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Abstract001

Large language models (LLMs) demonstrate002
remarkable text generation and syntax parsing003
capabilities in high-resource languages. How-004
ever, their performance notably declines in low-005
resource languages due to memory forgetting006
stemming from semantic interference across007
languages. To address this issue, we propose a008
novel deep hierarchical syntax understanding009
approach to improve the cross-lingual seman-010
tic memory capability of LLMs. First, we de-011
sign a multi-task joint fine-tuning strategy to012
implicitly align linguistic knowledge between013
source and target languages in LLMs, which014
is leveraged to initially parse the target text.015
Second, we automatically construct the multi-016
lingual dependency label banks based on the017
statistical structure information from the Uni-018
versal Dependencies (UD) data. Third, we ob-019
tain each label’s memory strength via in-depth020
analysis of the initial parsing tree and its de-021
pendency label bank. Finally, memory strength022
is further exploited to guide LLMs to learn023
the linguistic commonalities from multilingual024
dependency label banks, thus activating the025
memory ability of weak labels. Experimental026
results on four benchmark datasets show that027
our method can dramatically improve the pars-028
ing accuracy of all baseline models, leading to029
new state-of-the-art results. Further analysis re-030
veals that our approach can effectively enhance031
the weak syntactic label memory cognition of032
LLMs by combining the advantages of both im-033
plicit multi-task fine-tuning and explicit label034
bank guiding. Our code and label banks will035
be made publicly available.036

1 Introduction037

Dependency parsing employs hierarchical tree038

structures to exhibit syntactic and grammatical re-039

lationships between words. As shown in Figure040

1, the tree includes an arc from the headword “小041

说 (fiction)” to the dependent word “新的 (new)”042

Original 
LLMs

src

tgt

这 /   是  /   一  /   本 /   新的 /   小说  /   。

(tgt) -- Vietnamese

(src) -- Chinese

đây /  là /  một /  cuốn /  tiểu thuyết /  mới /  .

(ADJ) (NOUN)

(ADJ)(NOUN)

Input

Predict

Figure 1: An example of original (unfine-tuned) LLMs
dependency parsing, where high-resource source lan-
guage data (Chinese) has a 85.72% correct rate and the
low-resource target language data (Vietnamese) has a
57.14% correct rate. The contents of the dotted box
indicate the same dependency pattern.

with the label “amod”, indicating adjectival modi- 043

fication. These hierarchical structures are widely 044

applied in multiple natural language processing 045

(NLP) tasks, including machine translation (Chen 046

et al., 2023), question answering (Kang et al., 047

2024), and text classification (Su et al., 2025). Re- 048

cently, researchers focus on improving the syntax 049

understanding of large language models (LLMs) 050

using dependency trees (Chen et al., 2024a; Zhang 051

et al., 2023; Saha and Srihari, 2024). 052
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Advances in language models have markedly053

improved supervised dependency parsing for high-054

resource languages (Dozat and Manning, 2017; Li055

et al., 2019a, 2020; Ye and Teufel, 2021). How-056

ever, language model-enhanced parsers are highly057

dependent on the scale and quality of training data,058

and their performances drop sharply when they059

are directly transferred to low-resource languages060

due to semantic interference (Rotman and Reichart,061

2019; Wang et al., 2020; Effland and Collins,062

2023). Therefore, cross-lingual dependency pars-063

ing has emerged as a promising direction, aiming064

to transfer effective knowledge from high-resource065

languages to low-resource ones (Schuster et al.,066

2019; Lauscher et al., 2020; Ansell et al., 2021).067

Existing approaches fall broadly into two cate-068

gories, i.e., traditional and LLM-based methods.069

Traditional methods mainly rely on syntactic fea-070

ture projection or transformation (He et al., 2019;071

Kurniawan et al., 2021; Guo et al., 2022; Choenni072

et al., 2023). Choudhary and O’riordan (2023)073

incorporate the source and target linguistic typo-074

logical knowledge into a multi-task learning frame-075

work to enhance cross-lingual knowledge transfer.076

In contrast, LLMs ( ChatGPT 1, LlaMA 2, Qwen 3,077

and DeepSeek 4) exhibit remarkable generaliza-078

tion across a wide range of NLP tasks, benefiting079

from massive pre-trained corpora and highly op-080

timized architectures. Moreover, their capabilities081

can be further strengthened by useful prompt learn-082

ing (Zhang et al., 2024a), task-specific parameter-083

efficient fine-tuning (Dou et al., 2024), and re-084

trieval augmented generation (dos Santos Junior085

et al., 2024).086

However, LLMs struggle in low-resource lan-087

guages’ dependency parsing due to memory for-088

getting (Chen et al., 2024b; Guo et al., 2025).089

The main reason is that normal LLMs are prone090

to memorizing the semantic preferences of high-091

resource languages while their capability in low-092

resource languages is obstructed (Villalobos et al.,093

2024; Kuang et al., 2024). As illustrated in Fig-094

ure 1, we can see that LLMs show strong pars-095

ing ability in the high-resource language (Chi-096

nese) with numerous training data, achieving a097

85.72% accuracy. In contrast, the parsing accu-098

racy of Vietnamese is only 57.14%. Concretely,099

although Vietnamese and Chinese share a sub-100

1https://openai.com/blog/chatgpt
2https://www.llama.com/
3https://tongyi.aliyun.com/
4https://www.deepseek.com/

