
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REVISITING PROMPT OPTIMIZATION WITH LARGE REA-
SONING MODELS—A CASE STUDY ON EVENT EXTRAC-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Reasoning Models (LRMs) such as DeepSeek-R1 and OpenAI o1 have
demonstrated remarkable capabilities in various reasoning tasks. Their strong capa-
bility to generate and reason over intermediate thoughts has also led to arguments
that they may no longer require extensive prompt engineering or optimization to
interpret human instructions and produce accurate outputs. In this work, we aim to
systematically study this open question, using the structured task of event extraction
for a case study. We experimented with two LRMs (DeepSeek-R1 and o1) and two
general-purpose Large Language Models (LLMs) (GPT-4o and GPT-4.5), when
they were used as task models or prompt optimizers. Our results show that on tasks
as complicated as event extraction, LRMs as task models still benefit from prompt
optimization, and that using LRMs as prompt optimizers yields more effective
prompts. Our finding also generalizes to tasks beyond event extraction. Finally,
we provide an error analysis of common errors made by LRMs and highlight the
stability and consistency of LRMs in refining task instructions and event guidelines.

1 INTRODUCTION

15 20 25 30 35 40
AC F1-score

40.84

32.51

36.91

31.25

16.47

16.45

Average LRM performance as opt

Average LLM performance as opt

Average LRM performance as task

Average LLM performance as task

Best LRM, DeepSeek-R1 (No Optimization)

Best LLM, GPT-4.5 (No Optimization)

Optimization
helps and LRMs
benefit the most

LRMs as
optimizers
yeild
significant
improvement

Figure 1: Summary of our main results, where
LRMs and LLMs are used as either the task model
(Mtask) or the optimizer (Mopt) in prompt opti-
mization, and we observed a strong advantage of
LRMs over LLMs.

In recent years, Large Language Models
(LLMs) have demonstrated remarkable capabil-
ities across various natural language processing
tasks. However, their proficiency in complex
reasoning tasks has often been limited (Zhou
et al., 2022). To address this, a new class of mod-
els, known as Large Reasoning Models (LRMs),
has emerged, focusing on enhancing reasoning
abilities through advanced training methodolo-
gies. Two prominent examples are DeepSeek-R1
(Guo et al., 2025) and OpenAI’s o1 (Zhong et al.,
2024), both setting new standards in various rea-
soning tasks.

The advent of these advanced reasoning mod-
els has sparked discussions (Wang et al., 2024a;
OpenAI, 2025; Mantaras, 2025; Together AI,
2025; Menendez et al., 2025) about the necessity
of prompt optimization—the process of refining
input prompts to guide model outputs effectively (Zhou et al., 2022; Yang et al., 2024; Srivastava
et al., 2024; Agarwal et al., 2024; Guo et al., 2024; Fernando et al., 2024; Li et al., 2025). Tradition-
ally, prompt optimization has been crucial for enhancing LLM performance, with frameworks like
PromptAgent (Wang et al., 2024b) and OPRO (Yang et al., 2024) automating the creation and refine-
ment of prompts through iterative feedback and strategic planning. However, the inherent reasoning
capabilities of LRMs raise questions about whether such prompt optimization techniques are equally
beneficial for these models. While previous studies have demonstrated the effectiveness of prompt
optimization in improving LLM performance, there is a notable gap in research focusing on its impact
on LRMs. Moreover, many existing prompt optimization studies focus on tasks where zero-shot

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

baselines already perform well, whereas recent work, such as Gao et al. (2024), demonstrates that
even powerful models like GPT-4 struggle with Information Extraction tasks, underscoring the need
for more targeted and optimized prompting strategies.

To fill this gap, we conduct the first systematic study of prompt optimization with LRMs and compare
their performance with LLMs. In particular, we experimented with these models on a challenging
task, i.e., end-to-end event extraction (EE), a structured prediction task of information extraction
that requires identifying and classifying event triggers and arguments within text. EE poses unique
challenges: models must follow schema constraints, handle coreference, and balance precision with
recall, all of which demand nuanced reasoning. We evaluated four models, two LRMs (DeepSeek-R1,
o1) and two LLMs (GPT-4.5, GPT-4o) as both task models and prompt optimizers within a Monte
Carlo Tree Search (MCTS) framework (Wang et al., 2024b). This setup allows us to examine both
task performance and prompt optimization quality under a consistent setting.

Our experimental results (Fig. 1) show that LRMs benefit substantially from prompt optimization,
even when the training set for optimization is small, and they outperform LLMs in both task
performance (as a task model) and optimization effectiveness (as a prompt optimizer). When used
as optimizers, LRMs produce more precise prompts that align with human annotation heuristics,
leading to faster convergence and lower variance in MCTS. Our error analysis further shows that these
optimized prompts reduce common mistakes such as implicit trigger overgeneration or argument
span drift. While DeepSeek-R1 as a prompt optimizer yields the most effective and concise prompts,
prompt length alone is not predictive, i.e., different task models prefer different prompt styles. To
test generality, we apply the same optimization framework to two tasks beyond EE, i.e., Geometric
Shapes (Suzgun et al., 2022) and NCBI Disease NER (Doğan et al., 2014). In both, LRMs again
show the largest gains, confirming that our findings extend beyond schema-based tasks.

2 RELATED WORKS

Prompt optimization has become an essential direction in adapting LLMs for downstream tasks with-
out modifying their weights. For models with accessible internal states, such as open-source LLMs,
prior work has explored soft prompt tuning (Li & Liang, 2021; Lester et al., 2021; Wang et al., 2023b;
Hu et al., 2022) and gradient-based search methods that directly adjust prompt embeddings (Shin
et al., 2020; Wen et al., 2023). Reinforcement learning has also been applied to optimize prompts
through interaction-based feedback (Deng et al., 2022; Zhang et al., 2023).

However, these approaches are not applicable to closed-source LLMs accessed via APIs, where
gradients and internal representations are unavailable. As such, research has focused on black-box,
gradient-free techniques that rely on prompt perturbation and scoring. Many of these methods operate
in an iterative loop: starting from an initial prompt, they generate variants, evaluate them on held-out
examples, and retain the best one for the next round. Variants can be created through phrase-level
edits (Prasad et al., 2023), back-translation (Xu et al., 2022), evolutionary operations (Guo et al.,
2024; Fernando et al., 2024), or by prompting another LLM to rewrite the prompt based on model
errors (Zhou et al., 2022; Pryzant et al., 2023; Srivastava et al., 2024; Wang et al., 2024b). Structured
strategies such as Monte Carlo search (Zhou et al., 2022), Gibbs sampling (Xu et al., 2024), and
beam search (Pryzant et al., 2023) have been explored to improve the efficiency of exploration.

More recent efforts have proposed structured prompt optimization. APE (Zhou et al., 2022) uses
Monte Carlo Tree Search (MCTS) to explore the prompt space, while PromptBreeder (Fernando
et al., 2024) and EvoPrompt (Guo et al., 2024) evolve prompts using feedback-driven mutation
strategies. OPRO (Yang et al., 2024) employs mutation-based search guided by model performance.
Other systems, such as PromptWizard (Agarwal et al., 2024) and Gödel Machine (Yin et al., 2025),
incorporate self-evolving mechanisms in which the LLM iteratively generates, critiques, and refines
its own prompts and examples.

While these approaches are promising, they have so far been applied exclusively to large, general-
purpose LLMs. To the best of our knowledge, our work is the first to investigate prompt optimization
for LRMs. Furthermore, we introduce and study this framework in the context of a structured
prediction task, event extraction, which poses distinct challenges compared to typical mathematical
or reasoning tasks explored in prior work (Zhou et al., 2022; Srivastava et al., 2024).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

@dataclass
class PhoneWrite(ContactEvent):
 """A PhoneWrite Event occurs when two or more people directly engage in discussion which does not
take place 'face-to-face'. To make this Event less open-ended, we limit it to written or telephone
communication where at least two parties are specified."""
 mention: str # The text span that most clearly expresses (triggers) the event
 entity: List[str] # The communicating agent
 time: List[str] # When the communication takes place

This is an event extraction task where the goal is to extract structured events from the text
following structured event definitions in Python. (complete instruction omitted)
Here are the event definitions:

(Other event definitions omitted)

These are the texts to analyze
text = "They met yesterday to discuss the plans before the next attack." (Input Text)
result = [Meet(mention = "met", entity = ["they"], "time" = ["yesterday"], "place" = [])] (Output)

Event
Guidelines

Task
Instruction

Ev
en

t S
ch

em
a

@dataclass
class Meet(ContactEvent):
 """A Meet Event occurs whenever two or more Entities come together at a single location and interact
with one another face-to-face. Meet Events include talks, summits, conferences, meetings, visits, and any
other Event where two or more parties get together at some location."""
 mention: str # The text span that most clearly expresses (triggers) the event
 entity: List[str] # The agents who are meeting
 time: List[str] # When the meeting takes place
 place: List[str] # Where the meeting takes place

Figure 2: An example prompt for end-to-end Event Extraction (EE) used in our experiments,
consisting of a task instruction and an event schema. The event schema contains information about
the labels that are represented as Python classes and event guidelines defining both the event classes
and the arguments. In prompt optimization, we refine both the task instruction and event guidelines
(shown for two events; others omitted due to space limits) to generate more effective prompts for the
task model.

3 METHODOLOGY

3.1 PROBLEM SETUP

Discrete prompt optimization aims to refine task-specific prompts for a task LLM Mtask to improve
its performance without modifying the model weights. In this study, we analyze whether LRMs benefit
from prompt optimization in the context of end-to-end EE. The task consists of trigger extraction,
which involves identifying event trigger spans and classifying their event types, and argument
extraction, which requires identifying argument spans within the extracted event instance with a
pre-defined role. To prompt a task model, Mtask, we adopted a Python code-based representation
for both the input and the output of the model, which was shown to be effective by prior work (Wang
et al., 2023a; Sainz et al., 2024; Li et al., 2023; 2024; Srivastava et al., 2025). As shown in Fig. 2, the
initial prompt, P0 consists of two main parts: the task instruction and the event schema annotated by
guidelines. Task instruction PI forms the initial segment of input to introduce the task and specify
instructions such as the desired output format. The event schema contains information about the
labels, such as event names and argument roles, that are represented as Python classes. The argument
roles (e.g., time and place) are defined as attributes of event classes. All the events and arguments in
a schema are annotated using human-written event guidelines PE . The output is represented as a
list of instances of the classes defined in the event schema. In this paper, we refine both PI and PE
which is represented as the concatenation P0 = [PI ||PE], where || represents the concatenation.

Given a training set Dtrain = {(Qi, Ai)}Ni=1, where each Qi denotes an input text and Ai its
corresponding event instance, the objective of prompt optimization is to discover an optimal prompt
P∗ that maximizes a task-specific evaluation function R, such as the F-score for EE. Event guidelines
typically contain a combination of explicit schema constraints and implicit domain-specific rules that
annotators follow during data labeling. However, not all of these rules are fully documented or easily
translatable into a single static prompt. As a result, the initial prompt P0 may lack critical structural
or interpretive cues required for high-quality extraction. We employ an optimizer LLM Mopt to
refine P0 to discover such rules and constraints through strategic planning for superior, expert-level
prompt optimization. Note that we do not modify the event schema defined by the original EE task,
but only the human-written task instruction and the guidelines.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

A2

A3

A4

A5

A6

A7

Q1

Q2

Q3

Q4

Q5

Q6

A1

Q2

Q4

Q6

Q7

A2

A4

A6

A7

1
Answer Generation 2

Set of incorrect
examples

3 Feedback Generation

4 Optimization

Optimized Task Instruction
and Event Definitions

Q2 A2 Q6 A6Q4 A4 Q7 A7

Optimization
Instruction

Concatenation

Task Instruction

Event Guidelines

Python Interpreter

Feedback Instruction

Q7

Figure 3: Overview of our prompt optimization framework. At each iteration, a zero-shot task LLM
generates outputs, while a separate optimizer LLM analyzes the errors and updates the prompt,
including task instructions and event guidelines, accordingly. This process continues over batches
of training samples Dtrain, and the final optimized prompt is evaluated on the development set to
determine the node reward rt.

3.2 PROMPT OPTIMIZATION FRAMEWORK

We frame prompt optimization as a discrete search over a large natural-language prompt space S.
Since S is too large for exhaustive search, we adopt Monte Carlo Tree Search (MCTS) to explore it
efficiently, balancing exploration of new prompts with exploitation of promising ones, as in Wang
et al. (2024b). We model the process as a Markov Decision Process (MDP) where each state st is a
prompt Pt and each action is formulated to make edits to the current prompt (e.g., adding constraints
or clarifying rules).

Prompt optimization assumes a training set Dtrain. As illustrated in Fig. 3, each MCTS node holds
a prompt Pt and a batch of queries Qbatch from the training set. In Step 1, the task model Mtask

is first employed to generate answers for queries in Qbatch. The incorrect outputs generated by
the task model are then extracted and passed through a Python interpreter to identify issues such
as parsing errors, missing event types, and invalid spans (Step 2). Following it, in Step 3, we
prompt a prompt optimizer LLM Mopt with an instruction mfb to analyze the model errors and
generate structured feedback ft, including pinpointing unclear role definitions, proposing fixes, and
summarizing recurring issues. In doing so, the generated feedback can be leveraged to produce
targeted, actionable edits to improve clarity, coverage, and consistency of the task instruction and
event guidelines. Next, in Step 4, Mopt is instructed by another instruction mopt to generate the
updated prompt Pt+1 in a single pass, based on the distribution pMopt

(st+1 | st, ft,mopt). We also
pass the history of previous prompts to discourage redundant edits. Only event types involved in the
error batch are updated; others are inherited unchanged.

