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Abstract

Large language models (LLMs) demonstrate
remarkable text generation and syntax parsing
capabilities in high-resource languages. How-
ever, their performance notably declines in low-
resource languages due to memory forgetting
stemming from semantic interference across
languages. To address this issue, we propose a
novel deep hierarchical syntax understanding
approach to improve the cross-lingual seman-
tic memory capability of LLMs. First, we de-
sign a multi-task joint fine-tuning strategy to
implicitly align linguistic knowledge between
source and target languages in LLMs, which
is leveraged to initially parse the target text.
Second, we automatically construct the multi-
lingual dependency label banks based on the
statistical structure information from the Uni-
versal Dependencies (UD) data. Third, we ob-
tain each label’s memory strength via in-depth
analysis of the initial parsing tree and its de-
pendency label bank. Finally, memory strength
is further exploited to guide LLMs to learn
the linguistic commonalities from multilingual
dependency label banks, thus activating the
memory ability of weak labels. Experimental
results on four benchmark datasets show that
our method can dramatically improve the pars-
ing accuracy of all baseline models, leading to
new state-of-the-art results. Further analysis re-
veals that our approach can effectively enhance
the weak syntactic label memory cognition of
LLMs by combining the advantages of both im-
plicit multi-task fine-tuning and explicit label
bank guiding. Our code and label banks will
be made publicly available.

1 Introduction

Dependency parsing employs hierarchical tree
structures to exhibit syntactic and grammatical re-
lationships between words. As shown in Figure
1, the tree includes an arc from the headword “/)>
. (fiction)” to the dependent word “HTH (new)”
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Figure 1: An example of original (unfine-tuned) LLMs
dependency parsing, where high-resource source lan-
guage data (Chinese) has a 85.72% correct rate and the
low-resource target language data (Vietnamese) has a
57.14% correct rate. The contents of the dotted box
indicate the same dependency pattern.

with the label “amod”, indicating adjectival modi-
fication. These hierarchical structures are widely
applied in multiple natural language processing
(NLP) tasks, including machine translation (Chen
et al., 2023), question answering (Kang et al.,
2024), and text classification (Su et al., 2025). Re-
cently, researchers focus on improving the syntax
understanding of large language models (LLMs)
using dependency trees (Chen et al., 2024a; Zhang
et al., 2023; Saha and Srihari, 2024).



Advances in language models have markedly
improved supervised dependency parsing for high-
resource languages (Dozat and Manning, 2017; Li
et al., 2019a, 2020; Ye and Teufel, 2021). How-
ever, language model-enhanced parsers are highly
dependent on the scale and quality of training data,
and their performances drop sharply when they
are directly transferred to low-resource languages
due to semantic interference (Rotman and Reichart,
2019; Wang et al., 2020; Effland and Collins,
2023). Therefore, cross-lingual dependency pars-
ing has emerged as a promising direction, aiming
to transfer effective knowledge from high-resource
languages to low-resource ones (Schuster et al.,
2019; Lauscher et al., 2020; Ansell et al., 2021).
Existing approaches fall broadly into two cate-
gories, i.e., traditional and LL.M-based methods.
Traditional methods mainly rely on syntactic fea-
ture projection or transformation (He et al., 2019;
Kurniawan et al., 2021; Guo et al., 2022; Choenni
et al., 2023). Choudhary and O’riordan (2023)
incorporate the source and target linguistic typo-
logical knowledge into a multi-task learning frame-
work to enhance cross-lingual knowledge transfer.
In contrast, LLMs ( ChatGPT I LlaMA 2, Qwen 3
and DeepSeek #) exhibit remarkable generaliza-
tion across a wide range of NLP tasks, benefiting
from massive pre-trained corpora and highly op-
timized architectures. Moreover, their capabilities
can be further strengthened by useful prompt learn-
ing (Zhang et al., 2024a), task-specific parameter-
efficient fine-tuning (Dou et al., 2024), and re-
trieval augmented generation (dos Santos Junior
et al., 2024).

