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Abstract

We propose DeepASA, a multi-purpose model for auditory scene analysis that
performs multi-input multi-output (MIMO) source separation, dereverberation,
sound event detection (SED), audio classification, and direction-of-arrival esti-
mation (DoAE) within a unified framework. DeepASA is designed for complex
auditory scenes where multiple, often similar, sound sources overlap in time and
move dynamically in space. To achieve robust and consistent inference across
tasks, we introduce an object-oriented processing (OOP) strategy. This approach
encapsulates diverse auditory features into object-centric representations and re-
fines them through a chain-of-inference (Col) mechanism. The pipeline comprises
a dynamic temporal kernel-based feature extractor, a transformer-based aggrega-
tor, and an object separator that yields per-object features. These features feed
into multiple task-specific decoders. Our object-centric representations naturally
resolve the parameter association ambiguity inherent in traditional track-wise
processing. However, early-stage object separation can lead to failure in down-
stream ASA tasks. To address this, we implement temporal coherence matching
(TCM) within the chain-of-inference, enabling multi-task fusion and iterative re-
finement of object features using estimated auditory parameters. We evaluate
DeepASA on representative spatial audio benchmark datasets, including ASA2,
MC-FUSS, and STARSS23. Experimental results show that our model achieves
state-of-the-art performance across all evaluated tasks, demonstrating its effec-
tiveness in both source separation and auditory parameter estimation under di-
verse spatial auditory scenes. The demo video, samples and code are available at
https://huggingface.co/spaces/donghoney22/DeepASA|

1 Introduction

Auditory scene analysis (ASA) seeks to extract information about individual sound sources from
complex auditory environments [1]. This includes identifying the class of each source, its onset and
offset times, and its direction of arrival (DoA) [2]. In humans, ASA is facilitated by the brain’s ability
to organize sound into perceptual streams by integrating multiple auditory cues such as pitch, timing,
and spatial location, in a complementary fashion [3} 4} 5]

Inspired by this ability, computational auditory scene analysis (CASA) research [2| 6] has aimed to
replicate similar functionality using auditory cues like pitch, onset/offset, interaural level differences
(ILDs), and interaural time differences (ITDs). With the rise of deep learning, a wide array of
models has emerged to tackle specific ASA tasks, including audio tagging (AT) [7, 8} 9l], sound event
detection (SED) [10} [11}[12], DoAE [13}14.[15]], and blind source separation (BSS) [16 17} [18]].

However, unlike the human auditory system, these task-specific models typically lack the capacity
for relational reasoning across tasks and cues. As a result, they often fail when critical auditory cues
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are missing or degraded [[19]. Recent work highlights the benefit of combining multiple auditory
cues. For instance, target sound extraction (TSE), which uses class [20} 211, activation [22} 23], and
spatial cues [24] 25]], outperforms universal sound separation (USS) in challenging scenarios [26, 27].
Similarly, joint SED and DoAE in sound event localization and detection (SELD) has been shown to
enhance performance by leveraging interdependent auditory information [28l, 29].

Building on this evidence, we propose a general-purpose ASA model that emulates this cue integration
process. Our model separates object-level auditory streams at an early stage and performs multiple
downstream ASA tasks by exploiting the complementary relationships among estimated cues.

Contribution. We introduce DeepASA, a unified architecture for general auditory scene analysis,
with two core contributions:

1. Object-Oriented Processing (OOP): We design an encoder-decoder framework that isolates
features of individual sound objects. The encoder incorporates a dynamic short-time Fourier transform
(STFT) module and a transformer-based feature aggregator. These are followed by an object feature
separator that disentangles per-object auditory representations. These object-centric features are
then passed to multiple sub-decoders, each responsible for estimating a specific auditory parameter
(e.g., class, DoA, activation) without requiring manual association or permutation invariant training
between estimated auditory parameters.

2. Chain-of-Inference (Col) architecture: To emulate the human auditory system’s ability to
recover missing cues by reasoning from others, we propose a chain-of-inference architecture. This
component progressively refines object representations by fusing the outputs of ASA sub-decoders
using a temporal coherence-based attention mechanism. It enables the model to reinforce incomplete
or ambiguous estimates via complementary information.

