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ABSTRACT

Large Reasoning Models (LRMs) such as DeepSeek-R1 and OpenAl ol have
demonstrated remarkable capabilities in various reasoning tasks. Their strong capa-
bility to generate and reason over intermediate thoughts has also led to arguments
that they may no longer require extensive prompt engineering or optimization to
interpret human instructions and produce accurate outputs. In this work, we aim to
systematically study this open question, using the structured task of event extraction
for a case study. We experimented with two LRMs (DeepSeek-R1 and o1) and two
general-purpose Large Language Models (LLMs) (GPT-40 and GPT-4.5), when
they were used as task models or prompt optimizers. Our results show that on tasks
as complicated as event extraction, LRMs as task models still benefit from prompt
optimization, and that using LRMs as prompt optimizers yields more effective
prompts. Our finding also generalizes to tasks beyond event extraction. Finally,
we provide an error analysis of common errors made by LRMs and highlight the
stability and consistency of LRMs in refining task instructions and event guidelines.
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The advent of these advanced reasoning mod- LRMs and LLMs are used as either the task model
els has sparked discussions (Wang et al., 2024a; (Miask) or the optimizer (M) in prompt opti-
OpenAl, 2025; Mantaras, 2025; Together Al, mization, and we observed a strong advantage of
2025; Menendez et al., 2025) about the necessity LRMs over LLMs.

of prompt optimization—the process of refining

input prompts to guide model outputs effectively (Zhou et al., 2022; Yang et al., 2024; Srivastava
et al., 2024; Agarwal et al., 2024; Guo et al., 2024; Fernando et al., 2024; Li et al., 2025). Tradition-
ally, prompt optimization has been crucial for enhancing LLLM performance, with frameworks like
PromptAgent (Wang et al., 2024b) and OPRO (Yang et al., 2024) automating the creation and refine-
ment of prompts through iterative feedback and strategic planning. However, the inherent reasoning
capabilities of LRMs raise questions about whether such prompt optimization techniques are equally
beneficial for these models. While previous studies have demonstrated the effectiveness of prompt
optimization in improving LLM performance, there is a notable gap in research focusing on its impact
on LRMs. Moreover, many existing prompt optimization studies focus on tasks where zero-shot
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baselines already perform well, whereas recent work, such as Gao et al. (2024), demonstrates that
even powerful models like GPT-4 struggle with Information Extraction tasks, underscoring the need
for more targeted and optimized prompting strategies.

To fill this gap, we conduct the first systematic study of prompt optimization with LRMs and compare
their performance with LLMs. In particular, we experimented with these models on a challenging
task, i.e., end-to-end event extraction (EE), a structured prediction task of information extraction
that requires identifying and classifying event triggers and arguments within text. EE poses unique
challenges: models must follow schema constraints, handle coreference, and balance precision with
recall, all of which demand nuanced reasoning. We evaluated four models, two LRMs (DeepSeek-R1,
ol) and two LLMs (GPT-4.5, GPT-40) as both task models and prompt optimizers within a Monte
Carlo Tree Search (MCTS) framework (Wang et al., 2024b). This setup allows us to examine both
task performance and prompt optimization quality under a consistent setting.

Our experimental results (Fig. 1) show that LRMs benefit substantially from prompt optimization,
even when the training set for optimization is small, and they outperform LLMs in both task
performance (as a task model) and optimization effectiveness (as a prompt optimizer). When used
as optimizers, LRMs produce more precise prompts that align with human annotation heuristics,
leading to faster convergence and lower variance in MCTS. Our error analysis further shows that these
optimized prompts reduce common mistakes such as implicit trigger overgeneration or argument
span drift. While DeepSeek-R1 as a prompt optimizer yields the most effective and concise prompts,
prompt length alone is not predictive, i.e., different task models prefer different prompt styles. To
test generality, we apply the same optimization framework to two tasks beyond EE, i.e., Geometric
Shapes (Suzgun et al., 2022) and NCBI Disease NER (Dogan et al., 2014). In both, LRMs again
show the largest gains, confirming that our findings extend beyond schema-based tasks.

2 RELATED WORKS

Prompt optimization has become an essential direction in adapting LLMs for downstream tasks with-
out modifying their weights. For models with accessible internal states, such as open-source LLMs,
prior work has explored soft prompt tuning (Li & Liang, 2021; Lester et al., 2021; Wang et al., 2023b;
Hu et al., 2022) and gradient-based search methods that directly adjust prompt embeddings (Shin
et al., 2020; Wen et al., 2023). Reinforcement learning has also been applied to optimize prompts
through interaction-based feedback (Deng et al., 2022; Zhang et al., 2023).

However, these approaches are not applicable to closed-source LLMs accessed via APIs, where
gradients and internal representations are unavailable. As such, research has focused on black-box,
gradient-free techniques that rely on prompt perturbation and scoring. Many of these methods operate
in an iterative loop: starting from an initial prompt, they generate variants, evaluate them on held-out
examples, and retain the best one for the next round. Variants can be created through phrase-level
edits (Prasad et al., 2023), back-translation (Xu et al., 2022), evolutionary operations (Guo et al.,
2024; Fernando et al., 2024), or by prompting another LLM to rewrite the prompt based on model
errors (Zhou et al., 2022; Pryzant et al., 2023; Srivastava et al., 2024; Wang et al., 2024b). Structured
strategies such as Monte Carlo search (Zhou et al., 2022), Gibbs sampling (Xu et al., 2024), and
beam search (Pryzant et al., 2023) have been explored to improve the efficiency of exploration.

More recent efforts have proposed structured prompt optimization. APE (Zhou et al., 2022) uses
Monte Carlo Tree Search (MCTS) to explore the prompt space, while PromptBreeder (Fernando
et al., 2024) and EvoPrompt (Guo et al., 2024) evolve prompts using feedback-driven mutation
strategies. OPRO (Yang et al., 2024) employs mutation-based search guided by model performance.
Other systems, such as PromptWizard (Agarwal et al., 2024) and Godel Machine (Yin et al., 2025),
incorporate self-evolving mechanisms in which the LLM iteratively generates, critiques, and refines
its own prompts and examples.

While these approaches are promising, they have so far been applied exclusively to large, general-
purpose LLMs. To the best of our knowledge, our work is the first to investigate prompt optimization
for LRMs. Furthermore, we introduce and study this framework in the context of a structured
prediction task, event extraction, which poses distinct challenges compared to typical mathematical
or reasoning tasks explored in prior work (Zhou et al., 2022; Srivastava et al., 2024).
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# This is an event extraction task where the goal is to extract structured events from the text Task
following structured event definitions in Python. (complete instruction omitted) Instruction
# Here are the event definitions: Pz
@dataclass

class PhoneWrite(ContactEvent):

"""A PhoneWrite Event occurs when two or more people directly engage in discussion which does not
take place 'face-to-face'. To make this Event less open-ended, we limit it to written or telephone
communication where at least two parties are specified.""

mention: str # The text span that most clearly expresses (triggers) the event

entity: List[str] |# The communicating agent

©

g time: List[str] |# When the communication takes place

B I R e e R R T Event
& | @dataclass Guidelines
£ | class Meet(ContactEvent): P

e £

w

""A Meet Event occurs whenever two or more Entities come together at a single location and interact
with one another face-to-face. Meet Events include talks, summits, conferences, meetings, visits, and any
other Event where two or more parties get together at some location."""

mention: str # The text span that most clearly expresses (triggers) the event

entity: List[str] | # The agents who are meeting

time: List[str] | # When the meeting takes place

place: List[str] |# Where the meeting takes place

(Other event definitions omitted)

# These are the texts to analyze
text = "They met yesterday to discuss the plans before the next attack." (Input Text)

result = [Meet(mention = "met", entity = ["they"], "time" = ["yesterday"], "place" = [])] (Output)

Figure 2: An example prompt for end-to-end Event Extraction (EE) used in our experiments,
consisting of a task instruction and an event schema. The event schema contains information about
the labels that are represented as Python classes and event guidelines defining both the event classes
and the arguments. In prompt optimization, we refine both the task instruction and event guidelines
(shown for two events; others omitted due to space limits) to generate more effective prompts for the
task model.

3 METHODOLOGY

3.1 PROBLEM SETUP

Discrete prompt optimization aims to refine task-specific prompts for a task LLM M, to improve
its performance without modifying the model weights. In this study, we analyze whether LRMs benefit
from prompt optimization in the context of end-to-end EE. The task consists of trigger extraction,
which involves identifying event trigger spans and classifying their event types, and argument
extraction, which requires identifying argument spans within the extracted event instance with a
pre-defined role. To prompt a task model, M5, we adopted a Python code-based representation
for both the input and the output of the model, which was shown to be effective by prior work (Wang
et al., 2023a; Sainz et al., 2024; Li et al., 2023; 2024; Srivastava et al., 2025). As shown in Fig. 2, the
initial prompt, Py consists of two main parts: the task instruction and the event schema annotated by
guidelines. Task instruction Pz forms the initial segment of input to introduce the task and specify
instructions such as the desired output format. The event schema contains information about the
labels, such as event names and argument roles, that are represented as Python classes. The argument
roles (e.g., time and place) are defined as attributes of event classes. All the events and arguments in
a schema are annotated using human-written event guidelines Ps. The output is represented as a
list of instances of the classes defined in the event schema. In this paper, we refine both Pz and Pg
which is represented as the concatenation Py = [Pz||Pg], where || represents the concatenation.

Given a training set Dyqin = {(Qi, A:)}Y.,, where each Q; denotes an input text and A; its
corresponding event instance, the objective of prompt optimization is to discover an optimal prompt
P* that maximizes a task-specific evaluation function R, such as the F-score for EE. Event guidelines
typically contain a combination of explicit schema constraints and implicit domain-specific rules that
annotators follow during data labeling. However, not all of these rules are fully documented or easily
translatable into a single static prompt. As a result, the initial prompt Py may lack critical structural
or interpretive cues required for high-quality extraction. We employ an optimizer LLM M, to
refine Py to discover such rules and constraints through strategic planning for superior, expert-level
prompt optimization. Note that we do not modify the event schema defined by the original EE task,
but only the human-written task instruction and the guidelines.
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Figure 3: Overview of our prompt optimization framework. At each iteration, a zero-shot task LLM
generates outputs, while a separate optimizer LLM analyzes the errors and updates the prompt,
including task instructions and event guidelines, accordingly. This process continues over batches
of training samples Dy,.qiy, and the final optimized prompt is evaluated on the development set to
determine the node reward r;.

3.2 PROMPT OPTIMIZATION FRAMEWORK

We frame prompt optimization as a discrete search over a large natural-language prompt space S.
Since S is too large for exhaustive search, we adopt Monte Carlo Tree Search (MCTS) to explore it
efficiently, balancing exploration of new prompts with exploitation of promising ones, as in Wang
et al. (2024b). We model the process as a Markov Decision Process (MDP) where each state s; is a
prompt P, and each action is formulated to make edits to the current prompt (e.g., adding constraints
or clarifying rules).

Prompt optimization assumes a training set Dy,qin. As illustrated in Fig. 3, each MCTS node holds
a prompt P; and a batch of queries Qpqic, from the training set. In Step 1, the task model M, sk
is first employed to generate answers for queries in Qpqtcn. The incorrect outputs generated by
the task model are then extracted and passed through a Python interpreter to identify issues such
as parsing errors, missing event types, and invalid spans (Step 2). Following it, in Step 3, we
prompt a prompt optimizer LLM M,,,; with an instruction m ; to analyze the model errors and
generate structured feedback f;, including pinpointing unclear role definitions, proposing fixes, and
summarizing recurring issues. In doing so, the generated feedback can be leveraged to produce
targeted, actionable edits to improve clarity, coverage, and consistency of the task instruction and
event guidelines. Next, in Step 4, M, is instructed by another instruction m,,,; to generate the
updated prompt P; 1 in a single pass, based on the distribution p4,,,, (St+1 | S5 fr, Mopt). We also
pass the history of previous prompts to discourage redundant edits. Only event types involved in the
error batch are updated; others are inherited unchanged.