However, LLMs struggle in low-resource lan-
guages’ dependency parsing due to memory for-
getting (Chen et al., 2024b; Guo et al., 2025).
The main reason is that normal LLMs are prone
to memorizing the semantic preferences of high-
resource languages while their capability in low-
resource languages is obstructed (Villalobos et al.,
2024; Kuang et al., 2024). As illustrated in Fig-
ure 1, we can see that LLMs show strong pars-
ing ability in the high-resource language (Chi-
nese) with numerous training data, achieving a
85.72% accuracy. In contrast, the parsing accu-
racy of Vietnamese is only 57.14%. Concretely,
although Vietnamese and Chinese share a sub-
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ject—verb—object structure, they diverge in mod-
ifier placement such as Vietnamese favors post-
modifiers, whereas Chinese employs pre-modifiers.
Even though there is linguistic structural variation
in real scenarios, the relative structure between the
dependency label and POS tags is constant. For
example, both Chinese and Vietnamese have a de-
pendent word with POS tag “ADJ” modifies the
head word with POS tag “NOUN”, owning the
same dependency label “amod”. Hence, depen-
dency relations (head—dependent patterns) often
remain consistent across languages, these cross-
linguistic syntactic similarities can be leveraged to
improve parsing performance of low-resource lan-
guages (Hammerl et al., 2024; Zhang et al., 2024c).

To alleviate this drawback, we propose a deep
hierarchical syntax-aware approach to enhance the
semantic memory capability of LLMs. First, we
employ a multi-task joint fine-tuning strategy to
implicitly align LLMs’ syntactic knowledge across
different languages. Meanwhile, fine-tuned LLMs
are utilized to yield the initial parsing trees of the
target language data. Then, we construct multilin-
gual dependency label banks by extracting statis-
tical patterns from the universal dependency tree-
banks. Next, each label’s memory strength is es-
timated through structural analysis of the initial
parsing trees and its distribution in the label bank.
Finally, memory strength is used to guide LLMs
in capturing cross-lingual syntactic commonalities,
thereby reinforcing the memory capability of weak
dependency labels. Experiments on four bench-
mark datasets demonstrate substantial performance
gains in low-resource scenarios, achieving prior
state-of-the-art results. Further analysis indicates
that our approach can effectively strengthen the
weak syntactic label memory strength of LLMs by
integrating the advantages of both implicit multi-
task fine-tuning and explicit dependency label bank
guiding.

2 Related Work

Cross-lingual dependency parsing.  Cross-
lingual dependency parsing aims to transfer syntac-
tic knowledge from high-resource to low-resource
languages (Langedijk et al., 2022; Shi et al., 2022;
Choenni et al., 2023). Prior work primarily relies
on transfer learning to extract shared syntactic fea-
tures from source languages (Eronen et al., 2023;
Liet al., 2024; Liu et al., 2025). Sun et al. (2023)
propose a cross-lingual self-training framework
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to transfer parsers from monolingual treebanks to
multiple target languages. Recently, the emergence
of LLMs has brought advances in causal reason-
ing and syntactic understanding, supporting a wide
range of artificial intelligence tasks (Ma et al.,
2023; Ge et al., 2024; Lin et al., 2024). Li et al.
(2023) leverage LLMs in self-training by extracting
grammar rules from the source domain to improve
target domain parsing. Chen et al. (2024a) apply
conditional mutual information to model bi-lexical
dependencies, integrating grammatical constraints
to strengthen unsupervised LLM-based parsing.
Zhang et al. (2025) guide a lightweight LLM to
generate phrase structures using grammar rules and
lexical heads for data augmentation in the target
domain. These studies highlight the potential of
LLMs to transfer syntactic knowledge across lan-
guages. Yet two core challenges remain: incom-
plete learning of language-specific syntax during
pretraining, and weak retention of cross-lingual
patterns in LLM memory.

Syntax understanding. Syntax plays a funda-
mental role in natural language processing, espe-
cially in deep learning approaches (Linzen and Ba-
roni, 2021; Aliti, 2024; Ahuja et al., 2024). Zhang
et al. (2024b) leverage the “not-so-perfect” noisy
syntax trees generated by unsupervised derivations
and modern Chinese syntax parsers to enhance
model understanding of ancient Chinese. Fan et al.
(2025) propose a syntax-opinion-sentiment rea-
soning chain to deepen LLMSs’ syntax understand-
ing for enhancing aspect-based sentiment analy-
sis. However, most of these efforts only limit the
output of the LLMs using limited knowledge to
improve task-specific performance, lacking spe-
cific knowledge-infused fine-tuning for optimizing
deeper parameters of the LLMs.

Memory enhancement. LLMs possess remark-
able memory capacity and comprehension abili-
ties for high-frequency information. This capa-
bility stems from their extensive parameterization
and sophisticated deep neural architectures, which
enable effective extraction and modeling of high-
frequency data patterns during the pre-training
phase (Xu et al., 2025; Zhao et al., 2024; Kim
et al., 2024). Most researchers attempt to utilize
or activate the deep memory of LLMs to enhance
natural language processing tasks. Zhong et al.
(2024) design a long-term memory mechanism to
achieve LLMs’ personalized interaction and long-
term contextual understanding by storing, retriev-
ing, and dynamically updating memories. Hou

et al. (2024) propose a novel human-like memory
architecture to enable agents to autonomously re-
call memories necessary for response generation,
effectively addressing a limitation in the temporal
cognition of LLMs, enhancing long-term dialogue
capability. Inspired by the above works, we design
a deep hierarchical syntax understanding method
to optimize LLMs’ weak syntactic label memory
cognition through implicit multi-task fine-tuning
and explicit dependency label bank guiding, thus
improving cross-lingual dependency parsing per-
formance.