ject–verb–object structure, they diverge in mod- 101

ifier placement such as Vietnamese favors post- 102

modifiers, whereas Chinese employs pre-modifiers. 103

Even though there is linguistic structural variation 104

in real scenarios, the relative structure between the 105

dependency label and POS tags is constant. For 106

example, both Chinese and Vietnamese have a de- 107

pendent word with POS tag “ADJ” modifies the 108

head word with POS tag “NOUN”, owning the 109

same dependency label “amod”. Hence, depen- 110

dency relations (head–dependent patterns) often 111

remain consistent across languages, these cross- 112

linguistic syntactic similarities can be leveraged to 113

improve parsing performance of low-resource lan- 114

guages (Hämmerl et al., 2024; Zhang et al., 2024c). 115

To alleviate this drawback, we propose a deep 116

hierarchical syntax-aware approach to enhance the 117

semantic memory capability of LLMs. First, we 118

employ a multi-task joint fine-tuning strategy to 119

implicitly align LLMs’ syntactic knowledge across 120

different languages. Meanwhile, fine-tuned LLMs 121

are utilized to yield the initial parsing trees of the 122

target language data. Then, we construct multilin- 123

gual dependency label banks by extracting statis- 124

tical patterns from the universal dependency tree- 125

banks. Next, each label’s memory strength is es- 126

timated through structural analysis of the initial 127

parsing trees and its distribution in the label bank. 128

Finally, memory strength is used to guide LLMs 129

in capturing cross-lingual syntactic commonalities, 130

thereby reinforcing the memory capability of weak 131

dependency labels. Experiments on four bench- 132

mark datasets demonstrate substantial performance 133

gains in low-resource scenarios, achieving prior 134

state-of-the-art results. Further analysis indicates 135

that our approach can effectively strengthen the 136

weak syntactic label memory strength of LLMs by 137

integrating the advantages of both implicit multi- 138

task fine-tuning and explicit dependency label bank 139

guiding. 140

2 Related Work 141

Cross-lingual dependency parsing. Cross- 142

lingual dependency parsing aims to transfer syntac- 143

tic knowledge from high-resource to low-resource 144

languages (Langedijk et al., 2022; Shi et al., 2022; 145

Choenni et al., 2023). Prior work primarily relies 146

on transfer learning to extract shared syntactic fea- 147

tures from source languages (Eronen et al., 2023; 148

Li et al., 2024; Liu et al., 2025). Sun et al. (2023) 149

propose a cross-lingual self-training framework 150
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to transfer parsers from monolingual treebanks to151