To evaluate each new prompt, we compute a reward 7, = R(s¢, f;) based on averaged F1 scores
across EE subtasks (TI, TC, Al, AC, described in Section 4.1) on a held-out development (dev) set
after editing P; with feedback f;. The best prompt is selected based on dev-set performance. We
provide additional details, the full algorithm, and the settings in Appendix A.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. To evaluate the impact of prompt optimization on LRMs, we conduct experiments on the
widely used ACEQS dataset (Doddington et al., 2004), a standard benchmark for EE that provides
fine-grained event distinctions. We used the “split 1” preprocessed by Huang et al. (2024) and
further processed it into the Python code format. The original ACEO5 dataset includes 33 event types.
However, our preliminary exploration found that including all 33 event types for prompt optimization
could lead to overly long prompts, which both LLMs and LRMs cannot properly handle. To eliminate
the impact of this confounding factor while assessing whether LRMs require and facilitate prompt
optimization, we downsampled a subset of 10 event types in our experiments and left the issue of
long-context processing as future work.
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We utilize two smaller versions of ACEQS training set in our experiments as Dy,.qi,. To simulate
low-resource conditions, we construct ACE;,,, of 15 samples, where we select one instance per
event type, prioritizing those with higher densities of event and argument annotations (i.e., training
examples annotated with multiple event instances); the remaining samples are non-event instances.
To examine the effect of scaling up the training size, we also construct a medium-scale dataset,
ACE,, ¢4, comprising 120 examples—ten per event type—with the remaining being non-event
instances. For both settings, we use a consistent development set of 100 examples randomly sampled
from the ACEQS development set and focus our discussions about various task and optimizer models’
performance on this set. For the full MCTS, we additionally report the model performance on a test
set consisting of 250 examples randomly sampled from the ACEOS test set. Dataset statistics for
ACE,,,, and ACE,, .4 are summarized in Table 4 (Appendix A).

To test generalization beyond EE, we additionally include two tasks: Geometric Shapes (Suzgun
et al., 2022), a symbolic reasoning benchmark, and NCBI Disease NER (Dogan et al., 2014), a
biomedical named entity recognition task.

Evaluation. Following Huang et al. (2024), on EE, we evaluate models using four F1-based metrics:
(1) Trigger Identification (TI), which measures the correct extraction of trigger spans; (2) Trigger
Classification (TC), which additionally requires predicting the correct event type; (3) Argument
Identification (AI), which assesses the correct extraction of arguments and their association with
the predicted trigger; and (4) Argument Classification (AC), which further requires correct role
labeling and serves as the most comprehensive measure of overall end-to-end EE performance. For
analysis, we primarily report AC scores, which are widely regarded as a precise metric for evaluating
both argument and trigger quality (Huang et al., 2024). Full results for all EE metrics are provided
in Appendix B. For Geometric Shapes, we report test accuracy; for NCBI Disease NER, we report
micro-F1 on strict disease spans.

Experimental Settings and Baselines. Our experiments involve two LRMs, DeepSeek-R1 and
OpenAl-ol, and two general-purpose LLMs, GPT-4.5 and GPT-4o0, used both as M,,; and M.
We conduct two sets of experiments. First, we evaluate all models trained on ACE;,,, and ACE,,,cq
using shallow MCTS (depth 1) to examine whether LRMs benefit from prompt optimization. We
started with this design choice owing to its reduced complexity and computational costs. Next, we
then perform full MCTS (depth 5) optimization on ACE,,,.4 to investigate the deeper dynamics of
optimization; ACE,,,, is excluded from full-scale search due to its limited size. In each depth of
rollout, we expand the parent node by three child expansions. For all our experiments, we report
results only from the best-performing prompt nodes in each model’s search trajectory. To reduce the
inference cost, we followed Cheng et al. (2023) to employ “batch prompting” when querying M sk
for answer generation (Step 1 in Fig. 3). Interestingly, we observed a performance gain than querying
the task model for one question at a time. Due to policy restrictions, we were not allowed to access
DeepSeek-R1 through API calls and thus deployed it locally on our own server. Because of our
compute limit, we quantize DeepSeek-R1 to 2.5 bits using the UnSloth framework, which has shown
minimal degradation in reasoning tasks even at lower precisions when rigorously benchmarked to
1.58 bits (Daniel Han & team, 2023). Additional details on batch prompting and hyperparameter
configurations are provided in Appendix A.

4.2 EXPERIMENTAL RESULTS

Our main results are presented in Table 1. We discuss the following research questions (RQs).

RQ1: Do LRMs benefit from prompt optimization in EE? We first study whether the models
can gain from prompt optimization by performing MCTS at depth 1. We observe consistent gains
from prompt optimization across all models, with LRMs showing especially strong improvements
over their non-optimized counterparts (around +8% on ACE,,,, and +23% on ACE,,,.4). LLMs also
benefit from optimization, though to a lesser extent: GPT-40 and GPT-4.5 improve by around +7%
and +5% on ACE,,,,, and by +14% and +20% on ACE,,,.q, respectively. Overall, the performance
gains from prompt optimization are more pronounced in LRMs than in LLMs.

Similarly, in cross-model comparisons using optimized prompts, LRMs remain highly competitive.
On ACE,,,,, GPT-4.5 slightly outperforms ol by about +1% AC but trails behind DeepSeek-R1 by
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Optimizer LLMs/LRMs (M) #Output
Mask No Opt. GPT-40 GPT-4.5 ol DS-R1 Tokens
MCTS at depth 1 trained on ACE,.,, (Development Set)
GPT-4o 12.68 18.18 +550  16.67 +3.99  18.83 +6.15  20.15 +7.47 15.31
GPT-4.5 16.47 19.33 4286 16.47 00.00  19.32 4285  22.31 +5.84 24.57
ol 13.94 18.96 +5.02  18.57 +463  20.29 +635  21.92 +7.98 489.67
DS-R1 16.45 18.67 +222  18.57 +212  21.83 4538  24.66 +8.21 217.71
MCTS at depth 1 trained on ACE,, o4 (Development Set)
GPT-40 12.68 22.32 +9.64 27.54 +1486 26.30 +13.62  25.10 +12.42 17.31
GPT-4.5 16.47 29.63 +13.16  35.94 +1947 36.51 +20.04 35.42 +18.95 28.75
ol 13.94 30.19 +1625  36.67 +22.73  36.98 +23.04 36.96 +23.02 543.45
DS-R1 16.45 32.20 +1575  37.14 +2069 38.77 +2232  40.00 +23.55 277.11
MCTS at depth 5 trained on ACE,,cq (Development Set)
GPT-40 12.68 28.04 +1536  27.03 +1435 28.57 +1589 27.31 +14.63 17.55
GPT-4.5 16.47 32.35 +1588  37.58 42111 36.22 +19.75  37.74 +21.27 32.65
ol 13.94 33.52 +19.58 37.78 +23.84 38.71 +2477 39.81 +25.87 575.36
DS-R1 16.45 37.97 +2152 38.40 +21.95 40.58 +24.13  44.26 +27.81 301.45
MCTS at depth 5 trained on ACE,;,oq (Test Set)
GPT-40 13.33 26.94 +13.61  34.75 +21.42  30.59 +17.26  35.79+22.46 27.00
GPT-4.5 14.29 27.31 +13.02  35.29 +21.00 36.59 +2230  36.69 +22.40 35.56
ol 15.38 28.57 +13.19  36.73 +2135 38.71 +2333  37.86 +22.48 526.43
DS-R1 16.00 31.93 +1593 41.98 +2598 42.06 +26.06 43.75 +27.75 211.43

Table 1: AC (F1) scores using different M, and M,,,. #Output Tokens delineates the average
number of output tokens from the task model, including reasoning and non-reasoning contents. The
background shades indicate the choice of prompt optimizers, i.e., LRMs, LLMs, or no optimization.
The best optimization result is in bold for each task model, while the highest relative improvement
over the no-optimization baseline is underlined. We observe that LRMs not only benefit significantly
from prompt optimization but also serve as strong prompt optimizers for other models.

roughly +2%. On ACE,,, .4, both LRMs outperform LLMs: ol surpasses GPT-4.5 by +0.5% AC,
and DeepSeek-R1 gains over approximately +3.5%. These findings suggest that LRMs are not only
more responsive to prompt optimization but also more capable in zero-shot EE settings. As we show
in RQ2, this gap widens further when using the full-depth MCTS-based optimization strategy.

Insight 1: Prompt optimization benefits all models, but LRMs gain more, no matter whether
small and medium-sized training data is present.

RQ2: How do LRMs perform under full-scale MCTS prompt optimization? To assess whether
the advantages of LRMs persist at scale, we perform MCTS with a search depth of 5 across all
models on ACE,,,.4. While performance improves overall, we observe that the gains from full-scale
optimization are incremental rather than dramatic when compared to the improvements observed
with a single roll-out (i.e., depth 1) of MCTS. LRMs, however, still exhibit relatively stronger
improvements. DeepSeek-R1, for instance, gains an additional +4.26% AC over its previous best
(40.00 +— 44.26). Similarly, ol improves by +2.83% (36.98 — 39.81) when selecting the best
optimizer across depths. In contrast, LLMs GPT-4.5 and GPT-40 show modest gains of only +1.23%
(36.51 — 37.74) and +1.03% (27.54 — 28.57), respectively. Finally, we report each task model’s
performance on the test set, using the same best prompt searched on ACE,,.4. Consistently, we
observed that LRMs benefit more from full MSTC prompt optimization than LLMs.

Insight 2: Full-scale MCTS optimization yields non-dramatic gains over single-step optimiza-
tion, but LRMs benefit more.

RQ3: Do LRMs make better prompt optimizers? We evaluate each task model’s performance
when optimized using various LRMs and LLMs to investigate the quality of optimized prompts. In the
low-resource setting (ACE,,,,, Depth 1), DeepSeek-R1 consistently outperforms all other optimizers
across all task models. Compared to the best-performing LLM optimizer (GPT-40), DeepSeek-R1
yields substantial gains: about +2% AC for optimizing GPT-4o (18.18—20.15), +3% for GPT-4.5
(19.33— 22.31) and ol (18.96— 21.92), and +6% when optimizing itself (18.67— 24.66). Notably,
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Examples of Task Instructions Optimized by Different Models

No OpTI-  # This is an event extraction task where the goal is to extract structured events from the text following structured event definitions

1}\;[]Z;§TION in Python. (...) For each different event type, please output the extracted information from the text into a python list format (...)
est Scores 2 9,

you should always output in a valid pydantic format: result = [EventName(”mention” = "trigger”, “argl_key” = "argl_span”, ...),

TI - 39.29 = -

TC - 33.93 EventName("mention” = "trigger”, "argl key” = “argl_span”, ...)]. (...)

Al-16.47

AC- 1647

GPT-40 # This is an event extraction task where the goal is to extract structured events (...)

Best Scores # Task Instructions: 1. For each different event type, output the extracted information from the text (...)

”Eétssé% 2. Structure the output in a valid Pydantic format: ‘result = [EventName(”mention” = “trigger”, (...).

AL-4051 3. Adhere strictly to the described event descriptions (...).

AC -37.97 4. Address special cases:- Appeals: Consider involved parties from prior related events as “prosecutor”.
- Multiple roles may apply contextually; ensure complete information extraction.

- Implicit indications: If mentions like filed”, "concluded”, etc.,(...) use context to clarify them.(...)

GPT-4.5 # This is an event extraction task for identifying and structuring events from text using Python-defined event classes. Each
Best Scores structured event consists of an event trigger word, an event type (...)
TI - 46.15 fong:
## Instructions:
TC - 46.15 -
AlL-40.80 1. Span Extraction:
AC - 38.40 - Extract precise and concise spans for mentions and arguments, conveying the event or argument role clearly (...)
- Accurately identify roles using contextual cues, effectively resolving ambiguities while prioritizing explicit spans. If roles are
unmentioned, leave them empty. (...)
3. Output Format: Please follow the Python-format(...)
4. Clarifications and Exceptions:- Note explicitly when roles have exceptions based on role definitions.
- Manage overlapping roles by following specific guidelines for span clarity and precision, (...)