3 Our Approach

In this work, we propose a deep hierarchical
syntax understanding approach to strengthen cross-
lingual semantic memory in LLMs. First, we
jointly employ cross-lingual part-of-speech (POS)
tagging and dependency parsing tasks to fine-tune
parameters of LLMs, thus implicitly aligning lin-
guistic knowledge between source and target lan-
guages. Meanwhile, we utilize fine-tuned LLMs
to generate initial parsing trees for target language
test sentences. Second, we build multilingual de-
pendency label banks by extracting statistical syn-
tactic patterns from universal dependency corpora,
which explicitly exhibit the relationship between
common dependency labels and fine-grained POS
tags. Then, we analyse each label’s correct rate in
initial parsing trees and the distribution frequency
in fine-tuning training data to identify its mem-
ory strength. Finally, memory strength is further
exploited to guide LLMs to learn the linguistic
commonalities from multilingual dependency la-
bel banks, yielding more accurate final parsing
trees. Figure 2 shows the overall architecture with
three components, i.e., multi-task joint fine- tuning,
dependency label bank construction, hierarchical
memory enhancement.

3.1 Multi-task Joint Fine-tuning

Although the LLLMs have some generalization
ability on most natural language processing tasks,
their syntax understanding and parsing capability
on low-resource languages is not activated. Hence,
we propose the multi-task joint fine-tuning method,
which employs cross-lingual POS tagging as an
auxiliary task to activate the implicit cross-lingual
semantic alignment capability of LLMs.

For each input sentence which contains golden
language type, POS tags, and dependency trees,
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Figure 2: The overall architecture of our method.

LLMs first convert it into high-dimensional feature
vectors x. Then, Low-Rank Adaptation (LoRA)
is leveraged to fine-tune LLLMs by learning pairs
of rank decomposition matrices while keeping the
original weights frozen (Hu et al., 2022). Formally,
considering that a linear layer is defined as y =
Wx with the weight matrix W. LoRA modifies
itintoy = Wx + BAx, where W € R¥>* B ¢
R A € R™F, and r < min(d, k), which
greatly reduces the amount of parameters needed
to be learned. Meanwhile, we employ the cross-
entropy loss function to train two tasks until LLMs
converge or reach the maximum number of training
epochs. The formulas of cross-lingual POS tagging
loss L¢, and cross-lingual dependency parsing loss

pos
L5, are computed as follows,
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where P, H, L, and T are the number of POS
tags, headwords, dependency labels, and language
types, respectively. p;, h;, [;, and ¢}, represent the
gold-standard POS tags, headwords, dependency
labels and language types distribution probability,
that only one element is 1 corresponding to the
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correct index. Finally, the parameters of the LLMs
are optimized by minimizing the total loss L.

L= Lo+ Lo 3)

After obtaining the best fine-tuned LLMs, we uti-
lize them to parse the target language sentences and
yield initial parsing trees Y """,

3.2 Dependency Label Bank Construction

Fine-tuned LLMs exhibit improved dependency
parsing capabilities in low-resource languages.
However, some dependency labels appear too rarely
in training data, limiting the LLMs’ syntactic com-
prehension and memory retention of these struc-
tures. To address this, we construct two depen-
dency label banks based on the universal depen-
dency training datasets of the source and target
languages. Each dependency label bank explicitly
exhibits the relationship between common depen-
dency labels and fine-grained POS tags. As shown
in Figure 2, each dependency label object includes
four keys, i.e., feature, frequency, POS pairs, and
examples.

Concretely, we first employ fine-tuned LLMs to
summarize the characteristics, usage, and meaning
as its feature value. Next, we compute the percent-
age of each dependency label distribution across
the total number in the fine-tuned training data as
its frequency value. This frequency metric reflects
the memory strength of LLMs for each label. For
each label, we then extract head—dependent word
pairs to generate part-of-speech (POS) combina-
tions and record the frequency of each POS pair



as the value of POS pairs. Finally, we select three
representative sentences with their explanation for
each POS pair from the corpus to serve as the ex-
amples attribute.