multiple target languages. Recently, the emergence152

of LLMs has brought advances in causal reason-153

ing and syntactic understanding, supporting a wide154

range of artificial intelligence tasks (Ma et al.,155

2023; Ge et al., 2024; Lin et al., 2024). Li et al.156

(2023) leverage LLMs in self-training by extracting157

grammar rules from the source domain to improve158

target domain parsing. Chen et al. (2024a) apply159

conditional mutual information to model bi-lexical160

dependencies, integrating grammatical constraints161

to strengthen unsupervised LLM-based parsing.162

Zhang et al. (2025) guide a lightweight LLM to163

generate phrase structures using grammar rules and164

lexical heads for data augmentation in the target165

domain. These studies highlight the potential of166

LLMs to transfer syntactic knowledge across lan-167

guages. Yet two core challenges remain: incom-168

plete learning of language-specific syntax during169

pretraining, and weak retention of cross-lingual170

patterns in LLM memory.171

Syntax understanding. Syntax plays a funda-172

mental role in natural language processing, espe-173

cially in deep learning approaches (Linzen and Ba-174

roni, 2021; Aliti, 2024; Ahuja et al., 2024). Zhang175

et al. (2024b) leverage the “not-so-perfect” noisy176

syntax trees generated by unsupervised derivations177

and modern Chinese syntax parsers to enhance178

model understanding of ancient Chinese. Fan et al.179

(2025) propose a syntax-opinion-sentiment rea-180

soning chain to deepen LLMs’ syntax understand-181

ing for enhancing aspect-based sentiment analy-182

sis. However, most of these efforts only limit the183

output of the LLMs using limited knowledge to184

improve task-specific performance, lacking spe-185

cific knowledge-infused fine-tuning for optimizing186

deeper parameters of the LLMs.187

Memory enhancement. LLMs possess remark-188

able memory capacity and comprehension abili-189

ties for high-frequency information. This capa-190

bility stems from their extensive parameterization191

and sophisticated deep neural architectures, which192

enable effective extraction and modeling of high-193

frequency data patterns during the pre-training194

phase (Xu et al., 2025; Zhao et al., 2024; Kim195

et al., 2024). Most researchers attempt to utilize196

or activate the deep memory of LLMs to enhance197

natural language processing tasks. Zhong et al.198

(2024) design a long-term memory mechanism to199

achieve LLMs’ personalized interaction and long-200

term contextual understanding by storing, retriev-201

ing, and dynamically updating memories. Hou202

et al. (2024) propose a novel human-like memory 203

architecture to enable agents to autonomously re- 204

call memories necessary for response generation, 205

effectively addressing a limitation in the temporal 206

cognition of LLMs, enhancing long-term dialogue 207

capability. Inspired by the above works, we design 208

a deep hierarchical syntax understanding method 209

to optimize LLMs’ weak syntactic label memory 210

cognition through implicit multi-task fine-tuning 211

and explicit dependency label bank guiding, thus 212

improving cross-lingual dependency parsing per- 213

formance. 214

3 Our Approach 215

In this work, we propose a deep hierarchical 216

syntax understanding approach to strengthen cross- 217

lingual semantic memory in LLMs. First, we 218

jointly employ cross-lingual part-of-speech (POS) 219

tagging and dependency parsing tasks to fine-tune 220

parameters of LLMs, thus implicitly aligning lin- 221

guistic knowledge between source and target lan- 222

guages. Meanwhile, we utilize fine-tuned LLMs 223

to generate initial parsing trees for target language 224

test sentences. Second, we build multilingual de- 225

pendency label banks by extracting statistical syn- 226

tactic patterns from universal dependency corpora, 227

which explicitly exhibit the relationship between 228

common dependency labels and fine-grained POS 229

tags. Then, we analyse each label’s correct rate in 230

initial parsing trees and the distribution frequency 231

in fine-tuning training data to identify its mem- 232

ory strength. Finally, memory strength is further 233

exploited to guide LLMs to learn the linguistic 234

commonalities from multilingual dependency la- 235

bel banks, yielding more accurate final parsing 236

trees. Figure 2 shows the overall architecture with 237

three components, i.e., multi-task joint fine- tuning, 238

dependency label bank construction, hierarchical 239

memory enhancement. 240

3.1 Multi-task Joint Fine-tuning 241

Although the LLMs have some generalization 242

ability on most natural language processing tasks, 243

their syntax understanding and parsing capability 244

on low-resource languages is not activated. Hence, 245

we propose the multi-task joint fine-tuning method, 246

which employs cross-lingual POS tagging as an 247

auxiliary task to activate the implicit cross-lingual 248

semantic alignment capability of LLMs. 249

For each input sentence which contains golden 250

language type, POS tags, and dependency trees, 251
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Multi-task Joint Fine-tuningUD Training Data
Column[0]: word index
Column[1]: word form
Column[2]: part-of-speech tag 
Column[3]: Headword index
Column[4]: Dependency relation 

tgt data

1.  Tom          PROPN  2  nsubj
2.  cảm thấy  VERB     0  root
3.  rất              ADV      4  advmod
4.  vui             ADJ       2  xcomp
5.  .                 PUNCT  2  punct

Cross-lingual 
POS tagging

Task 1

Task 2
Cross-lingual 
dependency 

parsing

LoRA

Fine-tuned 
LLM

Target
test text

Initial parsing tree

Dependency Label Bank Construction

Target dependency
label bank

Source dependency 
label bank

Hierarchical Memory 
Enhancement

"nsubj":{
   "feature": Marking the dependency between
                      the subject and the core verb.
  "frequency": 8.19 %
   "POS pairs":
                      (head1) NOUN / PROPN /  PRON 
                   (dependency1)VERB  ......
   "examples":  (1) Tom cảm thấy rất vui .
         Tom  (PROPN) modifys cảm thấy (VERB)    
           ......
  }

Memory strength

strong moderate weak

Label2Label1 Label3

Final parsing tree

src data

1.  汤姆     PROPN    2  nsubj
2.  感到     VERB       0  root
3.  很          ADV        4  advmod
4.  开心     ADJ          2  xcomp
5.  。         PUNCT    2  punct

Label1Label3

Label1

Label2

Label3

Label2

Fine-tuned 
LLM

Figure 2: The overall architecture of our method.

LLMs first convert it into high-dimensional feature252

vectors x. Then, Low-Rank Adaptation (LoRA)253

is leveraged to fine-tune LLMs by learning pairs254

of rank decomposition matrices while keeping the255

original weights frozen (Hu et al., 2022). Formally,256

considering that a linear layer is defined as y =257

Wx with the weight matrix W. LoRA modifies258

it into y = Wx+BAx, where W ∈ Rd×k, B ∈259

Rd×r, A ∈ Rr×k, and r ≪ min(d, k), which260

greatly reduces the amount of parameters needed261

to be learned. Meanwhile, we employ the cross-262

entropy loss function to train two tasks until LLMs263

converge or reach the maximum number of training264

epochs. The formulas of cross-lingual POS tagging265

loss Lc
pos and cross-lingual dependency parsing loss266

Lc
par are computed as follows,267

Lc
pos = −

P∑
i=1

pi log(p̂i)−
T∑

k=1

tk log(t̂k) (1)268

269

Lc
par = −

H∑
i=1

hi log(ĥi)−
L∑

j=1

lj log(l̂j)

−
T∑

k=1

tk log(t̂k)