DEEPSEEK- # Event Extraction Task: Extract structured events from text using Python class definitions.(...):

R1 1. Span Extraction:- Triggers: Minimal contiguous spans (verbs/nouns) directly expressing the event. Include both verbal and
}}CIS‘ ;“'g“gg* nominal forms (’death” = Die, killings” = Die).(...)
TC7—~56'.60 - Arguments: - Remove articles (’a/an/the”’) and possessive pronouns EXCEPT when part of official names or temporal phrases
Al - 44.26 (’The Hague”, “’the past year”)
AC - 44.26 - Resolve pronouns AND POSSESSIVE NOUNS to named entities immediately using same-sentence antecedents (airline’s

plan” — [airline”])

- Strip role/location/age descriptors from arguments (’Philadelphia lawyers” — “lawyers”) (...)

- Keep FULL spans for crimes/money including sources/amounts (”’stereo worth $1,750 from family”’) unless legal terms (...)
2. Special Handling:- Bankruptcy Triggers: ”went bust” — EndOrg(...)

- Crime Spans: Retain full contextual clauses (’If convicted of killings...”) without truncation

- Temporal Phrases: Keep original spans with articles when part of phrase (’the early 90°s”)

3. Output Rules: Always output in Python-format as (...)

4. Critical Exceptions:-(...)

ol # This is an event extraction task where the goal is to extract structured events from the text following structured event definitions
Best Scores i Python. (...)
:FF(I:(;666677 Keep argument references minimal by removing articles, possessives, or descriptive words unless they are crucial identifiers (e.g.,
Al-44.93 “the retailer” — “’retailer”, ’my uncle” — uncle”).
AC - 40.58 # Important guidelines to address prior errors:

# 1. For each event trigger, use the single most relevant word (e.g., ”’bankruptcy” rather than file for bankruptcy”).

# 2. For argument roles, also use minimal spans (e.g., ”’soldier” instead of ”a soldier,” ’woman” instead of ’a woman”).(...)
# 4. For justice events (Sue, Appeal, Convict, SentenceAct, etc.): (...)

# 5. For transfers of money, watch for direct or indirect references to donations, (...)

# 6. Do not skip events implied by synonyms or indirect wording (e.g., ’shutting down” — EndOrg, (...).

# 7. If there is more than one event in a single text, output each in a separate entry.(...)

Table 2: Example task instructions optimized by different optimizers when M, = DeepSeek-R1,
which yielded the best performance for each optimizer. LRMs tend to emphasize actionable extraction
rules and exception handling, while paying minimal attention to the task instruction and output format.
Additionally, they often include illustrative examples (in bold) to facilitate span extraction.

among LLMs, GPT-4o performs better than GPT-4.5 as an optimizer in all task model settings, despite
being weaker as a task model.

On the other hand, when a larger training set is available (ACE,, .4, Depth 1), we observe a shift.
While LRM optimizers remain strong—achieving over +23% AC gain while optimizing themselves—
GPT-4.5 shows a significant boost in effectiveness. It consistently outperforms GPT-40 as an optimizer
and in some cases narrows the gap with LRMs, reaching 35.94 when optimizing itself and 36.67 when
optimizing ol. Qualitatively, as shown in Table 2, DeepSeek-R1 enhances the optimized prompt P*
by adding precise extraction rules, such as removing articles (“a/an/the”) and possessive pronouns
(highlighted in blue), as well as critical exception cases for handling specific triggers (highlighted
in pink). In contrast, ol tends to generate a larger number of extraction rules, resulting in longer
prompts. Both LRMs also include specific examples to guide extraction. LLMs, by comparison,
focus more on task instructions and output formatting, typically generating shorter prompts with
fewer examples. Among them, GPT-4.5 occasionally adds exception handling, though this behavior
is less consistent than in LRMs. We provide additional examples of optimized task instruction and
event guidelines in Appendix C, and include an additional analysis of the prompt quality in Section 5.
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Figure 4: Convergence analysis of prompt optimization across different task models with two
optimizers—DeepSeek-R1 (left) and GPT-4.5 (right). Task models converge faster with minimal
variance when their prompts are optimized by LRMs.

Insight 3: LRMs serve as highly effective optimizers, especially in low-resource settings
where DeepSeek-R1 consistently outperforms all others as a prompt optimizer.

RQ4: Can LRMs act as efficient and stable optimizers in prompt optimization? In Fig. 4a,
we observe that with DeepSeek-R1 as an optimizer, DeepSeek-R1 and GPT-40 demonstrate faster
convergence compared to when GPT-4.5 is used as an optimizer (Fig. 4b), suggesting that it generates
a higher quality of prompts. For DeepSeek-R1 and GPT-4.5 as task models, it also exhibits a smaller
performance variance, which shows that R1 not only generates high-quality prompts but also does
so reliably. In contrast, with GPT-4.5 as an optimizer, convergence tends to be slower. Under this
setup, both LRMs reach their peak at depth 3, while GPT-4.5 and GPT-40 converge at depths 4 and
5, respectively. For GPT-4.5, the optimization process is visibly less stable than optimizing with
DeepSeek-R1. Finally, we notice that most models begin to plateau, or slightly decline, beyond their
optimal depth (marked using half-filled markers), reinforcing the presence of diminishing returns,
where additional optimization yields increasingly smaller or no performance gains.

H Insight 4: DeepSeek-R1 (LRM) as an optimizer yields faster and more stable convergence

than GPT-4.5 (LLM).

RQS5: Do the optimization gains with LRMs
generalize beyond schema-based tasks?
We further experimented on two tasks: Ge-
ometric Shapes and NCBI, and reported each
task model’s performance when we use the
same model as an optimizer. As shown in Ta-
ble 3, on both tasks, we observe that prompt
optimization consistently improves all mod-
els. On Geometric Shapes, ol and DeepSeek-
R1 reach test accuracies of 77.80 and 78.40,
outperforming GPT-4.5 (74.20) and GPT-40

Model No Opt. (Test) Depth 1 (Dev) Depth 5 (Dev) Depth 5 (Test)
(a) Symbolic Reasoning — Geometric Shapes (Accuracy)

GPT-40 53.40 61.20 +7.80 68.67 +15.27. 67.50 +14.10_

GPT-4.5 69.96 72.90 +2.94 75.33 4537 74.20 +4.24

ol 70.07 73.50 +3.43 78.00 +7.93 77.80 +7.73

DS-R1 69.67 73.80 +4.13 78.67 +9.00

(b) Biomedical IE — NCBI Disease NER (Micro-F1)
GPT-40 43.75 54.37 +10.62
GPT-4.5 56.25 65.56 +9.31
ol 53.13 71.46 +15.33
DS-R1 54.20 71.40 +17.20

78.40 +8.73

52.63 +8.88
64.56 +8.31
70.15 +17.02
69.96 +15.76

66.00 +11.80

Table 3: Results on symbolic reasoning and biomed-
ical NER tasks. Overall, LRMs benefit most from
prompt optimization.

(67.50). While GPT-40 achieves a larger rela-

tive gain (+14.1), LRMs still achieve higher absolute performance. In NCBI, LRMs show strong gains
and high final performance: ol and DeepSeek-R1 improve by +17.0% and +15.8% F1, respectively,
reaching 70.15 and 69.96, well above the LLM performance. These results mirror our findings on EE,
reinforcing that LRMs not only serve as strong task models post-optimization but also generalize
effectively as optimizers beyond schema-based tasks.

Insight 5: Prompt optimization benefits transfer across tasks: LRMs gain benefit on both
symbolic reasoning and biomedical NER.

5 FURTHER ANALYSIS

Prompt Quality Across Optimizers In addition to our qualitative analysis about Table 2 in RQ3,
we also analyze the distribution of prompt effectiveness using a survival plot with DeepSeek-R1 as
Mqsk- The x-axis represents increasing AC thresholds, while the y-axis indicates the percentage
of prompts that achieve at least that threshold. A higher survival curve indicates that an optimizer
more consistently produces high-performing prompts. As shown in Fig. 5a, prompts optimized via
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(x-axis) for DeepSeek-R1 across different optimizers. (b) Prompt length vs. AC score across the
best-performing full MCTS configuration for each task model on dev set. (c) Error categorization for
DeepSeek-R1 as the task model with various optimizers.

DeepSeek-R1 exhibit the strongest survival curve, maintaining high-performance density even at
stricter AC cutoffs (> 35% AC). In contrast, GPT-40’s curve decays rapidly, showing that while
it occasionally generates effective prompts, its output quality is inconsistent. Interestingly, ol and
GPT-4.5 fall in between, with o1 slightly outperforming GPT-4.5 in the mid-range thresholds but
trailing DeepSeek-R1 significantly at higher cutoffs. These trends reinforce our earlier findings:
reasoning models are not only capable of producing better peak performance but also generate a
greater density of usable prompts.

Prompt Length vs. Task Model Performance To better understand how much instruction is
needed for different task models to reach their peak performance, we analyze the relationship between
prompt length and model accuracy across full MCTS search trees. For each model, we select its
best-performing search trajectory (i.e., ol as optimizer for GPT-40 and DeepSeek-R1 as optimizer for
the other task models) and plot the corresponding full prompt lengths (including inherited definitions)
against their AC scores in Fig. 5b. DeepSeek-R1 achieves its highest performance utilizing the
shortest prompt (~ 1750 tokens) in the search space, suggesting a preference for more concise task
instructions. In contrast, both LLMs (GPT-40 and GPT-4.5) and the reasoning model ol tend to rely
on significantly longer prompts to achieve comparable accuracy.

Error Analysis To better understand the types of errors introduced by different optimizers, we
conduct a fine-grained analysis of all development examples where DeepSeek-R1 fails on prompts
generated by different optimizers. As shown in Fig. 5¢c, LRMs notably reduce event-related errors,
particularly those involving multiple or implicit events. Argument-related issues, such as coreference
errors and span overprediction, are also slightly reduced. In some cases, all models produce non-
parsable outputs or hallucinated argument spans. The remaining errors are primarily attributed to
label noise in the dataset. We provide an example for each error category in Appendix B.

Insight 6: LRM-optimized prompts are enriched with new extraction rules absent from the
original task instruction, directly addressing frequent errors. DeepSeek-R1 achieves its highest
performance using the shortest prompt.

6 CONCLUSION

We present the first systematic study of prompt optimization for LRMs, evaluating their roles as
both task models and optimizers in a unified MCTS framework. On the structured task of event
extraction, we find that LRMs benefit more from prompt optimization than LLMs and serve as stronger
optimizers. They produce higher-quality prompts, converge faster, and generalize more reliably
across models, highlighting their effectiveness in both prompt consumption and generation. Our error
analysis further reveals that prompts optimized by LRMs reduce overprediction, hallucination, and
parsing errors, contributing to more faithful and structured outputs. These trends generalize beyond
event extraction: on Geometric Shapes and NCBI Disease NER, optimization improves all models,
with LRMs outperforming LLMs when serving as their own optimizers. This strengthens our claim
that LRMs both profit from and serve as strong agents for prompt optimization across diverse tasks.
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A ADDITIONAL DETAILS

A.1 MORE IMPLEMENTATION DETAILS

To effectively optimize prompts for task-specific performance, we adopt a Monte Carlo Tree Search
(MCTS) framework that iteratively explores and refines prompts based on model feedback and reward
signals. The proposed algorithm, outlined in Algorithm 1, combines structured exploration with
guided optimization by leveraging a task model, a feedback-generating optimizer, and a reward
function. At each iteration, the algorithm performs selection, expansion, simulation, and back-
propagation steps, progressively improving the prompt to maximize task performance across sampled
batches.