To evaluate each new prompt, we compute a reward rt = R(st, ft) based on averaged F1 scores
across EE subtasks (TI, TC, AI, AC, described in Section 4.1) on a held-out development (dev) set
after editing Pt with feedback ft. The best prompt is selected based on dev-set performance. We
provide additional details, the full algorithm, and the settings in Appendix A.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. To evaluate the impact of prompt optimization on LRMs, we conduct experiments on the
widely used ACE05 dataset (Doddington et al., 2004), a standard benchmark for EE that provides
fine-grained event distinctions. We used the “split 1” preprocessed by Huang et al. (2024) and
further processed it into the Python code format. The original ACE05 dataset includes 33 event types.
However, our preliminary exploration found that including all 33 event types for prompt optimization
could lead to overly long prompts, which both LLMs and LRMs cannot properly handle. To eliminate
the impact of this confounding factor while assessing whether LRMs require and facilitate prompt
optimization, we downsampled a subset of 10 event types in our experiments and left the issue of
long-context processing as future work.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We utilize two smaller versions of ACE05 training set in our experiments as Dtrain. To simulate
low-resource conditions, we construct ACElow of 15 samples, where we select one instance per
event type, prioritizing those with higher densities of event and argument annotations (i.e., training
examples annotated with multiple event instances); the remaining samples are non-event instances.
To examine the effect of scaling up the training size, we also construct a medium-scale dataset,
ACEmed, comprising 120 examples—ten per event type—with the remaining being non-event
instances. For both settings, we use a consistent development set of 100 examples randomly sampled
from the ACE05 development set and focus our discussions about various task and optimizer models’
performance on this set. For the full MCTS, we additionally report the model performance on a test
set consisting of 250 examples randomly sampled from the ACE05 test set. Dataset statistics for
ACElow and ACEmed are summarized in Table 4 (Appendix A).

To test generalization beyond EE, we additionally include two tasks: Geometric Shapes (Suzgun
et al., 2022), a symbolic reasoning benchmark, and NCBI Disease NER (Doğan et al., 2014), a
biomedical named entity recognition task.

Evaluation. Following Huang et al. (2024), on EE, we evaluate models using four F1-based metrics:
(1) Trigger Identification (TI), which measures the correct extraction of trigger spans; (2) Trigger
Classification (TC), which additionally requires predicting the correct event type; (3) Argument
Identification (AI), which assesses the correct extraction of arguments and their association with
the predicted trigger; and (4) Argument Classification (AC), which further requires correct role
labeling and serves as the most comprehensive measure of overall end-to-end EE performance. For
analysis, we primarily report AC scores, which are widely regarded as a precise metric for evaluating
both argument and trigger quality (Huang et al., 2024). Full results for all EE metrics are provided
in Appendix B. For Geometric Shapes, we report test accuracy; for NCBI Disease NER, we report
micro-F1 on strict disease spans.

Experimental Settings and Baselines. Our experiments involve two LRMs, DeepSeek-R1 and
OpenAI-o1, and two general-purpose LLMs, GPT-4.5 and GPT-4o, used both as Mopt and Mtask.
We conduct two sets of experiments. First, we evaluate all models trained on ACElow and ACEmed

using shallow MCTS (depth 1) to examine whether LRMs benefit from prompt optimization. We
started with this design choice owing to its reduced complexity and computational costs. Next, we
then perform full MCTS (depth 5) optimization on ACEmed to investigate the deeper dynamics of
optimization; ACElow is excluded from full-scale search due to its limited size. In each depth of
rollout, we expand the parent node by three child expansions. For all our experiments, we report
results only from the best-performing prompt nodes in each model’s search trajectory. To reduce the
inference cost, we followed Cheng et al. (2023) to employ “batch prompting” when querying Mtask

for answer generation (Step 1 in Fig. 3). Interestingly, we observed a performance gain than querying
the task model for one question at a time. Due to policy restrictions, we were not allowed to access
DeepSeek-R1 through API calls and thus deployed it locally on our own server. Because of our
compute limit, we quantize DeepSeek-R1 to 2.5 bits using the UnSloth framework, which has shown
minimal degradation in reasoning tasks even at lower precisions when rigorously benchmarked to
1.58 bits (Daniel Han & team, 2023). Additional details on batch prompting and hyperparameter
configurations are provided in Appendix A.

4.2 EXPERIMENTAL RESULTS

Our main results are presented in Table 1. We discuss the following research questions (RQs).

RQ1: Do LRMs benefit from prompt optimization in EE? We first study whether the models
can gain from prompt optimization by performing MCTS at depth 1. We observe consistent gains
from prompt optimization across all models, with LRMs showing especially strong improvements
over their non-optimized counterparts (around +8% on ACElow and +23% on ACEmed). LLMs also
benefit from optimization, though to a lesser extent: GPT-4o and GPT-4.5 improve by around +7%
and +5% on ACElow, and by +14% and +20% on ACEmed, respectively. Overall, the performance
gains from prompt optimization are more pronounced in LRMs than in LLMs.

Similarly, in cross-model comparisons using optimized prompts, LRMs remain highly competitive.
On ACElow, GPT-4.5 slightly outperforms o1 by about +1% AC but trails behind DeepSeek-R1 by

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Optimizer LLMs/LRMs (Mopt) #Output
Mtask No Opt. GPT-4o GPT-4.5 o1 DS-R1 Tokens

MCTS at depth 1 trained on ACElow (Development Set)

GPT-4o 12.68 18.18 +5.50 16.67 +3.99 18.83 +6.15 20.15 +7.47 15.31
GPT-4.5 16.47 19.33 +2.86 16.47 00.00 19.32 +2.85 22.31 +5.84 24.57
o1 13.94 18.96 +5.02 18.57 +4.63 20.29 +6.35 21.92 +7.98 489.67
DS-R1 16.45 18.67 +2.22 18.57 +2.12 21.83 +5.38 24.66

:::
+8.21 217.71

MCTS at depth 1 trained on ACEmed (Development Set)

GPT-4o 12.68 22.32 +9.64 27.54 +14.86 26.30 +13.62 25.10 +12.42 17.31
GPT-4.5 16.47 29.63 +13.16 35.94 +19.47 36.51 +20.04 35.42 +18.95 28.75
o1 13.94 30.19 +16.25 36.67 +22.73 36.98 +23.04 36.96 +23.02 543.45
DS-R1 16.45 32.20 +15.75 37.14 +20.69 38.77 +22.32 40.00

::::
+23.55 277.11

MCTS at depth 5 trained on ACEmed (Development Set)

GPT-4o 12.68 28.04 +15.36 27.03 +14.35 28.57 +15.89 27.31 +14.63 17.55
GPT-4.5 16.47 32.35 +15.88 37.58 +21.11 36.22 +19.75 37.74 +21.27 32.65
o1 13.94 33.52 +19.58 37.78 +23.84 38.71 +24.77 39.81 +25.87 575.36
DS-R1 16.45 37.97 +21.52 38.40 +21.95 40.58 +24.13 44.26

::::
+27.81 301.45

MCTS at depth 5 trained on ACEmed (Test Set)

GPT-4o 13.33 26.94 +13.61 34.75 +21.42 30.59 +17.26 35.79+22.46 27.00
GPT-4.5 14.29 27.31 +13.02 35.29 +21.00 36.59 +22.30 36.69 +22.40 35.56
o1 15.38 28.57 +13.19 36.73 +21.35 38.71 +23.33 37.86 +22.48 526.43
DS-R1 16.00 31.93 +15.93 41.98 +25.98 42.06 +26.06 43.75

::::
+27.75 211.43

Table 1: AC (F1) scores using different Mtask and Mopt. #Output Tokens delineates the average
number of output tokens from the task model, including reasoning and non-reasoning contents. The
background shades indicate the choice of prompt optimizers, i.e., LRMs, LLMs, or no optimization.
The best optimization result is in bold for each task model, while the highest relative improvement
over the no-optimization baseline is

::::::::::
underlined. We observe that LRMs not only benefit significantly

from prompt optimization but also serve as strong prompt optimizers for other models.

roughly +2%. On ACEmed, both LRMs outperform LLMs: o1 surpasses GPT-4.5 by +0.5% AC,
and DeepSeek-R1 gains over approximately +3.5%. These findings suggest that LRMs are not only
more responsive to prompt optimization but also more capable in zero-shot EE settings. As we show
in RQ2, this gap widens further when using the full-depth MCTS-based optimization strategy.

Insight 1: Prompt optimization benefits all models, but LRMs gain more, no matter whether
small and medium-sized training data is present.

RQ2: How do LRMs perform under full-scale MCTS prompt optimization? To assess whether
the advantages of LRMs persist at scale, we perform MCTS with a search depth of 5 across all
models on ACEmed. While performance improves overall, we observe that the gains from full-scale
optimization are incremental rather than dramatic when compared to the improvements observed
with a single roll-out (i.e., depth 1) of MCTS. LRMs, however, still exhibit relatively stronger
improvements. DeepSeek-R1, for instance, gains an additional +4.26% AC over its previous best
(40.00 7→ 44.26). Similarly, o1 improves by +2.83% (36.98 7→ 39.81) when selecting the best
optimizer across depths. In contrast, LLMs GPT-4.5 and GPT-4o show modest gains of only +1.23%
(36.51 7→ 37.74) and +1.03% (27.54 7→ 28.57), respectively. Finally, we report each task model’s
performance on the test set, using the same best prompt searched on ACEmed. Consistently, we
observed that LRMs benefit more from full MSTC prompt optimization than LLMs.

Insight 2: Full-scale MCTS optimization yields non-dramatic gains over single-step optimiza-
tion, but LRMs benefit more.

RQ3: Do LRMs make better prompt optimizers? We evaluate each task model’s performance
when optimized using various LRMs and LLMs to investigate the quality of optimized prompts. In the
low-resource setting (ACElow, Depth 1), DeepSeek-R1 consistently outperforms all other optimizers
across all task models. Compared to the best-performing LLM optimizer (GPT-4o), DeepSeek-R1
yields substantial gains: about +2% AC for optimizing GPT-4o (18.18 7→20.15), +3% for GPT-4.5
(19.33 7→ 22.31) and o1 (18.967→ 21.92), and +6% when optimizing itself (18.677→ 24.66). Notably,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Examples of Task Instructions Optimized by Different Models
NO OPTI-

MIZATION
Best Scores
TI - 39.29
TC - 33.93
AI - 16.47

AC - 16.47

This is an event extraction task where the goal is to extract structured events from the text following structured event definitions
in Python. (...) For each different event type, please output the extracted information from the text into a python list format (...)
you should always output in a valid pydantic format: result = [EventName(”mention” = ”trigger”, ”arg1 key” = ”arg1 span”, ...),
EventName(”mention” = ”trigger”, ”arg1 key” = ”arg1 span”, ...)]. (...)

GPT-4O
Best Scores
TI - 48.28
TC - 48.28
AI - 40.51

AC - 37.97

This is an event extraction task where the goal is to extract structured events (...)
Task Instructions: 1. For each different event type, output the extracted information from the text (...)
2. Structure the output in a valid Pydantic format: ‘result = [EventName(”mention” = ”trigger”, (...).
3. Adhere strictly to the described event descriptions (...).
4. Address special cases:- Appeals: Consider involved parties from prior related events as “prosecutor”.
- Multiple roles may apply contextually; ensure complete information extraction.
- Implicit indications: If mentions like ”filed”, ”concluded”, etc.,(...) use context to clarify them.(...)

GPT-4.5
Best Scores
TI - 46.15
TC - 46.15
AI - 40.80

AC - 38.40

This is an event extraction task for identifying and structuring events from text using Python-defined event classes. Each
structured event consists of an event trigger word, an event type (...)
Instructions:
1. Span Extraction:
- Extract precise and concise spans for mentions and arguments, conveying the event or argument role clearly (...)
- Accurately identify roles using contextual cues, effectively resolving ambiguities while prioritizing explicit spans. If roles are
unmentioned, leave them empty. (...)
3. Output Format: Please follow the Python-format(...)
4. Clarifications and Exceptions:- Note explicitly when roles have exceptions based on role definitions.
- Manage overlapping roles by following specific guidelines for span clarity and precision, (...)

DEEPSEEK-
R1

Best Scores
TI - 56.60
TC - 56.60
AI - 44.26

AC - 44.26

Event Extraction Task: Extract structured events from text using Python class definitions.(...):
1. Span Extraction:- Triggers: Minimal contiguous spans (verbs/nouns) directly expressing the event. Include both verbal and
nominal forms (”death” = Die, ”killings” = Die).(...)
- Arguments: - Remove articles (”a/an/the”) and possessive pronouns EXCEPT when part of official names or temporal phrases
(”The Hague”, ”the past year”)
- Resolve pronouns AND POSSESSIVE NOUNS to named entities immediately using same-sentence antecedents (”airline’s
plan” → [”airline”])
- Strip role/location/age descriptors from arguments (”Philadelphia lawyers” → ”lawyers”) (...)
- Keep FULL spans for crimes/money including sources/amounts (”stereo worth $1,750 from family”) unless legal terms (...)
2. Special Handling:- Bankruptcy Triggers: ”went bust” → EndOrg(...)
- Crime Spans: Retain full contextual clauses (”If convicted of killings...”) without truncation
- Temporal Phrases: Keep original spans with articles when part of phrase (”the early 90’s”)
3. Output Rules: Always output in Python-format as (...)
4. Critical Exceptions:-(...)

O1
Best Scores
TI - 66.67
TC - 66.67
AI - 44.93

AC - 40.58

This is an event extraction task where the goal is to extract structured events from the text following structured event definitions
in Python. (...)
Keep argument references minimal by removing articles, possessives, or descriptive words unless they are crucial identifiers (e.g.,
”the retailer” → ”retailer”, ”my uncle” → ”uncle”).
Important guidelines to address prior errors:
1. For each event trigger, use the single most relevant word (e.g., ”bankruptcy” rather than ”file for bankruptcy”).
2. For argument roles, also use minimal spans (e.g., ”soldier” instead of ”a soldier,” ”woman” instead of ”a woman”).(...)
4. For justice events (Sue, Appeal, Convict, SentenceAct, etc.): (...)
5. For transfers of money, watch for direct or indirect references to donations, (...)
6. Do not skip events implied by synonyms or indirect wording (e.g., ”shutting down” → EndOrg, (...).
7. If there is more than one event in a single text, output each in a separate entry.(...)