(2)270

where P , H , L, and T are the number of POS271

tags, headwords, dependency labels, and language272

types, respectively. pi, hi, lj , and tk represent the273

gold-standard POS tags, headwords, dependency274

labels and language types distribution probability,275

that only one element is 1 corresponding to the276

correct index. Finally, the parameters of the LLMs 277

are optimized by minimizing the total loss L. 278

L = Lc
pos + Lc

par (3) 279

After obtaining the best fine-tuned LLMs, we uti- 280

lize them to parse the target language sentences and 281

yield initial parsing trees Y ini. 282

3.2 Dependency Label Bank Construction 283

Fine-tuned LLMs exhibit improved dependency 284

parsing capabilities in low-resource languages. 285

However, some dependency labels appear too rarely 286

in training data, limiting the LLMs’ syntactic com- 287

prehension and memory retention of these struc- 288

tures. To address this, we construct two depen- 289

dency label banks based on the universal depen- 290

dency training datasets of the source and target 291

languages. Each dependency label bank explicitly 292

exhibits the relationship between common depen- 293

dency labels and fine-grained POS tags. As shown 294

in Figure 2, each dependency label object includes 295

four keys, i.e., feature, frequency, POS pairs, and 296

examples. 297

Concretely, we first employ fine-tuned LLMs to 298

summarize the characteristics, usage, and meaning 299

as its feature value. Next, we compute the percent- 300

age of each dependency label distribution across 301

the total number in the fine-tuned training data as 302

its frequency value. This frequency metric reflects 303

the memory strength of LLMs for each label. For 304

each label, we then extract head–dependent word 305

pairs to generate part-of-speech (POS) combina- 306

tions and record the frequency of each POS pair 307
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as the value of POS pairs. Finally, we select three308

representative sentences with their explanation for309

each POS pair from the corpus to serve as the ex-310

amples attribute.311

3.3 Hierarchical Memory Enhancement312

To identify weak memory dependency labels in313

LLMs, we first compute a memory strength score314

MSi ∈ [0, 1] for each dependency label. This315

memory strength score is based on the correct rate316

ci ∈ [0, 1] of each dependency label in the initial317

parsing trees Y ini and the frequency fi ∈ [0, 1] of318

dependent labels in the fine-tuned training data.319

Inspired by memory forgetting formula of Zhong320

et al. (2024), our improved memory strength for-321

mula is calculated as follows,322

MSi (ci, fi) = ci

(
1− e−λfi

)
(4)323

where the memory factor λ ∈ [0, 100] controls the324

relative influence of frequency and correct rate.325

The larger value increases the impact of fi, while326

the smaller value emphasises the impact of ci.327

Then, we enhance syntax memory hierarchically328

based on three categorized memory strength tiers.329

As shown in Algorithm 1, labels with MSi < 0.6330

are considered weak memories, which are aug-331

mented using knowledge from both source and tar-332

get language dependency label banks. Labels with333

0.6 ≤ MSi < 0.9 are moderate memory, which334

are refined using target language data alone. La-335

bels with MSi ≥ 0.9 are strong memory, which336

does not require further augmentation. Finally, the337

initial parsing trees Y ini are corrected by memory338

enhancement, thus obtaining more accurate final339

parsing trees Y fin.340

Algorithm 1: Hierarchical Memory Enhancement

Input: L from initial parsing trees Y ini, each depen-
dency label’s correct rate ci and frequency fi, source
dependency label bank Ds and target dependency label
bank Dt.
Hyperparameters: Impact factor λ
1: For Li ∈ L:
2: MSi (ci, fi) = ci

(
1− e−λfi

)
3: if MSi < 0.6:
4: Y fin ← Li +Ds +Dt

5: elif 0.6 ≤MSi < 0.9:
6: Y fin ← Li +Dt

7: else:
8: Y fin ← Li

Table 1: Hierarchical memory enhancement.

Dataset Train Dev Test All
UD public datasets

English (EWT) 12,544 2,001 2,077 16,622
Chinese(GSDSimp) 3,997 500 500 4,997
Vietnamese (VTB) 1,400 1,123 800 3,323
Tamil (TTB) 400 80 120 600
Coptic (Scriptorium) 1,419 381 403 2,203
Maltese (MUDT) 1,123 433 518 2,074

Table 2: Dataset statistics in sentence number.

Hyperparameter Value

LoRA QLoRA (8-bit)

lora_alpha 16 8
lora_rank 8 4
loraplus_lr_ratio 16 8
num_train_epochs 5 5
compute_type bf16 bf16
learining_rate 5e-5 5e-5
cutoff_len 3500 3500

Table 3: Hyperparameter setting of fine-tuning LLMs.

