires identifying argument spans within the extracted event instance with a pre-defined role. To prompt a task model, \mathcal{M}_{task} , we adopted a Python code-based representation for both the input and the output of the model, which was shown to be effective by prior work (Wang et al., 2023a; Sainz et al., 2024; Li et al., 2023; 2024; Srivastava et al., 2025). As shown in Fig. 2, the initial prompt, \mathcal{P}_0 consists of two main parts: the task instruction and the event schema annotated by guidelines. Task instruction $\mathcal{P}_{\mathcal{I}}$ forms the initial segment of input to introduce the task and specify instructions such as the desired output format. The event schema contains information about the labels, such as event names and argument roles, that are represented as Python classes. The argument roles (e.g., time and place) are defined as attributes of event classes. All the events and arguments in a schema are annotated using human-written **event guidelines** $\mathcal{P}_{\mathcal{E}}$. The output is represented as a list of instances of the classes defined in the event schema. In this paper, we refine both $\mathcal{P}_{\mathcal{I}}$ and $\mathcal{P}_{\mathcal{E}}$ which is represented as the concatenation $\mathcal{P}_0 = [\mathcal{P}_{\mathcal{I}} || \mathcal{P}_{\mathcal{E}}]$, where || represents the concatenation.

Given a training set $\mathcal{D}_{train} = \{(Q_i, A_i)\}_{i=1}^N$, where each Q_i denotes an input text and A_i its corresponding event instance, the objective of prompt optimization is to discover an **optimal prompt** \mathcal{P}^* that maximizes a task-specific evaluation function \mathcal{R} , such as the F-score for EE. Event guidelines typically contain a combination of explicit schema constraints and implicit domain-specific rules that annotators follow during data labeling. However, not all of these rules are fully documented or easily translatable into a single static prompt. As a result, the initial prompt \mathcal{P}_0 may lack critical structural or interpretive cues required for high-quality extraction. We employ an optimizer LLM \mathcal{M}_{opt} to refine \mathcal{P}_0 to discover such rules and constraints through strategic planning for superior, expert-level prompt optimization. Note that we do not modify the event schema defined by the original EE task, but only the human-written task instruction and the guidelines.

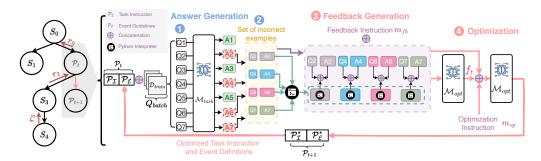


Figure 3: Overview of our prompt optimization framework. At each iteration, a zero-shot task LLM generates outputs, while a separate optimizer LLM analyzes the errors and updates the prompt, including task instructions and event guidelines, accordingly. This process continues over batches of training samples \mathcal{D}_{train} , and the final optimized prompt is evaluated on the development set to determine the node reward r_t .

3.2 PROMPT OPTIMIZATION FRAMEWORK

We frame prompt optimization as a discrete search over a large natural-language prompt space S. Since S is too large for exhaustive search, we adopt Monte Carlo Tree Search (MCTS) to explore it efficiently, balancing exploration of new prompts with exploitation of promising ones, as in Wang et al. (2024b). We model the process as a Markov Decision Process (MDP) where each state s_t is a prompt \mathcal{P}_t and each action is formulated to make edits to the current prompt (e.g., adding constraints or clarifying rules).

Prompt optimization assumes a training set \mathcal{D}_{train} . As illustrated in Fig. 3, each MCTS node holds a prompt \mathcal{P}_t and a batch of queries Q_{batch} from the training set. In Step 1, the task model \mathcal{M}_{task} is first employed to generate answers for queries in Q_{batch} . The incorrect outputs generated by the task model are then extracted and passed through a Python interpreter to identify issues such as parsing errors, missing event types, and invalid spans (Step 2). Following it, in Step 3, we prompt a prompt optimizer LLM \mathcal{M}_{opt} with an instruction m_{fb} to analyze the model errors and generate structured feedback f_t , including pinpointing unclear role definitions, proposing fixes, and summarizing recurring issues. In doing so, the generated feedback can be leveraged to produce targeted, actionable edits to improve clarity, coverage, and consistency of the task instruction and event guidelines. Next, in Step 4, \mathcal{M}_{opt} is instructed by another instruction m_{opt} to generate the updated prompt \mathcal{P}_{t+1} in a single pass, based on the distribution $p_{\mathcal{M}_{opt}}(s_{t+1} \mid s_t, f_t, m_{opt})$. We also pass the history of previous prompts to discourage redundant edits. Only event types involved in the error batch are updated; others are inherited unchanged.

To evaluate each new prompt, we compute a reward $r_t = \mathcal{R}(s_t, f_t)$ based on averaged F1 scores across EE subtasks (TI, TC, AI, AC, described in Section 4.1) on a held-out development (dev) set after editing \mathcal{P}_t with feedback f_t . The best prompt is selected based on dev-set performance. We provide additional details, the full algorithm, and the settings in Appendix A.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. To evaluate the impact of prompt optimization on LRMs, we conduct experiments on the widely used ACE05 dataset (Doddington et al., 2004), a standard benchmark for EE that provides fine-grained event distinctions. We used the "split 1" preprocessed by Huang et al. (2024) and further processed it into the Python code format. The original ACE05 dataset includes 33 event types. However, our preliminary exploration found that including all 33 event types for prompt optimization could lead to overly long prompts, which both LLMs and LRMs cannot properly handle. To eliminate the impact of this confounding factor while assessing whether LRMs require and facilitate prompt optimization, we downsampled a subset of 10 event types in our experiments and left the issue of long-context processing as future work.

We utilize two smaller versions of ACE05 training set in our experiments as \mathcal{D}_{train} . To simulate low-resource conditions, we construct \mathbf{ACE}_{low} of 15 samples, where we select one instance per event type, prioritizing those with higher densities of event and argument annotations (i.e., training examples annotated with multiple event instances); the remaining samples are non-event instances. To examine the effect of scaling up the training size, we also construct a medium-scale dataset, \mathbf{ACE}_{med} , comprising 120 examples—ten per event type—with the remaining being non-event instances. For both settings, we use a consistent development set of 100 examples randomly sampled from the ACE05 development set and focus our discussions about various task and optimizer models' performance on this set. For the full MCTS, we additionally report the model performance on a test set consisting of 250 examples randomly sampled from the ACE05 test set. Dataset statistics for \mathbf{ACE}_{low} and \mathbf{ACE}_{med} are summarized in Table 4 (Appendix A).

To test generalization beyond EE, we additionally include two tasks: **Geometric Shapes** (Suzgun et al., 2022), a symbolic reasoning benchmark, and **NCBI Disease NER** (Doğan et al., 2014), a biomedical named entity recognition task.

Evaluation. Following Huang et al. (2024), on EE, we evaluate models using four F1-based metrics: (1) Trigger Identification (TI), which measures the correct extraction of trigger spans; (2) Trigger Classification (TC), which additionally requires predicting the correct event type; (3) Argument Identification (AI), which assesses the correct extraction of arguments and their association with the predicted trigger; and (4) Argument Classification (AC), which further requires correct role labeling and serves as the most comprehensive measure of overall end-to-end EE performance. For analysis, we primarily report AC scores, which are widely regarded as a precise metric for evaluating both argument and trigger quality (Huang et al., 2024). Full results for all EE metrics are provided in Appendix B. For Geometric Shapes, we report test accuracy; for NCBI Disease NER, we report micro-F1 on strict disease spans.

Experimental Settings and Baselines. Our experiments involve two LRMs, DeepSeek-R1 and OpenAI-o1, and two general-purpose LLMs, GPT-4.5 and GPT-40, used both as \mathcal{M}_{opt} and \mathcal{M}_{task} . We conduct two sets of experiments. First, we evaluate all models trained on ACE_{low} and ACE_{med} using shallow MCTS (depth 1) to examine whether LRMs benefit from prompt optimization. We started with this design choice owing to its reduced complexity and computational costs. Next, we then perform full MCTS (depth 5) optimization on ACE_{med} to investigate the deeper dynamics of optimization; ACE_{low} is excluded from full-scale search due to its limited size. In each depth of rollout, we expand the parent node by three child expansions. For all our experiments, we report results only from the best-performing prompt nodes in each model's search trajectory. To reduce the inference cost, we followed Cheng et al. (2023) to employ "batch prompting" when querying \mathcal{M}_{task} for answer generation (Step 1 in Fig. 3). Interestingly, we observed a performance gain than querying the task model for one question at a time. Due to policy restrictions, we were not allowed to access DeepSeek-R1 through API calls and thus deployed it locally on our own server. Because of our compute limit, we quantize DeepSeek-R1 to 2.5 bits using the UnSloth framework, which has shown minimal degradation in reasoning tasks even at lower precisions when rigorously benchmarked to 1.58 bits (Daniel Han & team, 2023). Additional details on batch prompting and hyperparameter configurations are provided in Appendix A.

4.2 Experimental Results

Our main results are presented in Table 1. We discuss the following research questions (RQs).

RQ1: Do LRMs benefit from prompt optimization in EE? We first study whether the models can gain from prompt optimization by performing MCTS at depth 1. We observe consistent gains from prompt optimization across all models, with LRMs showing especially strong improvements over their non-optimized counterparts (around +8% on ACE $_{low}$ and +23% on ACE $_{med}$). LLMs also benefit from optimization, though to a lesser extent: GPT-40 and GPT-4.5 improve by around +7% and +5% on ACE $_{low}$, and by +14% and +20% on ACE $_{med}$, respectively. Overall, the performance gains from prompt optimization are more pronounced in LRMs than in LLMs.

Similarly, in cross-model comparisons using optimized prompts, LRMs remain highly competitive. On ACE $_{low}$, GPT-4.5 slightly outperforms o1 by about +1% AC but trails behind DeepSeek-R1 by

		Optimize	r LLMs/LRM	Is (\mathcal{M}_{opt})		#Output		
\mathcal{M}_{task}	No Opt.	GPT-40	GPT-4.5	о1	DS-R1	Tokens		
	MCTS a	t depth 1 train	ed on ACE _{lo}	w (Developme	ent Set)			
GPT-4o	12.68	18.18 +5.50	16.67 +3.99	18.83 +6.15	20.15 +7.47	15.31		
GPT-4.5	16.47	19.33 +2.86	16.47 00.00	19.32 +2.85	22.31 +5.84	24.57		
o1	13.94	18.96 +5.02	18.57 +4.63	20.29 +6.35	21.92 +7.98	489.67		
DS-R1	16.45	18.67 +2.22	18.57 +2.12	21.83 +5.38	24.66 +8.21	217.71		
MCTS at depth 1 trained on ACE _{med} (Development Set)								
GPT-40	12.68	22.32 +9.64	27.54 +14.86	26.30 +13.62	25.10 +12.42	17.31		
GPT-4.5	16.47	29.63 +13.16	35.94 +19.47	36.51 +20.04	35.42 +18.95	28.75		
o1	13.94	30.19 +16.25	36.67 +22.73	36.98 +23.04	36.96 +23.02	543.45		
DS-R1	16.45	32.20 +15.75	37.14 +20.69	38.77 +22.32	40.00 +23.55	277.11		
	MCTS at	depth 5 traine	ed on ACE _m	ed (Developm	ent Set)			
GPT-4o	12.68	28.04 +15.36	27.03 +14.35	28.57 +15.89	27.31 +14.63	17.55		
GPT-4.5	16.47	32.35 +15.88	37.58 +21.11	36.22 +19.75	37.74 +21.27	32.65		
o1	13.94	33.52 +19.58	37.78 +23.84	38.71 +24.77	39.81 +25.87	575.36		
DS-R1	16.45	37.97 +21.52	38.40 +21.95	40.58 +24.13	44.26 +27.81	301.45		
	MCT	TS at depth 5 to	rained on AC	E _{med} (Test S	Set)			
GPT-4o	13.33	26.94 +13.61	34.75 +21.42	30.59 +17.26	35.79+22.46	27.00		
GPT-4.5	14.29	27.31 +13.02	35.29 +21.00	36.59 +22.30	36.69 +22.40	35.56		
o1	15.38	28.57 +13.19	36.73 +21.35	38.71 +23.33	37.86 +22.48	526.43		
DS-R1	16.00	31.93 +15.93	41.98 +25.98	42.06 +26.06	43.75 +27.75	211.43		

Table 1: AC (F1) scores using different \mathcal{M}_{task} and \mathcal{M}_{opt} . #Output Tokens delineates the average number of output tokens from the task model, including reasoning and non-reasoning contents. The background shades indicate the choice of prompt optimizers, i.e., LRMs, LLMs, or no optimization. The best optimization result is in **bold** for each task model, while the highest relative improvement over the no-optimization baseline is **underlined**. We observe that LRMs not only benefit significantly from prompt optimization but also serve as strong prompt optimizers for other models.

roughly +2%. On ACE_{med}, both LRMs outperform LLMs: o1 surpasses GPT-4.5 by +0.5% AC, and DeepSeek-R1 gains over approximately +3.5%. These findings suggest that LRMs are not only more responsive to prompt optimization but also more capable in zero-shot EE settings. As we show in RQ2, this gap widens further when using the full-depth MCTS-based optimization strategy.

Insight 1: Prompt optimization benefits all models, but LRMs gain more, no matter whether small and medium-sized training data is present.