Table 2: Example task instructions optimized by different optimizers when Mtask = DeepSeek-R1,
which yielded the best performance for each optimizer. LRMs tend to emphasize actionable extraction
rules and exception handling, while paying minimal attention to the task instruction and output format.
Additionally, they often include illustrative examples (in bold) to facilitate span extraction.

among LLMs, GPT-4o performs better than GPT-4.5 as an optimizer in all task model settings, despite
being weaker as a task model.

On the other hand, when a larger training set is available (ACEmed, Depth 1), we observe a shift.
While LRM optimizers remain strong—achieving over +23% AC gain while optimizing themselves—
GPT-4.5 shows a significant boost in effectiveness. It consistently outperforms GPT-4o as an optimizer
and in some cases narrows the gap with LRMs, reaching 35.94 when optimizing itself and 36.67 when
optimizing o1. Qualitatively, as shown in Table 2, DeepSeek-R1 enhances the optimized prompt P∗

by adding precise extraction rules, such as removing articles (“a/an/the”) and possessive pronouns
(highlighted in blue), as well as critical exception cases for handling specific triggers (highlighted
in pink). In contrast, o1 tends to generate a larger number of extraction rules, resulting in longer
prompts. Both LRMs also include specific examples to guide extraction. LLMs, by comparison,
focus more on task instructions and output formatting, typically generating shorter prompts with
fewer examples. Among them, GPT-4.5 occasionally adds exception handling, though this behavior
is less consistent than in LRMs. We provide additional examples of optimized task instruction and
event guidelines in Appendix C, and include an additional analysis of the prompt quality in Section 5.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
Tree Depth

0

10

20

30

40

AC DeepSeek-R1
O1
GPT-4.5
GPT-4o

(a)Mopt =DeepSeek-R1

0 1 2 3 4 5
Tree Depth

0

10

20

30

40

AC DeepSeek-R1
O1
GPT-4.5
GPT-4o

(b)Mopt =GPT-4.5

Figure 4: Convergence analysis of prompt optimization across different task models with two
optimizers—DeepSeek-R1 (left) and GPT-4.5 (right). Task models converge faster with minimal
variance when their prompts are optimized by LRMs.

Insight 3: LRMs serve as highly effective optimizers, especially in low-resource settings
where DeepSeek-R1 consistently outperforms all others as a prompt optimizer.

RQ4: Can LRMs act as efficient and stable optimizers in prompt optimization? In Fig. 4a,
we observe that with DeepSeek-R1 as an optimizer, DeepSeek-R1 and GPT-4o demonstrate faster
convergence compared to when GPT-4.5 is used as an optimizer (Fig. 4b), suggesting that it generates
a higher quality of prompts. For DeepSeek-R1 and GPT-4.5 as task models, it also exhibits a smaller
performance variance, which shows that R1 not only generates high-quality prompts but also does
so reliably. In contrast, with GPT-4.5 as an optimizer, convergence tends to be slower. Under this
setup, both LRMs reach their peak at depth 3, while GPT-4.5 and GPT-4o converge at depths 4 and
5, respectively. For GPT-4.5, the optimization process is visibly less stable than optimizing with
DeepSeek-R1. Finally, we notice that most models begin to plateau, or slightly decline, beyond their
optimal depth (marked using half-filled markers), reinforcing the presence of diminishing returns,
where additional optimization yields increasingly smaller or no performance gains.

Insight 4: DeepSeek-R1 (LRM) as an optimizer yields faster and more stable convergence
than GPT-4.5 (LLM).

Model No Opt. (Test) Depth 1 (Dev) Depth 5 (Dev) Depth 5 (Test)
(a) Symbolic Reasoning — Geometric Shapes (Accuracy)

GPT-4o 53.40 61.20
:::
+7.80 68.67

::::
+15.27 67.50

::::
+14.10

GPT-4.5 69.96 72.90 +2.94 75.33 +5.37 74.20 +4.24
o1 70.07 73.50 +3.43 78.00 +7.93 77.80 +7.73
DS-R1 69.67 73.80 +4.13 78.67 +9.00 78.40 +8.73

(b) Biomedical IE — NCBI Disease NER (Micro-F1)
GPT-4o 43.75 49.50 +5.75 54.37 +10.62 52.63 +8.88
GPT-4.5 56.25 58.67 +2.42 65.56 +9.31 64.56 +8.31
o1 53.13 66.46

::::
+13.33 71.46 +18.33 70.15

::::
+17.02

DS-R1 54.20 66.00 +11.80 71.40 +17.20 69.96 +15.76

Table 3: Results on symbolic reasoning and biomed-
ical NER tasks. Overall, LRMs benefit most from
prompt optimization.

RQ5: Do the optimization gains with LRMs
generalize beyond schema-based tasks?
We further experimented on two tasks: Ge-
ometric Shapes and NCBI, and reported each
task model’s performance when we use the
same model as an optimizer. As shown in Ta-
ble 3, on both tasks, we observe that prompt
optimization consistently improves all mod-
els. On Geometric Shapes, o1 and DeepSeek-
R1 reach test accuracies of 77.80 and 78.40,
outperforming GPT-4.5 (74.20) and GPT-4o
(67.50). While GPT-4o achieves a larger rela-
tive gain (+14.1), LRMs still achieve higher absolute performance. In NCBI, LRMs show strong gains
and high final performance: o1 and DeepSeek-R1 improve by +17.0% and +15.8% F1, respectively,
reaching 70.15 and 69.96, well above the LLM performance. These results mirror our findings on EE,
reinforcing that LRMs not only serve as strong task models post-optimization but also generalize
effectively as optimizers beyond schema-based tasks.

Insight 5: Prompt optimization benefits transfer across tasks: LRMs gain benefit on both
symbolic reasoning and biomedical NER.

5 FURTHER ANALYSIS

Prompt Quality Across Optimizers In addition to our qualitative analysis about Table 2 in RQ3,
we also analyze the distribution of prompt effectiveness using a survival plot with DeepSeek-R1 as
Mtask. The x-axis represents increasing AC thresholds, while the y-axis indicates the percentage
of prompts that achieve at least that threshold. A higher survival curve indicates that an optimizer
more consistently produces high-performing prompts. As shown in Fig. 5a, prompts optimized via

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

10 20 30 40 50
Argument Classification Threshold

0

20

40

60

80

100

%
 P

ro
m

pt
s w

ith
 A

C

DeepSeek-R1 o1 GPT-4.5 GPT-4o

(a)

1500 1750 2000 2250 2500 2750 3000 3250
Length

15

20

25

30

35

40

45

50

AC
-F

1

O1
DeepSeek-R1
GPT-4o
GPT-4.5

(b)

40

50

60

70

80

To
ta

l N
um

be
r o

f E
rro

rs

DS-R1

O1
GPT-4.5

GPT-4o

Parsing Errors
Hallucinations
Multiple Events
Label Noise
Coreferences
Span Overprediction
Implicit Events

(c)

Figure 5: (a) A survival plot showing the % of prompts (y-axis) that achieve at least a given AC score
(x-axis) for DeepSeek-R1 across different optimizers. (b) Prompt length vs. AC score across the
best-performing full MCTS configuration for each task model on dev set. (c) Error categorization for
DeepSeek-R1 as the task model with various optimizers.

DeepSeek-R1 exhibit the strongest survival curve, maintaining high-performance density even at
stricter AC cutoffs (≥ 35% AC). In contrast, GPT-4o’s curve decays rapidly, showing that while
it occasionally generates effective prompts, its output quality is inconsistent. Interestingly, o1 and
GPT-4.5 fall in between, with o1 slightly outperforming GPT-4.5 in the mid-range thresholds but
trailing DeepSeek-R1 significantly at higher cutoffs. These trends reinforce our earlier findings:
reasoning models are not only capable of producing better peak performance but also generate a
greater density of usable prompts.

Prompt Length vs. Task Model Performance To better understand how much instruction is
needed for different task models to reach their peak performance, we analyze the relationship between
prompt length and model accuracy across full MCTS search trees. For each model, we select its
best-performing search trajectory (i.e., o1 as optimizer for GPT-4o and DeepSeek-R1 as optimizer for
the other task models) and plot the corresponding full prompt lengths (including inherited definitions)
against their AC scores in Fig. 5b. DeepSeek-R1 achieves its highest performance utilizing the
shortest prompt (∼ 1750 tokens) in the search space, suggesting a preference for more concise task
instructions. In contrast, both LLMs (GPT-4o and GPT-4.5) and the reasoning model o1 tend to rely
on significantly longer prompts to achieve comparable accuracy.

Error Analysis To better understand the types of errors introduced by different optimizers, we
conduct a fine-grained analysis of all development examples where DeepSeek-R1 fails on prompts
generated by different optimizers. As shown in Fig. 5c, LRMs notably reduce event-related errors,
particularly those involving multiple or implicit events. Argument-related issues, such as coreference
errors and span overprediction, are also slightly reduced. In some cases, all models produce non-
parsable outputs or hallucinated argument spans. The remaining errors are primarily attributed to
label noise in the dataset. We provide an example for each error category in Appendix B.

Insight 6: LRM-optimized prompts are enriched with new extraction rules absent from the
original task instruction, directly addressing frequent errors. DeepSeek-R1 achieves its highest
performance using the shortest prompt.

6 CONCLUSION

We present the first systematic study of prompt optimization for LRMs, evaluating their roles as
both task models and optimizers in a unified MCTS framework. On the structured task of event
extraction, we find that LRMs benefit more from prompt optimization than LLMs and serve as stronger
optimizers. They produce higher-quality prompts, converge faster, and generalize more reliably
across models, highlighting their effectiveness in both prompt consumption and generation. Our error
analysis further reveals that prompts optimized by LRMs reduce overprediction, hallucination, and
parsing errors, contributing to more faithful and structured outputs. These trends generalize beyond
event extraction: on Geometric Shapes and NCBI Disease NER, optimization improves all models,
with LRMs outperforming LLMs when serving as their own optimizers. This strengthens our claim
that LRMs both profit from and serve as strong agents for prompt optimization across diverse tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Eshaan Agarwal, Joykirat Singh, Vivek Dani, Raghav Magazine, Tanuja Ganu, and Akshay Nambi.
Promptwizard: Task-aware prompt optimization framework, 2024. URL https://arxiv.
org/abs/2405.18369.

Zhoujun Cheng, Jungo Kasai, and Tao Yu. Batch prompting: Efficient inference with large language
model APIs. In Mingxuan Wang and Imed Zitouni (eds.), Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing: Industry Track, pp. 792–810, Singapore, De-
cember 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-industry.
74. URL https://aclanthology.org/2023.emnlp-industry.74/.

Michael Han Daniel Han and Unsloth team. Unsloth, 2023. URL http://github.com/
unslothai/unsloth.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric Xing, and Zhiting Hu. RLPrompt: Optimizing discrete text prompts with reinforcement
learning. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language Processing, pp. 3369–3391, Abu Dhabi, United
Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/
2022.emnlp-main.222. URL https://aclanthology.org/2022.emnlp-main.222/.

George Doddington, Alexis Mitchell, Mark Przybocki, Lance Ramshaw, Stephanie Strassel, and
Ralph Weischedel. The automatic content extraction (ACE) program – tasks, data, and evaluation.
In Maria Teresa Lino, Maria Francisca Xavier, Fátima Ferreira, Rute Costa, and Raquel Silva
(eds.), Proceedings of the Fourth International Conference on Language Resources and Evaluation
(LREC‘04), Lisbon, Portugal, May 2004. European Language Resources Association (ELRA).
URL https://aclanthology.org/L04-1011/.

Rezarta Islamaj Doğan, Robert Leaman, and Zhiyong Lu. Ncbi disease corpus: a resource for disease
name recognition and concept normalization. Journal of biomedical informatics, 47:1–10, 2014.

Chrisantha Fernando, Dylan Sunil Banarse, Henryk Michalewski, Simon Osindero, and Tim
Rocktäschel. Promptbreeder: Self-referential self-improvement via prompt evolution, 2024.
URL https://openreview.net/forum?id=HKkiX32Zw1.

Jun Gao, Huan Zhao, Wei Wang, Changlong Yu, and Ruifeng Xu. Eventrl: Enhancing event extraction
with outcome supervision for large language models. 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. 2025.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=ZG3RaNIsO8.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Kuan-Hao Huang, I-Hung Hsu, Tanmay Parekh, Zhiyu Xie, Zixuan Zhang, Prem Natarajan, Kai-Wei
Chang, Nanyun Peng, and Heng Ji. Textee: Benchmark, reevaluation, reflections, and future
challenges in event extraction. In Findings of the Association for Computational Linguistics ACL
2024, pp. 12804–12825, 2024.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 3045–3059, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL
https://aclanthology.org/2021.emnlp-main.243/.

10

https://arxiv.org/abs/2405.18369
https://arxiv.org/abs/2405.18369
https://aclanthology.org/2023.emnlp-industry.74/
http://github.com/unslothai/unsloth
http://github.com/unslothai/unsloth
https://aclanthology.org/2022.emnlp-main.222/
https://aclanthology.org/L04-1011/
https://openreview.net/forum?id=HKkiX32Zw1
https://openreview.net/forum?id=ZG3RaNIsO8
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2021.emnlp-main.243/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Peng Li, Tianxiang Sun, Qiong Tang, Hang Yan, Yuanbin Wu, Xuanjing Huang, and Xipeng Qiu.
CodeIE: Large code generation models are better few-shot information extractors. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 15339–15353, Toronto,
Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.
855. URL https://aclanthology.org/2023.acl-long.855/.