4 Experiments 341

4.1 Experimental Setups 342

Datasets. We acquiescently experimented with 343

using Chinese (zh) as the source language for Viet- 344

namese (vi) and Tamil (ta) while English (en) is the 345

source language for Coptic (cop), and Maltese (mt), 346

which are all derived from the Universal Depen- 347

dencies (UD) v2.13 treebank 5. Moreover, we use 348

all languages’ training datasets to fine-tune large 349

language models (LLMs) and evaluate on their re- 350

spective test datasets. Detailed dataset statistics are 351

presented in Table 2. 352

Evaluation. We utilize Labeled Attachment 353

Score (LAS) and Unlabeled Attachment Score 354

(UAS) as evaluation metrics (Liu et al., 2025). All 355

models are trained for no more than 1000 itera- 356

tions, and their performances are evaluated on the 357

development dataset after each iteration to guide 358

the model selection. 359

Hyperparameter choices. 1) Training tradi- 360

tional parsers. We set the parameters of the three 361

traditional small models uniformly according to the 362

most hyperparameter settings of Li et al. (2019a), 363

including MLP and BiAffine dimensions and learn- 364

ing rates. 2) Fine-tuning large language models. 365

The key hyperparameters are set as in Table 3, the 366

rest of the hyperparameters take on default values. 367

Baselines. We employ three typical cross- 368

lingual models and three large language models 369

5https://universaldependencies.org/

5
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Model Vietnamese Tamil Coptic Maltese Avg.

LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS
Results of previous works

UDify (2019) 66.00 74.11 68.29 78.34 10.82 27.58 75.56 83.07 55.17 65.78
MBERT (2022) 61.24 70.45 54.94 62.35 82.11 86.87 72.69 80.54 67.75 75.05
ESR (2023) 60.80 70.21 66.40 74.12 77.34 81.42 74.20 82.34 69.69 77.02
Dynamic (2025) 66.75 80.03 69.18 79.09 86.32 89.95 76.19 83.28 74.61 83.09

Compare with traditional models
FulSha 54.82 69.02 56.79 66.76 72.28 76.60 68.42 76.61 63.08 72.25
MulLea 56.21 70.01 57.02 67.54 73.52 77.41 67.24 75.14 63.50 72.53
LanEmb 55.89 70.09 57.27 69.28 72.04 76.42 69.01 77.35 63.55 73.29
FulSha (w/ roberta) 62.53 78.94 63.15 77.23 79.28 85.60 72.79 81.61 69.44 80.85
MulLea (w/ roberta) 64.37 79.26 63.90 75.82 82.59 87.41 70.15 79.75 70.25 80.56
LanEmb (w/ roberta) 63.52 79.28 64.25 78.18 79.14 85.52 73.01 81.74 70.23 81.18

Compare with large language models
Llama3.1-8B-Instruct
Zero-shot 15.57 30.03 9.45 22.12 9.59 19.82 17.49 38.08 13.03 27.76
One-shot 18.93 34.65 15.65 30.07 11.87 23.84 19.59 41.41 16.51 32.49
Few-shot 21.79 36.80 18.68 32.65 12.82 25.90 30.21 44.06 20.88 34.85
LoRA 56.66 69.33 57.45 68.07 69.02 74.03 70.44 75.97 63.39 71.85
Our 60.12 72.45 61.05 71.52 73.65 77.34 75.14 78.13 67.49 74.86
Qwen2.5-7B-Instruct
Zero-shot 18.29 33.87 14.95 34.92 9.37 22.16 19.30 38.97 15.48 32.48
One-shot 20.23 37.03 17.90 35.68 9.72 23.23 20.12 42.06 16.99 34.50
Few-shot 23.08 38.02 23.00 37.30 11.85 25.60 28.18 43.96 21.53 36.22
LoRA 63.26 76.27 55.97 67.68 75.65 80.20 70.22 76.64 66.28 75.20
Our 66.48 79.35 60.42 70.54 79.42 83.14 74.31 79.62 70.16 78.16
Qwen2.5-14B-Instruct
Zero-shot 24.85 41.71 23.68 38.50 13.84 27.89 31.25 49.15 23.41 39.31
One-shot 26.50 43.45 25.15 39.32 15.12 29.03 33.42 51.32 25.05 40.78
Few-shot 28.46 45.96 29.23 43.61 17.35 31.47 36.54 53.75 27.90 43.70
QLoRA 66.24 79.93 63.45 74.48 83.10 86.79 76.23 82.28 72.26 80.87
Our 68.51† 83.14† 65.57† 77.63† 86.42† 90.02† 78.39† 85.31† 74.72† 84.03†

Table 4: Main results of four languages on the test dataset, where “w/ roberta” represents the enhancement of word
vectors via XLM-RoBERTa-base pre-trained model at the input layer.