3.3 Hierarchical Memory Enhancement

To identify weak memory dependency labels in
LLMs, we first compute a memory strength score
MS; € [0,1] for each dependency label. This
memory strength score is based on the correct rate
¢i € [0,1] of each dependency label in the initial
parsing trees Y™ and the frequency f; € [0, 1] of
dependent labels in the fine-tuned training data.
Inspired by memory forgetting formula of Zhong
et al. (2024), our improved memory strength for-
mula is calculated as follows,

MSi(ei ) =ei(1=e™M) @)

where the memory factor A € [0, 100] controls the
relative influence of frequency and correct rate.
The larger value increases the impact of f;, while
the smaller value emphasises the impact of c;.
Then, we enhance syntax memory hierarchically
based on three categorized memory strength tiers.
As shown in Algorithm 1, labels with M .S; < 0.6
are considered weak memories, which are aug-
mented using knowledge from both source and tar-
get language dependency label banks. Labels with
0.6 < MS; < 0.9 are moderate memory, which
are refined using target language data alone. La-
bels with M.S; > 0.9 are strong memory, which
does not require further augmentation. Finally, the
initial parsing trees Y™ are corrected by memory
enhancement, thus obtaining more accurate final
parsing trees Y /7.

Algorithm 1: Hierarchical Memory Enhancement

Input: L from initial parsing trees Y*"*, each depen-
dency label’s correct rate ¢; and frequency f;, source
dependency label bank D? and target dependency label
bank D°.

Hyperparameters: Impact factor A

1: For L; € L:

20 MSi(c, fi) =c¢ (1—67>‘fi)
3. ifMS; <0.6:

4 Y/« L;+D*+ D

5: elif 0.6 < MS; <0.9:

6 Y/« L, 4D

7. else:

8: yiin L,

Table 1: Hierarchical memory enhancement.

Dataset Train Dev Test All
UD public datasets
English ewr) 12,544 2,001 2,077 16,622
Chinese(GSDSimp) 3,997 500 500 4,997
Vietnamese (VTB) 1,400 1,123 800 3,323
Tamil (T1B) 400 80 120 600
COptjC (Scriptorium) 1,419 381 403 2,203
Maltese (mupT) 1,123 433 518 2,074

Table 2: Dataset statistics in sentence number.

Value

Hyperparameter

LoRA QLoRA (8-bit)
lora_alpha 16 8
lora_rank 8 4
loraplus_Ir_ratio 16 8
num_train_epochs 5 5
compute_type bf16 bf16
learining_rate Se-5 Se-5
cutotf len 3500 3500

Table 3: Hyperparameter setting of fine-tuning LLMs.

4 Experiments

4.1 Experimental Setups

Datasets. We acquiescently experimented with
using Chinese (zh) as the source language for Viet-
namese (vi) and Tamil (ta) while English (en) is the
source language for Coptic (cop), and Maltese (mt),
which are all derived from the Universal Depen-
dencies (UD) v2.13 treebank °. Moreover, we use
all languages’ training datasets to fine-tune large
language models (LLMs) and evaluate on their re-
spective test datasets. Detailed dataset statistics are
presented in Table 2.

Evaluation. We utilize Labeled Attachment
Score (LAS) and Unlabeled Attachment Score
(UAS) as evaluation metrics (Liu et al., 2025). All
models are trained for no more than 1000 itera-
tions, and their performances are evaluated on the
development dataset after each iteration to guide
the model selection.

Hyperparameter choices. 1) Training tradi-
tional parsers. We set the parameters of the three
traditional small models uniformly according to the
most hyperparameter settings of Li et al. (2019a),
including MLP and BiAffine dimensions and learn-
ing rates. 2) Fine-tuning large language models.
The key hyperparameters are set as in Table 3, the
rest of the hyperparameters take on default values.

Baselines. We employ three typical cross-
lingual models and three large language models