RQ2: How do LRMs perform under full-scale MCTS prompt optimization? To assess whether the advantages of LRMs persist at scale, we perform MCTS with a search depth of 5 across all models on ACE_{med} . While performance improves overall, we observe that the gains from full-scale optimization are incremental rather than dramatic when compared to the improvements observed with a single roll-out (i.e., depth 1) of MCTS. LRMs, however, still exhibit relatively stronger improvements. DeepSeek-R1, for instance, gains an additional +4.26% AC over its previous best $(40.00 \mapsto 44.26)$. Similarly, o1 improves by +2.83% $(36.98 \mapsto 39.81)$ when selecting the best optimizer across depths. In contrast, LLMs GPT-4.5 and GPT-40 show modest gains of only +1.23% $(36.51 \mapsto 37.74)$ and +1.03% $(27.54 \mapsto 28.57)$, respectively. Finally, we report each task model's performance on the test set, using the same best prompt searched on ACE_{med}. Consistently, we observed that LRMs benefit more from full MSTC prompt optimization than LLMs.

Insight 2: Full-scale MCTS optimization yields non-dramatic gains over single-step optimization, but LRMs benefit more.

RQ3: Do LRMs make better prompt optimizers? We evaluate each task model's performance when optimized using various LRMs and LLMs to investigate the quality of optimized prompts. In the low-resource setting (ACE_{low}, Depth 1), DeepSeek-R1 consistently outperforms all other optimizers across all task models. Compared to the best-performing LLM optimizer (GPT-4o), DeepSeek-R1 yields substantial gains: about +2% AC for optimizing GPT-4o ($18.18 \mapsto 20.15$), +3% for GPT-4.5 ($19.33 \mapsto 22.31$) and of ($18.96 \mapsto 21.92$), and +6% when optimizing itself ($18.67 \mapsto 24.66$). Notably,

	Examples of Task Instructions Optimized by Different Models
No Opti-	# This is an event extraction task where the goal is to extract structured events from the text following structured event definitions
MIZATION Best Scores	in Python. () For each different event type, please output the extracted information from the text into a python list format ()
TI - 39.29	you should always output in a valid pydantic format: result = [EventName("mention" = "trigger", "arg1_key" = "arg1_span",), EventName("mention" = "trigger", "arg1_key" = "arg1_span",)]. ()
TC - 33.93 AI - 16.47	Eventvanic (menuori – urgger , argitacy – ar
AC - 16.47	
GPT-40	# This is an event extraction task where the goal is to extract structured events ()
Best Scores TI - 48.28	# Task Instructions: 1. For each different event type, output the extracted information from the text ()
TC - 48.28	 Structure the output in a valid Pydantic format: 'result = [EventName("mention" = "trigger", (). Adhere strictly to the described event descriptions ().
AI - 40.51 AC - 37.97	4. Address special cases:- Appeals: Consider involved parties from prior related events as "prosecutor".
AC - 31.91	- Multiple roles may apply contextually; ensure complete information extraction.
	- Implicit indications: If mentions like "filed", "concluded", etc.,() use context to clarify them.()
GPT-4.5	# This is an event extraction task for identifying and structuring events from text using Python-defined event classes. Each
Best Scores TI - 46.15	structured event consists of an event trigger word, an event type ()
TC - 46.15	## Instructions: 1. Span Extraction:
AI - 40.80 AC - 38.40	- Extract precise and concise spans for mentions and arguments, conveying the event or argument role clearly ()
	- Accurately identify roles using contextual cues, effectively resolving ambiguities while prioritizing explicit spans. If roles are
	unmentioned, leave them empty. () 3. Output Format: Please follow the Python-format()
	4. Clarifications and Exceptions:- Note explicitly when roles have exceptions based on role definitions.
	- Manage overlapping roles by following specific guidelines for span clarity and precision, ()
DEEPSEEK-	# Event Extraction Task: Extract structured events from text using Python class definitions.():
R1 Best Scores	1. Span Extraction:- Triggers: Minimal contiguous spans (verbs/nouns) directly expressing the event. Include both verbal and
TI - 56.60	nominal forms ("death" = Die, "killings" = Die).()
TC - 56.60 AI - 44.26	- Arguments: - Remove articles ("a/an/the") and possessive pronouns EXCEPT when part of official names or temporal phrases ("The Hague", "the past year")
AC - 44.26	- Resolve pronouns AND POSSESSIVE NOUNS to named entities immediately using same-sentence antecedents ("airline's
	plan" → ["airline"])
	- Strip role/location/age descriptors from arguments ("Philadelphia lawyers" → "lawyers") ()
	- Keep FULL spans for crimes/money including sources/amounts ("stereo worth \$1,750 from family") unless legal terms () 2. Special Handling:- Bankruptcy Triggers: "went bust" EndOrg()
	- Crime Spans: Retain full contextual clauses ("If convicted of killings") without truncation
	- Temporal Phrases: Keep original spans with articles when part of phrase ("the early 90's")
	3. Output Rules: Always output in Python-format as ()
	4. Critical Exceptions:-()
O1 Best Scores	# This is an event extraction task where the goal is to extract structured events from the text following structured event definitions
TI - 66.67	in Python. () Keep argument references minimal by removing articles, possessives, or descriptive words unless they are crucial identifiers (e.g.,
TC - 66.67	"the retailer" \rightarrow\"retailer", "my uncle" \rightarrow\"uncle").
AI - 44.93 AC - 40.58	# Important guidelines to address prior errors:
	# 1. For each event trigger, use the single most relevant word (e.g., "bankruptcy" rather than "file for bankruptcy").
	# 2. For argument roles, also use minimal spans (e.g., "soldier" instead of "a soldier," "woman" instead of "a woman").() # 4. For justice events (Sue, Appeal, Convict, SentenceAct, etc.): ()
	#4. For justice events (suc, Appear, Convict, Sentence Act, etc.). () #5. For transfers of money, watch for direct or indirect references to donations, ()
	#6. Do not skip events implied by synonyms or indirect wording (e.g., "shutting down" \rightarrow EndOrg, ().
	# 7. If there is more than one event in a single text, output each in a separate entry.()

Table 2: Example task instructions optimized by different optimizers when \mathcal{M}_{task} = DeepSeek-R1, which yielded the best performance for each optimizer. LRMs tend to emphasize actionable extraction rules and exception handling, while paying minimal attention to the task instruction and output format. Additionally, they often include illustrative examples (in bold) to facilitate span extraction.

among LLMs, GPT-40 performs better than GPT-4.5 as an optimizer in all task model settings, despite being weaker as a task model.

On the other hand, when a larger training set is available (ACE $_{med}$, Depth 1), we observe a shift. While LRM optimizers remain strong—achieving over +23% AC gain while optimizing themselves—GPT-4.5 shows a significant boost in effectiveness. It consistently outperforms GPT-40 as an optimizer and in some cases narrows the gap with LRMs, reaching 35.94 when optimizing itself and 36.67 when optimizing o1. Qualitatively, as shown in Table 2, DeepSeek-R1 enhances the optimized prompt \mathcal{P}^* by adding precise extraction rules, such as removing articles ("a/an/the") and possessive pronouns (highlighted in blue), as well as critical exception cases for handling specific triggers (highlighted in pink). In contrast, o1 tends to generate a larger number of extraction rules, resulting in longer prompts. Both LRMs also include specific examples to guide extraction. LLMs, by comparison, focus more on task instructions and output formatting, typically generating shorter prompts with fewer examples. Among them, GPT-4.5 occasionally adds exception handling, though this behavior is less consistent than in LRMs. We provide additional examples of optimized task instruction and event guidelines in Appendix C, and include an additional analysis of the prompt quality in Section 5.

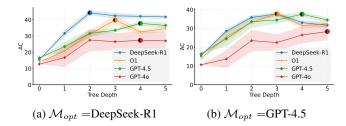


Figure 4: Convergence analysis of prompt optimization across different task models with two optimizers—DeepSeek-R1 (left) and GPT-4.5 (right). Task models converge faster with minimal variance when their prompts are optimized by LRMs.

Insight 3: LRMs serve as highly effective optimizers, especially in low-resource settings where DeepSeek-R1 consistently outperforms all others as a prompt optimizer.

RQ4: Can LRMs act as efficient and stable optimizers in prompt optimization? In Fig. 4a, we observe that with DeepSeek-R1 as an optimizer, DeepSeek-R1 and GPT-4o demonstrate faster convergence compared to when GPT-4.5 is used as an optimizer (Fig. 4b), suggesting that it generates a higher quality of prompts. For DeepSeek-R1 and GPT-4.5 as task models, it also exhibits a smaller performance variance, which shows that R1 not only generates high-quality prompts but also does so reliably. In contrast, with GPT-4.5 as an optimizer, convergence tends to be slower. Under this setup, both LRMs reach their peak at depth 3, while GPT-4.5 and GPT-4o converge at depths 4 and 5, respectively. For GPT-4.5, the optimization process is visibly less stable than optimizing with DeepSeek-R1. Finally, we notice that most models begin to plateau, or slightly decline, beyond their optimal depth (marked using half-filled markers), reinforcing the presence of diminishing returns, where additional optimization yields increasingly smaller or no performance gains.

Insight 4: DeepSeek-R1 (LRM) as an optimizer yields faster and more stable convergence than GPT-4.5 (LLM).

RQ5: Do the optimization gains with LRMs generalize beyond schema-based tasks? We further experimented on two tasks: Geometric Shapes and NCBI, and reported each task model's performance when we use the same model as an optimizer. As shown in Table 3, on both tasks, we observe that prompt optimization consistently improves all models. On Geometric Shapes, o1 and DeepSeek-R1 reach test accuracies of 77.80 and 78.40, outperforming GPT-4.5 (74.20) and GPT-40 (67.50). While GPT-40 achieves a larger rela-

Model	No Opt. (Test)	Depth 1 (Dev)	Depth 5 (Dev)	Depth 5 (Test	
	(a) Symbolic	Reasoning — Geom	etric Shapes (Accura	cy)	
GPT-40	53.40	61.20 +7.80	68.67 +15.27	67.50 +14.10	
GPT-4.5	69.96	72.90 +2.94	75.33 +5.37	74.20 +4.24	
ol	70.07	73.50 +3.43	78.00 +7.93	77.80 +7.73	
DS-R1	69.67	73.80 +4.13	78.67 +9.00	78.40 +8.73	
	(b) Biome	dical IE — NCBI Dis	ease NER (Micro-F1)	
GPT-40	43.75	49.50 +5.75	54.37 +10.62	52.63 +8.88	
GPT-4.5	56.25	58.67 +2.42	65.56 +9.31	64.56 +8.31	
ol	53.13	66.46 +13.33	71.46 +18.33	70.15 +17.02	
DS-R1	54.20	66.00 +11.80	71.40 +17.20	69.96 +15.76	

Table 3: Results on symbolic reasoning and biomedical NER tasks. Overall, LRMs benefit most from prompt optimization.

tive gain (+14.1), LRMs still achieve higher absolute performance. In NCBI, LRMs show strong gains and high final performance: o1 and DeepSeek-R1 improve by +17.0% and +15.8% F1, respectively, reaching 70.15 and 69.96, well above the LLM performance. These results mirror our findings on EE, reinforcing that LRMs not only serve as strong task models post-optimization but also generalize effectively as optimizers beyond schema-based tasks.

Insight 5: Prompt optimization benefits transfer across tasks: LRMs gain benefit on both symbolic reasoning and biomedical NER.

5 FURTHER ANALYSIS

Prompt Quality Across Optimizers In addition to our qualitative analysis about Table 2 in RQ3, we also analyze the distribution of prompt effectiveness using a survival plot with DeepSeek-R1 as \mathcal{M}_{task} . The x-axis represents increasing AC thresholds, while the y-axis indicates the percentage of prompts that achieve at least that threshold. A higher survival curve indicates that an optimizer more consistently produces high-performing prompts. As shown in Fig. 5a, prompts optimized via

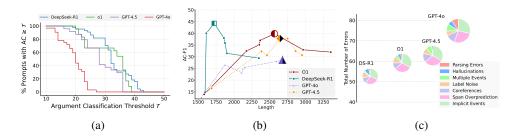


Figure 5: (a) A survival plot showing the % of prompts (y-axis) that achieve at least a given AC score (x-axis) for DeepSeek-R1 across different optimizers. (b) Prompt length vs. AC score across the best-performing full MCTS configuration for each task model on dev set. (c) Error categorization for DeepSeek-R1 as the task model with various optimizers.

DeepSeek-R1 exhibit the strongest survival curve, maintaining high-performance density even at stricter AC cutoffs ($\geq 35\%$ AC). In contrast, GPT-4o's curve decays rapidly, showing that while it occasionally generates effective prompts, its output quality is inconsistent. Interestingly, o1 and GPT-4.5 fall in between, with o1 slightly outperforming GPT-4.5 in the mid-range thresholds but trailing DeepSeek-R1 significantly at higher cutoffs. These trends reinforce our earlier findings: reasoning models are not only capable of producing better peak performance but also generate a greater density of usable prompts.

Prompt Length vs. Task Model Performance To better understand how much instruction is needed for different task models to reach their peak performance, we analyze the relationship between prompt length and model accuracy across full MCTS search trees. For each model, we select its best-performing search trajectory (i.e., o1 as optimizer for GPT-40 and DeepSeek-R1 as optimizer for the other task models) and plot the corresponding full prompt lengths (including inherited definitions) against their AC scores in Fig. 5b. DeepSeek-R1 achieves its highest performance utilizing the shortest prompt (~ 1750 tokens) in the search space, suggesting a preference for more concise task instructions. In contrast, both LLMs (GPT-40 and GPT-4.5) and the reasoning model o1 tend to rely on significantly longer prompts to achieve comparable accuracy.