as baseline models to demonstrate the effectiveness370

of our approach.371

1) Three typical cross-lingual models. During372

the training process of three typical cross-lingual373

models, we use source and target language training374

datasets to train models and evaluate its perfor-375

mance on target language test dataset. Full Shared376

Model (FulSha). Peng et al. (2017) enhance het-377

erogeneous dependency parsing by employing fully378

shared encoder parameters across three dependency379

graph formalisms to capture cross-formalism com-380

monalities. Following a similar strategy, we share381

all model parameters and alternately train the Bi-382

Affine parser (Dozat and Manning, 2017) on both383

source and target language datasets. Language384

Embedding Model (LanEmb). Li et al. (2019b)385

show that injecting domain embeddings as auxil-386

iary inputs improves cross-domain parsing by in-387

forming the model of domain-specific character-388

istics. Analogously, we introduce 8-dimensional389

language embeddings to explicitly encode language390

identity, guiding the model in distinguishing be-391

tween different language structures. Multi-task 392

Learning Model (MulLea). Building on Dou et al. 393

(2023), who leverage named entity recognition 394

(NER) as an auxiliary task to transfer lexical knowl- 395

edge across domains, we treat source language 396

parsing as an auxiliary task to facilitate syntactic 397

knowledge transfer to the target low-resource lan- 398

guage. w/ roberta. For all typical models above, we 399

use the XLM-RoBERTa-base 6 pre-training model 400

to extract the corresponding feature representations 401

of the input words and add them to the random 402

word embeddings of the above models to enhance 403

the contextual representation of the words. 404

2) Three large language models. To validate 405

the effectiveness of our approach, we set zero-shot, 406

one-shot, and few-shot for three large language 407

models. Due to the original LLM’s poor pars- 408

ing performance (or incorrect parsing formatting) 409

for low-resource languages and ensuring cross- 410

lingual evaluation, we first translate target language 411

texts into the source language (Chinese or English) 412

6https://huggingface.co/xlm-roberta-base
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and parse them using pre-trained BiAffine parsers.413

Then, resulting syntactic trees are added to prompts414

for structural references, enabling the cross-lingual415

settings. Llama3.1-8B-Instruct. Which is Meta’s416

lightweight open-source model, featuring a 128k-417

token context window. It excels in English-centric418

tasks, including instruction following and code gen-419

eration, making it suitable for applications requir-420

ing deep contextual understanding. Qwen2.5-7B-421

Instruct. Which is a 7B parameter instruction-422

tuned model optimized for multilingual tasks, par-423

ticularly strong in East and Southeast Asian lan-424

guages such as Chinese, Vietnamese, and Korean.425

It demonstrates robust performance in mathemat-426

ical reasoning and code generation within multi-427

lingual contexts. Qwen2.5-14B-Instruct. Which428

is a 14.7B parameter model with a 128 K-token429

context window. It excels in processing structured430

data (e.g., tables, JSON) and generating long-form431

content, making it ideal for applications involving432

complex documents and multilingual content.433

4.2 Main Results434

Table 4 presents the main results of baseline435

models and our method across three LLMs. We436

first evaluate three LLMs under zero-shot, one-437

shot, and few-shot settings for cross-lingual depen-438

dency parsing. As expected, performance improves439

with more examples in prompt learning. The Qwen440

series outperforms others, and its performance441

scales with model size. Next, our implicit multi-442

task joint training strategy can enhance parsing443

accuracy dramatically. Then, LLMs’ performance444

is further boosted by applying our explicit depen-445

dency label bank to correct weak-memory syntactic446

patterns, demonstrating our method’s effectiveness.447

Finally, we find that LLMs with more parame-448

ters perform better when using our approach. For449

instance, our method on “Qwen2.5-14B-Instruct”450

surpasses all baselines of traditional models and451

LLMs, proving considerable room for further im-452

provement.453

We compare our models with several previous454

works on traditional models. Kondratyuk and455

Straka (2019) propose UDify, a multilingual BERT-456

based model fine-tuned across 104 languages for457

enhanced parsing. Moreover, Gessler and Zeldes458

(2022) employ a vocabulary expansion method and459

fine-tune BERT to enhance parsing performance.460

Lastly, Effland and Collins (2023) apply expected461

statistic regularization with low-order multi-task462

structural features to refine distributions. Liu et al.463

Model Llama3.1-8B Qwen2.5-14B

LAS UAS LAS UAS
LoRA & QLoRA ablation study

Our 59.68 72.12 68.07 82.41
w/o pos 56.13 68.24 63.45 76.27
w/o src_dp 49.21 61.47 54.24 76.51
w/o src_dp & pos 47.32 59.17 52.70 74.28

Dependency label banks ablation study
Our 59.68 72.12 68.07 82.41
w/o src 58.52 71.13 67.54 81.67
w/o tgt 57.13 69.74 66.37 80.57
w/o src & tgt 56.34 68.93 65.67 79.76

Table 5: The ablation study on the Vietnamese devel-
opment dataset. “w/o pos” means removing the cross-
lingual POS tagging task. “w/o src_dp” means removing
the source language dependency parsing task. “w/o src”
or “w/o tgt” means not using the dependency label bank
of the source or target language.

(2025) propose dynamic syntactic networks that 464

filter harmful source-language features while am- 465

plifying cross-lingual syntactic commonalities. In 466

contrast, our approach jointly fine-tunes LLMs 467

for deep syntactic understanding and uses the de- 468

pendency label bank to strengthen weak syntactic 469

memory, outperforming previous methods. These 470

results confirm the efficacy and potential of our 471

approach. 472

4.3 Ablation Study 473

Table 5 presents a detailed ablation analysis on 474

both the LoRA fine-tuning process and the depen- 475

dency label bank usage. For the LoRA process, 476

removing the cross-lingual POS tagging task leads 477

to a performance drop, indicating that POS infor- 478

mation supports syntactic learning in LLMs. Then, 479

eliminating the source language dependency pars- 480

ing task causes an even larger decline, suggesting 481

it contributes essential syntactic knowledge for un- 482

derstanding the target language. When both tasks 483

are removed, performance degrades most severely, 484

indicating their complementary value. For the 485

dependency label bank usage, omitting both the 486

source and target language dependency label banks 487

reduces performance. Then, we find that enhancing 488

knowledge directly from the target language proves 489

more effective. In addition, completely removing 490

all dependency banks causes further degradation, 491

confirming their overall utility. 492

4.4 Error Analysis 493

Sentence Lengths Figure 3 reports LAS across 494

sentence lengths. First, Parsing accuracy declines 495
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Figure 4: LAS curves regarding dependency distances
on the Vietnamese development dataset, where “Qwen”
is Qwen2.5-14B-Instruct.