Algorithm 1 Algorithm for MCTS-based Prompt Optimization

Inputs:
Initial prompt so = Po, task model Mqsr, optimizer M ¢, reward function R, batch size k, depth limit
L, iterations 7, exploration weight ¢

Initialize:
State-action mapping A : S — F, children mapping ch : S x F — S, rewardsr : S x F — R,
Q-values Q : S x F +— R, visitcount N : S — N

forn < 0,...,7—1do
Sample batch (Qvatch, Avater) from training data
fort < 0,...,L —1do
if A(s¢) is not empty then > selection

ft S argmaxyfeA(s;) (Q(st7 f) +c- \/ %)
St+1 Ch(St7 ft), Tt < T(St, ft),N(St) < N(St) +1
else > expansion and simulation
(Step 1) Answer Gen: Qpatch ~ Miask(Qbatch, St) A
(Step 2) Error Extract: Identify errors using interpreter on Apqatch
(Step 3) Feedback Gen: f; ~ M, (feedback|s;, errors)
(Step 4) Prompt Update: s;1 ~ Mop:(s|se, ft)
Update A(s¢) <= {ft}, ch(s, fi) <= st41. 7(st, ft) < R(Abatch, Abatch)
re < T(St, ft), N(St) — N(St) +1
end if
if s¢41 is an early-stopping state then
break
end if
end for
T < number of steps
fort< T —1,...,0do > back-propagation
Update Q(st, f+) with rollout rewards {r+,...,7rr}
end for
end for
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Train Train D
ACElow ACEmed ev
TransferMoney 3 13 29
Meet 2 15 13
PhoneWrite 1 11 1
SentenceAct 6 25 4
Appeal 2 16 4
Convict 5 11 5
Sue 3 13 8
EndOrg 1 11 1
Die 2 26 15
DeclareBankruptcy 1 11 1
None 5 20 30

Table 4: Data distribution for selected ETs.

A.2 BATCH PROMPTING

Since querying LLMs individually for each input incurs substantial computational costs, a naive
approach that treats each input separately is inefficient. To mitigate this, we employ batch prompt-
ing (Cheng et al., 2023), which enables the combination of multiple queries into a single structured
prompt. Given a batch of inputs {Q1,Q2, ..., @, } that share the same task instruction Pz, batch
prompting constructs a concatenated input string in the form [Py||Q1]||Qz2]|| - . - ||@xr]. Each query is
uniquely labeled (e.g., ’text1”) to maintain order and structure. The model processes this batch and
generates a structured response in the form [A1 || Az]|...|| 4], where each A; corresponds to the output
for ;. These responses are parsed to extract individual predictions while preserving alignment. By
reducing the number of API calls while maintaining high task accuracy, batch prompting improves
efficiency, making large-scale prompt optimization feasible.

A.3 PROMPT OPTIMIZATION AS A SEARCH PROBLEM

While batch prompting enhances efficiency, it does not inherently improve task performance. To
address this, we formulate prompt optimization as a search problem over an expansive, intractable
space of possible natural language prompts, denoted as S. The objective is to discover an optimal
prompt P* that maximizes a task-specific evaluation function R, such as the F-score for event
extraction, formally defined as: P* = argmaxpecs R(DM,, .. (Abateh|Qbaten, P)) where Qpaten
and Apq:cp, denote the batched queries and responses, respectively. Since this space is too large to
exhaustively explore, we introduce a secondary LLM, M,,;, which iteratively refines Py based on
errors observed in the output of My,sx. As shown in Fig. 3, this iterative refinement continues
until a predefined stopping criterion is met, such as performance convergence or a fixed number of
optimization steps. Once optimization concludes, the final optimized prompt P* is used for inference
on unseen test data.

A.4 DATA SPLIT

We utilized two shorter versions of ACEO5, ACE,,,, and ACE,,,.4. Their detailed descriptions are
provided in Section 4.1. Table 4 presents the distribution of selected event types (ETs) across ACE;,,,,
ACE, .4, and the development (Dev) set. These subsets were curated to simulate both low-resource
and medium-resource scenarios. Frequent ETs such as SentenceAct and Die contrast with rarer ones
like PhoneWrite and DeclareBankruptcy, allowing for a diverse evaluation spectrum. The None class
includes instances without any annotated events, preserving a realistic class distribution.

A.5 META-PROMPTS FOR FEEDBACK (m ;) AND OPTIMIZATION (10p¢)

Feedback Collection Prompt. Below we present the prompt m s, to collect structured feedback
from M gp¢.

I am writing event guidelines and prompt (or task instructions) for a
language model designed for an event extraction task.

14
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My current prompt is:
<START>

{cur_prompt }

<END>

The event guideline in Python format is as following:
<START>

{event_definitions}

<END>

The task involves:

1. Extracting structured events (triggers, event type, arguments, and
their roles) from the text.

2. Adhering to strict Python syntax for output (a Python list of event
instances) .

3. Handling all event definitions accurately, including mandatory roles
and edge cases.

But this prompt gets the following examples wrong:
<START>

{example_string}

<END>

For each example, perform the following step-by-step analysis:

1. Error Type Classification: Identify the specific type(s) of error for
each example (e.g., incorrect span extraction, missing roles,
spurious arguments, format violations, etc.).

2. Root Cause Analysis:

a. Did the current guideline fail to explain key extraction rules
clearly?

b. Are the instructions after ‘#' in the event definitions (
guidelines) ambiguous, inconsistent, or insufficient?

c. Were there ambiguities or overlaps in roles (e.g., ‘agent' vs. '
person') that caused confusion?

3. Example-Specific Recommendations:

— Suggest precise changes to the guidelines (comments after ‘#' in
event guidelines) to fix the errors for the given example.
— Include explicit "what_to_do" and "what_not_to_do" instructions for
ambiguous roles or edge cases.
— Provide a simple example and counterexample to illustrate each
guideline.

4. General Trends: Identify recurring issues in guidelines across all

examples.

Expected Output:
1. For all the examples, summarize and list all actionable changes to
improve the event definitions for all the classes, including:
— Improved clarity for event/role definitions.
— Enhanced handling of ambiguous or overlapping roles.
— Guidelines for precise span extraction.

2. Provide an output pointing out the mistakes in the current guidelines
and propose refinements for all the classes. Each refinement should
include:

- For an event, updated guidelines for "what_to_do" and "what_not_to_
do."
- Examples and counterexamples for each role.

Task Instruction and Guidelines Optimization Prompt. Below we present the prompt 72, to
optimize task instruction and event guidelines.

I am optimizing prompts for a language model designed for an event
extraction task.

15
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My current prompt (or task instructions) is:
<START>

{cur_prompt }

<END>

The event guideline in Python format is as following:
<START>

{event_definitions}

<END>

But this prompt gets the following examples wrong:
<START>

{example_string}

<END>

Based on these errors, the problems with the event guideline and the
reasons are:

<START>

{feedback}

<END>

There are a list of former event guidelines including the current one,
and each guideline is modified from its former prompts:

<START>

{trajectory_prompts}

<END>

Guidelines given to me for optimization of event classes:

1. Refine the prompt (or the task instructions) to address the issues
mentioned previously. Focus on:

— Clearer instructions for span extraction and role definitions along
with any exceptions.

- Handling ambiguous or overlapping roles effectively.

— Strict adherence to Python-parsable output format.

2. Refine the guidelines for event definitions (the instructions after ‘#
‘) based on the identified mistakes. Ensure the refined guidelines
addresses the concerns mentioned in the above.

3. Maintain backward compatibility: Ensure previously correct examples
remain valid.

4. DO NOT change the ontology (Python classes). Instead, provide the
refined guidelines in the format given at the end.

5. Ensure outputs follow these formats:

- Optimized prompt (or the task instructions) wrapped with <START>
and <END>.
— Refined guidelines wrapped with <CLASS_START> and <CLASS_END>.

Output Requirements:
1. I have to provide the optimized prompt (or the task instructions) that
evolves incrementally from the current one.
2. I also have to provide an output containing the fully optimized
guidelines for each event definitions following the structure below:
class Event_Name (Parent_Event) :
AT\

#_Updated _guidelines_here consulting_the_problems_given to_me

I\

cooomention: str_# refined_comments or _extraction_rules_for_event
triggers._Include_what/who_can_play_the_role_with_examples.

s {{rolel}}: List_# do_the same_for_all roles_including "mention",
refining_the comments_after "#". Include what/who can play the role
with examples and span extraction rule.

[ETET—T—

My response is:

16
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Figure 6: Batch-wise performance.

A.6 ADDITIONAL HYPERPARAMETER AND MCTS CONFIGURATION

Similar to Wang et al. (2024b), we provide the details of hyperparameters and Monte Carlo Tree
Search (MCTS) configurations used in our experiments. For all runs, we fix the depth limit L
of the search tree to 5 and the number of MCTS iterations 7 to 12, unless stated otherwise. The
exploration-exploitation trade-off is controlled by the exploration weight ¢, which we set to 2.5
following prior work. The batch size k for each rollout is set to 15.

We use greedy decoding for the task model M, to simulate deterministic predictions, and temper-
ature sampling with 7" = 0.7 for the optimizer model M ,,; to promote diverse feedback generation.
Early stopping in MCTS is triggered if a prompt leads to zero errors across two consecutive rollouts.

A.7 PRELIMINARY EXPERIMENTS AND MODEL SELECTION

Growing a full MCTS tree for prompt optimization can be computationally expensive, as noted in
prior work Wang et al. (2024b). To establish a foundation before scaling up, we conducted initial
experiments to analyze the impact of batch size on performance and computational efficiency. Since
batch prompting reduces the number of API calls, we experimented with different batch sizes for
constructing Qpq¢cn by varying the number of queries Q; and corresponding outputs A;. However,
we found that determining an optimal batch size for any LLM is highly model-dependent and lacks
a universal heuristic (Fig. 6). Given this ambiguity, we set the batch size to 15, as it provides
a straightforward 15-fold reduction in API calls while maintaining response quality. This choice
ensured computational feasibility while allowing prompt optimization to operate effectively within
our budget constraints. To further refine our experimental setup before scaling to a full MCTS search,
we conducted an initial trial using a single iteration of MCTS. In this controlled setup, we instantiated
a root node corresponding to the initial task prompt and generated three child nodes representing
different prompt refinements. This limited exploration allowed us to assess the effect of prompt
optimization for event extraction under different model settings.

17
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B ADDITIONAL RESULTS AND ANALYSIS

B.1 How Do OPTIMIZERS FOLLOW (OR IGNORE) FEEDBACK?

As mentioned in Section 5, optimizers exhibit different behaviors in how they apply feedback.
For instance, we observed that in the majority of cases, DeepSeek-R1 refines only the event def-
initions that are explicitly mentioned in the feedback generated for the refinement of the task
instruction and guidelines, leaving the remaining event definitions untouched. An example is shown
in Figure 7, where DeepSeek-R1 reasons that the incorrect argument extraction for the Attack
event likely stems from limitations of M, rather than the guideline itself, and consequently
refuses to modify it. In such cases, the unchanged definitions are inherited from the parent node.
To quantify this behavior, we measure the aver-
age number of edited guidelines and their av-

.. (truncated) The model's prediction didn't include this,
erage token length across all optimizers, un-

possibly because the coref wasn't resolved. The

der each model’s best-performing configuration current guideline says pronouns require coref
(based on AC score), in Figure 8. Notably, the resolution before extraction. So if "his" is unresolved,
token counts in this analysis differ from those in it's omitted. But in the correct answer, "his" is resolved

Figure 5b because we consider only the edited to Arafat. So the model might not have access to
coref resolution, leading to omission. However, this is

guidelines here—unedited ones are inherited o o

. . . a model limitation, but the guideline says pronouns
from prior states—whereas the earlier analysis must be coref resolved. So maybe the guideline is
includes the full prompt content at each node.  clear, but the model isn't performing coref properly.
As shown in the figure, DeepSeek-R1 edits the Hence, | will skip the Attack event. (truncated)
fewest event types’ guidelines (6.7 on average)
and produces the shortest guidelines (approxi- Figure 7: Example reasoning when DeepSeek-R1
mately 1.5k tokens for guidelines edited in one refuses to edit the Attack event.
optimization step), reflecting a more feedback-
sensitive and token-efficient strategy. In con-

=

o
w
o
o
o

(]
trast, GPT-0l and GPT-4.5 modify nearly all 3 2500
ten guidelines (9.8 and 8.5 on average), regard- 3 8 R4
less of feedback specificity, resulting in much 3 2000§%
longer outputs (2.9k and 2k tokens, respectively). 5 ° 52
While GPT-4o also appears restrained (7.6 edits E 1500§ o
on average), qualitative analysis suggests this is g 4 10005 2
due to feedback overflow: when many sugges- € =0
tions are provided, GPT-4o often fails to address 22 500 }i’
them all. These findings highlight DeepSeek- 2
R1’s more specific and efficient editing behav- < O'DeepSeek GPT-45  O1  GPT-4o °
ior, further reinforcing its strength as a prompt Rl

optimizer. Figure 8: Average number of guidelines edited by

In this section, we present a comprehensive eval- each model and the average number of tokens in
uation of various task models optimized through the edited guidelines for different optimizers when
Monte Carlo Tree Search (MCTS) guided by dif- M, sx=DeepSeek-R1.

ferent optimizer models. We analyze performance across multiple configurations, including varying
dataset sizes (ACE; ., ACE,,cq, and ACE test set) and MCTS depths. Our analysis highlights how
the interplay between task and optimizer models, as well as the depth of the optimization process,
affects performance on trigger and argument prediction metrics.