Error Analysis To better understand the types of errors introduced by different optimizers, we conduct a fine-grained analysis of all development examples where DeepSeek-R1 fails on prompts generated by different optimizers. As shown in Fig. 5c, LRMs notably reduce event-related errors, particularly those involving multiple or implicit events. Argument-related issues, such as coreference errors and span overprediction, are also slightly reduced. In some cases, all models produce non-parsable outputs or hallucinated argument spans. The remaining errors are primarily attributed to label noise in the dataset. We provide an example for each error category in Appendix B.

Insight 6: LRM-optimized prompts are enriched with new extraction rules absent from the original task instruction, directly addressing frequent errors. DeepSeek-R1 achieves its highest performance using the shortest prompt.

6 Conclusion

We present the first systematic study of prompt optimization for LRMs, evaluating their roles as both task models and optimizers in a unified MCTS framework. On the structured task of event extraction, we find that LRMs benefit more from prompt optimization than LLMs and serve as stronger optimizers. They produce higher-quality prompts, converge faster, and generalize more reliably across models, highlighting their effectiveness in both prompt consumption and generation. Our error analysis further reveals that prompts optimized by LRMs reduce overprediction, hallucination, and parsing errors, contributing to more faithful and structured outputs. These trends generalize beyond event extraction: on Geometric Shapes and NCBI Disease NER, optimization improves all models, with LRMs outperforming LLMs when serving as their own optimizers. This strengthens our claim that LRMs both profit from and serve as strong agents for prompt optimization across diverse tasks.

REFERENCES

- Eshaan Agarwal, Joykirat Singh, Vivek Dani, Raghav Magazine, Tanuja Ganu, and Akshay Nambi. Promptwizard: Task-aware prompt optimization framework, 2024. URL https://arxiv.org/abs/2405.18369.
- Zhoujun Cheng, Jungo Kasai, and Tao Yu. Batch prompting: Efficient inference with large language model APIs. In Mingxuan Wang and Imed Zitouni (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track*, pp. 792–810, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-industry. 74. URL https://aclanthology.org/2023.emnlp-industry.74/.
- Michael Han Daniel Han and Unsloth team. Unsloth, 2023. URL http://github.com/unslothai/unsloth.
- Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song, Eric Xing, and Zhiting Hu. RLPrompt: Optimizing discrete text prompts with reinforcement learning. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pp. 3369–3391, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.222. URL https://aclanthology.org/2022.emnlp-main.222/.
- George Doddington, Alexis Mitchell, Mark Przybocki, Lance Ramshaw, Stephanie Strassel, and Ralph Weischedel. The automatic content extraction (ACE) program tasks, data, and evaluation. In Maria Teresa Lino, Maria Francisca Xavier, Fátima Ferreira, Rute Costa, and Raquel Silva (eds.), *Proceedings of the Fourth International Conference on Language Resources and Evaluation (LREC'04)*, Lisbon, Portugal, May 2004. European Language Resources Association (ELRA). URL https://aclanthology.org/L04-1011/.
- Rezarta Islamaj Doğan, Robert Leaman, and Zhiyong Lu. Ncbi disease corpus: a resource for disease name recognition and concept normalization. *Journal of biomedical informatics*, 47:1–10, 2014.
- Chrisantha Fernando, Dylan Sunil Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktäschel. Promptbreeder: Self-referential self-improvement via prompt evolution, 2024. URL https://openreview.net/forum?id=HKkiX32Zw1.
- Jun Gao, Huan Zhao, Wei Wang, Changlong Yu, and Ruifeng Xu. Eventrl: Enhancing event extraction with outcome supervision for large language models. 2024.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. 2025.
- Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful prompt optimizers. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=ZG3RaNIsO8.
- Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.
- Kuan-Hao Huang, I-Hung Hsu, Tanmay Parekh, Zhiyu Xie, Zixuan Zhang, Prem Natarajan, Kai-Wei Chang, Nanyun Peng, and Heng Ji. Textee: Benchmark, reevaluation, reflections, and future challenges in event extraction. In *Findings of the Association for Computational Linguistics ACL* 2024, pp. 12804–12825, 2024.
- Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wentau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, pp. 3045–3059, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL https://aclanthology.org/2021.emnlp-main.243/.

```
Peng Li, Tianxiang Sun, Qiong Tang, Hang Yan, Yuanbin Wu, Xuanjing Huang, and Xipeng Qiu. CodeIE: Large code generation models are better few-shot information extractors. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 15339–15353, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long. 855. URL https://aclanthology.org/2023.acl-long.855/.
```

- Wenwu Li, Xiangfeng Wang, Wenhao Li, and Bo Jin. A survey of automatic prompt engineering: An optimization perspective, 2025. URL https://arxiv.org/abs/2502.11560.
- Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 4582–4597, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353. URL https://aclanthology.org/2021.acl-long.353/.
- Zixuan Li, Yutao Zeng, Yuxin Zuo, Weicheng Ren, Wenxuan Liu, Miao Su, Yucan Guo, Yantao Liu, Lixiang Lixiang, Zhilei Hu, Long Bai, Wei Li, Yidan Liu, Pan Yang, Xiaolong Jin, Jiafeng Guo, and Xueqi Cheng. KnowCoder: Coding structured knowledge into LLMs for universal information extraction. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 8758–8779, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.475. URL https://aclanthology.org/2024.acl-long.475/.
- Agustin Mantaras. Prompt engineering for openai's ol and o3-mini reasoning models. Microsoft Tech Community Blog, February 2025. URL https://techcommunity.microsoft.com/blog/azure-ai-services-blog/prompt-engineering-for-openai% E2%80%99s-ol-and-o3-mini-reasoning-models/4374010.
- Hector D. Menendez, Gema Bello-Orgaz, and Cristian Ramírez Atencia. Deepstableyolo: Deepseek-driven prompt engineering and search-based optimization for AI image generation. In XVI Congreso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados, 2025. URL https://openreview.net/forum?id=hZucDPawRu.
- OpenAI. Reasoning best practices. OpenAI Platform Documentation, April 2025. URL https://platform.openai.com/docs/guides/reasoning-best-practices#how-to-prompt-reasoning-models-effectively.
- Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. GrIPS: Gradient-free, edit-based instruction search for prompting large language models. In Andreas Vlachos and Isabelle Augenstein (eds.), *Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics*, pp. 3845–3864, Dubrovnik, Croatia, May 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.eacl-main.277. URL https://aclanthology.org/2023.eacl-main.277/.
- Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt optimization with "gradient descent" and beam search. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 7957–7968, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.494. URL https://aclanthology.org/2023.emnlp-main.494/.
- Oscar Sainz, Iker García-Ferrero, Rodrigo Agerri, Oier Lopez de Lacalle, German Rigau, and Eneko Agirre. GoLLIE: Annotation guidelines improve zero-shot information-extraction. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=Y3wpuxd7u9.
- Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Conference on*

Empirical Methods in Natural Language Processing (EMNLP), pp. 4222–4235, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.346. URL https://aclanthology.org/2020.emnlp-main.346/.

- Saurabh Srivastava, Chengyue Huang, Weiguo Fan, and Ziyu Yao. Instances need more care: Rewriting prompts for instances with LLMs in the loop yields better zero-shot performance. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 6211–6232, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.371. URL https://aclanthology.org/2024.findings-acl.371/.
- Saurabh Srivastava, Sweta Pati, and Ziyu Yao. Instruction-tuning llms for event extraction with annotation guidelines, 2025. URL https://arxiv.org/abs/2502.16377.
- Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*, 2022.
- Together AI. Prompting deepseek-r1. Together AI Documentation, February 2025. URL https://docs.together.ai/docs/prompting-deepseek-r1.
- Guoqing Wang, Zeyu Sun, Zhihao Gong, Sixiang Ye, Yizhou Chen, Yifan Zhao, Qingyuan Liang, and Dan Hao. Do advanced language models eliminate the need for prompt engineering in software engineering? 2024a.
- Xingyao Wang, Sha Li, and Heng Ji. Code4struct: Code generation for few-shot event structure prediction. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3640–3663, 2023a.
- Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-level prompt optimization. In *The Twelfth International Conference on Learning Representations*, 2024b. URL https://openreview.net/forum?id=22pyNMuIoa.
- Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogerio Feris, Huan Sun, and Yoon Kim. Multitask prompt tuning enables parameter-efficient transfer learning. In *The Eleventh International Conference on Learning Representations*, 2023b. URL https://openreview.net/forum?id=Nk2pDtuhTq.
- Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Hard prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=VOstHxDdsN.
- Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Wang Yanggang, Haiyu Li, and Zhilin Yang. GPS: Genetic prompt search for efficient few-shot learning. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pp. 8162–8171, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.559. URL https://aclanthology.org/2022.emnlp-main.559/.
- Weijia Xu, Andrzej Banburski-Fahey, and Nebojsa Jojic. Reprompting: Automated chain-of-thought prompt inference through gibbs sampling, 2024. URL https://arxiv.org/abs/2305.09993.
- Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen. Large language models as optimizers. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=Bb4VGOWELI.
- Xunjian Yin, Xinyi Wang, Liangming Pan, Xiaojun Wan, and William Yang Wang. Gödel agent: A self-referential agent framework for recursive self-improvement, 2025. URL https://arxiv.org/abs/2410.04444.

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schuurmans, and Joseph E. Gonzalez. TEMPERA: Test-time prompt editing via reinforcement learning. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=gSHyqBijPFO.

Tianyang Zhong, Zhengliang Liu, Yi Pan, Yutong Zhang, Yifan Zhou, Shizhe Liang, Zihao Wu, Yanjun Lyu, Peng Shu, Xiaowei Yu, et al. Evaluation of openai o1: Opportunities and challenges of agi. 2024.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy Ba. Large language models are human-level prompt engineers. In *The Eleventh International Conference on Learning Representations*, 2022.

A ADDITIONAL DETAILS

648

649

650

651

652 653

654

655

656 657

658

659

660661662663

665

666 667

668

669

670

671

672

673 674

675 676

677

678

679

680

684

685 686

687

688

689

690

691

692 693

696

697

699

A.1 MORE IMPLEMENTATION DETAILS

To effectively optimize prompts for task-specific performance, we adopt a Monte Carlo Tree Search (MCTS) framework that iteratively explores and refines prompts based on model feedback and reward signals. The proposed algorithm, outlined in Algorithm 1, combines structured exploration with guided optimization by leveraging a task model, a feedback-generating optimizer, and a reward function. At each iteration, the algorithm performs selection, expansion, simulation, and back-propagation steps, progressively improving the prompt to maximize task performance across sampled batches.

Algorithm 1 Algorithm for MCTS-based Prompt Optimization

```
Initial prompt s_0 = \mathcal{P}_0, task model \mathcal{M}_{task}, optimizer \mathcal{M}_{opt}, reward function \mathcal{R}, batch size k, depth limit
             L, iterations \tau, exploration weight c
      Initialize:
             State-action mapping A: \mathcal{S} \mapsto \mathcal{F}, children mapping ch: \mathcal{S} \times \mathcal{F} \mapsto \mathcal{S}, rewards r: \mathcal{S} \times \mathcal{F} \mapsto \mathbb{R},
             Q-values Q: \mathcal{S} \times \mathcal{F} \mapsto \mathbb{R}, visit count \mathcal{N}: \mathcal{S} \mapsto \mathbb{N}
      for n \leftarrow 0, \dots, \tau - 1 do
             Sample batch (Q_{batch}, A_{batch}) from training data
             for t \leftarrow 0, \dots, L-1 do
                   if A(s_t) is not empty then
                                                                                                                                                                              ⊳ selection
                         \begin{aligned} f_t \leftarrow \arg\max_{f \in A(s_t)} \left( Q(s_t, f) + c \cdot \sqrt{\frac{\ln \mathcal{N}(s_t)}{\mathcal{N}(\mathsf{ch}(s_t, f))}} \right) \\ s_{t+1} \leftarrow \mathsf{ch}(s_t, f_t), r_t \leftarrow r(s_t, f_t), \mathcal{N}(s_t) \leftarrow \mathcal{N}(s_t) + 1 \end{aligned}

    ▷ expansion and simulation

                          (Step 1) Answer Gen: \hat{Q}_{batch} \sim \mathcal{M}_{task}(Q_{batch}, s_t)
                   (Step 2) Error Extract: Identify errors using interpreter on \hat{A}_{batch}
                   (Step 3) Feedback Gen: f_t \sim \mathcal{M}_{opt} (feedback |s_t|, errors)
                   (Step 4) Prompt Update: s_{t+1} \sim \mathcal{M}_{opt}(s|s_t, f_t)
                   Update A(s_t) \leftarrow \{f_t\}, \operatorname{ch}(s_t, f_t) \leftarrow s_{t+1}, r(s_t, f_t) \leftarrow \mathcal{R}(\hat{A}_{batch}, A_{batch})

r_t \leftarrow r(s_t, f_t), \mathcal{N}(s_t) \leftarrow \mathcal{N}(s_t) + 1
             end if
             if s_{t+1} is an early-stopping state then
                   break
             end if
      end for
      T \leftarrow \text{number of steps}
      for t \leftarrow T - 1, \dots, 0 do

    back-propagation

             Update Q(s_t, f_t) with rollout rewards \{r_t, \ldots, r_L\}
      end for
end for
```

	Train ACE _{low}	$\begin{array}{c} \textbf{Train} \\ \textbf{ACE}_{med} \end{array}$	Dev
TransferMoney	3	13	29
Meet	2	15	13
PhoneWrite	1	11	1
SentenceAct	6	25	4
Appeal	2	16	4
Convict	5	11	5
Sue	3	13	8
EndOrg	1	11	1
Die	2	26	15
DeclareBankruptcy	1	11	1
None	5	20	30

Table 4: Data distribution for selected ETs.