Wenwu Li, Xiangfeng Wang, Wenhao Li, and Bo Jin. A survey of automatic prompt engineering: An
optimization perspective, 2025. URL https://arxiv.org/abs/2502.11560.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4582–4597, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353.
URL https://aclanthology.org/2021.acl-long.353/.

Zixuan Li, Yutao Zeng, Yuxin Zuo, Weicheng Ren, Wenxuan Liu, Miao Su, Yucan Guo, Yantao Liu,
Lixiang Lixiang, Zhilei Hu, Long Bai, Wei Li, Yidan Liu, Pan Yang, Xiaolong Jin, Jiafeng Guo,
and Xueqi Cheng. KnowCoder: Coding structured knowledge into LLMs for universal information
extraction. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
8758–8779, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.475. URL https://aclanthology.org/2024.acl-long.
475/.

Agustin Mantaras. Prompt engineering for openai’s o1 and o3-mini reasoning models. Microsoft
Tech Community Blog, February 2025. URL https://techcommunity.microsoft.
com/blog/azure-ai-services-blog/prompt-engineering-for-openai%
E2%80%99s-o1-and-o3-mini-reasoning-models/4374010.

Hector D. Menendez, Gema Bello-Orgaz, and Cristian Ramı́rez Atencia. Deepstableyolo: Deepseek-
driven prompt engineering and search-based optimization for AI image generation. In XVI
Congreso Español de Metaheurı́sticas, Algoritmos Evolutivos y Bioinspirados, 2025. URL https:
//openreview.net/forum?id=hZucDPawRu.

OpenAI. Reasoning best practices. OpenAI Platform Documentation, April 2025. URL https:
//platform.openai.com/docs/guides/reasoning-best-practices#
how-to-prompt-reasoning-models-effectively.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. GrIPS: Gradient-free, edit-based
instruction search for prompting large language models. In Andreas Vlachos and Isabelle Au-
genstein (eds.), Proceedings of the 17th Conference of the European Chapter of the Associ-
ation for Computational Linguistics, pp. 3845–3864, Dubrovnik, Croatia, May 2023. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2023.eacl-main.277. URL https:
//aclanthology.org/2023.eacl-main.277/.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with “gradient descent” and beam search. In Houda Bouamor, Juan Pino, and Kalika
Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 7957–7968, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.494. URL https://aclanthology.org/2023.
emnlp-main.494/.

Oscar Sainz, Iker Garcı́a-Ferrero, Rodrigo Agerri, Oier Lopez de Lacalle, German Rigau, and Eneko
Agirre. GoLLIE: Annotation guidelines improve zero-shot information-extraction. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=Y3wpuxd7u9.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. AutoPrompt:
Eliciting Knowledge from Language Models with Automatically Generated Prompts. In Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on

11

https://aclanthology.org/2023.acl-long.855/
https://arxiv.org/abs/2502.11560
https://aclanthology.org/2021.acl-long.353/
https://aclanthology.org/2024.acl-long.475/
https://aclanthology.org/2024.acl-long.475/
https://techcommunity.microsoft.com/blog/azure-ai-services-blog/prompt-engineering-for-openai%E2%80%99s-o1-and-o3-mini-reasoning-models/4374010
https://techcommunity.microsoft.com/blog/azure-ai-services-blog/prompt-engineering-for-openai%E2%80%99s-o1-and-o3-mini-reasoning-models/4374010
https://techcommunity.microsoft.com/blog/azure-ai-services-blog/prompt-engineering-for-openai%E2%80%99s-o1-and-o3-mini-reasoning-models/4374010
https://openreview.net/forum?id=hZucDPawRu
https://openreview.net/forum?id=hZucDPawRu
https://platform.openai.com/docs/guides/reasoning-best-practices#how-to-prompt-reasoning-models-effectively
https://platform.openai.com/docs/guides/reasoning-best-practices#how-to-prompt-reasoning-models-effectively
https://platform.openai.com/docs/guides/reasoning-best-practices#how-to-prompt-reasoning-models-effectively
https://aclanthology.org/2023.eacl-main.277/
https://aclanthology.org/2023.eacl-main.277/
https://aclanthology.org/2023.emnlp-main.494/
https://aclanthology.org/2023.emnlp-main.494/
https://openreview.net/forum?id=Y3wpuxd7u9
https://openreview.net/forum?id=Y3wpuxd7u9

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Empirical Methods in Natural Language Processing (EMNLP), pp. 4222–4235, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.346. URL
https://aclanthology.org/2020.emnlp-main.346/.

Saurabh Srivastava, Chengyue Huang, Weiguo Fan, and Ziyu Yao. Instances need more care:
Rewriting prompts for instances with LLMs in the loop yields better zero-shot performance.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for
Computational Linguistics: ACL 2024, pp. 6211–6232, Bangkok, Thailand, August 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.371. URL
https://aclanthology.org/2024.findings-acl.371/.

Saurabh Srivastava, Sweta Pati, and Ziyu Yao. Instruction-tuning llms for event extraction with
annotation guidelines, 2025. URL https://arxiv.org/abs/2502.16377.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Together AI. Prompting deepseek-r1. Together AI Documentation, February 2025. URL https:
//docs.together.ai/docs/prompting-deepseek-r1.

Guoqing Wang, Zeyu Sun, Zhihao Gong, Sixiang Ye, Yizhou Chen, Yifan Zhao, Qingyuan Liang, and
Dan Hao. Do advanced language models eliminate the need for prompt engineering in software
engineering? 2024a.

Xingyao Wang, Sha Li, and Heng Ji. Code4struct: Code generation for few-shot event structure
prediction. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 3640–3663, 2023a.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric
Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-level
prompt optimization. In The Twelfth International Conference on Learning Representations, 2024b.
URL https://openreview.net/forum?id=22pyNMuIoa.

Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogerio Feris, Huan Sun, and Yoon Kim. Multitask
prompt tuning enables parameter-efficient transfer learning. In The Eleventh International Confer-
ence on Learning Representations, 2023b. URL https://openreview.net/forum?id=
Nk2pDtuhTq.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein.
Hard prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=VOstHxDdsN.

Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Wang Yanggang, Haiyu Li, and Zhilin Yang. GPS:
Genetic prompt search for efficient few-shot learning. In Yoav Goldberg, Zornitsa Kozareva,
and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 8162–8171, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.559. URL
https://aclanthology.org/2022.emnlp-main.559/.

Weijia Xu, Andrzej Banburski-Fahey, and Nebojsa Jojic. Reprompting: Automated chain-of-thought
prompt inference through gibbs sampling, 2024. URL https://arxiv.org/abs/2305.
09993.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Bb4VGOWELI.

Xunjian Yin, Xinyi Wang, Liangming Pan, Xiaojun Wan, and William Yang Wang. Gödel agent: A
self-referential agent framework for recursive self-improvement, 2025. URL https://arxiv.
org/abs/2410.04444.

12

https://aclanthology.org/2020.emnlp-main.346/
https://aclanthology.org/2024.findings-acl.371/
https://arxiv.org/abs/2502.16377
https://docs.together.ai/docs/prompting-deepseek-r1
https://docs.together.ai/docs/prompting-deepseek-r1
https://openreview.net/forum?id=22pyNMuIoa
https://openreview.net/forum?id=Nk2pDtuhTq
https://openreview.net/forum?id=Nk2pDtuhTq
https://openreview.net/forum?id=VOstHxDdsN
https://openreview.net/forum?id=VOstHxDdsN
https://aclanthology.org/2022.emnlp-main.559/
https://arxiv.org/abs/2305.09993
https://arxiv.org/abs/2305.09993
https://openreview.net/forum?id=Bb4VGOWELI
https://arxiv.org/abs/2410.04444
https://arxiv.org/abs/2410.04444

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schuurmans, and Joseph E. Gonzalez. TEMPERA:
Test-time prompt editing via reinforcement learning. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
gSHyqBijPFO.

Tianyang Zhong, Zhengliang Liu, Yi Pan, Yutong Zhang, Yifan Zhou, Shizhe Liang, Zihao Wu,
Yanjun Lyu, Peng Shu, Xiaowei Yu, et al. Evaluation of openai o1: Opportunities and challenges
of agi. 2024.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In The Eleventh International
Conference on Learning Representations, 2022.

A ADDITIONAL DETAILS

A.1 MORE IMPLEMENTATION DETAILS

To effectively optimize prompts for task-specific performance, we adopt a Monte Carlo Tree Search
(MCTS) framework that iteratively explores and refines prompts based on model feedback and reward
signals. The proposed algorithm, outlined in Algorithm 1, combines structured exploration with
guided optimization by leveraging a task model, a feedback-generating optimizer, and a reward
function. At each iteration, the algorithm performs selection, expansion, simulation, and back-
propagation steps, progressively improving the prompt to maximize task performance across sampled
batches.

Algorithm 1 Algorithm for MCTS-based Prompt Optimization
Inputs:

Initial prompt s0 = P0, task modelMtask, optimizerMopt, reward functionR, batch size k, depth limit
L, iterations τ , exploration weight c

Initialize:
State-action mapping A : S 7→ F , children mapping ch : S × F 7→ S, rewards r : S × F 7→ R,
Q-values Q : S × F 7→ R, visit countN : S 7→ N

for n← 0, . . . , τ − 1 do
Sample batch (Qbatch, Abatch) from training data
for t← 0, . . . , L− 1 do

if A(st) is not empty then ▷ selection

ft ← argmaxf∈A(st)

(
Q(st, f) + c ·

√
lnN (st)

N (ch(st,f))

)
st+1 ← ch(st, ft), rt ← r(st, ft),N (st)← N (st) + 1

else ▷ expansion and simulation
(Step 1) Answer Gen: Q̂batch ∼Mtask(Qbatch, st)

(Step 2) Error Extract: Identify errors using interpreter on Âbatch

(Step 3) Feedback Gen: ft ∼Mopt(feedback|st, errors)
(Step 4) Prompt Update: st+1 ∼Mopt(s|st, ft)
Update A(st)← {ft}, ch(st, ft)← st+1, r(st, ft)←R(Âbatch, Abatch)
rt ← r(st, ft),N (st)← N (st) + 1

end if
if st+1 is an early-stopping state then

break
end if

end for
T ← number of steps
for t← T − 1, . . . , 0 do ▷ back-propagation

Update Q(st, ft) with rollout rewards {rt, . . . , rL}
end for

end for

13

https://openreview.net/forum?id=gSHyqBijPFO
https://openreview.net/forum?id=gSHyqBijPFO

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Train
ACElow

Train
ACEmed

Dev

TransferMoney 3 13 29
Meet 2 15 13
PhoneWrite 1 11 1
SentenceAct 6 25 4
Appeal 2 16 4
Convict 5 11 5
Sue 3 13 8
EndOrg 1 11 1
Die 2 26 15
DeclareBankruptcy 1 11 1
None 5 20 30

Table 4: Data distribution for selected ETs.

A.2 BATCH PROMPTING

Since querying LLMs individually for each input incurs substantial computational costs, a naı̈ve
approach that treats each input separately is inefficient. To mitigate this, we employ batch prompt-
ing (Cheng et al., 2023), which enables the combination of multiple queries into a single structured
prompt. Given a batch of inputs {Q1, Q2, ..., Qn} that share the same task instruction PI , batch
prompting constructs a concatenated input string in the form [P0||Q1||Q2|| . . . ||Qn]. Each query is
uniquely labeled (e.g., ”text1”) to maintain order and structure. The model processes this batch and
generates a structured response in the form [A1||A2||...||An], where each Ai corresponds to the output
for Qi. These responses are parsed to extract individual predictions while preserving alignment. By
reducing the number of API calls while maintaining high task accuracy, batch prompting improves
efficiency, making large-scale prompt optimization feasible.

A.3 PROMPT OPTIMIZATION AS A SEARCH PROBLEM

While batch prompting enhances efficiency, it does not inherently improve task performance. To
address this, we formulate prompt optimization as a search problem over an expansive, intractable
space of possible natural language prompts, denoted as S. The objective is to discover an optimal
prompt P∗ that maximizes a task-specific evaluation function R, such as the F-score for event
extraction, formally defined as: P∗ = argmaxP∈S R(pMtask

(Abatch|Qbatch,P)) where Qbatch

and Abatch denote the batched queries and responses, respectively. Since this space is too large to
exhaustively explore, we introduce a secondary LLM, Mopt, which iteratively refines P0 based on
errors observed in the output of Mtask. As shown in Fig. 3, this iterative refinement continues
until a predefined stopping criterion is met, such as performance convergence or a fixed number of
optimization steps. Once optimization concludes, the final optimized prompt P∗ is used for inference
on unseen test data.

A.4 DATA SPLIT

We utilized two shorter versions of ACE05, ACElow and ACEmed. Their detailed descriptions are
provided in Section 4.1. Table 4 presents the distribution of selected event types (ETs) across ACElow,
ACEmed, and the development (Dev) set. These subsets were curated to simulate both low-resource
and medium-resource scenarios. Frequent ETs such as SentenceAct and Die contrast with rarer ones
like PhoneWrite and DeclareBankruptcy, allowing for a diverse evaluation spectrum. The None class
includes instances without any annotated events, preserving a realistic class distribution.

A.5 META-PROMPTS FOR FEEDBACK (mfb) AND OPTIMIZATION (mopt)

Feedback Collection Prompt. Below we present the prompt mfb to collect structured feedback
from Mopt.

I am writing event guidelines and prompt (or task instructions) for a
language model designed for an event extraction task.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

My current prompt is:
<START>
{cur_prompt}
<END>

The event guideline in Python format is as following:
<START>
{event_definitions}
<END>

The task involves:
1. Extracting structured events (triggers, event type, arguments, and

their roles) from the text.
2. Adhering to strict Python syntax for output (a Python list of event

instances).
3. Handling all event definitions accurately, including mandatory roles

and edge cases.

But this prompt gets the following examples wrong:
<START>
{example_string}
<END>

For each example, perform the following step-by-step analysis:
1. Error Type Classification: Identify the specific type(s) of error for

each example (e.g., incorrect span extraction, missing roles,
spurious arguments, format violations, etc.).