B.2 FULL RESULTS

Table 5 compares the performance of four task models—DeepSeek-R1, o1, GPT-4.5, and GPT-
4o0—when optimized by different optimizer models across four key metrics: Trigger Identification
(TD), Trigger Classification (TC), Argument Identification (AI), and Argument Classification (AC).
Each row corresponds to a task model, and each column group corresponds to a specific optimizer
guiding the prompt updates during MCTS. This layout allows us to analyze both the robustness of
task models and the relative effectiveness of various optimizers under a shallow MCTS setup.

We further evaluate our method on the ACE,, .4 dataset using the same MCTS configuration with
depth 1. Table 6 reports the performance of four task models under different optimizer models
across the four standard evaluation metrics. Compared to ACE;,,,, this medium-resource setup
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DeepSeek-R1 (Optimizer) ‘ ol (Optimizer) ‘ GPT-4.5 (Optimizer) ‘ GPT-40 (Optimizer)
TI TC AI AC | TI TC AI AC| TI TC AI AC | TI TC AI AC
DeepSeek-R1 37.5 33.93 25.57 24.66 27.72 25.74 18.67 18.67|36.89 34.95 2291 2291 3278 32.78 21.83 2183

Models

ol 31.54 31.54 21.92 21.92 29.33 29.33 18.96 18.96|31.91 31.91 18.57 18.57 29.24 29.24 21.74 20.29
GPT-4.5 36.04 34.23 23.14 2231 34.78 33.04 20.07 19.33|31.37 31.37 19.32 19.32 30.29 30.29 20.97 20.19
GPT-40 3529 35.29 22.07 20.15 28.28 28.28 18.18 18.18|30.61 30.61 16.67 16.67 31.67 31.67 19.57 18.83

Table 5: Complete results of training on ACE;,,, with MCTS depth 1 and tested on the dev set.

enables deeper insights into the generalizability and adaptability of both task and optimizer models.
The results reveal notable variance in model-optimizer synergy, with certain combinations (e.g., o1
optimized by itself) yielding significantly stronger trigger performance, while others show more
balanced gains across argument-level metrics.

DeepSeek-R1 (Optimizer) | o1 (Optimizer) | GPT-4.5(Optimizer) | GPT-4o (Optimizer)
TI TC Al AC | TI TC AI AC | TI TC AI AC | TI TC AI AC
DeepSeek-R1 63.16 63.16 40.00 40.00 6545 6545 322 322 5625 5625 37.14 37.14 627 627 40.06 38.77

Models

ol 78.95 78.95 39.13 36.96 54.78 54.78 33.96 30.19|59.26 59.26 36.67 36.67 57.14 57.14 36.98 36.98
GPT-4.5 64.71 64.71 3542 3542 46.15 46.15 29.63 29.63|63.57 63.57 35.94 3594 59.21 59.21 38.1 36.51
GPT-4o0 30.00 30.00 25.88 25.1 28.57 28.57 22.32 22.32|34.55 34.55 27.54 27.54 29.38 29.38 26.99 263

Table 6: Complete results of training on ACE,,,.4 with MCTS depth 1 and tested on the dev set.

We now report results on the ACE,,,.4 dataset using a deeper MCTS configuration with depth 5.
Table 7 summarizes the performance of each task model under four different optimizers. Compared
to the shallower setup, this deeper search allows for more extensive prompt refinement, which can
lead to either improved generalization or potential overfitting, depending on the optimizer-task model
combination. Notably, certain models like o1 exhibit strong trigger-level performance when paired
with GPT-4.5 as an optimizer, while others demonstrate more balanced gains across argument metrics.
These results highlight the sensitivity of the optimization process to both the depth of MCTS and the
choice of optimizer.

DeepSeek-R1 (Optimizer) | o1 (Optimizer) | GPT-45(Optimizer) | GPT-4o (Optimizer)
TI TC Al AC | TI TC AI AC| TI TC AI AC | TI TC AI AC
DeepSeek-R1  56.6 56.6 4426 4426 66.67 66.67 44.93 40.58|46.15 46.15 40.8 384 4828 4828 40.51 37.97

Models

ol 48.08 48.08 40.74 39.81 42.86 42.86 38.71 38.71 |84.68 84.68 41.48 37.78 4828 48.28 34.64 33.52
GPT-4.5 45.68 45.68 38.36 37.74 51.24 51.24 36.22 36.22(59.26 59.26 36.24 37.58 41.18 41.18 32.35 32.35
GPT-4o 49.09 49.09 28.11 27.31 61.11 61.11 28.57 28.57|52.00 52.00 27.03 27.03 61.54 61.54 29.91 28.04

Table 7: Complete results of training on ACE, .4 with MCTS depth 5 and tested on the dev set.

To assess the generalization capability of the optimized prompts, we evaluate all model-optimizer
pairs on the ACE test set using an MCTS depth of 5. Table 8 presents the performance. This setup
represents the final evaluation phase, where models are tested on unseen examples after undergoing
deeper exploration-driven prompt optimization. Overall, the results show that performance trends
remain consistent with those observed on the development set, though certain combinations—such as
DeepSeek-R1 with itself as optimizer—demonstrate stronger stability, while others exhibit slight
performance drops, especially in argument-level metrics. These observations reinforce the impact of
both optimizer choice and MCTS depth on downstream generalization.

B.3 ERROR CATEGORIES AND EXAMPLES

To better understand the limitations of our approach and the nature of model failures during prompt
optimization, we conduct a qualitative error analysis by categorizing common mistakes observed in
model outputs. Table 9 summarizes the key error categories encountered across multiple evaluation
runs, along with representative examples and detailed descriptions. These categories—ranging from
parsing issues and hallucinations to deeper linguistic challenges such as coreference and implicit
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DeepSeek-R1 (Optimizer) ‘ ol (Optimizer) ‘ GPT-4.5 (Optimizer) ‘ GPT-40 (Optimizer)
TI TC Al AC | TI TC AI AC | TI TC AI AC | TI TC AI AC
DeepSeek-R1 69.23 67.69 44.33 4375 54.12 54.12 4206 42.06| 52.8 528 4198 41.98 47.27 47.27 33.61 3193

Models

ol 68.28 67.76 38.44 37.86 67.86 67.86 38.71 38.71|58.29 5829 36.73 36.73 41.11 41.11 28.57 28.57
GPT-4.5 68.31 68.31 38.44 36.69 64.71 64.71 39.02 36.59|56.45 56.45 35.29 3529 49.09 49.09 28.11 27.31
GPT-40 59.44 59.44 36.99 3571 64.52 64.52 30.59 30.59|56.57 56.57 34.75 34.75 48.19 48.19 26.94 26.94

Table 8: Complete results of training on ACE,,,.4 with MCTS depth 5 and tested on the test set.

event detection—highlight areas where models tend to struggle, particularly under batch prompting
and complex event structures.

Error Category

Description: Parsing errors occur when the model’s output is not in the expected format (e.g., JSON or structured
list), often due to extra reasoning or verbose responses in batch prompts. These make the output unusable for
Parsing Errors evaluation pipelines.

Example: Prompts that return extra text or commentary instead of a valid Python structure, causing non-parsable
output.

Description: Hallucinations occur when the model generates arguments or events that are not supported by the
Hallucinations input. This usually happens due to biases learned during training or lexical overlaps with known labels.

Example: Text: “Different parts of the strip saw conflicts today.” — Model incorrectly predicts a ‘Conflict*
event based solely on the word “conflict”.

Description: Multiple event errors happen when the model detects only a single event in a sentence that contains
Multiple Events multiple, usually defaulting to the most salient or final event.

Example: Text: “...went home and his father-in-law killed him.” — Model only predicts the ‘Die‘ event,
ignoring the ‘Transport‘ event.

Description: Label noise refers to inconsistencies or ambiguities in the dataset annotations, such as differing
Label Noise treatment of coreferences or unclear event boundaries, which confuse both training and evaluation.

Example: Text: “Our president has repeatedly... relied on a man... Hussein Kamel... leader of the Iraq arms
program who defected...”” — Label uses ‘person=["leader”]; model uses ‘person=["Hussein Kamel]‘.

Description: Coreference errors arise when the model fails to resolve references like pronouns or role-based
Coreferences descriptors to their actual entities, leading to incorrect or incomplete argument spans.

Example: Text: “...Hussein Kamel, leader of the Iraq arms program who defected...” — Label uses “leader”;
model uses “Hussein Kamel”, highlighting coreference resolution challenges.

Description: Span overprediction occurs when the model predicts more detailed argument spans than necessary,
Span Overprediction  often including modifiers or descriptors not required by the task’s minimal span rules.

Example: Text: “Orders went out today to deploy 17,000 U.S. Army soldiers in the Persian Gulf region.” —
Label: “soldiers”; Prediction: “17,000 U.S. Army soldiers” — includes extra modifiers.

Description: Implicit events are those not directly triggered by verbs but inferred through adjectives, nouns, or
Implicit Events other context (e.g., “former”). These are often missed by models unless explicitly instructed.

Example: Text: “...with former Congressman Tom Andrews...” — Trigger “former” implies ‘EndPosition‘, but
is often missed by models lacking rules for implicit event detection.

Table 9: Description of error categories with examples.
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C OPTIMIZED TASK INSTRUCTION AND GUIDELINES

In this section, we present fully optimized task instruction and event guidelines generated by
DeepSeek-R1, ol, GPT-4.5, and GPT-4o.

C.1 EXAMPLE OF OPTIMAL TASK INSTRUCTION AND EVENT GUIDELINES GENERATED BY
DEEPSEEK-R1

# Event Extraction Task: Extract structured events from text using Python
class definitions. Follow these rules:

1. xxSpan Extractionxx:

- *+xTriggers*+: Minimal contiguous spans (verbs/nouns) directly
expressing the event. Include both verbal and nominal forms ("
death" = Die, "killings" = Die). Add new triggers like "converge"
for Meet and "is_no _more" for EndOrg

— **xArguments#*x*:

- Remove articles ("a/an/the") and possessive pronouns EXCEPT when
part of official names or temporal phrases ("The Hague", "the,
past_year")

— Resolve pronouns AND POSSESSIVE NOUNS to named entities %=
immediately** using same-sentence antecedents ("airline’s_ plan"
— ["airline"])

- Strip role/location/age descriptors from arguments ("Philadelphia,
lawyers" — "lawyers") unless part of multi-word crime

- Keep FULL spans for crimes/money including sources/amounts ("
stereo_worth $1,750_ from_family") unless legal terms

— Detect beneficiaries via ownership markers ("for X’s project"),
direct "to X" transfers go to recipient

2. **xSpecial Handlingx*x:
- **Bankruptcy Triggers#*+*: "went bust" — EndOrg unless explicit
bankruptcy context
- **Meet Entitiesxx: Include ALL resolvable participants (subject +

object)
- x*xCrime Spans*x*: Retain full contextual clauses ("If convicted of
killings...") without truncation

- x*Temporal Phrasesx**: Keep original spans with articles when part of
phrase ("the_early 90’s")

3. xxOutput Rulesxx:

- Always output in Python-format as [EventName ("mention" = "trigger",
"argl_key" = "argl_span", ...), EventName ("mention" = "trigger", "
argl_key" = "argl_span", ...)]