We validate DeepASA on multiple spatial audio benchmarks. Ablation studies on the newly proposed
ASA2 dataseﬂ show that task-specific sub-decoders mutually enhance one another when conditioned
on shared object features, yielding strong results with an SI-SDRi of 11.2 dB and a SELD score of
0.206. We also demonstrate that DeepASA pretrained by the ASA?2 dataset can be generalized to
various spatial audio benchmarks through fine-tuning with Col. The fine-tuned DeepASA achieves
state-of-the-art (SOTA) results, including an SI-SDRi of 18.5 dB on MC-FUSS for multichannel
universal sound separation 30} 31]], a SELD score of 0.253 on STARSS23 [32].
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Figure 1: Comparison between (a) traditional track-wise processing and (b) proposed object-oriented
processing

2 Method

2.1 Overall framework: DeepASA

The multichannel audio mixture x € RM*~ where M is the number of microphones and N is

the number of time samples of the waveform, can be modeled as the summation of J reverberant
foreground signals and background noise v. The j-th foreground source can be further decomposed
as the superposition of direct sound s; and reverberation h;.

J
x[n] = > (s;[n] +hy[n]) + v[n]. 6))

j=1
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Figure 2: Basic architecture of DeepASA

We aim to estimate the auditory information of up to J foreground sources, including classes,
activations of onsets and offsets, DoA trajectories, and multichannel waveforms of the direct and
reverb audio signals, as well as one multichannel noise signal, from the multichannel audio mixture.

As illustrated in Figure[2] the overall architecture of DeepASA comprises three components: audio
encoder, object separator, and sub-decoders. The audio encoder extracts basic features from the
M -channel input mixture. The object separator separates audio features extracted from the audio
encoder into J 4 1 object features, each of which encapsulates the auditory information of a single
sound object. The sub-decoders then estimate the auditory information from each object feature.
D, T’ and C are denoted as channel dimension, time frames and number of classes.

The proposed framework separates each sound object at a feature level, which is referred to as object-
oriented processing (OOP) in this work. One advantage of OOP is that the object-wise permutation of
the separated features is consistently inherited across all sub-decoders. For example, the j-th object
estimated by the audio, SED, DoA decoders all include the waveforms, SED, DoA information from
the same sound source. The characteristic is the major difference to the conventional track-wise
processing [28} 1331134, 135,136, |37]], for which multiple source information can be aligned on the same
track when they do not overlap in time. The OOP eliminates the requirement for pairing different
auditory information and also enables the selective attention of estimated information across different
objects and auditory information.

2.2 Audio encoder

Dynamic STFT with time-varying learnable window The audio encoder of DeepASA incorporates
our proposed architecture, Dynamic STFT, for adaptive temporal focusing on the input waveform.
Conventional STFT uses a fixed analysis window at all times, yet the locations and durations of
salient information within time frames can vary across the waveform. Accordingly, we employ a
learnable Gaussian window whose mean (1;) and standard deviation (o) are predicted at every
frame, forming @ € R7T and o € R7 vectors for the total number of time frames 7". The frame-wise
mean (u,) aligns the center of the analysis window on the most informative region, while (o) sculpts
its taper: a large o, flattens the analysis window toward a rectangle, sharpening spectral focus with a
thin main lobe, whereas a small o contracts it toward an impulse, enhancing temporal focus.
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Processing STFT with the time-varying learnable window, the multichannel waveform is converted
into a complex spectrogram X € RZ2MXTXF where F is the number of frequency bins. These



complex spectrograms are then fed directly into an Up-Conv block composed of a 2D convolution
layer followed by layer normalization, to increase the channel dimension from 2M to D while
preserving the temporal and spectral dimensions. For training a learnable window, the parameters are
frozen at the beginning of the training, and when the model has converged, they are unfrozen and
trained together.

2.3 Object separator

Feature aggregation As the feature aggregation block of the proposed network, we modified the
DeFT-Mamba [38] model designed for the USS task (Figure a)). DeFT-Mamba is a comprehensive
feature aggregation model utilizing Mamba and transformer layers to capture temporal, spectral, and
interchannel relations in multidimensional data. To lighten the model, we adopt Mamba-FFN only
for T-Hybrid Mamba and use a conventional feedforward network (FFN) for F-Hybrid Mamba. Then,
we remove the unfolding process from the gated convolutional block (GCB) while keeping the gating
module and the convolution kernel.