A.2 BATCH PROMPTING

 Since querying LLMs individually for each input incurs substantial computational costs, a naïve approach that treats each input separately is inefficient. To mitigate this, we employ **batch prompting** (Cheng et al., 2023), which enables the combination of multiple queries into a single structured prompt. Given a batch of inputs $\{Q_1,Q_2,...,Q_n\}$ that share the same task instruction $\mathcal{P}_{\mathcal{I}}$, batch prompting constructs a concatenated input string in the form $[\mathcal{P}_0||Q_1||Q_2||\dots||Q_n]$. Each query is uniquely labeled (e.g., "text1") to maintain order and structure. The model processes this batch and generates a structured response in the form $[A_1||A_2||\dots||A_n]$, where each A_i corresponds to the output for Q_i . These responses are parsed to extract individual predictions while preserving alignment. By reducing the number of API calls while maintaining high task accuracy, batch prompting improves efficiency, making large-scale prompt optimization feasible.

A.3 PROMPT OPTIMIZATION AS A SEARCH PROBLEM

While batch prompting enhances efficiency, it does not inherently improve task performance. To address this, we formulate prompt optimization as a search problem over an expansive, intractable space of possible natural language prompts, denoted as \mathcal{S} . The objective is to discover an **optimal prompt** \mathcal{P}^* that maximizes a task-specific evaluation function \mathcal{R} , such as the F-score for event extraction, formally defined as: $\mathcal{P}^* = \arg\max_{\mathcal{P} \in \mathcal{S}} \mathcal{R}(p_{\mathcal{M}_{task}}(A_{batch}|Q_{batch},\mathcal{P}))$ where Q_{batch} and A_{batch} denote the batched queries and responses, respectively. Since this space is too large to exhaustively explore, we introduce a secondary LLM, \mathcal{M}_{opt} , which iteratively refines \mathcal{P}_0 based on errors observed in the output of \mathcal{M}_{task} . As shown in Fig. 3, this iterative refinement continues until a predefined stopping criterion is met, such as performance convergence or a fixed number of optimization steps. Once optimization concludes, the final optimized prompt \mathcal{P}^* is used for inference on unseen test data.

A.4 DATA SPLIT

We utilized two shorter versions of ACE05, ACE_{low} and ACE_{med} . Their detailed descriptions are provided in Section 4.1. Table 4 presents the distribution of selected event types (ETs) across ACE_{low} , ACE_{med} , and the development (Dev) set. These subsets were curated to simulate both low-resource and medium-resource scenarios. Frequent ETs such as *SentenceAct* and *Die* contrast with rarer ones like *PhoneWrite* and *DeclareBankruptcy*, allowing for a diverse evaluation spectrum. The *None* class includes instances without any annotated events, preserving a realistic class distribution.

A.5 META-PROMPTS FOR FEEDBACK (m_{fb}) AND OPTIMIZATION (m_{opt})

Feedback Collection Prompt. Below we present the prompt m_{fb} to collect structured feedback from \mathcal{M}_{opt} .

```
I am writing event guidelines and prompt (or task instructions) for a language model designed for an event extraction task.
```

```
756
      My current prompt is:
757
      <START>
758
      {cur_prompt}
759
      <END>
760
      The event quideline in Python format is as following:
761
      <START>
762
      {event_definitions}
763
      <END>
764
      The task involves:
765
      1. Extracting structured events (triggers, event type, arguments, and
766
          their roles) from the text.
767
      2. Adhering to strict Python syntax for output (a Python list of event
768
          instances).
769
      3. Handling all event definitions accurately, including mandatory roles
          and edge cases.
770
771
      But this prompt gets the following examples wrong:
772
      <START>
773
      {example_string}
      <END>
774
775
      For each example, perform the following step-by-step analysis:
776
      1. Error Type Classification: Identify the specific type(s) of error for
777
          each example (e.g., incorrect span extraction, missing roles,
778
          spurious arguments, format violations, etc.).
779
      2. Root Cause Analysis:
          a. Did the current guideline fail to explain key extraction rules
780
              clearly?
781
          b. Are the instructions after '#' in the event definitions (
782
              guidelines) ambiguous, inconsistent, or insufficient?
783
           c. Were there ambiguities or overlaps in roles (e.g., 'agent' vs. '
              person') that caused confusion?
784
      3. Example-Specific Recommendations:
785
           - Suggest precise changes to the guidelines (comments after `#` in
786
              event guidelines) to fix the errors for the given example.
787
           - Include explicit "what_to_do" and "what_not_to_do" instructions for
788
               ambiguous roles or edge cases.
           - Provide a simple example and counterexample to illustrate each
789
              quideline.
790
      4. General Trends: Identify recurring issues in guidelines across all
791
          examples.
792
793
      Expected Output:
      1. For all the examples, summarize and list all actionable changes to
794
          improve the event definitions for all the classes, including:
795
           - Improved clarity for event/role definitions.
796
           - Enhanced handling of ambiguous or overlapping roles.
797
           - Guidelines for precise span extraction.
798
799
      2. Provide an output pointing out the mistakes in the current guidelines
          and propose refinements for all the classes. Each refinement should
800
          include:
801
           - For an event, updated guidelines for "what_to_do" and "what_not_to_
802
              do."
803
           - Examples and counterexamples for each role.
804
```

Task Instruction and Guidelines Optimization Prompt. Below we present the prompt m_{opt} to optimize task instruction and event guidelines.

```
I am optimizing prompts for a language model designed for an event extraction task.  \\
```

805

806

807 808

809

```
810
      My current prompt (or task instructions) is:
811
       <START>
812
       {cur_prompt}
813
       <END>
814
       The event quideline in Python format is as following:
815
       <START>
816
       {event_definitions}
817
       <END>
818
       But this prompt gets the following examples wrong:
819
820
      {example_string}
821
      <END>
822
      Based on these errors, the problems with the event guideline and the
823
          reasons are:
824
       <START>
825
       {feedback}
826
      <END>
827
828
      There are a list of former event guidelines including the current one,
          and each guideline is modified from its former prompts:
829
       <START>
830
       {trajectory_prompts}
831
       <END>
832
833
       Guidelines given to me for optimization of event classes:
       1. Refine the prompt (or the task instructions) to address the issues
834
          mentioned previously. Focus on:
835
           - Clearer instructions for span extraction and role definitions along
836
                with any exceptions.
837
           - Handling ambiguous or overlapping roles effectively.
           - Strict adherence to Python-parsable output format.
838
       2. Refine the guidelines for event definitions (the instructions after '#
839
           ') based on the identified mistakes. Ensure the refined guidelines
840
          addresses the concerns mentioned in the above.
841
       3. Maintain backward compatibility: Ensure previously correct examples
842
          remain valid.
       4. DO NOT change the ontology (Python classes). Instead, provide the
843
          refined guidelines in the format given at the end.
844
       5. Ensure outputs follow these formats:
845
           - Optimized prompt (or the task instructions) wrapped with <START>
846
              and <END>.
847
           - Refined guidelines wrapped with <CLASS_START> and <CLASS_END>.
848
       Output Requirements:
849
      1. I have to provide the optimized prompt (or the task instructions) that
850
           evolves incrementally from the current one.
851
       2. I also have to provide an output containing the fully optimized
852
          guidelines for each event definitions following the structure below:
       class Event_Name(Parent_Event):
853
           \"\"\"
854
       ____#_Updated_guidelines_here_consulting_the_problems_given_to_me
855
856
       ____mention:_str_#_refined_comments_or_extraction_rules_for_event_
857
          triggers._Include_what/who_can_play_the_role_with_examples.
       ____{{role1}}:_List_#_do_the_same_for_all_roles_including_"mention",_
858
          refining_the_comments_after_"#". Include what/who can play the role
859
          with examples and span extraction rule.
860
861
862
      My response is:
863
```

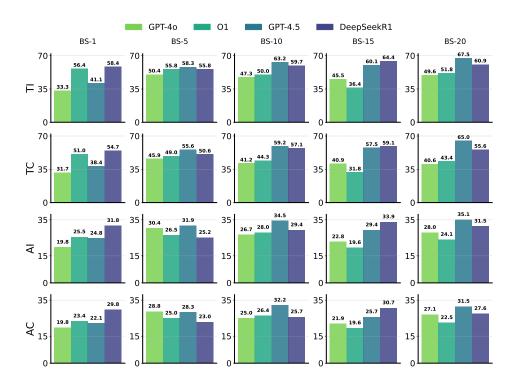


Figure 6: Batch-wise performance.

A.6 ADDITIONAL HYPERPARAMETER AND MCTS CONFIGURATION

Similar to Wang et al. (2024b), we provide the details of hyperparameters and Monte Carlo Tree Search (MCTS) configurations used in our experiments. For all runs, we fix the depth limit L of the search tree to 5 and the number of MCTS iterations τ to 12, unless stated otherwise. The exploration-exploitation trade-off is controlled by the exploration weight c, which we set to 2.5 following prior work. The batch size k for each rollout is set to 15.

We use greedy decoding for the task model \mathcal{M}_{task} to simulate deterministic predictions, and temperature sampling with T=0.7 for the optimizer model \mathcal{M}_{opt} to promote diverse feedback generation. Early stopping in MCTS is triggered if a prompt leads to zero errors across two consecutive rollouts.

A.7 Preliminary Experiments and Model Selection

Growing a full MCTS tree for prompt optimization can be computationally expensive, as noted in prior work Wang et al. (2024b). To establish a foundation before scaling up, we conducted initial experiments to analyze the impact of batch size on performance and computational efficiency. Since batch prompting reduces the number of API calls, we experimented with different batch sizes for constructing Q_{batch} by varying the number of queries Q_i and corresponding outputs A_i . However, we found that determining an optimal batch size for any LLM is highly model-dependent and lacks a universal heuristic (Fig. 6). Given this ambiguity, we set the batch size to 15, as it provides a straightforward 15-fold reduction in API calls while maintaining response quality. This choice ensured computational feasibility while allowing prompt optimization to operate effectively within our budget constraints. To further refine our experimental setup before scaling to a full MCTS search, we conducted an initial trial using a single iteration of MCTS. In this controlled setup, we instantiated a root node corresponding to the initial task prompt and generated three child nodes representing different prompt refinements. This limited exploration allowed us to assess the effect of prompt optimization for event extraction under different model settings.

B ADDITIONAL RESULTS AND ANALYSIS

918

919 920

921 922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961 962

963

964

965

966

967

968

969

970

971

B.1 How Do Optimizers Follow (or Ignore) Feedback?

As mentioned in Section 5, optimizers exhibit different behaviors in how they apply feedback. For instance, we observed that in the majority of cases, DeepSeek-R1 refines only the event definitions that are explicitly mentioned in the feedback generated for the refinement of the task instruction and guidelines, leaving the remaining event definitions untouched. An example is shown in Figure 7, where DeepSeek-R1 reasons that the incorrect argument extraction for the Attack event likely stems from limitations of \mathcal{M}_{task} rather than the guideline itself, and consequently refuses to modify it. In such cases, the unchanged definitions are inherited from the parent node.

To quantify this behavior, we measure the average number of edited guidelines and their average token length across all optimizers, under each model's best-performing configuration (based on AC score), in Figure 8. Notably, the token counts in this analysis differ from those in Figure 5b because we consider only the edited guidelines here—unedited ones are inherited from prior states—whereas the earlier analysis includes the full prompt content at each node. As shown in the figure, DeepSeek-R1 edits the fewest event types' guidelines (6.7 on average) and produces the shortest guidelines (approximately 1.5k tokens for guidelines edited in one optimization step), reflecting a more feedbacksensitive and token-efficient strategy. In contrast, GPT-o1 and GPT-4.5 modify nearly all ten guidelines (9.8 and 8.5 on average), regardless of feedback specificity, resulting in much longer outputs (2.9k and 2k tokens, respectively). While GPT-40 also appears restrained (7.6 edits on average), qualitative analysis suggests this is due to feedback overflow: when many suggestions are provided, GPT-40 often fails to address them all. These findings highlight DeepSeek-R1's more specific and efficient editing behavior, further reinforcing its strength as a prompt optimizer.

In this section, we present a comprehensive evaluation of various task models optimized through Monte Carlo Tree Search (MCTS) guided by dif- $\mathcal{M}_{task} = \text{DeepSeek-R1}.$

(truncated) The model's prediction didn't include this, possibly because the coref wasn't resolved. The current guideline says pronouns require coref resolution before extraction. So if "his" is unresolved, it's omitted. But in the correct answer, "his" is resolved to Arafat. So the model might not have access to coref resolution, leading to omission. However, this is a model limitation, but the guideline says pronouns must be coref resolved. So maybe the guideline is clear, but the model isn't performing coref properly. Hence, I will skip the Attack event. (truncated)

Figure 7: Example reasoning when DeepSeek-R1 refuses to edit the Attack event.