— Include ALL role fields with empty lists where applicable
— Output separate events for each trigger (no merging) even for
identical event types
— Strict pydantic syntax: [EventName (mention="span", role=["span"],
o) ]
— Preserve original casing for locations unless explicitly proper
nouns

4. xxCritical Exceptionsxx:

- *xEndOrg Triggers**: Add "collapse", "drive_out", "went_bust" with
explicit org mentions

— xxAppeal Rolesxx: defendant = opposing party (state), prosecutor =
appellant

— x*xTransferMoneyxx: "for X" — recipient unless ownership marker ("for
X's Y" — beneficiary)

— xxPhoneWrite Entitiesxx: Strip ALL role descriptors ("Secretary,
Powell" — ["Powell"])
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# Here are the event definitions:

class Convict (JusticeEvent) :
"""Extract convictions where entity is found guilty of crime.
Key Updates:
— crime: Retain FULL spans including amounts/sources ("received
stereo worth $1,750 from family")

Example: "convicted of taking bribes worth $1M" — crime=["taking
bribes worth $1M"]

Counterexample: Truncating to ["taking bribes"] — error

mention: str # Triggers: "convicted", "conviction"

defendant: List[str] # ["Vang"] (resolved pronouns, strip
descriptors)

adjudicator: List[str] # ["court"] (official names only)

crime: List[str] # Full offense span without legal terms

time: List[str] # ["last Wednesday"] (exact temporal phrases)

place: List[str] # ["Minnesota"] (geopolitical entities from context

)

class TransferMoney (TransactionEvent) :
"""Money transfers without goods exchange.
Key Updates:
— recipient: Direct receiver ("to X" OR "for X" if X is endpoint)

— beneficiary: Only for ownership ("for X’s project") or indirect
benefit

Example: "donated $5 for Tim Kaine" — recipient=["Tim Kaine"]

Example: "funds for Kaine’s campaign" — beneficiary=["Kaine"]

wnn

mention: str # Triggers: "provided money", "donation"

giver: List[str] # ["foundation"] (strip descriptors)

recipient: List[str] # ["charity"] (direct receiver from "to/for X")
beneficiary: List[str] # ["Suha"] (from ownership markers)

money: List[str] # ["$15M"] (keep symbols/approximations)

time: List[str] # ["two years"] (full temporal span)

place: List[str] # ["Swiss"] (origin locations, strip prepositions)

class Meet (ContactEvent) :
"""Face-to-face interactions.
Key Updates:
— entity: Include ALL resolvable participants (subject + object)

Example: "Annan met Al-Douri" — entity=["Annan", "Al-Douri"]

Counterexample: Omitting subject — error
nnn

mention: str # Triggers: "meet", "summit", "talks"

entity: List([str] # ["delegates"] (all participants)
time: List[str] # ["today"] (exact temporal span)
place: List[str] # ["Dallas"] (resolved location noun)

class PhoneWrite (ContactEvent) :
"""Non face-to-face communication.
Key Updates:
- entity: Strip ALL role descriptors unless part of compound name

Example: "e-mail from Secretary Powell" — entity=["Powell"]

Counterexample: Retaining "Secretary" — error

nmnn

mention: str # Triggers: "called", "e-mail" with transmission
context

entity: List[str] #

time: List[str] # [

["we", "them"] (bare names, resolved pronouns)
"during meeting"] (exact time phrase)
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:::g place: List[str] # ["office"] (specific location if present)
1190
1191 class DeclareBankruptcy (BusinessEvent) :
1192 """Formal bankruptcy declarations.
1193 Key Rules:
- entity: Resolve org pronouns AND possessive nouns ("airline’s
1194 bankruptcy" — ["airline"])
1195 - Triggers: "bankruptcy", "Chapter 11" (exclude "collapse"/"went bust
1196 " without explicit bankruptcy context)
1197
1198 Example: "airline’s bankruptcy filing" — mention="bankruptcy", org=["
airline"]
1199 Counterexample: "near-collapse" — EndOrg
1200 nun
1201 mention: str # Triggers indicating financial collapse: "bankruptcy",
1202 "Chapter 11"
1203 entity: List([str] # ["Enron Corp"] (resolved orgs from pronouns/
possessives in same sentence)
1204 time: List[str] # ["2003"] (declaration time phrase)
1205 place: List([str] # ["Texas"] (jurisdiction noun if specified)
1206
1207 class EndOrg (BusinessEvent) :
1208 """Organization termination events.
Key Rules:
1209 - Triggers: "ceased", "is no more", "collapse", "drive out", "went
1210 bust"
1211 - org: Require explicit organizational mention ("casinos" in "casinos
1212 faced collapse")
1213 .
Example: "company went bust" — mention="went bust", org=["company"]
1214 Counterexample: "facing collapse" (no explicit org) — ignore
1215 nun
1216 mention: str # Triggers must indicate actual termination
1217 org: List([str] # ["plant"] (direct object or possessive noun)
1218 time: List[str] # ["the past year"] (with articles when part of
1219 phrase) 3 5 q
place: List([str] # ["Eugene"] (specific location noun)
1220
1221 class Die(LifeEvent) :
1222 """Death events.
1223 Key Updates:
— mention: Include nominal forms ("killings", "casualties") as valid
1224 triggers
1225
1226 Example: "massacre casualties" — mention="casualties"
1227 Counterexample: "death penalty" — ignore
mwn
1eze mention: str # Triggers: "died", "killings", "casualties"
1229 agent: List([str] # ["shooter"] (intentional actors only)
1230 victim: List[str] # ["patient"] (without quantifiers/possessives)
1231 instrument: List[str] # ["knife"] (specific tools/weapons)
1232 time: List[str] # ["last night"] (exact span)
1233 place: List[str] # ["hospital"] (death location noun)
1234 class SentenceAct (JusticeEvent) :
1235 """Pynishment issuance events.
1236 Key Updates:
1237 — crime: Retain original crime from conditional clauses ("If
1238 convicted of killings..." — ["killings"])
1239 Example: "faces life for fraud" — crime=["fraud"]
1240 Counterexample: "could face penalty" — ignore
1241 nmmwn
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leaz mention: str # Triggers: "sentenced", "faces". Must reference actual
1243 punishment
1244 defendant: List[str] # ["activist"] (strip role descriptors)
1245 adjudicator: List[str] # ["Jjury"] (bare roles unless official title)
1246 crime: List([str] # ["illegally attending meeting"] (full contextual
1247 Si9E)

sentence: List([str] # ["life in prison"] (exact punishment phrase)
1248 time: List[str] # ["Thursday"] (exact temporal expression)
1249 place: List[str] # ["district court"] (decision location noun)
1250
1251 class Sue (JusticeEvent) :
1252 """Legal action initiations.

Key Updates:
1253 — adjudicator: Include "Jjudge" if overseeing case approval ("approved
1254 by judge" — ["Jjudge"])
1255
1256 Example: "suit against Gateway approved by judge" — adjudicator=["
1257 el
1258 S?fnterexample: "lawsuit documents" — adjudicator=[]
1259 mention: str # Triggers: "suit", "lawsuit". Must reference legal
1260 filing
1261 plaintiff: List[str] # ["patients"] (strip locations/roles unless
1262 critical)

defendant: List[str] # ["Gateway"] (explicitly sued entities)
1263 adjudicator: List[str] # ["judge"] (if directly involved)
1264 crime: List[str] # ["malpractice"] (explicit offense without legal
1265 terms)
1266 time: List[str] # ["last month"] (keep articles in temporal phrases)
1267 place: List[str] # ["South Florida"] (specific noun phrases)
1268 class Appeal (JusticeEvent) :
1269 """Court decision appeals.
1270 Key Updates:
1271 - defendant: Opposing party (state/prosecution), NOT appellant
1272 - prosecutor: Entity filing appeal (resolved from subject/pronouns)
1273 Example: "appeal by Anwar against conviction" — prosecutor=["Anwar"],
1274 defendant=1[]
1275 Counterexample: Assigning appellant as defendant — error
1276 nmnwn
1277 mention: str # Triggers: "appeal", "appeals"

defendant: List[str] # ["state"] (opposing party in original case)
1278 prosecutor: List([str] # ["Pasko"] (appellant, bare name without
1279 roles)
1280 adjudicator: List([str] # ["court"] (original court name)
1281 crime: List([str] # ["espionage"] (original charge)
1282 time: Li;t[str] # ["last wegk"] (exact temporal phrase) . .
1283 place: List([str] # ["Malaysia"] (country from court description)
1284

1285 C.2 EXAMPLE OF OPTIMAL TASK INSTRUCTION AND EVENT GUIDELINES GENERATED BY O1

1286
1287 # This is an event extraction task where the goal is to extract

structured events from the text following structured event

1288 definitions in Python.

1289 # A structured event contains:

1290 # (1) an event trigger word (mention) -- always use the minimal lexical
1291 span (e.g., "appeal" rather than "filed an appeal"),

1292 # (2) an event type, and

1293 # (3) the arguments participating in the event (with their roles).

1294 # Keep argument references minimal by removing articles, possessives, or
1295 descriptive words unless they are crucial identifiers (e.g., "the

retailer" -> "retailer", "my uncle" -> "uncle").
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# Important guidelines to address prior errors:

# 1. For each event trigger, use the single most relevant word (e.g., "
bankruptcy" rather than "file for bankruptcy").

# 2. For argument roles, also use minimal spans (e.g., "soldier"
instead of "a soldier," "woman" instead of "a woman").

# 3. Output a separate event for each distinct trigger or implied event

(e.g., a conviction and a subsequent sentencing should be two events
) c
4. For justice events (Sue, Appeal, Convict, SentenceAct, etc.):
- "defendant" is the party or entity accused or found guilty.
"plaintiff" or "prosecutor" is the party initiating legal
action or bringing an appeal. If the text does not specify who is
accused, leave "defendant" empty.
# — If the text refers to a punishment or sentencing (e.g., "faces
the death penalty"), include a separate SentenceAct event referencing
the same "defendant."

4 o =

# 5. For transfers of money, watch for direct or indirect references to
donations, funding, or contributions and label them as TransferMoney
events.

# 6. Do not skip events implied by synonyms or indirect wording (e.g.,

"shutting down" — EndOrg, "emerged from bankruptcy" —
DeclareBankruptcy) .
# 7. If there is more than one event in a single text, output each in a
separate entry.

# 8. Always produce valid Python list format exactly as:

# result = [

# EventName ("mention" = "trigger", "rolel" = [...], "role2" =
[ooolly oocolyp

# EventName ("mention" = "trigger", "rolel" = [...], "role2" =
[ooolly ooolyp

# ]

# 9. Do not output anything else except this parsable Python structured
format (no extra text or explanation).

# The event class definitions remain the same, but refer to the following
refined docstrings for usage examples, minimal spans, and role
clarifications.

# Here are the event definitions:

class Convict (JusticeEvent) :
nmnan
A Convict Event occurs whenever a Try Event ends with a successful
prosecution of the Defendant.
In other words, a Person, Organization or GPE Entity is convicted
whenever that Entity has been
found guilty of a Crime.

Refined Guidelines:
e mention: Use the minimal trigger word referring to the conviction
(e.g., "guilty", "convicted").

e defendant: The entity/ies found guilty. Remove articles or
possessives ("the man" — "man").

e adjudicator: The court or judge that issued the guilty verdict,
if explicitly given.

e crime: The wrongdoing for which the defendant was found guilty (e
.g., "murdering X").

e time: Any explicit time references (e.g., "last week").

e place: Any explicit location references (e.g., "in Boston").

What to do:

— Include "crime" if stated: e.g., "convicted of murdering his wife
" = crime=["murdering his wife"].
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— Keep the defendant arg minimal: "Scott Peterson" — ["Scott
Peterson"], not ["Mr. Scott Peterson"].