Object splitter The features arranged by the modified DeFT-Mamba are transformed into J + 1
object features through the object splitting layer given by a 2D convolution kernel. The separated
J object features corresponding to foreground sources pass through the direct and reverb decoders
of the audio decoder, the SED decoder, and the DoA decoder. The last object among the separated
objects is treated as a noise object, which is separately utilized by the noise decoder in the audio
decoder to estimate background noise.

2.4 Sub-decoders

The sub-decoders decode each object feature into the direct, reverberant, and noise audio signals, class,
activation, and DoA outputs. The detailed architectures of sub-decoders are depicted in Figure @{b).

MIMO Audio decoder The audio decoder aims to estimate a maximum of .J foreground source
signals and 1 background noise signal corresponding to individual sound objects. In the conventional
multi-input single-output (MISO) model, spatial information is lost in the decoded single-channel
signal, and the audio decoder cannot assist DOAE in the DoA decoder. Therefore, the audio decoder
in DeepASA is designed as a multi-input multi-output (MIMO) architecture, facilitating spatial
information in the separated object features. To further assist the development of spatial information
and dereverberation, the audio decoder is trained to separate direct sound s; and reverberant sound h;
of each object across all microphone channels. In addition, for reducing the influence of background
noise, the last object from the object separator is separately processed by the noise decoder trained to
estimate the background noise v. When active foreground sources are fewer than J, inactive sources
are trained to estimate zero target signals.

SED decoder The SED decoder decodes the object features of each sound source into the predicted
class probability (1 x C'), the binary object activation curve for event onset and offset (7" x 1),
and the predicted SED map (1" x C). Here, T’ and C denote the number of time frames and the
number of classes, respectively. The predicted SED map is only used in the training stage to guide
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Figure 5: Detailed architecture of chain-of-inference

the joint detection of a sound event and class. In the inference stage, we use the SED map produced
by multiplying the predicted class and activation curve, resulting in a single SED map for each sound
source. This is to exclude the possibility of more than one class being mapped to the SED map
for each sound object. The SED decoder combines a pre-trained audio teacher-student transformer
(ATST) [12] with two separate convolutional recurrent neural network (CRNN) [L1]-based branches
summarizing time and frequency information. CRNN consists of multiple repetitions of Conv2d
and Maxpool2d (denoted as CNN), followed by GRU and FC layers. Specifically, among the three
red branches of the SED decoder, the middle path with seven Conv+Maxpool layers outputting
(J x T" x D) is the T-CRNN path, and the bottom path with two Conv+Maxpool layers outputting
(J x F' x D) corresponds to the F-CRNN path. We employ the pre-trained ATST to utilize various
features learned from AudioSet, a large-scale dataset containing a wide range of audio classes [39].
The features from ATST are combined with auxiliary features developed from another Conv2d layer.
The concatenated features are analyzed in time by Time (T)-GRU and summarized to predict the
sound event map. For predicting a single-channel activation curve, adaptive statistical pooling (ASP)
[40] and one fully connected layer are applied along the class dimension. The class probability is
predicted by superposing the logit derived from Frequency (F)-CRNN, which prioritizes the spectral
information using Conv2d layers and F-GRU, with the logit obtained from ASP. For inactive sources,
the class decoder is trained to predict an equal probability of 1/C across all C classes, while the
sound event and activation decoders are trained to produce zero values for all time frames. The
detailed specifications of the SED decoder are provided in Appendix [A]

DoA decoder The DoA decoder has the CRNN structure and outputs a stream of DoA vectors in
Cartesian coordinates (z, y, z). The DoA output estimates a DoA vector with a magnitude of 1 when
a source is present, and assigns all x, y, z values to O when no source is detected, allowing for the
estimation of the activity and incident angle. DoA is estimated for each time frame, enabling the
trajectory prediction for moving sources.