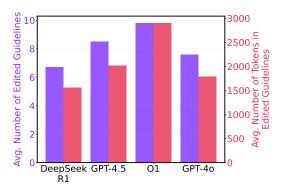


Figure 8: Average number of guidelines edited by each model and the average number of tokens in the edited guidelines for different optimizers when \mathcal{M}_{task} =DeepSeek-R1.

ferent optimizer models. We analyze performance across multiple configurations, including varying dataset sizes (ACE_{low} , ACE_{med} , and ACE test set) and MCTS depths. Our analysis highlights how the interplay between task and optimizer models, as well as the depth of the optimization process, affects performance on trigger and argument prediction metrics.

B.2 FULL RESULTS

Table 5 compares the performance of four task models—DeepSeek-R1, o1, GPT-4.5, and GPT-40—when optimized by different optimizer models across four key metrics: Trigger Identification (TI), Trigger Classification (TC), Argument Identification (AI), and Argument Classification (AC). Each row corresponds to a task model, and each column group corresponds to a specific optimizer guiding the prompt updates during MCTS. This layout allows us to analyze both the robustness of task models and the relative effectiveness of various optimizers under a shallow MCTS setup.

We further evaluate our method on the ACE_{med} dataset using the same MCTS configuration with depth 1. Table 6 reports the performance of four task models under different optimizer models across the four standard evaluation metrics. Compared to ACE_{low} , this medium-resource setup

Models	DeepS	Seek-R	l (Opti	mizer)	(o1 (Opt	timizer)	GP	T-4.5 (Optimi	zer)	GPT-40 (Optimizer)			
Models	TI	TC	AI	AC	TI	TC	AI	AC	TI	TC	AI	AC	TI	TC	AI	AC
DeepSeek-R1	37.5	33.93	25.57	24.66	27.72	25.74	18.67	18.67	36.89	34.95	22.91	22.91	32.78	32.78	21.83	21.83
o1	31.54	31.54	21.92	21.92	29.33	29.33	18.96	18.96	31.91	31.91	18.57	18.57	29.24	29.24	21.74	20.29
GPT-4.5	36.04	34.23	23.14	22.31	34.78	33.04	20.07	19.33	31.37	31.37	19.32	19.32	30.29	30.29	20.97	20.19
GPT-4o	35.29	35.29	22.07	20.15	28.28	28.28	18.18	18.18	30.61	30.61	16.67	16.67	31.67	31.67	19.57	18.83

Table 5: Complete results of training on ACE_{low} with MCTS depth 1 and tested on the dev set.

enables deeper insights into the generalizability and adaptability of both task and optimizer models. The results reveal notable variance in model-optimizer synergy, with certain combinations (e.g., o1 optimized by itself) yielding significantly stronger trigger performance, while others show more balanced gains across argument-level metrics.

Models	DeepS	Seek-R	l (Opti	mizer)	o1 (Optimizer)				GP	T-4.5 (Optimi	zer)	GPT-40 (Optimizer)			
11204015	TI	TC	AI	AC	TI	TC	AI	AC	TI	TC	AI	AC	TI	TC	AI	AC
DeepSeek-R1	63.16	63.16	40.00	40.00	65.45	65.45	32.2	32.2	56.25	56.25	37.14	37.14	62.7	62.7	40.06	38.77
o1	78.95	78.95	39.13	36.96	54.78	54.78	33.96	30.19	59.26	59.26	36.67	36.67	57.14	57.14	36.98	36.98
GPT-4.5	64.71	64.71	35.42	35.42	46.15	46.15	29.63	29.63	63.57	63.57	35.94	35.94	59.21	59.21	38.1	36.51
GPT-4o	30.00	30.00	25.88	25.1	28.57	28.57	22.32	22.32	34.55	34.55	27.54	27.54	29.38	29.38	26.99	26.3

Table 6: Complete results of training on ACE $_{med}$ with MCTS depth 1 and tested on the dev set.

We now report results on the ACE_{med} dataset using a deeper MCTS configuration with depth 5. Table 7 summarizes the performance of each task model under four different optimizers. Compared to the shallower setup, this deeper search allows for more extensive prompt refinement, which can lead to either improved generalization or potential overfitting, depending on the optimizer-task model combination. Notably, certain models like $\circ 1$ exhibit strong trigger-level performance when paired with GPT-4.5 as an optimizer, while others demonstrate more balanced gains across argument metrics. These results highlight the sensitivity of the optimization process to both the depth of MCTS and the choice of optimizer.

Models	DeepS	Seek-R	l (Opti	mizer)	(o1 (Opt	imizer)	GP	T-4.5 (Optimi	zer)	GPT-40 (Optimizer)			
1,100015	TI	TC	AI	AC	TI	TC	AI	AC	TI	TC	AI	AC	TI	TC	AI	AC
DeepSeek-R1	56.6	56.6	44.26	44.26	66.67	66.67	44.93	40.58	46.15	46.15	40.8	38.4	48.28	48.28	40.51	37.97
01	48.08	48.08	40.74	39.81	42.86	42.86	38.71	38.71	84.68	84.68	41.48	37.78	48.28	48.28	34.64	33.52
GPT-4.5	45.68	45.68	38.36	37.74	51.24	51.24	36.22	36.22	59.26	59.26	36.24	37.58	41.18	41.18	32.35	32.35
GPT-4o	49.09	49.09	28.11	27.31	61.11	61.11	28.57	28.57	52.00	52.00	27.03	27.03	61.54	61.54	29.91	28.04

Table 7: Complete results of training on ACE $_{med}$ with MCTS depth 5 and tested on the dev set.

To assess the generalization capability of the optimized prompts, we evaluate all model-optimizer pairs on the ACE test set using an MCTS depth of 5. Table 8 presents the performance. This setup represents the final evaluation phase, where models are tested on unseen examples after undergoing deeper exploration-driven prompt optimization. Overall, the results show that performance trends remain consistent with those observed on the development set, though certain combinations—such as DeepSeek-R1 with itself as optimizer—demonstrate stronger stability, while others exhibit slight performance drops, especially in argument-level metrics. These observations reinforce the impact of both optimizer choice and MCTS depth on downstream generalization.

B.3 Error Categories and Examples

To better understand the limitations of our approach and the nature of model failures during prompt optimization, we conduct a qualitative error analysis by categorizing common mistakes observed in model outputs. Table 9 summarizes the key error categories encountered across multiple evaluation runs, along with representative examples and detailed descriptions. These categories—ranging from parsing issues and hallucinations to deeper linguistic challenges such as coreference and implicit

Models	DeepS	Seek-R	(Opti	mizer)	(o1 (Opt	imizer)	GP	T-4.5 (0	Optimi	zer)	GPT-40 (Optimizer)			
11104015	TI	TC	ΑI	AC	TI	TC	AI	AC	TI	TC	AI	AC	TI	TC	AI	AC
DeepSeek-R1	69.23	67.69	44.33	43.75	54.12	54.12	42.06	42.06	52.8	52.8	41.98	41.98	47.27	47.27	33.61	31.93
o1	68.28	67.76	38.44	37.86	67.86	67.86	38.71	38.71	58.29	58.29	36.73	36.73	41.11	41.11	28.57	28.57
GPT-4.5	68.31	68.31	38.44	36.69	64.71	64.71	39.02	36.59	56.45	56.45	35.29	35.29	49.09	49.09	28.11	27.31
GPT-40	59.44	59.44	36.99	35.71	64.52	64.52	30.59	30.59	56.57	56.57	34.75	34.75	48.19	48.19	26.94	26.94

Table 8: Complete results of training on ACE $_{med}$ with MCTS depth 5 and tested on the test set.

event detection—highlight areas where models tend to struggle, particularly under batch prompting and complex event structures.

Error Category									
Parsing Errors	Description: Parsing errors occur when the model's output is not in the expected format (e.g., JSON or structured list), often due to extra reasoning or verbose responses in batch prompts. These make the output unusable for evaluation pipelines.								
	Example: Prompts that return extra text or commentary instead of a valid Python structure, causing non-parsable output.								
Hallucinations	Description: Hallucinations occur when the model generates arguments or events that are not supported by the input. This usually happens due to biases learned during training or lexical overlaps with known labels.								
	Example: Text: "Different parts of the strip saw conflicts today." → Model incorrectly predicts a 'Conflict' event based solely on the word "conflict".								
Multiple Events	Description: Multiple event errors happen when the model detects only a single event in a sentence that contains multiple, usually defaulting to the most salient or final event.								
	Example: Text: "went home and his father-in-law killed him." \rightarrow Model only predicts the 'Die' event, ignoring the 'Transport' event.								
Label Noise	Description: Label noise refers to inconsistencies or ambiguities in the dataset annotations, such as differing treatment of coreferences or unclear event boundaries, which confuse both training and evaluation.								
	Example: Text: "Our president has repeatedly relied on a man Hussein Kamel leader of the Iraq arms program who defected" \rightarrow Label uses 'person=["leader"]'; model uses 'person=["Hussein Kamel"]'.								
Coreferences	Description: Coreference errors arise when the model fails to resolve references like pronouns or role-based descriptors to their actual entities, leading to incorrect or incomplete argument spans.								
	Example: Text: "Hussein Kamel, leader of the Iraq arms program who defected" \rightarrow Label uses "leader"; model uses "Hussein Kamel", highlighting coreference resolution challenges.								
Span Overprediction	Description: Span overprediction occurs when the model predicts more detailed argument spans than necessary, often including modifiers or descriptors not required by the task's minimal span rules.								
	Example: Text: "Orders went out today to deploy 17,000 U.S. Army soldiers in the Persian Gulf region." \rightarrow Label: "soldiers"; Prediction: "17,000 U.S. Army soldiers" – includes extra modifiers.								
Implicit Events	Description: Implicit events are those not directly triggered by verbs but inferred through adjectives, nouns, or other context (e.g., "former"). These are often missed by models unless explicitly instructed.								
	Example: Text: "with former Congressman Tom Andrews" Trigger "former" implies 'EndPosition', but is often missed by models lacking rules for implicit event detection.								

Table 9: Description of error categories with examples.

1081 1082

1083

1084 1085

1086

C OPTIMIZED TASK INSTRUCTION AND GUIDELINES

In this section, we present fully optimized task instruction and event guidelines generated by DeepSeek-R1, o1, GPT-4.5, and GPT-4o.