What not to do:
— Do not guess or infer the crime if not stated.
— Do not prepend articles or descriptive words (e.g., "the
defendant" — "defendant" if used generically).

Example:
Text: "John was found guilty of fraud."
— Convict (mention='guilty’, defendant=[’John’], crime=[’fraud’],
time=[], place=[])
nmwn
mention: str # minimal word expressing the conviction event
defendant: List[str] # who is found guilty
adjudicator: List[str] # the Jjudge or court, if stated
crime: List([str] # the wrongdoing for which the defendant is
convicted
time: List[str] # when the conviction takes place
place: List[str] # where the conviction takes place

class TransferMoney (TransactionEvent) :
nmmwn
TransferMoney Events refer to giving, receiving, borrowing, or
lending money
when not purchasing goods or services in return.

Refined Guidelines:
e mention: Single word that triggers the transfer event (e.g., "
donated", "loaned").

e giver: The agent who provides funds. Remove determiners ("the",

a") unless part of a name.
e recipient: The agent who receives the funds.

"

e beneficiary: Any additional agent that benefits, if separate from

recipient.

e money: The amount of funds (if any mention like "$3,000", "large

sum") .
e time: When the event takes place (e.g., "today", "last year").
e place: Where the transaction or transfer occurs.

What to do:
— Label intangible references (e.g., "contributed", "had
contributors") as TransferMoney if it implies funds.
— Use minimal references for all money roles.

What not to do:
— Do not label intangible help (e.g., "emotional support") as
TransferMoney.
— Avoid listing indefinite articles or extraneous descriptors in
the agent spans.

Example:
Text: "He donated $5,000 to Red Cross last week."
— TransferMoney (mention=’donated’, giver=['He’], recipient=[’Red
Cross’], money=[’$5,000"], time=[’last week’], place=[])
mention: str # minimal word triggering the money transfer
giver: List([str] # who provides the money
recipient: List[str] # who receives the money
beneficiary: List[str] # who additionally benefits, if any

money: List[str] # the sum or amount
time: List[str] # when the transfer happens
place: List[str] # where the transfer event occurs
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class Meet (ContactEvent) :
nmnnn
A Meet Event occurs when two or more Entities come together face-to-
face
at a single location and interact with one another.

Refined Guidelines:
e mention: The single best word for the meeting (e.g., "met", "
summit", "conference").
e entity: All participants, stripped of articles or descriptors. If
multiple, list them all.
e time: Any temporal phrase referencing when the event took place.
e place: The location of the meeting.

What to do:
- Use triggers for in-person gatherings (e.g., "met", "conference",
"summit") .
— Keep participant references minimal: "President", "Vice-President
" instead of "the US President".

What not to do:
— Do not treat phone calls or written communication as Meet (use

PhoneWrite) .
Example:
Text: "The leaders met in Paris yesterday."
— Meet (mention="met’, entity=[’leaders’], time=[’yesterday’], place
=[’Paris’])

wnnn

mention: str # minimal word or short phrase for the meeting
entity: List([str] # who met face-to-face

time: List[str] # when the meeting happened

place: List[str] # where the meeting occurred

class PhoneWrite (ContactEvent) :
nmwn
A PhoneWrite Event occurs when two or more people communicate
without meeting face-to-face. This includes phone calls, email,
texting, etc.

Refined Guidelines:
e mention: The minimal expression of communication (e.g., "called",
"emailed", "texted").
e entity: The agents communicating. Strip out articles, determiners
, or extra descriptors.
e time: When the communication took place (e.g., "this morning", "
yesterday") .

What to do:
— Common triggers: "phoned", "emailed", "talked by phone", "texted
", "messaged".
— Keep roles minimal (e.g., entity=[’John’, ’'Mary’]).

What not to do:
— Do not mark in-person discussions as PhoneWrite (use Meet).

Example:
Text: "They emailed each other last night."
— PhoneWrite (mention="emailed’, entity=[’'They’], time=[’last night
"1)
nmmwn
mention: str # minimal communication trigger
entity: List([str] # communicating parties
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time: List[str] # when the communication happened

class DeclareBankruptcy (BusinessEvent) :
nmwn
A DeclareBankruptcy Event occurs whenever an Entity officially seeks
legal protection
from debt collection due to severe financial distress.

Refined Guidelines:
e mention: Short trigger related to bankruptcy (e.g., "bankruptcy",
"filed", "declared").

e org: The organization or person who declares bankruptcy. Remove "
the", "my", etc.

e time: When the bankruptcy is declared (e.g., "in 2003", "today").

e place: Where the declaration is made, if mentioned (e.g., "in
court", "in New York").

What to do:
— Recognize synonyms or indirect references like "emerged from
bankruptcy" or "bankruptcy protection" as triggers.

What not to do:
- Do not guess an org if not specified.

Example:
Text: "My uncle declared bankruptcy in 2003."
— DeclareBankruptcy (mention=’'bankruptcy’, org=["uncle’], time
=["2003"], place=][])
nmmwn
mention: str # minimal expression for bankruptcy
org: List[str] # the party declaring bankruptcy
time: List[str] # when the declaration takes place
place: List[str] # where it is declared

class EndOrg (BusinessEvent) :
nmwn
An EndOrg Event occurs when an Organization ceases to exist or
"goes out of business."

Refined Guidelines:
e mention: Minimal trigger (e.g., "shutting down", "closing").
e org: The organization or sub-unit that ends. E.g., "plant", "
branch".
e time: When this closure or end is stated to happen.
e place: Where the organization is located or ended.

What to do:
— Consider references such as "closing its plant" — "plant" in org.
— Identify synonyms like "shutting down," "ceasing operations."

What not to do:
— Do not skip it if the text explicitly says the org ended.

Example:
Text: "Hewlett Packard is shutting down its plant in Eugene."
— EndOrg (mention='shutting down’, org=[’plant’], time=[], place=[’'
Eugene’])
mmwn
mention: str # minimal expression for the organizational end
org: List([str] # the ended organization
time: List[str] # when the end occurs
place: List[str] # where this event happens
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class Die(LifeEvent):
nmnnn
A Die Event occurs whenever a Person loses their life, whether
accidental,
intentional, or self-inflicted.

Refined Guidelines:
e mention: The short trigger referencing the death (e.g., "killed",
"died", "murdered").

e agent: The killer or cause if identified (e.g., "gunman", "regime
"y—remove articles.

e victim: Who died, again with minimal references (e.g., "soldier"
instead of "a soldier").

e instrument: The device or method used, if any (e.g., "gun", "bomb
ll)‘

e time: When the death occurred.

e place: Where it took place.

What to do:
— Create separate Die events for each death trigger in the text.
— If the text references homicide: agent is the killer, victim is
the deceased.

What not to do:
— Do not combine multiple victims into one string if they appear as
separate triggers.

Example:
Text: "He killed the soldier in Iraq."
— Die (mention='killed’, agent=['He’], victim=[’soldier’],
instrument=[], time=[], place=['"Iraqg’])

mention: str # minimal word referencing the death

agent: List([str] # optional killer or cause
victim: List[str] # who died
instrument: List[str] # how they were killed (weapon, etc.)

time: List[str] # when the death happened
place: List[str] # where the death happened

class SentenceAct (JusticeEvent) :
nmnn
A SentenceAct Event occurs whenever a punishment for the Defendant is
issued,
e.g., a prison term or another legal penalty.

Refined Guidelines:
e mention: A trigger referencing sentencing or punishment (e.g., "
sentenced", "faces [penalty]l").
e defendant: The same party convicted or found guilty, if known.
e adjudicator: The entity delivering the sentence, if stated (e.g.,
"judge", "court").
e crime: The wrongdoing for which the defendant is sentenced (e.g.,
"murder", "embezzlement").
e sentence: The specific punishment (e.g., "death penalty", "life
in prison").
e time: When the sentencing occurs.
e place: Where the sentencing occurs.

What to do:
— Look for words like "faces the death penalty," "was sentenced to

ten years."

What not to do:
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— Do not omit a SentenceAct if there’s explicit mention of

punishment.
Example:
Text: "He now faces the death penalty for murdering his wife."

— SentenceAct (mention=' faces’, defendant=['He’], crime=['murdering
his wife’], sentence=[’death penalty’], time=[], place=][])
mention: str # minimal expression for the sentencing event
defendant: List[str] # who 1s sentenced
adjudicator: List[str] # judge or court
crime: List[str] # the wrongdoing or offense
sentence: List[str] # the punishment
time: List[str] # when the sentencing happens
place: List[str] # where it happens

class Sue (JusticeEvent) :
nmmwn
A Sue Event occurs whenever a court proceeding is initiated to
determine
the liability of a Person, Organization, or GPE.

Refined Guidelines:
e mention: The minimal trigger (e.g., "sued", "suing", "filed a
lawsuit", "suit").

e plaintiff: The party bringing the suit. Strip out any articles or

adjectives.
e defendant: The party being sued. Again, keep references minimal.
e adjudicator: The judge or court if one is explicitly named.
e crime: If a wrongdoing is stated (e.g., "for fraud", "for breach
of contract").
e time: When the suit is filed or mentioned.
e place: Where the suit is taking place.

What to do:
— Label the party initiating the lawsuit as "plaintiff."

What not to do:
— Do not confuse "plaintiff" with "defendant" if the text clearly
states who is suing whom.

Example:
Text: "A nurse sued Dell for bait and switch."
— Sue (mention=’sued’, plaintiff=[’"nurse’], defendant=[’Dell’],
crime=['bait and switch’], time=[], place=[])
nmnn
mention: str # minimal expression for the lawsuit event
plaintiff: List[str] # who brings the suit
defendant: List([str] # who is being sued
adjudicator: List[str] # the Jjudge or court, if stated
crime: List[str] # the wrongdoing for which the suit is filed
time: List[str] # when the suit took place
place: List([str] # where the suit took place

class Appeal (JusticeEvent) :
nmwn

An Appeal Event occurs whenever a court decision is taken to a higher

court
for review.

Refined Guidelines:

e mention: The short trigger for the appeal (e.g., "appeal", "
appealed") .
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e defendant: The party accused or found guilty, if the text states
so.

e prosecutor: The party bringing the appeal (i.e., the appellant).
This might be the same individual who was a defendant in a
prior trial but is now appealing.

e adjudicator: The higher court or judge handling the appeal, if
given.

e crime: The wrongdoing for which the appeal is made (if stated).

e time: When the appeal is filed or heard.

e place: Where the appeal is taking place.

What to do:
- If text says someone "filed an appeal," that entity is the "
prosecutor" if no other roles are specified.
— If the text does not identify an accused, keep defendant=[].

What not to do:
— Do not automatically fill "defendant" if it’s unclear who was
accused.

Example:
Text: "He appealed the verdict last week."
— Appeal (mention='appealed’, defendant=[], prosecutor=['He’], crime
=[], time=['last week’], place=[])
nmmwn
mention: str # minimal word for the appeal event
defendant: List[str] # the accused, if stated

prosecutor: List[str] # who is bringing the appeal
adjudicator: List[str] # the judge or court for the appeal
crime: List[str] # the crime or issue being appealed

time: List[str] # when the appeal occurs
place: List[str] # where the appeal is heard

C.3 EXAMPLE OF TASK INSTRUCTION AND OPTIMAL EVENT GUIDELINES GENERATED BY
GPT-4.5

# This is an event extraction task for identifying and structuring events
from text using Python-defined event classes. Each structured event
consists of an event trigger word, an event type, participant
arguments, and their roles. Your objective is to output this
information in a Python list of events, ensuring it is Python-
parsable and strictly follows the event definitions provided below.

## Instructions:

1. xxSpan Extractionxx:

- Extract precise and concise spans for mentions and participant
arguments, conveying the event or argument role clearly without
unnecessary context.

— For extracts involving titles or specifics, use general terms
unless details are crucial to the events integrity.

— When identifying entity roles in events, prioritize the core
identifiers over accompanying descriptors.