2.5 Chain-of-inference

The initial estimation through sub-decoders can include misalignment between auditory parameters.
For example, the DoA vector stream can exhibit different onsets and offsets with the sound event
map. These asynchronous estimations are refined from the object separation level through the fusion
of initial estimations. This refinement step, chain-of-inference, consists of two processing steps:
temporal coherence matching (TCM) and feature fusion (FF) (Figure E])

Temporal coherence matching In TCM, temporal coherence between SED and DoAE is evaluated
through the multi-clue attention mechanism. One branch of multi-clue attention takes SED as queries
and DoA as keys and values, and the attention output is added to SED to refine the SED information.
Conversely, the other multi-clue attention branch uses DoA as queries and SED as keys and values.
The SED decoder outputs three components, but ultimately, the SED map of T’ x C' is constructed
for each object from the predicted class probability (1 x C) and object activation (7" x 1). DoA
decoder also generates T’x3 output for each object. The alignment between the SEDs and DoAs is
accomplished in TCM through the cross-attention by assigning the time dimension as a sequence
dimension. The outputs of the two multi-clue attentions are passed through two individual linear
layers to produce the D-channel clues and then superposed for fusion. The fused clue is interpolated
by a transposed convolution layer to match its time dimension 7" with that of object features (7).



Feature fusion In the feature fusion block, the fused clue is utilized to refine the object feature
separation. TCM output is processed by a feature-wise linear modulation (FiLM) layer [41], which
outputs values of 5 and ~ for each channel and time frame. The output of the FiLM layer is then
combined with the output from the feature aggregation module (z) to inject information required for
object separation. The object features refined by the object splitter 2 are then plugged again into the
sub-decoders 2 to improve ASA parameter estimation.

For efficient training of the Col architecture, we utilize multi-stage training. That is, Net 1 of Figure[3]
is trained first, then Net 2 is trained with up to the third DeFT-Mamba block of Net 1 frozen.

3 Experimental Settings

3.1 Datasets

The proposed architecture is trained and evaluated on three spatial audio datasets: ASA2, MC-
FUSS, and STARSS23. Auditory Scene Analysis dataset V2 (ASA2) provides ground truth signals
and labels for all acoustic parameters addressed in this study, including comprehensive auditory
information for moving source separation and scene analysis in noisy, reverberant environment. ASA2
is based on the ASA dataset [38]], but we modified it extensively to enable the comprehensive tasks
discussed in this study. ASA2 supports (1) the separation of direct and reverberation components (for
dereverberation), (2) MIMO separation, as compared to MISO separation of the ASA dataset, and
(3) an increased maximum number of foreground sound sources, from four to five. The balance in
the number of audio clips has been changed to be proportional to the number of sources constituting
the scene. Multichannel-Free Universal Sound Separation (MC-FUSS) [30] is a benchmark dataset
for multichannel USS, including mixtures of 1-4 sound sources, with one being the background
source. For a fair comparison on the MC-FUSS dataset, we trained DeepASA both from scratch
and with fine-tuning of the pre-trained model on the ASA 2 dataset. Also, we compared the effect
of pre-trained ATST in the MC-FUSS dataset. STARSS23 [32] is a dataset for the SELD task,
addressing various sound events with 3.8 hours of audio-video data collected from real environments.
This dataset generally requires data augmentation, so additional data augmentation of 80 hours was
conducted using a spatial scaper [42]. In this experiment, other SELD models were also trained using
the large auxiliary datasets. The DCASE 2023 challenge allowed the use of external datasets and
pre-trained models, so we applied this rule. All datasets were set to a 16 kHz sampling rate and a
4-second duration.

3.2 Training and model configuration

For the STFT, the Gaussian window of 40 ms length and hop size of 20 ms (50% overlap) was used.
The initial weight for the mean and standard deviation of the window was set to 0 and 6.67 ms,
ensuring 6 x o covers the full window range. The number of feature aggregation modules was 6, and
the channel dimension for the DeepASA was 64. The initial learning rate 4 x 10~* was used for the
Adam optimizer during pre-training, and 4 x 10~ and 5 x 10~° were used for fine-tuning to the
MC-FUSS and STARSS23 datasets, respectively. The learning rate was halved if the validation loss
did not decrease for five consecutive epochs. The model was trained for 100 epochs, and the model
from the epoch with the lowest validation loss was selected as the final model. The batch size was set
to 2. The training was performed on eight GeForce RTX 3090 GPUs.