C.1 EXAMPLE OF OPTIMAL TASK INSTRUCTION AND EVENT GUIDELINES GENERATED BY DEEPSEEK-R1

```
1087
1088
       # Event Extraction Task: Extract structured events from text using Python
            class definitions. Follow these rules:
1089
1090
       1. **Span Extraction**:
1091
          - **Triggers**: Minimal contiguous spans (verbs/nouns) directly
1092
              expressing the event. Include both verbal and nominal forms ("
1093
              death" = Die, "killings" = Die). Add new triggers like "converge"
              for Meet and "is_no_more" for EndOrg
1094
          - **Arguments**:
1095
            - Remove articles ("a/an/the") and possessive pronouns EXCEPT when
1096
                part of official names or temporal phrases ("The_Hague", "the_
1097
                past_year")
1098
            - Resolve pronouns AND POSSESSIVE NOUNS to named entities **
                immediately** using same-sentence antecedents ("airline's plan"
1099
                \rightarrow ["airline"])
1100
            - Strip role/location/age descriptors from arguments ("Philadelphia"
1101
                lawyers" \rightarrow "lawyers") unless part of multi-word crime
1102
            - Keep FULL spans for crimes/money including sources/amounts (" stereo_worth_$1,750_from_family") unless legal terms
1103
            - Detect beneficiaries via ownership markers ("for X's project"),
1104
                direct "to_X" transfers go to recipient
1105
1106
       2. **Special Handling**:
1107
          - **Bankruptcy Triggers**: "went_bust" → EndOrg unless explicit
1108
              bankruptcy context
          - **Meet Entities**: Include ALL resolvable participants (subject +
1109
              object)
1110
          - **Crime Spans**: Retain full contextual clauses ("If convicted of ...
1111
              killings...") without truncation
1112
          - **Temporal Phrases**: Keep original spans with articles when part of
               phrase ("the_early_90's")
1113
1114
       3. **Output Rules**:
1115
          - Always output in Python-format as [EventName("mention" = "trigger",
1116
              "arg1_key" = "arg1_span", ...), EventName("mention" = "trigger",
1117
              arg1_key" = "arg1_span", ...)]
1118
          - Include ALL role fields with empty lists where applicable
          - Output separate events for each trigger (no merging) even for
1119
              identical event types
1120
          - Strict pydantic syntax: [EventName (mention="span", role=["span"],
1121
              ...)]
1122
          - Preserve original casing for locations unless explicitly proper
              nouns
1123
1124
       4. **Critical Exceptions**:
1125
          - **EndOrg Triggers**: Add "collapse", "drive_out", "went_bust" with
1126
              explicit org mentions
1127
          - **Appeal Roles**: defendant = opposing party (state), prosecutor =
1128
              appellant
          - **TransferMoney**: "for X" → recipient unless ownership marker ("for
1129
              _{X'}s_{Y"} \rightarrow beneficiary)
1130
          - **PhoneWrite Entities**: Strip ALL role descriptors ("Secretary_
1131
              Powell" \rightarrow ["Powell"])
1132
1133
```

```
1134
      # Here are the event definitions:
1135
1136
      class Convict(JusticeEvent):
1137
           """Extract convictions where entity is found quilty of crime.
          Key Updates:
1138
           - crime: Retain FULL spans including amounts/sources ("received
1139
              stereo worth $1,750 from family")
1140
1141
           Example: "convicted of taking bribes worth $1M" → crime=["taking
1142
              bribes worth $1M"]
           Counterexample: Truncating to ["taking bribes"] \rightarrow error
1143
1144
          mention: str # Triggers: "convicted", "conviction"
1145
           defendant: List[str] # ["Vang"] (resolved pronouns, strip
1146
              descriptors)
          adjudicator: List[str] # ["court"] (official names only)
1147
           crime: List[str] # Full offense span without legal terms
1148
           time: List[str] # ["last Wednesday"] (exact temporal phrases)
1149
           place: List[str] # ["Minnesota"] (geopolitical entities from context
1150
1151
1152
      class TransferMoney(TransactionEvent):
           """Money transfers without goods exchange.
1153
          Key Updates:
1154
           - recipient: Direct receiver ("to X" OR "for X" if X is endpoint)
1155
           - beneficiary: Only for ownership ("for X's project") or indirect
1156
              benefit
1157
          Example: "donated $5 for Tim Kaine" \rightarrow recipient=["Tim Kaine"]
1158
          Example: "funds for Kaine's campaign" → beneficiary=["Kaine"]
1159
1160
          mention: str # Triggers: "provided money", "donation"
1161
          giver: List[str] # ["foundation"] (strip descriptors)
           recipient: List[str] # ["charity"] (direct receiver from "to/for X")
1162
          beneficiary: List[str] # ["Suha"] (from ownership markers)
1163
          money: List[str] # ["$15M"] (keep symbols/approximations)
1164
           time: List[str] # ["two years"] (full temporal span)
1165
          place: List[str] # ["Swiss"] (origin locations, strip prepositions)
1166
      class Meet(ContactEvent):
1167
           """Face-to-face interactions.
1168
          Key Updates:
1169
           - entity: Include ALL resolvable participants (subject + object)
1170
1171
           Example: "Annan met Al-Douri" → entity=["Annan", "Al-Douri"]
          Counterexample: Omitting subject → error
1172
1173
          mention: str # Triggers: "meet", "summit", "talks"
1174
          entity: List[str] # ["delegates"] (all participants)
1175
          time: List[str] # ["today"] (exact temporal span)
1176
          place: List[str] # ["Dallas"] (resolved location noun)
1177
1178
      class PhoneWrite(ContactEvent):
1179
           """Non face-to-face communication.
1180
          Key Updates:
1181
           - entity: Strip ALL role descriptors unless part of compound name
1182
          Example: "e-mail from Secretary Powell" → entity=["Powell"]
1183
           Counterexample: Retaining "Secretary" \rightarrow error
1184
1185
          mention: str # Triggers: "called", "e-mail" with transmission
1186
           entity: List[str] # ["we", "them"] (bare names, resolved pronouns)
1187
          time: List[str] # ["during meeting"] (exact time phrase)
```

```
1188
           place: List[str] # ["office"] (specific location if present)
1189
1190
1191
       class DeclareBankruptcy(BusinessEvent):
           """Formal bankruptcy declarations.
1192
           Key Rules:
1193
           - entity: Resolve org pronouns AND possessive nouns ("airline's
1194
              bankruptcy" → ["airline"])
1195
           - Triggers: "bankruptcy", "Chapter 11" (exclude "collapse"/"went bust
1196
              " without explicit bankruptcy context)
1197
           Example: "airline's bankruptcy filing" 

mention="bankruptcy", org=["
1198
              airline"]
1199
           Counterexample: "near-collapse" → EndOrg
1200
           mention: str # Triggers indicating financial collapse: "bankruptcy",
1201
                "Chapter 11"
1202
           entity: List[str] # ["Enron Corp"] (resolved orgs from pronouns/
1203
              possessives in same sentence)
1204
           time: List[str] # ["2003"] (declaration time phrase)
1205
           place: List[str] # ["Texas"] (jurisdiction noun if specified)
1206
       class EndOrg(BusinessEvent):
1207
           """Organization termination events.
1208
           Key Rules:
1209
           - Triggers: "ceased", "is no more", "collapse", "drive out", "went
1210
              bust"
           - org: Require explicit organizational mention ("casinos" in "casinos
1211
               faced collapse")
1212
1213
           Example: "company went bust" → mention="went bust", org=["company"]
1214
           Counterexample: "facing collapse" (no explicit org) → ignore
1215
           mention: str # Triggers must indicate actual termination
1216
           org: List[str] # ["plant"] (direct object or possessive noun)
1217
           time: List[str] # ["the past year"] (with articles when part of
1218
              phrase)
1219
           place: List[str] # ["Eugene"] (specific location noun)
1220
1221
       class Die(LifeEvent):
           """Death events.
1222
           Key Updates:
1223
           - mention: Include nominal forms ("killings", "casualties") as valid
1224
              triggers
1225
           Example: "massacre casualties" \rightarrow mention="casualties"
1226
           Counterexample: "death penalty" \rightarrow ignore
1227
1228
           mention: str # Triggers: "died", "killings", "casualties"
1229
           agent: List[str] # ["shooter"] (intentional actors only)
1230
           victim: List[str] # ["patient"] (without quantifiers/possessives)
           instrument: List[str] # ["knife"] (specific tools/weapons)
1231
           time: List[str] # ["last night"] (exact span)
1232
           place: List[str] # ["hospital"] (death location noun)
1233
1234
       class SentenceAct(JusticeEvent):
1235
           """Punishment issuance events.
           Key Updates:
1236
           - crime: Retain original crime from conditional clauses ("If
1237
              convicted of killings..." \rightarrow ["killings"])
1238
1239
           Example: "faces life for fraud" → crime=["fraud"]
1240
           Counterexample: "could face penalty" \rightarrow ignore
1241
```

```
1242
          mention: str # Triggers: "sentenced", "faces". Must reference actual
1243
               punishment
1244
          defendant: List[str] # ["activist"] (strip role descriptors)
1245
          adjudicator: List[str] # ["jury"] (bare roles unless official title)
           crime: List[str] # ["illegally attending meeting"] (full contextual
1246
1247
           sentence: List[str] # ["life in prison"] (exact punishment phrase)
1248
           time: List[str] # ["Thursday"] (exact temporal expression)
1249
          place: List[str] # ["district court"] (decision location noun)
1250
       class Sue(JusticeEvent):
1251
           """Legal action initiations.
1252
          Key Updates:
1253
           - adjudicator: Include "judge" if overseeing case approval ("approved
1254
               by judge" \rightarrow ["judge"])
1255
          Example: "suit against Gateway approved by judge" \rightarrow adjudicator=["
1256
               judge"]
1257
           Counterexample: "lawsuit documents" → adjudicator=[]
1258
1259
          mention: str # Triggers: "suit", "lawsuit". Must reference legal
1260
              filing
           plaintiff: List[str] # ["patients"] (strip locations/roles unless
1261
              critical)
1262
           defendant: List[str] # ["Gateway"] (explicitly sued entities)
1263
           adjudicator: List[str] # ["judge"] (if directly involved)
1264
           crime: List[str] # ["malpractice"] (explicit offense without legal
1265
              terms
           time: List[str] # ["last month"] (keep articles in temporal phrases)
1266
          place: List[str] # ["South Florida"] (specific noun phrases)
1267
1268
       class Appeal (JusticeEvent):
1269
           """Court decision appeals.
          Key Updates:
1270
           - defendant: Opposing party (state/prosecution), NOT appellant
1271
           - prosecutor: Entity filing appeal (resolved from subject/pronouns)
1272
1273
          Example: "appeal by Anwar against conviction" \rightarrow prosecutor=["Anwar"],
1274
               defendant=[]
           Counterexample: Assigning appellant as defendant \rightarrow error
1275
1276
          mention: str # Triggers: "appeal", "appeals"
1277
          defendant: List[str] # ["state"] (opposing party in original case)
1278
          prosecutor: List[str] # ["Pasko"] (appellant, bare name without
1279
              roles)
           adjudicator: List[str] # ["court"] (original court name)
1280
           crime: List[str] # ["espionage"] (original charge)
1281
           time: List[str] # ["last week"] (exact temporal phrase)
1282
          place: List[str] # ["Malaysia"] (country from court description)
1283
```