Shttps://universaldependencies.org/
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Model Vietnamese Tamil Coptic Maltese Avg.
LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS
Results of previous works
UDity(2019) 66.00 74.11 68.29 78.34 10.82 27.58 75.56 83.07 55.17 65.78
MBERT (2022) 61.24 70.45 54.94 62.35 82.11 86.87 72.69 80.54 67.75 75.05
ESR (2023) 60.80 70.21 66.40 74.12 77.34 81.42 74.20 82.34 69.69 77.02
Dynamic(2025) 66.75 80.03 69.18 79.09 86.32 89.95 76.19 83.28 74.61 83.09
Compare with traditional models
FulSha 54.82 69.02 56.79 66.76 72.28 76.60 68.42 76.61 63.08 72.25
MulLea 56.21 70.01 57.02 67.54 73.52 77.41 67.24 75.14 63.50 72.53
LanEmb 55.89 70.09 57.27 69.28 72.04 76.42 69.01 77.35 63.55 73.29
FulSha (w/ roberta) 62.53 78.94 63.15 77.23 79.28 85.60 72.79 81.61 69.44 80.85
MulLea (w/ roberta) 64.37 79.26 63.90 75.82 82.59 87.41 70.15 79.75 70.25 80.56
LanEmb (w/ roberta) 63.52 79.28 64.25 78.18 79.14 85.52 73.01 81.74 70.23 81.18
Compare with large language models
Llama3.1-8B-Instruct
Zero-shot 15.57 30.03 9.45 22.12 9.59 19.82 17.49 38.08 13.03 27.76
One-shot 18.93 34.65 15.65 30.07 11.87 23.84 19.59 41.41 16.51 32.49
Few-shot 21.79 36.80 18.68 32.65 12.82 25.90 30.21 44.06 20.88 34.85
LoRA 56.66 69.33 57.45 68.07 69.02 74.03 70.44 75.97 63.39 71.85
Our 60.12 72.45 61.05 71.52 73.65 77.34 75.14 78.13 67.49 74.86
Qwen2.5-7B-Instruct
Zero-shot 18.29 33.87 14.95 34.92 9.37 22.16 19.30 38.97 15.48 32.48
One-shot 20.23 37.03 17.90 35.68 9.72 23.23 20.12 42.06 16.99 34.50
Few-shot 23.08 38.02 23.00 37.30 11.85 25.60 28.18 43.96 21.53 36.22
LoRA 63.26 76.27 55.97 67.68 75.65 80.20 70.22 76.64 66.28 75.20
Our 66.48 79.35 60.42 70.54 79.42 83.14 74.31 79.62 70.16 78.16
Qwen2.5-14B-Instruct
Zero-shot 24.85 41.71 23.68 38.50 13.84 27.89 31.25 49.15 23.41 39.31
One-shot 26.50 43.45 25.15 39.32 15.12 29.03 33.42 51.32 25.05 40.78
Few-shot 28.46 45.96 29.23 43.61 17.35 31.47 36.54 53.75 27.90 43.70
QLoRA 66.24 79.93 63.45 74.48 83.10 86.79 76.23 82.28 72.26 80.87
Our 68517 83147 65577 77.637 8642t 90.02" 7839T 85317 74727  84.03"

Table 4: Main results of four languages on the test dataset, where “w/ roberta” represents the enhancement of word
vectors via XLM-RoBERTa-base pre-trained model at the input layer.

as baseline models to demonstrate the effectiveness
of our approach.

1) Three typical cross-lingual models. During
the training process of three typical cross-lingual
models, we use source and target language training
datasets to train models and evaluate its perfor-
mance on target language test dataset. Full Shared
Model (FulSha). Peng et al. (2017) enhance het-
erogeneous dependency parsing by employing fully
shared encoder parameters across three dependency
graph formalisms to capture cross-formalism com-
monalities. Following a similar strategy, we share
all model parameters and alternately train the Bi-
Affine parser (Dozat and Manning, 2017) on both
source and target language datasets. Language
Embedding Model (LanEmb). Li et al. (2019b)
show that injecting domain embeddings as auxil-
iary inputs improves cross-domain parsing by in-
forming the model of domain-specific character-
istics. Analogously, we introduce 8-dimensional
language embeddings to explicitly encode language
identity, guiding the model in distinguishing be-

tween different language structures. Multi-task
Learning Model (MulLea). Building on Dou et al.
(2023), who leverage named entity recognition
(NER) as an auxiliary task to transfer lexical knowl-
edge across domains, we treat source language
parsing as an auxiliary task to facilitate syntactic
knowledge transfer to the target low-resource lan-
guage. w/ roberta. For all typical models above, we
use the XLM-RoBERTa-base ¢ pre-training model
to extract the corresponding feature representations
of the input words and add them to the random
word embeddings of the above models to enhance
the contextual representation of the words.