The direct and reverb decoders in the audio decoder were trained with the source-aggregated signal-
to-distortion ratio (SA-SDR) loss [43] with permutation invariant training (PIT) [44]. We configured
a reference channel among multichannel signals and applied different weights (1:0.1) to the losses of
the reference and the other channels. The noise decoder was trained by the scale-invariant signal-
to-distortion ratio (SI-SDR) loss [45]. We employed one noise decoder, so the noise decoder was
not trained with PIT. The joint loss was calculated by summing the losses with weights 1:1:0.01
for direct, reverb, and noise decoders. The losses for the SED decoder were cross-entropy, binary
cross-entropy, and mean-square-error (MSE), for the class decoder, activation decoder, and sound
event decoder, respectively. The MSE loss was used for the DoA decoder, which was summed
with all aforementioned losses with equal weights. In evaluation, scale-invariant signal-to-distortion
ratio improvement (SI-SDRi) (dB) and signal-to-distortion ratio improvement (SDRi) (dB) were
used for USS performance evaluation, while SELD metrics (error rate (ER,%), F1-score (F1,%),



localization error (LE, degrees), localization recall (LR, %)) [28] were employed for SED and DoAE.
We measured the model complexity by the parameter size and computational complexity.

4 Results

4.1 Ablation study of DeepASA blocks

We conducted ablation studies to assess the contribution of each module in DeepASA. Each row
block of Table[I]corresponds to the ablation of a specific component. For sequential consistency, the
final configuration from the previous block was used as the baseline for the subsequent analysis.

Framework The first ablation study is about incorporating the MIMO separation task, SED, and
DoA decoders. The baseline was the MISO USS model [38], and USS performance was measured
based on the reconstruction of the reference channel. When MIMO USS is introduced, the separation
performance of the reference channel decreases. This can be attributed to the features extracted for
all channels rather than a single channel. Introducing the SELD task using the SELDNet [28]] sub-
decoder enhances the USS performance as well, showing that auditory scene analysis can effectively
guide the source separation task. The SELD performance is further improved when the CRNN
architectures are employed as SED and DoA decoders. Notably, USS performance metrics are
recovered to those of the baseline, indicating that a sophisticated SELD decoder can effectively
improve SELD performance with minimal impact on the USS task.

Object separator Next, we examine the impact of downsizing on the baseline model (DeFT-Mamba-
MIMO + SED, DoA decoder). The performance reduction by omitting unfold was negligible,
showing only -0.1 dB difference in SI-SDRi. Furthermore, when F-Mamba is removed, a performance
degradation of 0.3 dB in SI-SDR and 0.002 in SELD score is observed. However, this comes with
significant lightweighting in parameter size (0.9 M) and computational complexity (10.9 GMac/s), so
we adopted the conventional FFN in the F-HybridMamba block.

SED decoder The efficacy of more sophisticated sub-decoders is tested in this section. Recent work
has shown that combining pre-trained ATST and CRNN achieves high performance in sound event
detection [46]. The SELD score is also significantly improved when the baseline, combined with
the ATST + T-CRNN decoder, is fine-tuned to the ASA2 dataset. This stresses the importance of
using the class decoder specialized to the classification task. Similarly, we combined the F-CRNN
architecture to capture and emphasize global frequency relations, improving the SELD score further
up to 0.266. Since the improvement was less only with the F-CRNN decoder, we can conclude that
capturing both local and global time-frequency relationships is critical for effective SED.

Audio decoder With the best SED decoder suggested above, we conducted the model analysis for
the audio decoder. The first improvement was adding a noise decoder that estimates multichannel
background noise. Both separation and SED performance are significantly improved when the noise
decoder performing noise estimation is added. As analyzed in detail in Appendix |B} the noise
decoder enhances the separation performance of domestic sounds that share similar time-frequency

Table 1: Ablation study on the proposed model using the ASA2 dataset. The models with (+) or
(-) indicate the addition or removal of the corresponding blocks from the baseline. The (+) in the
parameter size indicates the parameter size of the pre-trained ATST.