C.2 Example of optimal task instruction and event guidelines generated by o1

1284

1285

```
1286
      # This is an event extraction task where the goal is to extract
1287
          structured events from the text following structured event
1288
          definitions in Python.
1289
      # A structured event contains:
          (1) an event trigger word (mention) -- always use the minimal lexical
1290
           span (e.g., "appeal" rather than "filed an appeal"),
1291
          (2) an event type, and
1292
          (3) the arguments participating in the event (with their roles).
1293
1294
      # Keep argument references minimal by removing articles, possessives, or
1295
          descriptive words unless they are crucial identifiers (e.g., "the
          retailer" -> "retailer", "my uncle" -> "uncle").
```

```
1296
1297
       # Important guidelines to address prior errors:
1298
         1. For each event trigger, use the single most relevant word (e.g., "
1299
          bankruptcy" rather than "file for bankruptcy").
         2. For argument roles, also use minimal spans (e.g., "soldier"
1300
          instead of "a soldier," "woman" instead of "a woman").
1301
          3. Output a separate event for each distinct trigger or implied event
1302
           (e.g., a conviction and a subsequent sentencing should be two events
1303
1304
          4. For justice events (Sue, Appeal, Convict, SentenceAct, etc.):
               - "defendant" is the party or entity accused or found quilty.
1305
               - "plaintiff" or "prosecutor" is the party initiating legal
1306
          action or bringing an appeal. If the text does not specify who is
1307
          accused, leave "defendant" empty.
1308
               - If the text refers to a punishment or sentencing (e.g., "faces
          the death penalty"), include a separate SentenceAct event referencing
1309
           the same "defendant."
1310
           5. For transfers of money, watch for direct or indirect references to
1311
           donations, funding, or contributions and label them as TransferMoney
1312
           events.
1313
          6. Do not skip events implied by synonyms or indirect wording (e.g.,
          "shutting down" \rightarrow EndOrg, "emerged from bankruptcy" \rightarrow
1314
          DeclareBankruptcy).
1315
          7. If there is more than one event in a single text, output each in a
1316
           separate entry.
1317
          8. Always produce valid Python list format exactly as:
1318
              result = [
                 EventName("mention" = "trigger", "role1" = [...], "role2" =
1319
1320
                EventName("mention" = "trigger", "role1" = [...], "role2" =
1321
          [\ldots],\ldots),
1322
1323
          9. Do not output anything else except this parsable Python structured
           format (no extra text or explanation).
1324
1325
       # The event class definitions remain the same, but refer to the following
1326
           refined docstrings for usage examples, minimal spans, and role
1327
          clarifications.
1328
1329
       # Here are the event definitions:
1330
1331
       class Convict(JusticeEvent):
1332
1333
          A Convict Event occurs whenever a Try Event ends with a successful
              prosecution of the Defendant.
1334
           In other words, a Person, Organization or GPE Entity is convicted
1335
              whenever that Entity has been
1336
           found guilty of a Crime.
1337
1338
          Refined Guidelines:
             • mention: Use the minimal trigger word referring to the conviction
1339
                  (e.g., "guilty", "convicted").
1340
             • defendant: The entity/ies found guilty. Remove articles or
1341
                possessives ("the man" \rightarrow "man").
1342
             • adjudicator: The court or judge that issued the guilty verdict,
1343
                if explicitly given.
             • crime: The wrongdoing for which the defendant was found guilty (e
1344
                 .g., "murdering X").
1345
             • time: Any explicit time references (e.g., "last week").
1346
             • place: Any explicit location references (e.g., "in Boston").
1347
1348
          What to do:
            - Include "crime" if stated: e.g., "convicted of murdering his wife
1349
              " \rightarrow crime=["murdering his wife"].
```

```
1350
             - Keep the defendant arg minimal: "Scott Peterson" → ["Scott
1351
                Peterson"], not ["Mr. Scott Peterson"].
1352
1353
           What not to do:
            - Do not guess or infer the crime if not stated.
1354
             - Do not prepend articles or descriptive words (e.g., "the
1355
                defendant" \rightarrow "defendant" if used generically).
1356
1357
           Example:
            Text: "John was found guilty of fraud."
1358
            → Convict (mention='guilty', defendant=['John'], crime=['fraud'],
1359
                time=[], place=[])
1360
1361
          mention: str # minimal word expressing the conviction event
1362
          defendant: List[str] # who is found guilty
           adjudicator: List[str] # the judge or court, if stated
1363
           crime: List[str] # the wrongdoing for which the defendant is
1364
              convicted
1365
           time: List[str] # when the conviction takes place
1366
           place: List[str] # where the conviction takes place
1367
1368
      class TransferMoney(TransactionEvent):
1369
1370
           TransferMoney Events refer to giving, receiving, borrowing, or
1371
              lending money
1372
           when not purchasing goods or services in return.
1373
          Refined Guidelines:
1374
             • mention: Single word that triggers the transfer event (e.g., "
1375
                donated", "loaned").
1376
             • giver: The agent who provides funds. Remove determiners ("the", "
1377
                a") unless part of a name.
             • recipient: The agent who receives the funds.
1378
             • beneficiary: Any additional agent that benefits, if separate from
1379
                 recipient.
1380
             • money: The amount of funds (if any mention like "$3,000", "large
1381
                sum").
1382
             • time: When the event takes place (e.g., "today", "last year").
             • place: Where the transaction or transfer occurs.
1383
1384
          What to do:
1385
            - Label intangible references (e.g., "contributed", "had
1386
                contributors") as TransferMoney if it implies funds.
1387
             - Use minimal references for all money roles.
1388
          What not to do:
1389
             - Do not label intangible help (e.g., "emotional support") as
1390
                TransferMoney.
1391
             - Avoid listing indefinite articles or extraneous descriptors in
1392
                the agent spans.
1393
           Example:
1394
            Text: "He donated $5,000 to Red Cross last week."
1395
            → TransferMoney (mention='donated', giver=['He'], recipient=['Red
1396
                Cross'], money=['$5,000'], time=['last week'], place=[])
1397
          mention: str # minimal word triggering the money transfer
1398
          giver: List[str] # who provides the money
1399
           recipient: List[str] # who receives the money
1400
          beneficiary: List[str] # who additionally benefits, if any
1401
          money: List[str] # the sum or amount
1402
           time: List[str] # when the transfer happens
          place: List[str] # where the transfer event occurs
1403
```

```
1404
1405
       class Meet(ContactEvent):
1406
1407
          A Meet Event occurs when two or more Entities come together face-to-
1408
           at a single location and interact with one another.
1409
1410
          Refined Guidelines:
1411
             • mention: The single best word for the meeting (e.g., "met", "
1412
                summit", "conference").
             • entity: All participants, stripped of articles or descriptors. If
1413
                 multiple, list them all.
1414
             • time: Any temporal phrase referencing when the event took place.
1415
             • place: The location of the meeting.
1416
          What to do:
1417
             - Use triggers for in-person gatherings (e.g., "met", "conference",
1418
                  "summit").
1419
             - Keep participant references minimal: "President", "Vice-President
1420
                 " instead of "the US President".
1421
1422
           What not to do:
             - Do not treat phone calls or written communication as Meet (use
1423
                PhoneWrite).
1424
1425
          Example:
1426
            Text: "The leaders met in Paris yesterday."
             → Meet(mention='met', entity=['leaders'], time=['yesterday'], place
1427
                =['Paris'])
1428
1429
          mention: str # minimal word or short phrase for the meeting
1430
          entity: List[str] # who met face-to-face
1431
          time: List[str] # when the meeting happened
          place: List[str] # where the meeting occurred
1432
1433
1434
       class PhoneWrite(ContactEvent):
1435
1436
          A PhoneWrite Event occurs when two or more people communicate
           without meeting face-to-face. This includes phone calls, email,
1437
              texting, etc.
1438
1439
          Refined Guidelines:
1440
             • mention: The minimal expression of communication (e.g., "called",
1441
                  "emailed", "texted").
             • entity: The agents communicating. Strip out articles, determiners
1442
                 , or extra descriptors.
1443
             • time: When the communication took place (e.g., "this morning", "
1444
                yesterday").
1445
1446
          What to do:
             - Common triggers: "phoned", "emailed", "talked by phone", "texted
1447
                 ", "messaged".
1448
             - Keep roles minimal (e.g., entity=['John', 'Mary']).
1449
1450
          What not to do:
1451
             - Do not mark in-person discussions as PhoneWrite (use Meet).
1452
          Example:
1453
            Text: "They emailed each other last night."
1454
            \rightarrow PhoneWrite (mention='emailed', entity=['They'], time=['last night
1455
                 '])
1456
          mention: str # minimal communication trigger
1457
          entity: List[str] # communicating parties
```

```
1458
          time: List[str] # when the communication happened
1459
1460
1461
       class DeclareBankruptcy(BusinessEvent):
1462
          A DeclareBankruptcy Event occurs whenever an Entity officially seeks
1463
              legal protection
1464
           from debt collection due to severe financial distress.
1465
1466
          Refined Guidelines:
             • mention: Short trigger related to bankruptcy (e.g., "bankruptcy",
1467
                 "filed", "declared").
1468
             • org: The organization or person who declares bankruptcy. Remove "
1469
                the", "my", etc.
1470
             • time: When the bankruptcy is declared (e.g., "in 2003", "today").
             • place: Where the declaration is made, if mentioned (e.g., "in
1471
                court", "in New York").
1472
1473
          What to do:
1474
             - Recognize synonyms or indirect references like "emerged from
1475
                bankruptcy" or "bankruptcy protection" as triggers.
1476
          What not to do:
1477
             - Do not guess an org if not specified.
1478
1479
          Example:
1480
            Text: "My uncle declared bankruptcy in 2003."
             → DeclareBankruptcy (mention='bankruptcy', org=['uncle'], time
1481
                =['2003'], place=[])
1482
1483
          mention: str # minimal expression for bankruptcy
1484
          org: List[str] # the party declaring bankruptcy
1485
          time: List[str] # when the declaration takes place
          place: List[str] # where it is declared
1486
1487
1488
       class EndOrg(BusinessEvent):
1489
1490
          An EndOrg Event occurs when an Organization ceases to exist or
1491
           "goes out of business."
1492
          Refined Guidelines:
1493
             • mention: Minimal trigger (e.g., "shutting down", "closing").
1494
             • org: The organization or sub-unit that ends. E.g., "plant", "
1495
                branch".
             • time: When this closure or end is stated to happen.
1496
             • place: Where the organization is located or ended.
1497
1498
          What to do:
1499
             - Consider references such as "closing its plant" \rightarrow "plant" in org.
1500
             - Identify synonyms like "shutting down," "ceasing operations."
1501
           What not to do:
1502
             - Do not skip it if the text explicitly says the org ended.
1503
1504
          Example:
1505
            Text: "Hewlett Packard is shutting down its plant in Eugene."
            → EndOrg (mention='shutting down', org=['plant'], time=[], place=['
1506
                Eugene'])
1507
1508
          mention: str # minimal expression for the organizational end
1509
           org: List[str] # the ended organization
1510
           time: List[str] # when the end occurs
          place: List[str] # where this event happens
1511
```

```
1512
1513
      class Die(LifeEvent):
1514
1515
          A Die Event occurs whenever a Person loses their life, whether
              accidental,
1516
           intentional, or self-inflicted.
1517
1518
          Refined Guidelines:
1519
             • mention: The short trigger referencing the death (e.g., "killed",
1520
                 "died", "murdered").
             • agent: The killer or cause if identified (e.g., "gunman", "regime
1521
                 ")-remove articles.
1522
             • victim: Who died, again with minimal references (e.g., "soldier"
1523
                instead of "a soldier").
1524
             • instrument: The device or method used, if any (e.g., "gun", "bomb
1525
             • time: When the death occurred.
1526
             • place: Where it took place.
1527
1528
          What to do:
1529
             - Create separate Die events for each death trigger in the text.
1530
             - If the text references homicide: agent is the killer, victim is
                the deceased.
1531
1532
          What not to do:
1533
            - Do not combine multiple victims into one string if they appear as
1534
                 separate triggers.
1535
          Example:
1536
            Text: "He killed the soldier in Iraq."
1537
            → Die (mention='killed', agent=['He'], victim=['soldier'],
1538
                instrument=[], time=[], place=['Iraq'])
           . . . .
1539
          mention: str # minimal word referencing the death
1540
          agent: List[str] # optional killer or cause
1541
           victim: List[str] # who died
1542
          instrument: List[str] # how they were killed (weapon, etc.)
1543
          time: List[str] # when the death happened
1544
          place: List[str] # where the death happened
1545
1546
      class SentenceAct(JusticeEvent):
1547
1548
          A SentenceAct Event occurs whenever a punishment for the Defendant is
1549
               issued.
          e.g., a prison term or another legal penalty.
1550
1551
          Refined Guidelines:
1552
             • mention: A trigger referencing sentencing or punishment (e.g., "
1553
                sentenced", "faces [penalty]").
1554
             • defendant: The same party convicted or found guilty, if known.
             • adjudicator: The entity delivering the sentence, if stated (e.g.,
1555
                  "judge", "court").
1556
             • crime: The wrongdoing for which the defendant is sentenced (e.g.,
1557
                  "murder", "embezzlement").
1558
             • sentence: The specific punishment (e.g., "death penalty", "life
1559
                in prison").
             • time: When the sentencing occurs.
1560
             • place: Where the sentencing occurs.
1561
1562
          What to do:
1563
             - Look for words like "faces the death penalty," "was sentenced to
1564
                ten years."
1565
          What not to do:
```

```
1566
            - Do not omit a SentenceAct if there's explicit mention of
1567
                punishment.
1568
1569
          Example:
            Text: "He now faces the death penalty for murdering his wife."
1570
            → SentenceAct (mention='faces', defendant=['He'], crime=['murdering
1571
                his wife'], sentence=['death penalty'], time=[], place=[])
1572
1573
          mention: str # minimal expression for the sentencing event
1574
           defendant: List[str] # who is sentenced
          adjudicator: List[str] # judge or court
1575
          crime: List[str] # the wrongdoing or offense
1576
          sentence: List[str] # the punishment
1577
           time: List[str] # when the sentencing happens
1578
           place: List[str] # where it happens
1579
1580
      class Sue (JusticeEvent):
1581
1582
          A Sue Event occurs whenever a court proceeding is initiated to
1583
              determine
1584
          the liability of a Person, Organization, or GPE.
1585
          Refined Guidelines:
1586
             • mention: The minimal trigger (e.g., "sued", "suing", "filed a
1587
                lawsuit", "suit").
1588
             • plaintiff: The party bringing the suit. Strip out any articles or
1589
                 adjectives.
             • defendant: The party being sued. Again, keep references minimal.
1590
             • adjudicator: The judge or court if one is explicitly named.
1591
             • crime: If a wrongdoing is stated (e.g., "for fraud", "for breach
1592
                of contract").
1593
             • time: When the suit is filed or mentioned.
             • place: Where the suit is taking place.
1594
1595
1596
             - Label the party initiating the lawsuit as "plaintiff."
1597
1598
           What not to do:
             - Do not confuse "plaintiff" with "defendant" if the text clearly
1599
                states who is suing whom.
1600
1601
           Example:
1602
            Text: "A nurse sued Dell for bait and switch."
1603
            → Sue (mention='sued', plaintiff=['nurse'], defendant=['Dell'],
                crime=['bait and switch'], time=[], place=[])
1604
1605
          mention: str # minimal expression for the lawsuit event
1606
          plaintiff: List[str] # who brings the suit
1607
           defendant: List[str] # who is being sued
          adjudicator: List[str] # the judge or court, if stated
           crime: List[str] # the wrongdoing for which the suit is filed
1609
           time: List[str] # when the suit took place
1610
          place: List[str] # where the suit took place
1611
1612
1613
      class Appeal (JusticeEvent):
1614
          An Appeal Event occurs whenever a court decision is taken to a higher
1615
               court
1616
           for review.
1617
1618
          Refined Guidelines:
            • mention: The short trigger for the appeal (e.g., "appeal", "
1619
                appealed").
```

1650

```
1620
             • defendant: The party accused or found quilty, if the text states
1621
1622
             • prosecutor: The party bringing the appeal (i.e., the appellant).
1623
                 This might be the same individual who was a defendant in a
                 prior trial but is now appealing.
1624
             • adjudicator: The higher court or judge handling the appeal, if
1625
                 given.
1626
             • crime: The wrongdoing for which the appeal is made (if stated).
1627
             • time: When the appeal is filed or heard.
1628
             • place: Where the appeal is taking place.
1629
           What to do:
1630
             - If text says someone "filed an appeal," that entity is the "
1631
                 prosecutor" if no other roles are specified.
1632
             - If the text does not identify an accused, keep defendant=[].
1633
           What not to do:
1634
             - Do not automatically fill "defendant" if it's unclear who was
1635
                 accused.
1636
1637
           Example:
             Text: "He appealed the verdict last week."
1638
             → Appeal(mention='appealed', defendant=[], prosecutor=['He'], crime
1639
                 =[], time=['last week'], place=[])
1640
1641
           mention: str # minimal word for the appeal event
1642
           defendant: List[str] # the accused, if stated
prosecutor: List[str] # who is bringing the appeal
1643
           adjudicator: List[str] # the judge or court for the appeal
1644
           crime: List[str] # the crime or issue being appealed
1645
           time: List[str] # when the appeal occurs
1646
           place: List[str] # where the appeal is heard
1647
```