significantly beyond 30 words, with an average496

drop of 10.78 points, exhibiting the difficulty of497

long-sentence parsing. The “Qwen-few” model498

consistently underperforms, reflecting the lim-499

ited parsing ability of standard LLMs in low-500

resource languages. However, multi-task joint fine-501

tuning “Qwen-QLoRA” markedly enhances perfor-502

mance. Moreover, incorporating our dependency503

label bank further boosts performance, suggesting504

that source-language syntactic patterns enhance the505

LLMs’ syntax understanding of the target language.506

Overall, our approach outperforms the benchmark507

“LanEmbroberta”, affirming its effectiveness.508

Dependency Distances Figure 4 presents LAS509

about absolute dependency distances. First, the510

“Qwen-few” model consistently underperforms511

across most distances. In contrast, the “Qwen-512

QLoRA” model significantly improves dependency513

parsing accuracy for both short and long distances.514

Then the “Qwen-our” model achieves the highest515

performance, surpassing “LanEmbroberta”, demon-516

strating that our multi-task joint fine-tuning and517

dependency label bank can enhance dependency518

parsing capabilities at all distances via learn syntax519

commonalities across languages.520

DEP
Accuracy (%)

Qwen2.5-14B-Instruct LanEmb
few-shot QLoRA our w/ roberta

advmod 49.07 86.47 87.12 77.19
amod 48.35 59.69 64.11 61.24
case 62.63 83.14 85.33 75.50
cc 84.00 64.16 74.24 78.85
ccomp 12.86 48.03 61.11 43.61
conj 58.27 75.47 80.00 71.03
det 33.14 95.73 97.00 78.14
mark 41.18 83.64 84.71 73.88
nmod 21.44 62.25 67.92 50.99
nsubj 68.24 86.93 88.49 83.75
obl 14.08 38.32 50.41 32.31
root 48.27 81.14 84.16 77.83
xcomp 23.60 49.33 57.63 44.77

Table 6: Dependency label accuracy on the Vietnamese
development dataset.

Dependency labels. Table 6 reports accuracy 521

scores for dependency label predictions. First, 522

“QLoRA” outperforms the “few-shot” baseline, 523

suggesting that multi-task joint fine-tuning en- 524

ables better cross-lingual syntactic generalization. 525

Then, accuracy improves further with the addi- 526

tion of our dependency label bank, surpassing the 527

“LanEmbroberta” model across most labels. These 528

findings highlight the effectiveness of combin- 529

ing implicit fine-tuning with explicit memory en- 530

hancement to optimize parsing in low-resource lan- 531

guages. 532

5 Conclusion 533

We propose a novel deep hierarchical syntax 534

understanding method to enhance the weak de- 535

pendency label memory capability in large lan- 536

guage models. Concretely, we exploit implicit 537

multi-task fine-tuning and explicit dependency la- 538

bel bank guiding to boost LLMs to absorb cross- 539

lingual syntactic commonalities. Experiments on 540

four benchmark datasets show substantial accuracy 541

gains across all baseline models, achieving state- 542

of-the-art performance. Analysis reveals that both 543

multi-task joint fine-tuning and extra dependency 544

label bank can extract useful syntactic knowledge 545

from the source language to enhance the target 546

language parsing accuracy. Moreover, in-depth 547

comparison demonstrates that our method can al- 548

leviate semantic interference across languages and 549

improve the memory strength of most dependency 550

labels, thus further improving the parsing perfor- 551

mance. 552

8



Limitations553

The large language models used in our exper-554

iments was not sufficient to cover most of them,555

while we did not try to include more useful auxil-556

iary knowledge inside the dependency bank, which557

we will continue to delve into in our future work.558
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A Effect of Memory Strength820

DEP F(%) C(%) MS Bank Cf (%)
punct 14.57 99.82 1.00 - 99.82
nsubj 8.19 86.93 0.86 t 88.49
root 6.84 81.14 0.80 t 84.16
advmod 6.43 86.47 0.85 t 87.12
case 4.83 83.14 0.79 t 85.33
conj 4.00 75.47 0.69 t 80.00
nmod 3.94 62.25 0.56 s, t 67.92
xcomp 2.81 49.33 0.40 s, t 57.63
mark 2.51 83.64 0.65 t 84.71
obl 2.22 38.32 0.28 s, t 50.41
nummod 2.04 88.57 0.62 t 91.30
amod 2.01 59.69 0.42 s, t 64.11
cc 1.92 64.16 0.44 s, t 74.24
advcl 1.80 56.21 0.37 s, t 67.16
obl:tmod 1.77 69.86 0.46 s, t 77.27
det 1.62 96.73 0.60 t 97.00

Table 7: Memory strength of some dependency labels,
where the memory formula’s impact factor λ is set to
60. F, C, MS, and Bank are the frequency, correct
rate, memory strength, and the use of dependency label
bank. “-” means no use of dependency label bank, and
“s or t” means the use of the source language or the
target language. Cf is the correct rate of optimized final
parsing results.