g USS SED DoAE Complexities

Model variation SI.SDRi1 SDRi1|ER | FIt LE) LR+ SEEDLL  pim.  MACK

DeFT-Mamba-MISO [38 10.4 11.3 - - - - 3.6 M 838 G

Framework DcFT%’[zlmbzl—l\’UN’[() 10.0 10.9 - - - - - 3.6 M 83.8G

(+) SELDNet [28] 10.2 11.1 42.0 582 28.6 63.2 0.341 54M 86.1 G

(+) SED, DoA decoder 104 114 |40.0 603 229 657 0317 72M 88.4G

Object (-) Unfold 10.3 114 |39.8 60.5 222 66.1 0.314 72M 88.0 G

separator () Unfold, F-Mamba 10.0 11.1 {399 604 220 659 0.315 6.3 M 771G

SED (+) F-CRNN 10.3 11.2 | 38.0 61.1 21.9 68.8 0.301 8.1 M 90.7G

decoder (+) ATST + T-CRNN [46] 10.2 11.2 |35.7 66.1 21.2 71.0 0276 | 6.3(+96.8)M 96.5G

(+) ATST + T- &F-CRNNSs 10.3 11.2 | 341 66.6 213 72.8 0.266 | 8.1 (+96.8)M 98.8G

. (+) Noise decoder 11.0 11.7 |30.3 69.8 21.2 76.0 0.241 8.1(+96.8) M 98.9G
Audio (+) Direct/reverb

decoder . ’ 10.8 11.5 |30.0 69.6 19.1 762 0.237 | 8.1(+96.8)M 99.0G

noise decoder

Dynamic  (+) Time-invariant window 10.7 11.4 302 69.8 193 76.0 0.238 | 8.1(+96.8)M 99.0G

STFT  (+) Time-variant window 11.0 11.7 |28.8 702 18.5 769 0230 | 82(+96.8)M 99.1 G

Col (+) Chain-of-inference 11.2 12.0 [25.0 74.1 17.0 78.1 0.206 [12.1 (+96.8) M 104.0 G




characteristics with background noise. Next, separate decoders for the direct and reverberant sounds
were employed to estimate s; and h;, respectively, instead of s; 4 h; estimated by the baseline audio
decoder. Here, the USS performance was evaluated by measuring SI-SDRi and SDRi on s; + h;
for fair comparison to previous cases. While this change slightly reduces separation performance,
DoAE performance (LE and LR) is markedly improved. This suggests that learning to separate direct
audio positively impacts DoA accuracy by suppressing reverberant signals. A detailed analysis of the
direct/reverb decoders is provided in Appendix[C]

Dynamic STFT Lastly, the effectiveness of dynamic STFT was validated. The first comparison set
is the model using a learnable but time-invariant window, which was designed by applying mean
pooling over the temporal dimension before passing it through the linear layers of a time-varying
learnable window. This model shows negligible performance improvement compared to the baseline
STFT-based model. In contrast, the time-varying learnable window increases all performance metrics,
demonstrating the importance of dynamic temporal adjustment of the window position and length
in feature extraction and separation. The detailed comparisons with various dynamic convolution
kernels are presented in Appendix

4.2 Ablation study of chain-of-inference (Col)

The results of the Col ablation study are presented in Table[2] The baseline model corresponds to the
best-performing configuration without Col, identified in Table[T} To isolate the effect of individual
auditory cues, we ablated the Col module by including only a single query branch, either the SED or
DoA branch in the Temporal Coherence Matching (TCM) module. Additionally, the audio decoder 2
was removed from Net 2 to eliminate the influence of two-stage training on the audio separation task.
In these ablated configurations, USS performance was evaluated using the output from audio decoder
1 only.

Table 2: Ablation study for the chain-of-inference architecture

.. USS SED DoAE Complexities
Model variation SI.SDRi SDRi| ER| Fl1{ LE| LR{ SELD Param . MACSs
without chain-of-inference 11.0 11.7 28.8 70.2 18.5 76.9 0.230 82(+96.8)M 99.1G
without (+) SED branch 11.0 11.8 26.6 71.8 18.2 76.5 0.221 l().3 (+96.8) M 101.6 G
audio decoder 2 (+) DoA branch 11.0 11.8 282  70.6 17.6  76.0 0.228 [10.3 (+96.8) M 101.6 (1
“~ (+) SED & DoA 11.0 11.7 26.5 73.0 17.3 77.2 0.214 |12.1 (+96.8) M 104.0 G
+ Chain-of-inference 11.2:01  12.0:01|25.0:04 74.1203 17.0:03 78.1x04 0.206=0001 [12.1 (+96.8) M 104.0 G