C.3 EXAMPLE OF TASK INSTRUCTION AND OPTIMAL EVENT GUIDELINES GENERATED BY GPT-4.5

```
1651
1652
      # This is an event extraction task for identifying and structuring events
1653
           from text using Python-defined event classes. Each structured event
          consists of an event trigger word, an event type, participant
1654
          arguments, and their roles. Your objective is to output this
1655
          information in a Python list of events, ensuring it is Python-
1656
          parsable and strictly follows the event definitions provided below.
1657
1658
      ## Instructions:
1659
      1. **Span Extraction**:
1660
           - Extract precise and concise spans for mentions and participant
1661
              arguments, conveying the event or argument role clearly without
              unnecessary context.
1663
          - For extracts involving titles or specifics, use general terms
              unless details are crucial to the events integrity.
1664
          - When identifying entity roles in events, prioritize the core
1665
              identifiers over accompanying descriptors.
1666
1667
      2. **Role Identification**:
          - Accurately identify roles using contextual cues, effectively
1668
              resolving ambiguities while prioritizing explicit spans. If roles
1669
               are unmentioned, leave them empty.
1670
          - Maintain consistency, particularly with distinctions like plaintiff
1671
               vs. defendant, based on contextual evidence.
1672
          - Clarify roles in complex transactions, such as distinguishing
1673
              between beneficiaries and direct recipients.
```

```
1674
      3. **Output Format**:
1675
          - Please follow the Python-format EventName("mention" = "trigger", "
1676
              role1" = [...], "role2" = [...], ...) strictly.
           - Ensure consistent output in the specified format for Python
1677
              compatibility, adhering strictly to event definitions.
1678
           - Represent unmentioned participants with an empty list rather than
1679
              assumptions or placeholders.
1680
1681
      4. **Clarifications and Exceptions**:
1682
           - Note explicitly when roles have exceptions based on role
              definitions.
1683
          - Manage overlapping roles by following specific quidelines for span
1684
              clarity and precision, ensuring no crucial details are overlooked
1685
1686
      5. **Consistency**:
1687
           - Ensure consistency in role identification and event extraction
1688
              across similar scenarios.
1689
           - Address ambiguity and overlap by defining roles explicitly and
1690
              setting clear precedence for extraction guidelines.
1691
      Below are the structured event definitions:
1692
1693
1694
1695
1696
      # Here are the event definitions:
1697
      class Convict(JusticeEvent):
1698
1699
          A Convict Event signifies the successful prosecution of a defendant.
1700
              This involves a person, organization, or geographical political
1701
              entity (GPE) being convicted for a crime.
1702
          mention: str # Focus on concise triggers like "convicted" or "
1703
              conviction", avoiding embellishments.
1704
          defendant: List[str] # Name the convicted individuals or entities.
1705
              Use direct identifiers, example: "John Doe".
1706
          adjudicator: List[str] # Reference the judicial entity, example: "
              court" or "judge", unless specifics are critical.
1707
           crime: List[str] # Provide short, precise descriptions of crimes, e.
1708
              g., "fraud".
1709
          time: List[str] # Specify exact times if mentioned, e.g., "Monday".
1710
          place: List[str] # Note locations if explicitly mentioned, avoid
1711
              assumptions.
1712
      class TransferMoney(TransactionEvent):
1713
1714
          Non-purchasing money transfers involving giver and recipient roles,
1715
             where transactions are more indirect or complex.
1716
          mention: str # Use explicit terms like "donated", staying concise.
1717
          qiver: List[str] # Identify the money source, example: "Sheila C.
1718
              Johnson".
1719
          recipient: List[str] # Clearly name receiving entities.
1720
          beneficiary: List[str] # Note additional beneficiaries unambiguously
1721
          money: List[str] # Use exact figures, avoiding vague amounts.
1722
          time: List[str] # Define occurrence times if clearly specified.
1723
          place: List[str] # Mention the transaction location if detailed.
1724
1725
      class Meet(ContactEvent):
1726
          Events where entities gather face-to-face, e.g., meetings, summits,
1727
           or conferences.
```

```
1728
1729
          mention: str # Central meeting references like "summit", without
1730
             extra detail.
          entity: List[str] # List participants clearly, omitting superfluous
1731
              descriptions.
1732
          time: List[str] # Specify times if explicitly provided.
1733
          place: List[str] # Mention locations if available, avoiding
1734
              unsupported assumptions.
1735
1736
      class PhoneWrite(ContactEvent):
1737
          Non-face-to-face communications, covering written and phone-based
1738
             interactions.
1739
1740
          mention: str # Terms indicating communication, e.g., "called",
             succinctly.
1741
          entity: List[str] # Capture the participants in the communication.
1742
          time: List[str] # Specify times if mentioned, ensuring clarity.
1743
1744
      class DeclareBankruptcy(BusinessEvent):
1745
          Occurs when an organization requests legal protection from debt
1746
             collection.
1747
1748
          mention: str # Use declarations like "bankruptcy", clearly.
1749
          org: List[str] # Focus on the organizational name in question.
1750
          time: List[str] # Mention when the declaration occurs if explicitly
1751
              stated.
          place: List[str] # Note the declaration's location if outlined.
1752
1753
      class EndOrg(BusinessEvent):
1754
1755
          An organization ceases operations, going out of business completely.
1756
          mention: str # Use terms like "shut down" to capture essence
1757
              effectively.
1758
          org: List[str] # Succinctly list the organizations ending operations
1759
1760
          time: List[str] # Clearly mention when specifics are supplied.
          place: List[str] # Mention location details if clearly stated.
1761
1762
      class Die(LifeEvent):
1763
1764
          Event marking the end of life, covering direct, accidental, and self-
1765
             inflicted cases.
1766
          mention: str # Specific terms like "died", excluding excess context.
1767
          agent: List[str] # Cite any responsible party if indicated.
1768
          victim: List[str] # Precisely identify the deceased without titles.
1769
          instrument: List[str] # Specify instruments used if described.
1770
          time: List[str] # Use accurate timing where provided.
          place: List[str] # Mention locations where explicitly noted.
1771
1772
      class SentenceAct(JusticeEvent):
1773
1774
          Legal sentence issuance, often involving incarceration.
1775
          mention: str # Direct words like "sentenced", retaining clarity.
1776
          defendant: List[str] # Identify the sentenced party succinctly.
1777
          adjudicator: List[str] # State the authority issuing the sentence.
1778
          crime: List[str] # Precisely include mentioned crimes.
1779
          sentence: List[str] # Clearly outline the penalties involved.
1780
          time: List[str] # Specific timing if explicitly declared.
          place: List[str] # Cite location details when supplied.
1781
```

1805

```
1782
      class Sue (JusticeEvent):
1783
1784
          The initiation of legal proceedings against an entity to determine
1785
              liability.
1786
          mention: str # Specific terms like "sued".
1787
          plaintiff: List[str] # Clearly identify the suing parties.
1788
          defendant: List[str] # Identify the sued entities unambiguously.
          adjudicator: List[str] # Specify judicial role if expressed.
1789
          crime: List[str] # Highlight alleged crimes if specified.
1790
          time: List[str] # Reference explicit timing if detailed.
1791
          place: List[str] # Extract the location details if outlined.
1792
1793
      class Appeal(JusticeEvent):
1794
          Represents decisions moved to higher courts for further review.
1795
1796
          mention: str # Use terms like "appealed" directly.
1797
          defendant: List[str] # Name the entity under review.
1798
          prosecutor: List[str] # Name the initiating party of the appeal.
1799
          adjudicator: List[str] # Reference the reviewing court.
          crime: List[str] # Clearly detail crimes if mentioned.
1800
          time: List[str] # Capture filing times if explicit.
1801
          place: List[str] # Mentioned locale of appeal if detailed.
1802
```

C.4 EXAMPLE OF OPTIMAL TASK INSTRUCTION AND EVENT GUIDELINES GENERATED BY GPT-40

```
1806
1807
      # This is an event extraction task where the goal is to extract
1808
          structured events from the text following structured event
1809
          definitions in Python. A structured event contains an event trigger
1810
          word, an event type, the arguments participating in the event, and
          their roles in the event.
1811
1812
      # Task Instructions:
1813
      1. For each different event type, output the extracted information from
1814
          the text into a Python list format where:
          - The first key 'mention' holds the value of the event trigger.
1815
         - Subsequent keys/values follow the class definitions below.
1816
1817
      2. Structure the output in a valid Pydantic format: 'result = [EventName(
1818
          "mention" = "trigger", "arg1_key" = "arg1_span", ...)]'.
1819
      3. Adhere strictly to the described event descriptions and role
1820
          definitions, considering implicit contexts and indirect attributions.
      4. Address special cases:
1821
          - Appeals: Consider involved parties from prior related events as "
1822
             prosecutor''.
1823
          - Multiple roles may apply contextually; ensure complete information
1824
             extraction.
1825
          - Implicit indications: If mentions like "filed", "concluded", etc.,
             suggest indirect roles, use context to clarify them.
1826
1827
      5. Maintain backward compatibility where applicable. Do not output
1828
          anything else except parsable structured event format in Python.
1829
1830
1831
1832
1833
      # Here are the event definitions:
1834
1835
      class Convict (JusticeEvent):
```

```
1836
          A Convict Event occurs whenever a Try Event ends with a successful
1837
              prosecution of the Defendant.
1838
          There may not always be explicit mentions of crimes in the text; use
1839
             contextual clues.
1840
          mention: str # The text span that expresses the conviction (e.g., "
1841
              convicted").
1842
          defendant: List[str] # The entity found guilty, search for adjacent
1843
              terms like "defendant".
1844
          adjudicator: List[str] # The judge or court, often implicitly
              understood from context.
1845
          crime: List[str] # Crime references, even implied (e.g., "guilty of
1846
              . . . ") .
1847
          time: List[str] # When conviction happens, contextual or explicit
1848
              dates.
          place: List[str] # Where the conviction occurs, often a court or
1849
              city name nearby.
1850
1851
      class TransferMoney(TransactionEvent):
1852
1853
          Refers to money transfer actions outside purchasing contexts.
1854
             Recognize givers and recipients even in indirect mentions.
1855
          mention: str # Turn of phrase indicating transfer (e.g., "
1856
             transferred", "donated").
1857
          giver: List[str] # Entity initiating transfer (may be implied; use
1858
              context).
          recipient: List[str] # Direct receiver of money, often clearly
1859
              stated.
1860
          beneficiary: List[str] # Can be implied; beneficiaries are often
1861
              indirect.
1862
          money: List[str] # Described amounts; look for currency signs ($, €,
1863
              etc.).
          time: List[str] # Dates or relative times (e.g., "two years ago").
1864
          place: List[str] # Locations of transaction, if specified.
1865
1866
      class Meet(ContactEvent):
1867
1868
          Occurs when entities meet face-to-face; discern collective entity
              mentions from individual roles.
1869
1870
          mention: str # Trigger phrases (e.g., "meet", "conference").
1871
          entity: List[str] # Entities, clarified through context or explicit
1872
              mentions.
1873
          time: List[str] # When entities meet, even if future planned.
          place: List[str] # Meeting location, from nearby phrases.
1874
1875
      class PhoneWrite(ContactEvent):
1876
1877
          Encompasses non-face-to-face communications; cover implied
1878
             interactors.
1879
          mention: str # Non-direct communication identified triggers (e.g., "
1880
              called", "emailed").
1881
          entity: List[str] # Communicating entities, occasionally understood
1882
              indirectly.
1883
          time: List[str] # Times derived from text, even if not very specific
1884
1885
      class DeclareBankruptcy(BusinessEvent):
1886
1887
          An event signifying financial distress declarations; distinguish from
1888
               emergence narratives.
          mention: str # Indicators like "declared bankruptcy".
```

```
1890
          org: List[str] # Company/entity that declared, directly mentioned.
1891
          time: List[str] # Declaration date, often provided.
1892
          place: List[str] # Geographical context of declaration.
1893
      class EndOrg(BusinessEvent):
1894
1895
          Concludes an organization's operations; ensure specificity of
1896
             organization ceases.
1897
1898
          mention: str # Marks of closure (e.g., "dissolved", "shutdown").
          org: List[str] # Organization ending, referenced in texts.
1899
          time: List[str] # Date context around organization ending.
1900
          place: List[str] # Location tied to organizational operations.
1901
1902
      class Die(LifeEvent):
1903
          Recognizes cessation of life events; determine involvements from
1904
             surrounding text.
1905
1906
          mention: str # Triggering term showing death (e.g., "died", "passed
1907
              awav").
          agent: List[str] # Agents causing death if deliberate; contextual
1908
              deductions.
1909
          victim: List[str] # Deceased, named or implied victims.
1910
          instrument: List[str] # Weapons or causes if mentioned.
1911
          time: List[str] # Death-related timing, even metaphorical.
1912
          place: List[str] # Place the death occurred, discerned from text.
1913
      class SentenceAct(JusticeEvent):
1914
1915
          Legal actions culminating in punishment; include implied authority
1916
             adjudication references.
1917
          mention: str # Verbs indicating sentencing (e.g., "sentenced").
1918
          defendant: List[str] # Persons sentenced, more direct mentions.
1919
          adjudicator: List[str] # State actor issuing punishment.
1920
          crime: List[str] # Crimes specified can be explicit or by context
1921
              related.
1922
          sentence: List[str] # Detailed punishments, commonly listed.
          time: List[str] # Contextual timing of legal processes.
1923
          place: List[str] # Legal venues, stated or implicit.
1924
1925
      class Sue(JusticeEvent):
1926
1927
          Legal actions initiation detections; interpreting mentions to detect
1928
             implicated parties.
1929
          mention: str # Lawsuit trigger terms (e.g., "sued").
1930
          plaintiff: List[str] # Agents initiating, even implicit from context
1931
1932
          defendant: List[str] # Specific subjects of the lawsuit.
          adjudicator: List[str] # Legal bodies, typically explicit.
1933
          crime: List[str] # Charges or offenses underpinning the suit.
1934
          time: List[str] # Suit filing and related timings.
1935
          place: List[str] # Locations cited, often courts.
1936
1937
      class Appeal (JusticeEvent):
1938
          Reviewal legal challenges; correctly attribute events around
1939
             appellate actions.
1940
1941
          mention: str # Terms denoting appeals like "appealed".
1942
          defendant: List[str] # Party whose case goes under review.
          prosecutor: List[str] # Original case actors initiating the appeal,
1943
             inferred.
```

```
1944
             adjudicator: List[str] # Higher court taking the over evaluation.
1945
             crime: List[str] # Reviews' subject offenses.
time: List[str] # Appeal reference times, may not be given.
1946
             place: List[str] # Court location details or broader judicial zones.
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
```