2. **xRole Identificationxx:
— Accurately identify roles using contextual cues, effectively
resolving ambiguities while prioritizing explicit spans. If roles
are unmentioned, leave them empty.
— Maintain consistency, particularly with distinctions like plaintiff
vs. defendant, based on contextual evidence.
— Clarify roles in complex transactions, such as distinguishing
between beneficiaries and direct recipients.
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3. xxOutput Format#*x:
— Please follow the Python-format EventName ("mention" = "trigger",
rolel" = [...], "role2" = [...], ...) strictly.
— Ensure consistent output in the specified format for Python
compatibility, adhering strictly to event definitions.
— Represent unmentioned participants with an empty list rather than
assumptions or placeholders.

4. xxClarifications and Exceptionsxx:
— Note explicitly when roles have exceptions based on role
definitions.
- Manage overlapping roles by following specific guidelines for span
clarity and precision, ensuring no crucial details are overlooked

5. xxConsistencyxx*:
— Ensure consistency in role identification and event extraction
across similar scenarios.
— Address ambiguity and overlap by defining roles explicitly and
setting clear precedence for extraction guidelines.

Below are the structured event definitions:

# Here are the event definitions:

class Convict (JusticeEvent) :

nmmwn

A Convict Event signifies the successful prosecution of a defendant.
This involves a person, organization, or geographical political
entity (GPE) being convicted for a crime.

nmmwn

mention: str # Focus on concise triggers like "convicted" or "
conviction", avoiding embellishments.

defendant: List[str] # Name the convicted individuals or entities.
Use direct identifiers, example: "John Doe".

adjudicator: List[str] # Reference the judicial entity, example:
court" or "judge", unless specifics are critical.

crime: List([str] # Provide short, precise descriptions of crimes, e.
g., "fraud".

time: List[str] # Specify exact times if mentioned, e.g., "Monday".

place: List[str] # Note locations if explicitly mentioned, avoid
assumptions.

class TransferMoney (TransactionEvent) :

nmnn

Non-purchasing money transfers involving giver and recipient roles,
where transactions are more indirect or complex.

mnn

mention: str # Use explicit terms like "donated", staying concise.

giver: List[str] # Identify the money source, example: "Sheila C.
Johnson".

recipient: List([str] # Clearly name receiving entities.

beneficiary: List([str] # Note additional beneficiaries unambiguously

money: List[str] # Use exact figures, avoiding vague amounts.
time: List[str] # Define occurrence times if clearly specified.
place: List|[str] # Mention the transaction location if detailed.

class Meet (ContactEvent) :

nnn

Events where entities gather face-to-face, e.g., meetings, summits,
or conferences.
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nmmwn

mention: str # Central meeting references like "summit", without
extra detail.

entity: List[str] # List participants clearly, omitting superfluous

descriptions.
time: List[str] # Specify times if explicitly provided.
place: List[str] # Mention locations if available, avoiding

unsupported assumptions.

class PhoneWrite (ContactEvent) :

nmmwn

Non-face-to-face communications, covering written and phone-based
interactions.

mnn

mention: str # Terms indicating communication, e.g., "called",
succinctly.

entity: List([str] # Capture the participants in the communication.

time: List[str] # Specify times if mentioned, ensuring clarity.

class DeclareBankruptcy (BusinessEvent) :
mmwn

Occurs when an organization requests legal protection from debt
collection.

nnn

mention: str # Use declarations like "bankruptcy", clearly.

org: List[str] # Focus on the organizational name in question.

time: List[str] # Mention when the declaration occurs if explicitly
stated.

place: List[str] # Note the declaration’s location if outlined.

class EndOrg (BusinessEvent) :
nmwn

An organization ceases operations, going out of business completely.

nmmwn

mention: str # Use terms like "shut down" to capture essence
effectively.

org: List[str] # Succinctly list the organizations ending operations

time: List[str] # Clearly mention when specifics are supplied.
place: List[str] # Mention location details if clearly stated.

class Die(LifeEvent) :
nmnn
Event marking the end of life, covering direct, accidental, and self-
inflicted cases.
mmwn
mention: str # Specific terms like "died", excluding excess context.
agent: List[str] # Cite any responsible party if indicated.
victim: List[str] # Precisely identify the deceased without titles.

instrument: List[str] # Specify instruments used if described.
time: List[str] # Use accurate timing where provided.
place: List[str] # Mention locations where explicitly noted.

class SentenceAct (JusticeEvent) :

nnon

Legal sentence issuance, often involving incarceration.

mention: str # Direct words like "sentenced", retaining clarity.
defendant: List[str] # Identify the sentenced party succinctly.
adjudicator: List[str] # State the authority issuing the sentence.
crime: List[str] # Precisely include mentioned crimes.

sentence: List([str] # Clearly outline the penalties involved.
time: List[str] # Specific timing if explicitly declared.

place: List([str] # Cite location details when supplied.
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class Sue (JusticeEvent) :

The initiation of legal proceedings against an entity to determine
liability.

nnn
mention: str # Specific terms like "sued".
plaintiff: List[str] # Clearly identify the suing parties.
defendant: List([str] # Identify the sued entities unambiguously.
adjudicator: List[str] # Specify judicial role if expressed.
crime: List([str] # Highlight alleged crimes if specified.
time: List[str] # Reference explicit timing if detailed.
place: List([str] # Extract the location details if outlined.

class Appeal (JusticeEvent) :
nmmwn

Represents decisions moved to higher courts for further review.
nmmwn

mention: str # Use terms like "appealed" directly.

defendant: List[str] # Name the entity under review.

prosecutor: List[str] # Name the initiating party of the appeal.
adjudicator: List|[str] # Reference the reviewing court.

crime: List[str] # Clearly detail crimes if mentioned.

time: List[str] # Capture filing times if explicit.

place: List[str] # Mentioned locale of appeal if detailed.

C.4 EXAMPLE OF OPTIMAL TASK INSTRUCTION AND EVENT GUIDELINES GENERATED BY
GPT-40

# This is an event extraction task where the goal is to extract
structured events from the text following structured event
definitions in Python. A structured event contains an event trigger
word, an event type, the arguments participating in the event, and
their roles in the event.

=

Task Instructions:

1. For each different event type, output the extracted information from
the text into a Python list format where:

- The first key ’'mention’ holds the value of the event trigger.

- Subsequent keys/values follow the class definitions below.

2. Structure the output in a valid Pydantic format: ‘result = [EventName (
"mention" = "trigger", "argl_key" = "argl_span", ...)]"'.
3. Adhere strictly to the described event descriptions and role
definitions, considering implicit contexts and indirect attributions.
4. Address special cases:
— Appeals: Consider involved parties from prior related events as ‘'
prosecutor ’.
- Multiple roles may apply contextually; ensure complete information
extraction.
— Implicit indications: If mentions like "filed", "concluded", etc.,
suggest indirect roles, use context to clarify them.

5. Maintain backward compatibility where applicable. Do not output
anything else except parsable structured event format in Python.

# Here are the event definitions:

class Convict (JusticeEvent) :

wnn
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1836 . .
A Convict Event occurs whenever a Try Event ends with a successful
1837 prosecution of the Defendant.
1838 There may not always be explicit mentions of crimes in the text; use
1839 contextual clues.
1840 nmwn
1841 mention: str # The text span that expresses the conviction (e.g., "
convicted") .
1842 defendant: List[str] # The entity found guilty, search for adjacent
1843 terms like "defendant".
1844 adjudicator: List[str] # The Jjudge or court, often implicitly
1845 understood from context.
1846 crime: List([str] # Crime references, even implied (e.g., "guilty of
L I
1847 time: List[str] # When conviction happens, contextual or explicit

1848 dates.

1849 place: List[str] # Where the conviction occurs, often a court or
1850 city name nearby.
1851 .
class TransferMoney (TransactionEvent) :
1852 nmmwn
1853 Refers to money transfer actions outside purchasing contexts.
1854 Recognize givers and recipients even in indirect mentions.
1855 nmmwn
mention: str # Turn of phrase indicating transfer (e.g., "

1856

transferred", "donated").
1857 giver: List[str] # Entity initiating transfer (may be implied; use
1858 context) .
1859 recipient: List[str] # Direct receiver of money, often clearly
1860 stated.
1861 beneficiary: List[str] # Can be implied; beneficiaries are often

indirect.
1862 money: List([str] # Described amounts; look for currency signs ($, €,
1863 etc.).
1864 time: List[str] # Dates or relative times (e.g., "two years ago").
1865 place: List[str] # Locations of transaction, if specified.
1866

class Meet (ContactEvent) :
1867 nmwn
1868 Occurs when entities meet face-to-face; discern collective entity
1869 mentions from individual roles.
1870 nmnwn
1871 mention: str # Trigger phrases (e.g., "meet", "conference").
entity: List[str] # Entities, clarified through context or explicit

1872 mentions.
1873 time: List[str] # When entities meet, even if future planned.
1874 place: List[str] # Meeting location, from nearby phrases.
1875
1876 class PhoneWrite (ContactEvent) :
1877

Encompasses non-face-to-face communications; cover implied
1878 interactors.

1879 nmwn
1880 mention: str # Non-direct communication identified triggers (e.g., "
1881 called", "emailed").

entity: List[str] # Communicating entities, occasionally understood
1882 indirectly.
1883 time: List[str] # Times derived from text, even if not very specific
1884
1885
1886 class DeclareBankruptcy (BusinessEvent) :

nmmwn
1887 An event signifying financial distress declarations; distinguish from
1888 emergence narratives.
1889 nmmwn

mention: str # Indicators like "declared bankruptcy".
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org: List[str] # Company/entity that declared, directly mentioned.
time: List[str] # Declaration date, often provided.
place: List[str] # Geographical context of declaration.

class EndOrg (BusinessEvent) :

wnun

Concludes an organization’s operations; ensure specificity of

organization ceases.
nmnn

mention: str # Marks of closure (e.g., "dissolved", "shutdown").

org: List[str] # Organization ending, referenced in texts.
time: List[str] # Date context around organization ending.
place: List[str] # Location tied to organizational operations.

class Die(LifeEvent) :

nnon

Recognizes cessation of life events; determine involvements from

surrounding text.
nmmwn

mention: str # Triggering term showing death (e.g., "died", "passed

away") .
agent: List[str] # Agents causing death if deliberate; contextual
deductions.
victim: List[str] # Deceased, named or implied victims.
instrument: List[str] # Weapons or causes if mentioned.
time: List[str] # Death-related timing, even metaphorical.
place: List[str] # Place the death occurred, discerned from text.

class SentenceAct (JusticeEvent) :
nmmwn
Legal actions culminating in punishment; include implied authority

adjudication references.

nmmwn
mention: str # Verbs indicating sentencing (e.g., "sentenced").
defendant: List[str] # Persons sentenced, more direct mentions.
adjudicator: List|[str] # State actor issuing punishment.

crime: List([str] # Crimes specified can be explicit or by context
related.

sentence: List[str] # Detailed punishments, commonly listed.

time: List[str] # Contextual timing of legal processes.

place: List([str] # Legal venues, stated or implicit.

class Sue (JusticeEvent) :
nmnn
Legal actions initiation detections; interpreting mentions to detect
implicated parties.
nnn
mention: str # Lawsuit trigger terms (e.g., "sued").
plaintiff: List[str] # Agents initiating, even implicit from context

defendant: List[str] # Specific subjects of the lawsuit.
adjudicator: List[str] # Legal bodies, typically explicit.

crime: List[str] # Charges or offenses underpinning the suit.
time: List[str] # Suit filing and related timings.
place: List([str] # Locations cited, often courts.

class Appeal (JusticeEvent) :

nmnn

Reviewal legal challenges; correctly attribute events around
appellate actions.

nmmwn

mention: str # Terms denoting appeals like "appealed".

defendant: List[str] # Party whose case goes under review.

prosecutor: List[str] # Original case actors initiating the appeal,
inferred.
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adjudicator:

crime:
time:
place:

List[str]
List([str]
List[str]

List[str] # Higher court taking the over evaluation.

# Reviews’ subject offenses.
# Appeal reference times, may not be given.
# Court location details or broader judicial =zones.
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