2. Root Cause Analysis:
a. Did the current guideline fail to explain key extraction rules

clearly?
b. Are the instructions after ‘#‘ in the event definitions (

guidelines) ambiguous, inconsistent, or insufficient?
c. Were there ambiguities or overlaps in roles (e.g., ‘agent‘ vs. ‘

person‘) that caused confusion?
3. Example-Specific Recommendations:

- Suggest precise changes to the guidelines (comments after ‘#‘ in
event guidelines) to fix the errors for the given example.

- Include explicit "what to do" and "what not to do" instructions for
ambiguous roles or edge cases.

- Provide a simple example and counterexample to illustrate each
guideline.

4. General Trends: Identify recurring issues in guidelines across all
examples.

Expected Output:
1. For all the examples, summarize and list all actionable changes to

improve the event definitions for all the classes, including:
- Improved clarity for event/role definitions.
- Enhanced handling of ambiguous or overlapping roles.
- Guidelines for precise span extraction.

2. Provide an output pointing out the mistakes in the current guidelines
and propose refinements for all the classes. Each refinement should
include:
- For an event, updated guidelines for "what to do" and "what not to

do."
- Examples and counterexamples for each role.

Task Instruction and Guidelines Optimization Prompt. Below we present the prompt mopt to
optimize task instruction and event guidelines.

I am optimizing prompts for a language model designed for an event
extraction task.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

My current prompt (or task instructions) is:
<START>
{cur_prompt}
<END>

The event guideline in Python format is as following:
<START>
{event_definitions}
<END>

But this prompt gets the following examples wrong:
<START>
{example_string}
<END>

Based on these errors, the problems with the event guideline and the
reasons are:

<START>
{feedback}
<END>

There are a list of former event guidelines including the current one,
and each guideline is modified from its former prompts:

<START>
{trajectory_prompts}
<END>

Guidelines given to me for optimization of event classes:
1. Refine the prompt (or the task instructions) to address the issues

mentioned previously. Focus on:
- Clearer instructions for span extraction and role definitions along

with any exceptions.
- Handling ambiguous or overlapping roles effectively.
- Strict adherence to Python-parsable output format.

2. Refine the guidelines for event definitions (the instructions after ‘#
‘) based on the identified mistakes. Ensure the refined guidelines
addresses the concerns mentioned in the above.

3. Maintain backward compatibility: Ensure previously correct examples
remain valid.

4. DO NOT change the ontology (Python classes). Instead, provide the
refined guidelines in the format given at the end.

5. Ensure outputs follow these formats:
- Optimized prompt (or the task instructions) wrapped with <START>

and <END>.
- Refined guidelines wrapped with <CLASS_START> and <CLASS_END>.

Output Requirements:
1. I have to provide the optimized prompt (or the task instructions) that

evolves incrementally from the current one.
2. I also have to provide an output containing the fully optimized

guidelines for each event definitions following the structure below:
class Event_Name(Parent_Event):

\"\"\"
Updated guidelines here consulting the problems given to me
\"\"\"
mention: str # refined comments or extraction rules for event
triggers. Include what/who can play the role with examples.
{{role1}}: List # do the same for all roles including "mention",
refining the comments after "#". Include what/who can play the role
with examples and span extraction rule.

My response is:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0

35

70

TI 33.3

56.4

41.1

58.4

BS-1

0

35

70
50.4

55.8 58.3 55.8

BS-5

0

35

70
47.3 50.0

63.2 59.7

BS-10

0

35

70

45.5
36.4

60.1
64.4

BS-15

0

35

70
49.6 51.8

67.5
60.9

BS-20

0

35

70

TC 31.7

51.0

38.4

54.7

0

35

70

45.9 49.0
55.6

50.6

0

35

70

41.2 44.3

59.2 57.1

0

35

70

40.9
31.8

57.5 59.1

0

35

70

40.6 43.4

65.0
55.6

0

15

35

AI

19.8

25.5 24.8

31.8

0

15

35 30.4
26.5

31.9

25.2

0

15

35
26.7 28.0

34.5
29.4

0

15

35
22.8

19.6

29.4
33.9

0

15

35
28.0

24.1

35.1
31.5

0

15

35

AC

19.8
23.4 22.1

29.8

0

15

35
28.8

25.0
28.3

23.0

0

15

35
25.0 26.4

32.2

25.7

0

15

35
21.9

19.6

25.7
30.7

0

15

35
27.1

22.5

31.5
27.6

GPT-4o O1 GPT-4.5 DeepSeekR1

Figure 6: Batch-wise performance.

A.6 ADDITIONAL HYPERPARAMETER AND MCTS CONFIGURATION

Similar to Wang et al. (2024b), we provide the details of hyperparameters and Monte Carlo Tree
Search (MCTS) configurations used in our experiments. For all runs, we fix the depth limit L
of the search tree to 5 and the number of MCTS iterations τ to 12, unless stated otherwise. The
exploration-exploitation trade-off is controlled by the exploration weight c, which we set to 2.5
following prior work. The batch size k for each rollout is set to 15.

We use greedy decoding for the task model Mtask to simulate deterministic predictions, and temper-
ature sampling with T = 0.7 for the optimizer model Mopt to promote diverse feedback generation.
Early stopping in MCTS is triggered if a prompt leads to zero errors across two consecutive rollouts.

A.7 PRELIMINARY EXPERIMENTS AND MODEL SELECTION

Growing a full MCTS tree for prompt optimization can be computationally expensive, as noted in
prior work Wang et al. (2024b). To establish a foundation before scaling up, we conducted initial
experiments to analyze the impact of batch size on performance and computational efficiency. Since
batch prompting reduces the number of API calls, we experimented with different batch sizes for
constructing Qbatch by varying the number of queries Qi and corresponding outputs Ai. However,
we found that determining an optimal batch size for any LLM is highly model-dependent and lacks
a universal heuristic (Fig. 6). Given this ambiguity, we set the batch size to 15, as it provides
a straightforward 15-fold reduction in API calls while maintaining response quality. This choice
ensured computational feasibility while allowing prompt optimization to operate effectively within
our budget constraints. To further refine our experimental setup before scaling to a full MCTS search,
we conducted an initial trial using a single iteration of MCTS. In this controlled setup, we instantiated
a root node corresponding to the initial task prompt and generated three child nodes representing
different prompt refinements. This limited exploration allowed us to assess the effect of prompt
optimization for event extraction under different model settings.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B ADDITIONAL RESULTS AND ANALYSIS

B.1 HOW DO OPTIMIZERS FOLLOW (OR IGNORE) FEEDBACK?

As mentioned in Section 5, optimizers exhibit different behaviors in how they apply feedback.
For instance, we observed that in the majority of cases, DeepSeek-R1 refines only the event def-
initions that are explicitly mentioned in the feedback generated for the refinement of the task
instruction and guidelines, leaving the remaining event definitions untouched. An example is shown
in Figure 7, where DeepSeek-R1 reasons that the incorrect argument extraction for the Attack
event likely stems from limitations of Mtask rather than the guideline itself, and consequently
refuses to modify it. In such cases, the unchanged definitions are inherited from the parent node.

(truncated) The model's prediction didn't include this,
possibly because the coref wasn't resolved. The
current guideline says pronouns require coref
resolution before extraction. So if "his" is unresolved,
it's omitted. But in the correct answer, "his" is resolved
to Arafat. So the model might not have access to
coref resolution, leading to omission. However, this is
a model limitation, but the guideline says pronouns
must be coref resolved. So maybe the guideline is
clear, but the model isn't performing coref properly.
Hence, I will skip the Attack event. (truncated)

Figure 7: Example reasoning when DeepSeek-R1
refuses to edit the Attack event.

DeepSeek
R1

GPT-4.5 O1 GPT-4o0

2

4

6

8

10

Av
g.

 N
um

be
r o

f E
di

te
d

Gu
id

el
in

es

0

500

1000

1500

2000

2500

3000

Av
g.

 N
um

be
r o

f T
ok

en
s i

n
Ed

ite
d

Gu
id

el
in

es
Figure 8: Average number of guidelines edited by
each model and the average number of tokens in
the edited guidelines for different optimizers when
Mtask=DeepSeek-R1.

To quantify this behavior, we measure the aver-
age number of edited guidelines and their av-
erage token length across all optimizers, un-
der each model’s best-performing configuration
(based on AC score), in Figure 8. Notably, the
token counts in this analysis differ from those in
Figure 5b because we consider only the edited
guidelines here—unedited ones are inherited
from prior states—whereas the earlier analysis
includes the full prompt content at each node.
As shown in the figure, DeepSeek-R1 edits the
fewest event types’ guidelines (6.7 on average)
and produces the shortest guidelines (approxi-
mately 1.5k tokens for guidelines edited in one
optimization step), reflecting a more feedback-
sensitive and token-efficient strategy. In con-
trast, GPT-o1 and GPT-4.5 modify nearly all
ten guidelines (9.8 and 8.5 on average), regard-
less of feedback specificity, resulting in much
longer outputs (2.9k and 2k tokens, respectively).
While GPT-4o also appears restrained (7.6 edits
on average), qualitative analysis suggests this is
due to feedback overflow: when many sugges-
tions are provided, GPT-4o often fails to address
them all. These findings highlight DeepSeek-
R1’s more specific and efficient editing behav-
ior, further reinforcing its strength as a prompt
optimizer.

In this section, we present a comprehensive eval-
uation of various task models optimized through
Monte Carlo Tree Search (MCTS) guided by dif-
ferent optimizer models. We analyze performance across multiple configurations, including varying
dataset sizes (ACElow, ACEmed, and ACE test set) and MCTS depths. Our analysis highlights how
the interplay between task and optimizer models, as well as the depth of the optimization process,
affects performance on trigger and argument prediction metrics.

B.2 FULL RESULTS

Table 5 compares the performance of four task models—DeepSeek-R1, o1, GPT-4.5, and GPT-
4o—when optimized by different optimizer models across four key metrics: Trigger Identification
(TI), Trigger Classification (TC), Argument Identification (AI), and Argument Classification (AC).
Each row corresponds to a task model, and each column group corresponds to a specific optimizer
guiding the prompt updates during MCTS. This layout allows us to analyze both the robustness of
task models and the relative effectiveness of various optimizers under a shallow MCTS setup.

We further evaluate our method on the ACEmed dataset using the same MCTS configuration with
depth 1. Table 6 reports the performance of four task models under different optimizer models
across the four standard evaluation metrics. Compared to ACElow, this medium-resource setup

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Models DeepSeek-R1 (Optimizer) o1 (Optimizer) GPT-4.5 (Optimizer) GPT-4o (Optimizer)

TI TC AI AC TI TC AI AC TI TC AI AC TI TC AI AC

DeepSeek-R1 37.5 33.93 25.57 24.66 27.72 25.74 18.67 18.67 36.89 34.95 22.91 22.91 32.78 32.78 21.83 21.83
o1 31.54 31.54 21.92 21.92 29.33 29.33 18.96 18.96 31.91 31.91 18.57 18.57 29.24 29.24 21.74 20.29
GPT-4.5 36.04 34.23 23.14 22.31 34.78 33.04 20.07 19.33 31.37 31.37 19.32 19.32 30.29 30.29 20.97 20.19
GPT-4o 35.29 35.29 22.07 20.15 28.28 28.28 18.18 18.18 30.61 30.61 16.67 16.67 31.67 31.67 19.57 18.83

Table 5: Complete results of training on ACElow with MCTS depth 1 and tested on the dev set.

enables deeper insights into the generalizability and adaptability of both task and optimizer models.
The results reveal notable variance in model-optimizer synergy, with certain combinations (e.g., o1
optimized by itself) yielding significantly stronger trigger performance, while others show more
balanced gains across argument-level metrics.

Models DeepSeek-R1 (Optimizer) o1 (Optimizer) GPT-4.5 (Optimizer) GPT-4o (Optimizer)

TI TC AI AC TI TC AI AC TI TC AI AC TI TC AI AC

DeepSeek-R1 63.16 63.16 40.00 40.00 65.45 65.45 32.2 32.2 56.25 56.25 37.14 37.14 62.7 62.7 40.06 38.77
o1 78.95 78.95 39.13 36.96 54.78 54.78 33.96 30.19 59.26 59.26 36.67 36.67 57.14 57.14 36.98 36.98
GPT-4.5 64.71 64.71 35.42 35.42 46.15 46.15 29.63 29.63 63.57 63.57 35.94 35.94 59.21 59.21 38.1 36.51
GPT-4o 30.00 30.00 25.88 25.1 28.57 28.57 22.32 22.32 34.55 34.55 27.54 27.54 29.38 29.38 26.99 26.3

Table 6: Complete results of training on ACEmed with MCTS depth 1 and tested on the dev set.

We now report results on the ACEmed dataset using a deeper MCTS configuration with depth 5.
Table 7 summarizes the performance of each task model under four different optimizers. Compared
to the shallower setup, this deeper search allows for more extensive prompt refinement, which can
lead to either improved generalization or potential overfitting, depending on the optimizer-task model
combination. Notably, certain models like o1 exhibit strong trigger-level performance when paired
with GPT-4.5 as an optimizer, while others demonstrate more balanced gains across argument metrics.
These results highlight the sensitivity of the optimization process to both the depth of MCTS and the
choice of optimizer.

Models DeepSeek-R1 (Optimizer) o1 (Optimizer) GPT-4.5 (Optimizer) GPT-4o (Optimizer)

TI TC AI AC TI TC AI AC TI TC AI AC TI TC AI AC

DeepSeek-R1 56.6 56.6 44.26 44.26 66.67 66.67 44.93 40.58 46.15 46.15 40.8 38.4 48.28 48.28 40.51 37.97
o1 48.08 48.08 40.74 39.81 42.86 42.86 38.71 38.71 84.68 84.68 41.48 37.78 48.28 48.28 34.64 33.52
GPT-4.5 45.68 45.68 38.36 37.74 51.24 51.24 36.22 36.22 59.26 59.26 36.24 37.58 41.18 41.18 32.35 32.35
GPT-4o 49.09 49.09 28.11 27.31 61.11 61.11 28.57 28.57 52.00 52.00 27.03 27.03 61.54 61.54 29.91 28.04

Table 7: Complete results of training on ACEmed with MCTS depth 5 and tested on the dev set.