Table 7 presents the memory strength of most821

dependency labels and the effect of using depen-822

dency label banks. We find that very few labels823

reach the maximum memory strength of 1, only824

the label “punct” because its high frequency in the825

fine-tuning data gives the LLMs a strong under-826

standing of it. Then, using both source and target827

language dependency label banks provides a larger828

improvement for labels with weak memory and low829

initial accuracy, while using only the target lan-830

guage dependency label bank yields a moderate831

gain for labels with moderate memory strength.832

This suggests that sharing syntactic structures from833

the source language helps the LLMs better under-834

stand the target language syntax, demonstrating the835

validity of our method.836

B Effect of Frequency and Correct Rate837

Table 8 shows the influence of frequency and838

correct rate on memory enhancement. We find839

that lowering λ, which increases the weight of the840

LLMs’ initial label correct rate when calculating841

memory strength, leads to improved scores. This is842

because it lowers the calculated memory strengths843

overall, causing most labels to be treated as weak844

memories. As a result, more information from the845

dependency label bank is used, but it increases the846

number of occupied tokens and slows down infer- 847

ence. In contrast, increasing λ reduces memory 848

usage and speeds up inference but leads to lower 849

performance. The parameters we selected strike 850

a balance between these trade-offs and result in 851

strong overall performance. 852

λ Tokens Time Qwen2.5-14B-Instruct

LAS UAS

30 3.5k 24s 68.24 82.97
60 2.0k 15s 68.07 82.41
90 1.5k 10s 66.32 80.24

Table 8: Impact of frequency and correct rate for mem-
ory enhancement, where increasing λ amplifies the im-
portance of frequency and conversely emphasises the
importance of correct rate.

Thresholds Qwen2.5-14B-Instruct

w → m m→ s LAS UAS

0.6 0.9 68.07 82.41
0.4 0.9 67.67 82.04
0.8 0.9 68.34 82.77
0.6 0.7 67.87 82.13
0.6 1.0 68.20 82.24

Table 9: Thresholds for the division of memory strength,
where “w → m” is the threshold that determines weak
to moderate memory, “m → s” is the threshold that
determines moderate to strong memory.

C Influence of Different Memory 853

Strength Thresholds 854

Table 9 shows the effect of different thresholds 855

for dividing memory strength levels. The first row 856

presents our default parameter settings. We ob- 857

serve that lowering the threshold between weak 858

and moderate memory (second row) and between 859

moderate and strong memory (fourth row) leads 860

to a drop in performance. This happens because 861

less knowledge from the dependency label banks 862

is used, which reduces the benefit from syntactic 863

structure transfer and weakens performance. In 864

contrast, the parameter settings in the third and 865

fifth rows expand the range of labels considered 866

as weak or moderate memory, which increases the 867

use of the dependency label banks and results in a 868

slight performance gain. These results confirm the 869

value of extracting shared syntactic structures from 870

our memory resource. 871
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D Fine-tuning Data Template872

Table 10 and 11 illustrate the fine-tuning data873

templates employed in the cross-lingual POS tag-874

ging task and cross-lingual dependency parsing875

task. This information is mainly used to clearly876

show the data format used to fine-tune large lan-877

guage models, and the data will be publicly avail-878

able in JSON format.879

Instrcuct: You are an expert in multilingual POS tagging,
identify each sentence’s language type and tag
part-of-speech for each token.

Input: 汤姆\t感到\t很\t开心\t。
Output: Chinese

PROPN\tVERB\tADV\tADJ\tPUNCT

Input: Tom\tcảm thấ\trất\tvui\t.
Output: Vietnamese

PROPN\tVERB\tADV\tADJ\tPUNCT

Table 10: An example of cross-lingual POS tagging task
data, which use tab marks to split the words.

Instrcuct: You are an expert in multilingual dependency
parsing, identify each sentence’s language type
and parse it into the fixed format as follows.
[Fixed format]:
Each word has four columns separated by TAB,
should follow the below rules:
1. Word index (starts from 1)
2. Original word form
3. Headword indices
4. Dependency type (*lowercase letters*)

Input: 汤姆\t感到\t很\t开心\t。
Output: Chinese

1 \t汤姆 \t2 \tnsubj
2 \t感到 \t0 \troot
3 \t很 \t4 \tadvmod
4 \t开心 \t2 \txcomp
5 \t。 \t2 \tpunct

Input: Tom\tcảm thấ\trất\tvui\t.
Output: Vietnamese

1 \tTom \t2 \tnsubj
2 \tcảm thấ \t0 \troot
3 \trất \t4 \tadvmod
4 \tvui \t2 \txcomp
5 \t. \t2 \tpunct

Table 11: An example of cross-lingual dependency pars-
ing task data, which use tab marks to split the words.
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