The results reveal that incorporating the SED branch improves sound event detection (as indicated
by enhanced ER and F1-score), while incorporating the DoA branch improves DoA estimation (as
shown by reduced localization error, LE). These findings suggest that cross-attention with SED or
DoA queries selectively refines the corresponding auditory information. Notably, combining both
branches (SED & DoA) leads to further improvements in both metrics, indicating that when one cue
is unreliable, the other can compensate to support more accurate inference. In the final configuration,
the full Col architecture was restored, with Net 2 including audio decoder 2. In this setting, the USS
output from audio decoder 2 was used for evaluation. The complete Col architecture yields the best
overall performance, achieving 12.0 dB SI-SDRi on the USS task and a SELD score of 0.206. These
results confirm that the proposed Col mechanism effectively enhances estimation across auditory
domains by explicitly modeling interdependencies and enabling complementary cue integration. We
run five trials and report the average and standard deviation for the final model. A more detailed
analysis of Col’s contribution is provided in Appendix

4.3 Generalization to spatial audio benchmarks & comparison with SOTA models

We evaluated the generalization capability of DeepASA on two spatial audio benchmarks: MC-FUSS
for USS and STARSS23 for SELD, and compared it to SOTA models. DeepASA was pre-trained on
the ASA2 dataset and fine-tuned using the ground-truth parameters available in each target dataset.
Since no existing model can simultaneously perform USS, SED, and DoAE tasks, comparison models
were trained individually for the subset of tasks they support.

USS performance comparison on MC-FUSS dataset Table |3| presents a comparison between
DeepASA (excluding the Col, SED, and DoA decoders) and existing SOTA models for universal
sound separation (USS). Despite being unable to utilize the Col module during fine-tuning on MC-
FUSS, DeepASA outperforms existing USS models, particularly in scenes with a larger number



of foreground sources. This performance gain is largely attributed to the noise decoder’s explicit
estimation of background noise and the benefits of fine-tuning from pre-trained weights.

Table 3: USS performance comparison on MC-FUSS dataset

Training Model J=2 J=3 J=4 Total Param. MAC/s
ByteDance-uss [26] 14.8 14.4 12.7 14.0 28.0 (+80.7) M 40.1G

MC-BSRNN [25] 157 152 114 14.1 122M 153G

TF-GridNet [47] 172 16.1 12.5 15.3 147M 462 G

From scratch DeFTAN-II [48] 17.6  16.3 12.8 15.6 4.1M 66.1 G

’ SpatialNet [49] 17.8 165 13.1 15.8 73 M 71.8G
DeFT-Mamba [38] 184 17.1 13.8 16.4 3.6 M 83.8G

DeepASA (SEP, w/o ATST) | 185 182 15.7 17.5 29M 713G

Fine-tuning DeFT-Mamba [38] 184 17.1 14.1 16.6 3.6 M 83.8G
(pre-trained on ASA2) DeepASA (SEP, w/o ATST) 188 19.0 174 18.4 29M 713G
P DeepASA (SEP) 189 191 17.6 18.5 29M 713 G

SELD performance comparison on STARSS23 dataset We evaluate two versions of DeepASA
(with and without Col) against SOTA SELD models, including top-ranking submissions from the
DCASE 2023 challenge. DeepASA achieves the highest overall performance on the STARSS23
dataset, even without employing the audio decoder. Both versions of DeepASA surpass the per-
formance of the top-ranked model [37], which relied on class-dependent separation networks and
model ensembling. It is worth noting that DeepASA was pre-trained on the ASA2 dataset prior to
fine-tuning. To control for the effect of pre-training, we further compared DeepASA to publicly avail-
able models that were also trained using ASA2. As detailed in Appendix |, DeepASA consistently
achieves SOTA performance across all evaluated tasks under the same training conditions. These
results collectively demonstrate the strength of DeepASA across diverse ASA tasks and datasets,
validating the effectiveness of combining class, activation, and DoA trajectory information through
the object-oriented processing (OOP) and chain-of-inference (Col) architecture.