To assess the generalization capability of the optimized prompts, we evaluate all model-optimizer
pairs on the ACE test set using an MCTS depth of 5. Table 8 presents the performance. This setup
represents the final evaluation phase, where models are tested on unseen examples after undergoing
deeper exploration-driven prompt optimization. Overall, the results show that performance trends
remain consistent with those observed on the development set, though certain combinations—such as
DeepSeek-R1 with itself as optimizer—demonstrate stronger stability, while others exhibit slight
performance drops, especially in argument-level metrics. These observations reinforce the impact of
both optimizer choice and MCTS depth on downstream generalization.

B.3 ERROR CATEGORIES AND EXAMPLES

To better understand the limitations of our approach and the nature of model failures during prompt
optimization, we conduct a qualitative error analysis by categorizing common mistakes observed in
model outputs. Table 9 summarizes the key error categories encountered across multiple evaluation
runs, along with representative examples and detailed descriptions. These categories—ranging from
parsing issues and hallucinations to deeper linguistic challenges such as coreference and implicit

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Models DeepSeek-R1 (Optimizer) o1 (Optimizer) GPT-4.5 (Optimizer) GPT-4o (Optimizer)

TI TC AI AC TI TC AI AC TI TC AI AC TI TC AI AC

DeepSeek-R1 69.23 67.69 44.33 43.75 54.12 54.12 42.06 42.06 52.8 52.8 41.98 41.98 47.27 47.27 33.61 31.93
o1 68.28 67.76 38.44 37.86 67.86 67.86 38.71 38.71 58.29 58.29 36.73 36.73 41.11 41.11 28.57 28.57
GPT-4.5 68.31 68.31 38.44 36.69 64.71 64.71 39.02 36.59 56.45 56.45 35.29 35.29 49.09 49.09 28.11 27.31
GPT-4o 59.44 59.44 36.99 35.71 64.52 64.52 30.59 30.59 56.57 56.57 34.75 34.75 48.19 48.19 26.94 26.94

Table 8: Complete results of training on ACEmed with MCTS depth 5 and tested on the test set.

event detection—highlight areas where models tend to struggle, particularly under batch prompting
and complex event structures.

Error Category

Description: Parsing errors occur when the model’s output is not in the expected format (e.g., JSON or structured
list), often due to extra reasoning or verbose responses in batch prompts. These make the output unusable for
evaluation pipelines.Parsing Errors

Example: Prompts that return extra text or commentary instead of a valid Python structure, causing non-parsable
output.

Description: Hallucinations occur when the model generates arguments or events that are not supported by the
input. This usually happens due to biases learned during training or lexical overlaps with known labels.Hallucinations

Example: Text: “Different parts of the strip saw conflicts today.” → Model incorrectly predicts a ‘Conflict‘
event based solely on the word “conflict”.

Description: Multiple event errors happen when the model detects only a single event in a sentence that contains
multiple, usually defaulting to the most salient or final event.Multiple Events

Example: Text: “...went home and his father-in-law killed him.” → Model only predicts the ‘Die‘ event,
ignoring the ‘Transport‘ event.

Description: Label noise refers to inconsistencies or ambiguities in the dataset annotations, such as differing
treatment of coreferences or unclear event boundaries, which confuse both training and evaluation.Label Noise

Example: Text: “Our president has repeatedly... relied on a man... Hussein Kamel... leader of the Iraq arms
program who defected...” → Label uses ‘person=[”leader”]‘; model uses ‘person=[”Hussein Kamel”]‘.

Description: Coreference errors arise when the model fails to resolve references like pronouns or role-based
descriptors to their actual entities, leading to incorrect or incomplete argument spans.Coreferences

Example: Text: “...Hussein Kamel, leader of the Iraq arms program who defected...” → Label uses “leader”;
model uses “Hussein Kamel”, highlighting coreference resolution challenges.

Description: Span overprediction occurs when the model predicts more detailed argument spans than necessary,
often including modifiers or descriptors not required by the task’s minimal span rules.Span Overprediction

Example: Text: “Orders went out today to deploy 17,000 U.S. Army soldiers in the Persian Gulf region.” →
Label: “soldiers”; Prediction: “17,000 U.S. Army soldiers” – includes extra modifiers.

Description: Implicit events are those not directly triggered by verbs but inferred through adjectives, nouns, or
other context (e.g., “former”). These are often missed by models unless explicitly instructed.Implicit Events

Example: Text: “...with former Congressman Tom Andrews...” → Trigger “former” implies ‘EndPosition‘, but
is often missed by models lacking rules for implicit event detection.

Table 9: Description of error categories with examples.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C OPTIMIZED TASK INSTRUCTION AND GUIDELINES

In this section, we present fully optimized task instruction and event guidelines generated by
DeepSeek-R1, o1, GPT-4.5, and GPT-4o.

C.1 EXAMPLE OF OPTIMAL TASK INSTRUCTION AND EVENT GUIDELINES GENERATED BY
DEEPSEEK-R1

Event Extraction Task: Extract structured events from text using Python
class definitions. Follow these rules:

1. **Span Extraction**:
- **Triggers**: Minimal contiguous spans (verbs/nouns) directly

expressing the event. Include both verbal and nominal forms ("
death" = Die, "killings" = Die). Add new triggers like "converge"
for Meet and "is no more" for EndOrg

- **Arguments**:
- Remove articles ("a/an/the") and possessive pronouns EXCEPT when

part of official names or temporal phrases ("The Hague", "the
past year")

- Resolve pronouns AND POSSESSIVE NOUNS to named entities **
immediately** using same-sentence antecedents ("airline’s plan"
→ ["airline"])

- Strip role/location/age descriptors from arguments ("Philadelphia
lawyers" → "lawyers") unless part of multi-word crime

- Keep FULL spans for crimes/money including sources/amounts ("
stereo worth $1,750 from family") unless legal terms

- Detect beneficiaries via ownership markers ("for X’s project"),
direct "to X" transfers go to recipient

2. **Special Handling**:
- **Bankruptcy Triggers**: "went bust" → EndOrg unless explicit

bankruptcy context
- **Meet Entities**: Include ALL resolvable participants (subject +

object)
- **Crime Spans**: Retain full contextual clauses ("If convicted of

killings...") without truncation
- **Temporal Phrases**: Keep original spans with articles when part of

phrase ("the early 90’s")

3. **Output Rules**:
- Always output in Python-format as [EventName("mention" = "trigger",

"arg1_key" = "arg1_span", ...), EventName("mention" = "trigger", "
arg1_key" = "arg1_span", ...)]

- Include ALL role fields with empty lists where applicable
- Output separate events for each trigger (no merging) even for

identical event types
- Strict pydantic syntax: [EventName(mention="span", role=["span"],

...)]
- Preserve original casing for locations unless explicitly proper

nouns

4. **Critical Exceptions**:
- **EndOrg Triggers**: Add "collapse", "drive out", "went bust" with

explicit org mentions
- **Appeal Roles**: defendant = opposing party (state), prosecutor =

appellant
- **TransferMoney**: "for X" → recipient unless ownership marker ("for

X’s Y" → beneficiary)
- **PhoneWrite Entities**: Strip ALL role descriptors ("Secretary

Powell" → ["Powell"])

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Here are the event definitions:

class Convict(JusticeEvent):
"""Extract convictions where entity is found guilty of crime.
Key Updates:
- crime: Retain FULL spans including amounts/sources ("received

stereo worth $1,750 from family")

Example: "convicted of taking bribes worth $1M" → crime=["taking
bribes worth $1M"]

Counterexample: Truncating to ["taking bribes"] → error
"""
mention: str # Triggers: "convicted", "conviction"
defendant: List[str] # ["Vang"] (resolved pronouns, strip

descriptors)
adjudicator: List[str] # ["court"] (official names only)
crime: List[str] # Full offense span without legal terms
time: List[str] # ["last Wednesday"] (exact temporal phrases)
place: List[str] # ["Minnesota"] (geopolitical entities from context

)

class TransferMoney(TransactionEvent):
"""Money transfers without goods exchange.
Key Updates:
- recipient: Direct receiver ("to X" OR "for X" if X is endpoint)
- beneficiary: Only for ownership ("for X’s project") or indirect

benefit

Example: "donated $5 for Tim Kaine" → recipient=["Tim Kaine"]
Example: "funds for Kaine’s campaign" → beneficiary=["Kaine"]
"""
mention: str # Triggers: "provided money", "donation"
giver: List[str] # ["foundation"] (strip descriptors)
recipient: List[str] # ["charity"] (direct receiver from "to/for X")
beneficiary: List[str] # ["Suha"] (from ownership markers)
money: List[str] # ["$15M"] (keep symbols/approximations)
time: List[str] # ["two years"] (full temporal span)
place: List[str] # ["Swiss"] (origin locations, strip prepositions)

class Meet(ContactEvent):
"""Face-to-face interactions.
Key Updates:
- entity: Include ALL resolvable participants (subject + object)

Example: "Annan met Al-Douri" → entity=["Annan", "Al-Douri"]
Counterexample: Omitting subject → error
"""
mention: str # Triggers: "meet", "summit", "talks"
entity: List[str] # ["delegates"] (all participants)
time: List[str] # ["today"] (exact temporal span)
place: List[str] # ["Dallas"] (resolved location noun)

class PhoneWrite(ContactEvent):
"""Non face-to-face communication.
Key Updates:
- entity: Strip ALL role descriptors unless part of compound name

Example: "e-mail from Secretary Powell" → entity=["Powell"]
Counterexample: Retaining "Secretary" → error
"""
mention: str # Triggers: "called", "e-mail" with transmission

context
entity: List[str] # ["we", "them"] (bare names, resolved pronouns)
time: List[str] # ["during meeting"] (exact time phrase)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

place: List[str] # ["office"] (specific location if present)

class DeclareBankruptcy(BusinessEvent):
"""Formal bankruptcy declarations.
Key Rules:
- entity: Resolve org pronouns AND possessive nouns ("airline’s

bankruptcy" → ["airline"])
- Triggers: "bankruptcy", "Chapter 11" (exclude "collapse"/"went bust

" without explicit bankruptcy context)

Example: "airline’s bankruptcy filing" → mention="bankruptcy", org=["
airline"]

Counterexample: "near-collapse" → EndOrg
"""
mention: str # Triggers indicating financial collapse: "bankruptcy",

"Chapter 11"
entity: List[str] # ["Enron Corp"] (resolved orgs from pronouns/

possessives in same sentence)
time: List[str] # ["2003"] (declaration time phrase)
place: List[str] # ["Texas"] (jurisdiction noun if specified)

class EndOrg(BusinessEvent):
"""Organization termination events.
Key Rules:
- Triggers: "ceased", "is no more", "collapse", "drive out", "went

bust"
- org: Require explicit organizational mention ("casinos" in "casinos

faced collapse")

Example: "company went bust" → mention="went bust", org=["company"]
Counterexample: "facing collapse" (no explicit org) → ignore
"""
mention: str # Triggers must indicate actual termination
org: List[str] # ["plant"] (direct object or possessive noun)
time: List[str] # ["the past year"] (with articles when part of

phrase)
place: List[str] # ["Eugene"] (specific location noun)

class Die(LifeEvent):
"""Death events.
Key Updates:
- mention: Include nominal forms ("killings", "casualties") as valid

triggers

Example: "massacre casualties" → mention="casualties"
Counterexample: "death penalty" → ignore
"""
mention: str # Triggers: "died", "killings", "casualties"
agent: List[str] # ["shooter"] (intentional actors only)
victim: List[str] # ["patient"] (without quantifiers/possessives)
instrument: List[str] # ["knife"] (specific tools/weapons)
time: List[str] # ["last night"] (exact span)
place: List[str] # ["hospital"] (death location noun)

class SentenceAct(JusticeEvent):
"""Punishment issuance events.
Key Updates:
- crime: Retain original crime from conditional clauses ("If

convicted of killings..." → ["killings"])

Example: "faces life for fraud" → crime=["fraud"]
Counterexample: "could face penalty" → ignore
"""

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

mention: str # Triggers: "sentenced", "faces". Must reference actual
punishment

defendant: List[str] # ["activist"] (strip role descriptors)
adjudicator: List[str] # ["jury"] (bare roles unless official title)
crime: List[str] # ["illegally attending meeting"] (full contextual

span)
sentence: List[str] # ["life in prison"] (exact punishment phrase)
time: List[str] # ["Thursday"] (exact temporal expression)
place: List[str] # ["district court"] (decision location noun)

class Sue(JusticeEvent):
"""Legal action initiations.
Key Updates:
- adjudicator: Include "judge" if overseeing case approval ("approved

by judge" → ["judge"])

Example: "suit against Gateway approved by judge" → adjudicator=["
judge"]

Counterexample: "lawsuit documents" → adjudicator=[]
"""
mention: str # Triggers: "suit", "lawsuit". Must reference legal

filing
plaintiff: List[str] # ["patients"] (strip locations/roles unless

critical)
defendant: List[str] # ["Gateway"] (explicitly sued entities)
adjudicator: List[str] # ["judge"] (if directly involved)
crime: List[str] # ["malpractice"] (explicit offense without legal

terms)
time: List[str] # ["last month"] (keep articles in temporal phrases)
place: List[str] # ["South Florida"] (specific noun phrases)

class Appeal(JusticeEvent):
"""Court decision appeals.
Key Updates:
- defendant: Opposing party (state/prosecution), NOT appellant
- prosecutor: Entity filing appeal (resolved from subject/pronouns)

Example: "appeal by Anwar against conviction" → prosecutor=["Anwar"],
defendant=[]

Counterexample: Assigning appellant as defendant → error
"""
mention: str # Triggers: "appeal", "appeals"
defendant: List[str] # ["state"] (opposing party in original case)
prosecutor: List[str] # ["Pasko"] (appellant, bare name without

roles)
adjudicator: List[str] # ["court"] (original court name)
crime: List[str] # ["espionage"] (original charge)
time: List[str] # ["last week"] (exact temporal phrase)
place: List[str] # ["Malaysia"] (country from court description)

C.2 EXAMPLE OF OPTIMAL TASK INSTRUCTION AND EVENT GUIDELINES GENERATED BY O1

This is an event extraction task where the goal is to extract
structured events from the text following structured event
definitions in Python.