2) Three large language models. To validate
the effectiveness of our approach, we set zero-shot,
one-shot, and few-shot for three large language
models. Due to the original LLM’s poor pars-
ing performance (or incorrect parsing formatting)
for low-resource languages and ensuring cross-
lingual evaluation, we first translate target language
texts into the source language (Chinese or English)

®https://huggingface.co/xlm-roberta-base
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and parse them using pre-trained BiAffine parsers.
Then, resulting syntactic trees are added to prompts
for structural references, enabling the cross-lingual
settings. Llama3.1-8B-Instruct. Which is Meta’s
lightweight open-source model, featuring a 128k-
token context window. It excels in English-centric
tasks, including instruction following and code gen-
eration, making it suitable for applications requir-
ing deep contextual understanding. Qwen2.5-7B-
Instruct. Which is a 7B parameter instruction-
tuned model optimized for multilingual tasks, par-
ticularly strong in East and Southeast Asian lan-
guages such as Chinese, Vietnamese, and Korean.
It demonstrates robust performance in mathemat-
ical reasoning and code generation within multi-
lingual contexts. Qwen2.5-14B-Instruct. Which
is a 14.7B parameter model with a 128 K-token
context window. It excels in processing structured
data (e.g., tables, JSON) and generating long-form
content, making it ideal for applications involving
complex documents and multilingual content.

4.2 Main Results

Table 4 presents the main results of baseline
models and our method across three LLMs. We
first evaluate three LLMs under zero-shot, one-
shot, and few-shot settings for cross-lingual depen-
dency parsing. As expected, performance improves
with more examples in prompt learning. The Qwen
series outperforms others, and its performance
scales with model size. Next, our implicit multi-
task joint training strategy can enhance parsing
accuracy dramatically. Then, LLMs’ performance
is further boosted by applying our explicit depen-
dency label bank to correct weak-memory syntactic
patterns, demonstrating our method’s effectiveness.
Finally, we find that LLMs with more parame-
ters perform better when using our approach. For
instance, our method on “Qwen2.5-14B-Instruct”
surpasses all baselines of traditional models and
LLMs, proving considerable room for further im-
provement.

We compare our models with several previous
works on traditional models. Kondratyuk and
Straka (2019) propose UDify, a multilingual BERT-
based model fine-tuned across 104 languages for
enhanced parsing. Moreover, Gessler and Zeldes
(2022) employ a vocabulary expansion method and
fine-tune BERT to enhance parsing performance.
Lastly, Effland and Collins (2023) apply expected
statistic regularization with low-order multi-task
structural features to refine distributions. Liu et al.

Model Llama3.1-8B Qwen2.5-14B

LAS UAS LAS UAS
LoRA & QLoRA ablation study

Our 59.68 72.12 68.07 82.41

w/0 pos 56.13 68.24 63.45 76.27

w/o src_dp 49.21 61.47 54.24 76.51

w/o src_dp & pos 47.32 59.17 52.70 74.28

Dependency label banks ablation study

Our 59.68 72.12 68.07 82.41

w/o src 58.52 71.13 67.54 81.67

w/o tgt 57.13 69.74 66.37 80.57

w/o src & tgt 56.34 68.93 65.67 79.76

Table 5: The ablation study on the Vietnamese devel-
opment dataset. “w/o pos” means removing the cross-
lingual POS tagging task. “w/o src_dp” means removing
the source language dependency parsing task. “w/o src”
or “w/o tgt” means not using the dependency label bank
of the source or target language.

(2025) propose dynamic syntactic networks that
filter harmful source-language features while am-
plifying cross-lingual syntactic commonalities. In
contrast, our approach jointly fine-tunes LLMs
for deep syntactic understanding and uses the de-
pendency label bank to strengthen weak syntactic
memory, outperforming previous methods. These
results confirm the efficacy and potential of our
approach.

4.3 Ablation Study

Table 5 presents a detailed ablation analysis on
both the LoRA fine-tuning process and the depen-
dency label bank usage. For the LoRA process,
removing the cross-lingual POS tagging task leads
to a performance drop, indicating that POS infor-
mation supports syntactic learning in LLMs. Then,
eliminating the source language dependency pars-
ing task causes an even larger decline, suggesting
it contributes essential syntactic knowledge for un-
derstanding the target language. When both tasks
are removed, performance degrades most severely,
indicating their complementary value. For the
dependency label bank usage, omitting both the
source and target language dependency label banks
reduces performance. Then, we find that enhancing
knowledge directly from the target language proves
more effective. In addition, completely removing
all dependency banks causes further degradation,
confirming their overall utility.

4.4 Error Analysis

Sentence Lengths Figure 3 reports LAS across
sentence lengths. First, Parsing accuracy declines
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Figure 3: LAS for various sentence lengths on the
Vietnamese development dataset, where “Qwen” is
Qwen2.5-14B-Instruct.
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Figure 4: LAS curves regarding dependency distances
on the Vietnamese development dataset, where “Qwen”’
is Qwen2.5-14B-Instruct.

significantly beyond 30 words, with an average
drop of 10.78 points, exhibiting the difficulty of
long-sentence parsing. The “Qwen-few” model
consistently underperforms, reflecting the lim-
ited parsing ability of standard LLMs in low-
resource languages. However, multi-task joint fine-
tuning “Qwen-QLoRA” markedly enhances perfor-
mance. Moreover, incorporating our dependency
label bank further boosts performance, suggesting
that source-language syntactic patterns enhance the
LLMs’ syntax understanding of the target language.
Overall, our approach outperforms the benchmark
“LanEmb™P™@”  affirming its effectiveness.

Dependency Distances Figure 4 presents LAS
about absolute dependency distances. First, the
“Qwen-few” model consistently underperforms
across most distances. In contrast, the “Qwen-
QLoRA” model significantly improves dependency
parsing accuracy for both short and long distances.
Then the “Qwen-our” model achieves the highest
performance, surpassing “LanEmb™P*™@” demon-
strating that our multi-task joint fine-tuning and
dependency label bank can enhance dependency
parsing capabilities at all distances via learn syntax
commonalities across languages.

Accuracy (%)

DEP Qwen2.5-14B-Instruct LanEmb

few-shot  QLoRA our w/ roberta
advmod 49.07 86.47 87.12 77.19
amod 48.35 59.69  64.11 61.24
case 62.63 83.14  85.33 75.50
cc 84.00 64.16 74.24 78.85
ccomp 12.86 48.03 61.11 43.61
conj 58.27 75.47  80.00 71.03
det 33.14 95.73  97.00 78.14
mark 41.18 83.64 84.71 73.88
nmod 21.44 62.25 67.92 50.99
nsubj 68.24 86.93  88.49 83.75
obl 14.08 38.32 50.41 32.31
root 48.27 81.14 84.16 77.83
xcomp 23.60 49.33  57.63 44.77

Table 6: Dependency label accuracy on the Vietnamese
development dataset.

Dependency labels. Table 6 reports accuracy
scores for dependency label predictions. First,
“QLoRA” outperforms the “few-shot” baseline,
suggesting that multi-task joint fine-tuning en-
ables better cross-lingual syntactic generalization.
Then, accuracy improves further with the addi-
tion of our dependency label bank, surpassing the
“LanEmb*"@” model across most labels. These
findings highlight the effectiveness of combin-
ing implicit fine-tuning with explicit memory en-
hancement to optimize parsing in low-resource lan-
guages.

5 Conclusion

We propose a novel deep hierarchical syntax
understanding method to enhance the weak de-
pendency label memory capability in large lan-
guage models. Concretely, we exploit implicit
multi-task fine-tuning and explicit dependency la-
bel bank guiding to boost LLMs to absorb cross-
lingual syntactic commonalities. Experiments on
four benchmark datasets show substantial accuracy
gains across all baseline models, achieving state-
of-the-art performance. Analysis reveals that both
multi-task joint fine-tuning and extra dependency
label bank can extract useful syntactic knowledge
from the source language to enhance the target
language parsing accuracy. Moreover, in-depth
comparison demonstrates that our method can al-
leviate semantic interference across languages and
improve the memory strength of most dependency
labels, thus further improving the parsing perfor-
mance.



Limitations

The large language models used in our exper-
iments was not sufficient to cover most of them,
while we did not try to include more useful auxil-
iary knowledge inside the dependency bank, which
we will continue to delve into in our future work.
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A Effect of Memory Strength

DEP F(%) C(%) MS Bank C/(%)
punct 1457 99.82 1.00 - 99.82
nsubj 8.19 86.93  0.86 t 88.49
root 6.84 81.14  0.80 t 84.16
advmod 643 8647  0.85 t 87.12
case 4.83 83.14  0.79 t 85.33
conj 4.00 7547  0.69 t 80.00
nmod 3.94 62.25  0.56 st 67.92
xcomp 2.81 4933 0.40 s, t 57.63
mark 251 83.64  0.65 t 84.71
obl 222 3832 0.28 s, t 50.41
nummod  2.04 88.57  0.62 t 91.30
amod 2.01 59.69  0.42 s, t 64.11
cc 1.92 64.16  0.44 s, t 74.24
advel 1.80 56.21  0.37 s, t 67.16
obl:tmod 1.77 69.86 0.46 s, t 77.27
det 1.62 96.73  0.60 t 97.00

Table 7: Memory strength of some dependency labels,
where the memory formula’s impact factor A is set to
60. F, C, MS, and Bank are the frequency, correct
rate, memory strength, and the use of dependency label
bank. “-” means no use of dependency label bank, and
“s or t” means the use of the source language or the
target language. C/ is the correct rate of optimized final
parsing results.