A structured event contains:
(1) an event trigger word (mention) -- always use the minimal lexical

span (e.g., "appeal" rather than "filed an appeal"),
(2) an event type, and
(3) the arguments participating in the event (with their roles).

Keep argument references minimal by removing articles, possessives, or
descriptive words unless they are crucial identifiers (e.g., "the
retailer" -> "retailer", "my uncle" -> "uncle").

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Important guidelines to address prior errors:
1. For each event trigger, use the single most relevant word (e.g., "

bankruptcy" rather than "file for bankruptcy").
2. For argument roles, also use minimal spans (e.g., "soldier"

instead of "a soldier," "woman" instead of "a woman").
3. Output a separate event for each distinct trigger or implied event

(e.g., a conviction and a subsequent sentencing should be two events
).

4. For justice events (Sue, Appeal, Convict, SentenceAct, etc.):
- "defendant" is the party or entity accused or found guilty.
- "plaintiff" or "prosecutor" is the party initiating legal

action or bringing an appeal. If the text does not specify who is
accused, leave "defendant" empty.

- If the text refers to a punishment or sentencing (e.g., "faces
the death penalty"), include a separate SentenceAct event referencing
the same "defendant."

5. For transfers of money, watch for direct or indirect references to
donations, funding, or contributions and label them as TransferMoney
events.

6. Do not skip events implied by synonyms or indirect wording (e.g.,
"shutting down" → EndOrg, "emerged from bankruptcy" →
DeclareBankruptcy).

7. If there is more than one event in a single text, output each in a
separate entry.

8. Always produce valid Python list format exactly as:
result = [
EventName("mention" = "trigger", "role1" = [...], "role2" =

[...], ...),
EventName("mention" = "trigger", "role1" = [...], "role2" =

[...], ...),
]
9. Do not output anything else except this parsable Python structured

format (no extra text or explanation).

The event class definitions remain the same, but refer to the following
refined docstrings for usage examples, minimal spans, and role

clarifications.

Here are the event definitions:

class Convict(JusticeEvent):
"""
A Convict Event occurs whenever a Try Event ends with a successful

prosecution of the Defendant.
In other words, a Person, Organization or GPE Entity is convicted

whenever that Entity has been
found guilty of a Crime.

Refined Guidelines:
• mention: Use the minimal trigger word referring to the conviction

(e.g., "guilty", "convicted").
• defendant: The entity/ies found guilty. Remove articles or

possessives ("the man" → "man").
• adjudicator: The court or judge that issued the guilty verdict,

if explicitly given.
• crime: The wrongdoing for which the defendant was found guilty (e

.g., "murdering X").
• time: Any explicit time references (e.g., "last week").
• place: Any explicit location references (e.g., "in Boston").

What to do:
- Include "crime" if stated: e.g., "convicted of murdering his wife

" → crime=["murdering his wife"].

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

- Keep the defendant arg minimal: "Scott Peterson" → ["Scott
Peterson"], not ["Mr. Scott Peterson"].

What not to do:
- Do not guess or infer the crime if not stated.
- Do not prepend articles or descriptive words (e.g., "the

defendant" → "defendant" if used generically).

Example:
Text: "John was found guilty of fraud."
→ Convict(mention=’guilty’, defendant=[’John’], crime=[’fraud’],

time=[], place=[])
"""
mention: str # minimal word expressing the conviction event
defendant: List[str] # who is found guilty
adjudicator: List[str] # the judge or court, if stated
crime: List[str] # the wrongdoing for which the defendant is

convicted
time: List[str] # when the conviction takes place
place: List[str] # where the conviction takes place

class TransferMoney(TransactionEvent):
"""
TransferMoney Events refer to giving, receiving, borrowing, or

lending money
when not purchasing goods or services in return.

Refined Guidelines:
• mention: Single word that triggers the transfer event (e.g., "

donated", "loaned").
• giver: The agent who provides funds. Remove determiners ("the", "

a") unless part of a name.
• recipient: The agent who receives the funds.
• beneficiary: Any additional agent that benefits, if separate from

recipient.
• money: The amount of funds (if any mention like "$3,000", "large

sum").
• time: When the event takes place (e.g., "today", "last year").
• place: Where the transaction or transfer occurs.

What to do:
- Label intangible references (e.g., "contributed", "had

contributors") as TransferMoney if it implies funds.
- Use minimal references for all money roles.

What not to do:
- Do not label intangible help (e.g., "emotional support") as

TransferMoney.
- Avoid listing indefinite articles or extraneous descriptors in

the agent spans.

Example:
Text: "He donated $5,000 to Red Cross last week."
→ TransferMoney(mention=’donated’, giver=[’He’], recipient=[’Red

Cross’], money=[’$5,000’], time=[’last week’], place=[])
"""
mention: str # minimal word triggering the money transfer
giver: List[str] # who provides the money
recipient: List[str] # who receives the money
beneficiary: List[str] # who additionally benefits, if any
money: List[str] # the sum or amount
time: List[str] # when the transfer happens
place: List[str] # where the transfer event occurs

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

class Meet(ContactEvent):
"""
A Meet Event occurs when two or more Entities come together face-to-

face
at a single location and interact with one another.

Refined Guidelines:
• mention: The single best word for the meeting (e.g., "met", "

summit", "conference").
• entity: All participants, stripped of articles or descriptors. If

multiple, list them all.
• time: Any temporal phrase referencing when the event took place.
• place: The location of the meeting.

What to do:
- Use triggers for in-person gatherings (e.g., "met", "conference",

"summit").
- Keep participant references minimal: "President", "Vice-President

" instead of "the US President".

What not to do:
- Do not treat phone calls or written communication as Meet (use

PhoneWrite).

Example:
Text: "The leaders met in Paris yesterday."
→ Meet(mention=’met’, entity=[’leaders’], time=[’yesterday’], place

=[’Paris’])
"""
mention: str # minimal word or short phrase for the meeting
entity: List[str] # who met face-to-face
time: List[str] # when the meeting happened
place: List[str] # where the meeting occurred

class PhoneWrite(ContactEvent):
"""
A PhoneWrite Event occurs when two or more people communicate
without meeting face-to-face. This includes phone calls, email,

texting, etc.

Refined Guidelines:
• mention: The minimal expression of communication (e.g., "called",

"emailed", "texted").
• entity: The agents communicating. Strip out articles, determiners

, or extra descriptors.
• time: When the communication took place (e.g., "this morning", "

yesterday").

What to do:
- Common triggers: "phoned", "emailed", "talked by phone", "texted

", "messaged".
- Keep roles minimal (e.g., entity=[’John’, ’Mary’]).

What not to do:
- Do not mark in-person discussions as PhoneWrite (use Meet).

Example:
Text: "They emailed each other last night."
→ PhoneWrite(mention=’emailed’, entity=[’They’], time=[’last night

’])
"""
mention: str # minimal communication trigger
entity: List[str] # communicating parties

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

time: List[str] # when the communication happened

class DeclareBankruptcy(BusinessEvent):
"""
A DeclareBankruptcy Event occurs whenever an Entity officially seeks

legal protection
from debt collection due to severe financial distress.

Refined Guidelines:
• mention: Short trigger related to bankruptcy (e.g., "bankruptcy",

"filed", "declared").
• org: The organization or person who declares bankruptcy. Remove "

the", "my", etc.
• time: When the bankruptcy is declared (e.g., "in 2003", "today").
• place: Where the declaration is made, if mentioned (e.g., "in

court", "in New York").

What to do:
- Recognize synonyms or indirect references like "emerged from

bankruptcy" or "bankruptcy protection" as triggers.

What not to do:
- Do not guess an org if not specified.

Example:
Text: "My uncle declared bankruptcy in 2003."
→ DeclareBankruptcy(mention=’bankruptcy’, org=[’uncle’], time

=[’2003’], place=[])
"""
mention: str # minimal expression for bankruptcy
org: List[str] # the party declaring bankruptcy
time: List[str] # when the declaration takes place
place: List[str] # where it is declared

class EndOrg(BusinessEvent):
"""
An EndOrg Event occurs when an Organization ceases to exist or
"goes out of business."

Refined Guidelines:
• mention: Minimal trigger (e.g., "shutting down", "closing").
• org: The organization or sub-unit that ends. E.g., "plant", "

branch".
• time: When this closure or end is stated to happen.
• place: Where the organization is located or ended.

What to do:
- Consider references such as "closing its plant" → "plant" in org.
- Identify synonyms like "shutting down," "ceasing operations."

What not to do:
- Do not skip it if the text explicitly says the org ended.

Example:
Text: "Hewlett Packard is shutting down its plant in Eugene."
→ EndOrg(mention=’shutting down’, org=[’plant’], time=[], place=[’

Eugene’])
"""
mention: str # minimal expression for the organizational end
org: List[str] # the ended organization
time: List[str] # when the end occurs
place: List[str] # where this event happens

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

class Die(LifeEvent):
"""
A Die Event occurs whenever a Person loses their life, whether

accidental,
intentional, or self-inflicted.

Refined Guidelines:
• mention: The short trigger referencing the death (e.g., "killed",

"died", "murdered").
• agent: The killer or cause if identified (e.g., "gunman", "regime

")---remove articles.
• victim: Who died, again with minimal references (e.g., "soldier"

instead of "a soldier").
• instrument: The device or method used, if any (e.g., "gun", "bomb

").
• time: When the death occurred.
• place: Where it took place.

What to do:
- Create separate Die events for each death trigger in the text.
- If the text references homicide: agent is the killer, victim is

the deceased.

What not to do:
- Do not combine multiple victims into one string if they appear as

separate triggers.

Example:
Text: "He killed the soldier in Iraq."
→ Die(mention=’killed’, agent=[’He’], victim=[’soldier’],

instrument=[], time=[], place=[’Iraq’])
"""
mention: str # minimal word referencing the death
agent: List[str] # optional killer or cause
victim: List[str] # who died
instrument: List[str] # how they were killed (weapon, etc.)
time: List[str] # when the death happened
place: List[str] # where the death happened

class SentenceAct(JusticeEvent):
"""
A SentenceAct Event occurs whenever a punishment for the Defendant is

issued,
e.g., a prison term or another legal penalty.

Refined Guidelines:
• mention: A trigger referencing sentencing or punishment (e.g., "

sentenced", "faces [penalty]").
• defendant: The same party convicted or found guilty, if known.
• adjudicator: The entity delivering the sentence, if stated (e.g.,

"judge", "court").
• crime: The wrongdoing for which the defendant is sentenced (e.g.,

"murder", "embezzlement").
• sentence: The specific punishment (e.g., "death penalty", "life

in prison").
• time: When the sentencing occurs.
• place: Where the sentencing occurs.

What to do:
- Look for words like "faces the death penalty," "was sentenced to

ten years."

What not to do:

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

- Do not omit a SentenceAct if there’s explicit mention of
punishment.

Example:
Text: "He now faces the death penalty for murdering his wife."
→ SentenceAct(mention=’faces’, defendant=[’He’], crime=[’murdering

his wife’], sentence=[’death penalty’], time=[], place=[])
"""
mention: str # minimal expression for the sentencing event
defendant: List[str] # who is sentenced
adjudicator: List[str] # judge or court
crime: List[str] # the wrongdoing or offense
sentence: List[str] # the punishment
time: List[str] # when the sentencing happens
place: List[str] # where it happens

class Sue(JusticeEvent):
"""
A Sue Event occurs whenever a court proceeding is initiated to

determine
the liability of a Person, Organization, or GPE.

Refined Guidelines:
• mention: The minimal trigger (e.g., "sued", "suing", "filed a

lawsuit", "suit").
• plaintiff: The party bringing the suit. Strip out any articles or

adjectives.
• defendant: The party being sued. Again, keep references minimal.
• adjudicator: The judge or court if one is explicitly named.
• crime: If a wrongdoing is stated (e.g., "for fraud", "for breach

of contract").
• time: When the suit is filed or mentioned.
• place: Where the suit is taking place.

What to do:
- Label the party initiating the lawsuit as "plaintiff."

What not to do:
- Do not confuse "plaintiff" with "defendant" if the text clearly

states who is suing whom.

Example:
Text: "A nurse sued Dell for bait and switch."
→ Sue(mention=’sued’, plaintiff=[’nurse’], defendant=[’Dell’],

crime=[’bait and switch’], time=[], place=[])
"""
mention: str # minimal expression for the lawsuit event
plaintiff: List[str] # who brings the suit
defendant: List[str] # who is being sued
adjudicator: List[str] # the judge or court, if stated
crime: List[str] # the wrongdoing for which the suit is filed
time: List[str] # when the suit took place
place: List[str] # where the suit took place

class Appeal(JusticeEvent):
"""
An Appeal Event occurs whenever a court decision is taken to a higher

court
for review.

Refined Guidelines:
• mention: The short trigger for the appeal (e.g., "appeal", "

appealed").

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

• defendant: The party accused or found guilty, if the text states
so.

• prosecutor: The party bringing the appeal (i.e., the appellant).
This might be the same individual who was a defendant in a
prior trial but is now appealing.

• adjudicator: The higher court or judge handling the appeal, if
given.

• crime: The wrongdoing for which the appeal is made (if stated).
• time: When the appeal is filed or heard.
• place: Where the appeal is taking place.

What to do:
- If text says someone "filed an appeal," that entity is the "

prosecutor" if no other roles are specified.
- If the text does not identify an accused, keep defendant=[].

What not to do:
- Do not automatically fill "defendant" if it’s unclear who was

accused.

Example:
Text: "He appealed the verdict last week."
→ Appeal(mention=’appealed’, defendant=[], prosecutor=[’He’], crime

=[], time=[’last week’], place=[])
"""
mention: str # minimal word for the appeal event
defendant: List[str] # the accused, if stated
prosecutor: List[str] # who is bringing the appeal
adjudicator: List[str] # the judge or court for the appeal
crime: List[str] # the crime or issue being appealed
time: List[str] # when the appeal occurs
place: List[str] # where the appeal is heard

C.3 EXAMPLE OF TASK INSTRUCTION AND OPTIMAL EVENT GUIDELINES GENERATED BY
GPT-4.5

This is an event extraction task for identifying and structuring events
from text using Python-defined event classes. Each structured event

consists of an event trigger word, an event type, participant
arguments, and their roles. Your objective is to output this
information in a Python list of events, ensuring it is Python-
parsable and strictly follows the event definitions provided below.

Instructions:

1. **Span Extraction**:
- Extract precise and concise spans for mentions and participant

arguments, conveying the event or argument role clearly without
unnecessary context.

- For extracts involving titles or specifics, use general terms
unless details are crucial to the events integrity.

- When identifying entity roles in events, prioritize the core
identifiers over accompanying descriptors.

2. **Role Identification**:
- Accurately identify roles using contextual cues, effectively

resolving ambiguities while prioritizing explicit spans. If roles
are unmentioned, leave them empty.

- Maintain consistency, particularly with distinctions like plaintiff
vs. defendant, based on contextual evidence.

- Clarify roles in complex transactions, such as distinguishing
between beneficiaries and direct recipients.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

3. **Output Format**:
- Please follow the Python-format EventName("mention" = "trigger", "

role1" = [...], "role2" = [...], ...) strictly.
- Ensure consistent output in the specified format for Python

compatibility, adhering strictly to event definitions.
- Represent unmentioned participants with an empty list rather than

assumptions or placeholders.

4. **Clarifications and Exceptions**:
- Note explicitly when roles have exceptions based on role

definitions.
- Manage overlapping roles by following specific guidelines for span

clarity and precision, ensuring no crucial details are overlooked
.

5. **Consistency**:
- Ensure consistency in role identification and event extraction

across similar scenarios.
- Address ambiguity and overlap by defining roles explicitly and

setting clear precedence for extraction guidelines.

Below are the structured event definitions:

Here are the event definitions:

class Convict(JusticeEvent):
"""
A Convict Event signifies the successful prosecution of a defendant.

This involves a person, organization, or geographical political
entity (GPE) being convicted for a crime.

"""
mention: str # Focus on concise triggers like "convicted" or "

conviction", avoiding embellishments.
defendant: List[str] # Name the convicted individuals or entities.

Use direct identifiers, example: "John Doe".
adjudicator: List[str] # Reference the judicial entity, example: "

court" or "judge", unless specifics are critical.
crime: List[str] # Provide short, precise descriptions of crimes, e.

g., "fraud".
time: List[str] # Specify exact times if mentioned, e.g., "Monday".
place: List[str] # Note locations if explicitly mentioned, avoid

assumptions.

class TransferMoney(TransactionEvent):
"""
Non-purchasing money transfers involving giver and recipient roles,

where transactions are more indirect or complex.
"""
mention: str # Use explicit terms like "donated", staying concise.
giver: List[str] # Identify the money source, example: "Sheila C.

Johnson".
recipient: List[str] # Clearly name receiving entities.
beneficiary: List[str] # Note additional beneficiaries unambiguously

.
money: List[str] # Use exact figures, avoiding vague amounts.
time: List[str] # Define occurrence times if clearly specified.
place: List[str] # Mention the transaction location if detailed.

class Meet(ContactEvent):
"""
Events where entities gather face-to-face, e.g., meetings, summits,

or conferences.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

"""
mention: str # Central meeting references like "summit", without

extra detail.
entity: List[str] # List participants clearly, omitting superfluous

descriptions.
time: List[str] # Specify times if explicitly provided.
place: List[str] # Mention locations if available, avoiding

unsupported assumptions.

class PhoneWrite(ContactEvent):
"""
Non-face-to-face communications, covering written and phone-based

interactions.
"""
mention: str # Terms indicating communication, e.g., "called",

succinctly.
entity: List[str] # Capture the participants in the communication.
time: List[str] # Specify times if mentioned, ensuring clarity.

class DeclareBankruptcy(BusinessEvent):
"""
Occurs when an organization requests legal protection from debt

collection.
"""
mention: str # Use declarations like "bankruptcy", clearly.
org: List[str] # Focus on the organizational name in question.
time: List[str] # Mention when the declaration occurs if explicitly

stated.
place: List[str] # Note the declaration’s location if outlined.

class EndOrg(BusinessEvent):
"""
An organization ceases operations, going out of business completely.
"""
mention: str # Use terms like "shut down" to capture essence

effectively.
org: List[str] # Succinctly list the organizations ending operations

.
time: List[str] # Clearly mention when specifics are supplied.
place: List[str] # Mention location details if clearly stated.

class Die(LifeEvent):
"""
Event marking the end of life, covering direct, accidental, and self-

inflicted cases.
"""
mention: str # Specific terms like "died", excluding excess context.
agent: List[str] # Cite any responsible party if indicated.
victim: List[str] # Precisely identify the deceased without titles.
instrument: List[str] # Specify instruments used if described.
time: List[str] # Use accurate timing where provided.
place: List[str] # Mention locations where explicitly noted.

class SentenceAct(JusticeEvent):
"""
Legal sentence issuance, often involving incarceration.
"""
mention: str # Direct words like "sentenced", retaining clarity.
defendant: List[str] # Identify the sentenced party succinctly.
adjudicator: List[str] # State the authority issuing the sentence.
crime: List[str] # Precisely include mentioned crimes.
sentence: List[str] # Clearly outline the penalties involved.
time: List[str] # Specific timing if explicitly declared.
place: List[str] # Cite location details when supplied.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

class Sue(JusticeEvent):
"""
The initiation of legal proceedings against an entity to determine

liability.
"""
mention: str # Specific terms like "sued".
plaintiff: List[str] # Clearly identify the suing parties.
defendant: List[str] # Identify the sued entities unambiguously.
adjudicator: List[str] # Specify judicial role if expressed.
crime: List[str] # Highlight alleged crimes if specified.
time: List[str] # Reference explicit timing if detailed.
place: List[str] # Extract the location details if outlined.

class Appeal(JusticeEvent):
"""
Represents decisions moved to higher courts for further review.
"""
mention: str # Use terms like "appealed" directly.
defendant: List[str] # Name the entity under review.
prosecutor: List[str] # Name the initiating party of the appeal.
adjudicator: List[str] # Reference the reviewing court.
crime: List[str] # Clearly detail crimes if mentioned.
time: List[str] # Capture filing times if explicit.
place: List[str] # Mentioned locale of appeal if detailed.

C.4 EXAMPLE OF OPTIMAL TASK INSTRUCTION AND EVENT GUIDELINES GENERATED BY
GPT-4O

This is an event extraction task where the goal is to extract
structured events from the text following structured event
definitions in Python. A structured event contains an event trigger
word, an event type, the arguments participating in the event, and
their roles in the event.

Task Instructions:
1. For each different event type, output the extracted information from

the text into a Python list format where:
- The first key ’mention’ holds the value of the event trigger.
- Subsequent keys/values follow the class definitions below.

2. Structure the output in a valid Pydantic format: ‘result = [EventName(
"mention" = "trigger", "arg1_key" = "arg1_span", ...)]‘.

3. Adhere strictly to the described event descriptions and role
definitions, considering implicit contexts and indirect attributions.

4. Address special cases:
- Appeals: Consider involved parties from prior related events as ‘‘

prosecutor’’.
- Multiple roles may apply contextually; ensure complete information

extraction.
- Implicit indications: If mentions like "filed", "concluded", etc.,

suggest indirect roles, use context to clarify them.

5. Maintain backward compatibility where applicable. Do not output
anything else except parsable structured event format in Python.

Here are the event definitions:

class Convict(JusticeEvent):
"""

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

A Convict Event occurs whenever a Try Event ends with a successful
prosecution of the Defendant.

There may not always be explicit mentions of crimes in the text; use
contextual clues.

"""
mention: str # The text span that expresses the conviction (e.g., "

convicted").
defendant: List[str] # The entity found guilty, search for adjacent

terms like "defendant".
adjudicator: List[str] # The judge or court, often implicitly

understood from context.
crime: List[str] # Crime references, even implied (e.g., "guilty of

...").
time: List[str] # When conviction happens, contextual or explicit

dates.
place: List[str] # Where the conviction occurs, often a court or

city name nearby.

class TransferMoney(TransactionEvent):
"""
Refers to money transfer actions outside purchasing contexts.

Recognize givers and recipients even in indirect mentions.
"""
mention: str # Turn of phrase indicating transfer (e.g., "

transferred", "donated").
giver: List[str] # Entity initiating transfer (may be implied; use

context).
recipient: List[str] # Direct receiver of money, often clearly

stated.
beneficiary: List[str] # Can be implied; beneficiaries are often

indirect.
money: List[str] # Described amounts; look for currency signs ($, e,

etc.).
time: List[str] # Dates or relative times (e.g., "two years ago").
place: List[str] # Locations of transaction, if specified.

class Meet(ContactEvent):
"""
Occurs when entities meet face-to-face; discern collective entity

mentions from individual roles.
"""
mention: str # Trigger phrases (e.g., "meet", "conference").
entity: List[str] # Entities, clarified through context or explicit

mentions.
time: List[str] # When entities meet, even if future planned.
place: List[str] # Meeting location, from nearby phrases.

class PhoneWrite(ContactEvent):
"""
Encompasses non-face-to-face communications; cover implied

interactors.
"""
mention: str # Non-direct communication identified triggers (e.g., "

called", "emailed").
entity: List[str] # Communicating entities, occasionally understood

indirectly.
time: List[str] # Times derived from text, even if not very specific

.

class DeclareBankruptcy(BusinessEvent):
"""
An event signifying financial distress declarations; distinguish from

emergence narratives.
"""
mention: str # Indicators like "declared bankruptcy".

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

org: List[str] # Company/entity that declared, directly mentioned.
time: List[str] # Declaration date, often provided.
place: List[str] # Geographical context of declaration.

class EndOrg(BusinessEvent):
"""
Concludes an organization’s operations; ensure specificity of

organization ceases.
"""
mention: str # Marks of closure (e.g., "dissolved", "shutdown").
org: List[str] # Organization ending, referenced in texts.
time: List[str] # Date context around organization ending.
place: List[str] # Location tied to organizational operations.

class Die(LifeEvent):
"""
Recognizes cessation of life events; determine involvements from

surrounding text.
"""
mention: str # Triggering term showing death (e.g., "died", "passed

away").
agent: List[str] # Agents causing death if deliberate; contextual

deductions.
victim: List[str] # Deceased, named or implied victims.
instrument: List[str] # Weapons or causes if mentioned.
time: List[str] # Death-related timing, even metaphorical.
place: List[str] # Place the death occurred, discerned from text.

class SentenceAct(JusticeEvent):
"""
Legal actions culminating in punishment; include implied authority

adjudication references.
"""
mention: str # Verbs indicating sentencing (e.g., "sentenced").
defendant: List[str] # Persons sentenced, more direct mentions.
adjudicator: List[str] # State actor issuing punishment.
crime: List[str] # Crimes specified can be explicit or by context

related.
sentence: List[str] # Detailed punishments, commonly listed.
time: List[str] # Contextual timing of legal processes.
place: List[str] # Legal venues, stated or implicit.

class Sue(JusticeEvent):
"""
Legal actions initiation detections; interpreting mentions to detect

implicated parties.
"""
mention: str # Lawsuit trigger terms (e.g., "sued").
plaintiff: List[str] # Agents initiating, even implicit from context

.
defendant: List[str] # Specific subjects of the lawsuit.
adjudicator: List[str] # Legal bodies, typically explicit.
crime: List[str] # Charges or offenses underpinning the suit.
time: List[str] # Suit filing and related timings.
place: List[str] # Locations cited, often courts.

class Appeal(JusticeEvent):
"""
Reviewal legal challenges; correctly attribute events around

appellate actions.
"""
mention: str # Terms denoting appeals like "appealed".
defendant: List[str] # Party whose case goes under review.
prosecutor: List[str] # Original case actors initiating the appeal,

inferred.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

adjudicator: List[str] # Higher court taking the over evaluation.
crime: List[str] # Reviews’ subject offenses.
time: List[str] # Appeal reference times, may not be given.
place: List[str] # Court location details or broader judicial zones.

37

	Introduction
	Related Works
	Methodology
	Problem Setup
	Prompt Optimization Framework

	Experiments
	Experimental Setup
	Experimental Results

	Further Analysis
	Conclusion
	Additional Details
	More Implementation Details
	Batch Prompting
	Prompt Optimization as a Search Problem
	Data Split
	Meta-Prompts for Feedback (mfb) and Optimization (mopt)
	Additional Hyperparameter and MCTS Configuration
	Preliminary Experiments and Model Selection

	Additional Results and Analysis
	How Do Optimizers Follow (or Ignore) Feedback?
	Full Results
	Error Categories and Examples

	Optimized Task Instruction and Guidelines
	Example of optimal task instruction and event guidelines generated by DeepSeek-R1
	Example of optimal task instruction and event guidelines generated by o1
	Example of task instruction and optimal event guidelines generated by GPT-4.5
	Example of optimal task instruction and event guidelines generated by GPT-4o