Table 7 presents the memory strength of most
dependency labels and the effect of using depen-
dency label banks. We find that very few labels
reach the maximum memory strength of 1, only
the label “punct” because its high frequency in the
fine-tuning data gives the LLMs a strong under-
standing of it. Then, using both source and target
language dependency label banks provides a larger
improvement for labels with weak memory and low
initial accuracy, while using only the target lan-
guage dependency label bank yields a moderate
gain for labels with moderate memory strength.
This suggests that sharing syntactic structures from
the source language helps the LL.Ms better under-
stand the target language syntax, demonstrating the
validity of our method.

B Effect of Frequency and Correct Rate

Table 8 shows the influence of frequency and
correct rate on memory enhancement. We find
that lowering A, which increases the weight of the
LLMs’ initial label correct rate when calculating
memory strength, leads to improved scores. This is
because it lowers the calculated memory strengths
overall, causing most labels to be treated as weak
memories. As a result, more information from the
dependency label bank is used, but it increases the
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number of occupied tokens and slows down infer-
ence. In contrast, increasing A\ reduces memory
usage and speeds up inference but leads to lower
performance. The parameters we selected strike
a balance between these trade-offs and result in
strong overall performance.

Qwen2.5-14B-Instruct

A Tokens Time

LAS UAS
30 3.5k 24s 68.24 82.97
60 2.0k 15s 68.07 82.41
90 1.5k 10s 66.32 80.24

Table 8: Impact of frequency and correct rate for mem-
ory enhancement, where increasing A amplifies the im-
portance of frequency and conversely emphasises the
importance of correct rate.

Thresholds Qwen2.5-14B-Instruct
w—m m—s LAS UAS
0.6 0.9 68.07 82.41
0.4 0.9 67.67 82.04
0.8 0.9 68.34 82.77
0.6 0.7 67.87 82.13
0.6 1.0 68.20 82.24

Table 9: Thresholds for the division of memory strength,
where “w — m” is the threshold that determines weak
to moderate memory, “m — s” is the threshold that
determines moderate to strong memory.

C Influence of Different Memory
Strength Thresholds

Table 9 shows the effect of different thresholds
for dividing memory strength levels. The first row
presents our default parameter settings. We ob-
serve that lowering the threshold between weak
and moderate memory (second row) and between
moderate and strong memory (fourth row) leads
to a drop in performance. This happens because
less knowledge from the dependency label banks
is used, which reduces the benefit from syntactic
structure transfer and weakens performance. In
contrast, the parameter settings in the third and
fifth rows expand the range of labels considered
as weak or moderate memory, which increases the
use of the dependency label banks and results in a
slight performance gain. These results confirm the
value of extracting shared syntactic structures from
our memory resource.



D Fine-tuning Data Template

Table 10 and 11 illustrate the fine-tuning data
templates employed in the cross-lingual POS tag-
ging task and cross-lingual dependency parsing
task. This information is mainly used to clearly
show the data format used to fine-tune large lan-
guage models, and the data will be publicly avail-
able in JSON format.

Instrcuct:

You are an expert in multilingual POS tagging,
identify each sentence’s language type and tag
part-of-speech for each token.

Input: B\ CREEN AR\t FF O\

Output: Chinese
PROPN\tVERB\tADV\tADJ\tPUNCT

Input: Tom'\ tcim th\ trit\ tvui\t.

Output: Vietnamese

PROPN\tVERB\tADV\tADJ\tPUNCT

Table 10: An example of cross-lingual POS tagging task
data, which use tab marks to split the words.

Instrcuct:

You are an expert in multilingual dependency
parsing, identify each sentence’s language type
and parse it into the fixed format as follows.
[Fixed format]:

Each word has four columns separated by TAB,
should follow the below rules:

1. Word index (starts from 1)

2. Original word form

3. Headword indices

4. Dependency type (*lowercase letters*)

Input:
Output:

FI\REEN AR\ tFF Ot o
Chinese

1 \t7Z148 \t2 \ tnsubj

2 \t/&F \t0 \ troot

3\tfR \t4 \tadvmod
4\tFF0 \t2 \txcomp
5\t- \t2 \tpunct

Input:
Output:

Tom'\ tcim tha\ trit\ tvui\t.
Vietnamese

1 \tTom \t2 \tnsubj

2 \tcam thi \t0 \ troot

3 \trit \t4 \tadvmod

4 \tvui \t2 \txcomp

5\t. \t2 \tpunct

Table 11: An example of cross-lingual dependency pars-
ing task data, which use tab marks to split the words.
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