Table 4: SELD performance comparison on STARSS23 dataset

Model ER|] Fit LE] LRT SELDJ
CST-former [34] 590 426 205 613 0416
MFE-EINV2 [50] 540 425 187 626  0.398
CST-former2 [S1] 420 597 156 684 0301

EINV-2 w/ data augmentation chain (2nd rank) [35] 42.0 57.5 15.8 72.7 0.301
NERC-SLIP System (1st rank) [37] (w/o Ensemble) 40.0 64.0 13.4 74.0 0.277
NERC-SLIP System (1st rank) [37] (w/ Ensemble) 38.0 66.0 12.8 75.0 0.260
DeepASA (SELD) 344 62.6 10.2 73.8 0.259

DeepASA (SELD) + chain-of-inference 33.7 63.1 9.8 74.6 0.253

5 Related Works

Universal Sound Separation (USS) USS addresses the challenge of separating various sound sources
in an auditory scene where multiple sources overlap [1831]. Humans perform source separation by
leveraging various characteristics of individual sources, such as class, activation, and DoA. However,
existing USS methods rely on time-frequency representations, which may limit their ability to exploit
such source-specific attributes [26) 125)]. To address this, the proposed method draws inspiration
from human segregation processing and integrates multiple audio cues within a unified framework,
resulting in improved performance on the USS task.

Target Sound Extraction (TSE) TSE refers to the separation of specific sound sources from audio
mixture, with a focus on the auditory information of the source [20} 21]. TSE plays a significant role
in the source separation area, where spatial and temporal characteristics are leveraged to extract the
target sound [22} 26]. A limitation of TSE is that humans must explicitly provide clues such as class,
activation, and DoA. However, the network itself needs to iteratively infer these clues and use them to
refine the separation process. To overcome this limitation, the proposed method introduces a strategy
in which the clues inferred by the network are integrated to improve separation performance.

Sound Event Localization and Detection (SELD) The SELD task involves performing both SED
and DoAE within a single model [28| 33| [51]]. Nevertheless, most previous SELD models first
analyze auditory cues using separate DNN branches for SED and DoA, and then perform track-wise
separation into auditory stream [52] 53} 154,150, 155]]. This approach can lead to incorrect pairing of
SED and DoA outputs, and especially causes performance degradation when handling polyphonic



audio. Additionally, models like [37]] have improved performance by incorporating a pre-trained
target sound extraction model [[17] but cannot reuse features learned from separation for SELD.
Instead, the proposed architecture reutilizes multiple auditory information estimated from common
per-object features to refine the separation and SELD performance.

6 Conclusion

We proposed DeepASA for unified auditory scene analysis and separation, employing a multi-
decoder architecture that utilizes relations between auditory information for both source separation
and analysis tasks. The model leverages chain-of-inference to refine performance in USS, SED, and
DoAE tasks. Experimental results demonstrated the effectiveness of sub-decoders and multi-clue
attention in improving feature extraction. Our results show significant performance improvements
over existing methods in various downstream datasets.

Broader impacts This paper focuses on the framework that emulates how humans perform ASA by
utilizing various types of auditory information to segregate sound objects to solve the cocktail party
problem. We believe that DeepASA offers a unified framework that not only advances the state of the
art in auditory scene analysis and sound separation but also opens new directions for research at the
intersection of spatial hearing, multi-task learning, and object-centric audio modeling.

Limitations and future work The main limitation is the large parameter size of the ATST adopted
for the SED decoder. In this work, the separated object features are reprocessed by the patch-based
ATST to keep the advantage of ATST pre-trained on a large set of audio classification datasets. For
the aspect of the bias of the dataset, the reverberation time was set between 0.2 and 0.6 seconds, so
the performance of the model may degrade in environments with reverberation times longer than 0.6
seconds. Additionally, because the background noise was simulated with an SNR range of 6 to 30
dB, the performance of the model is also expected to decline when the background noise has an SNR
below 0 dB and is louder than the foreground source. Next, regarding the potential misuse, since this
model can extract speech of individual speakers and analyze their types and directions, there is a
concern that it could be exploited for eavesdropping.

Future research could explore pre-training the novel classification layer designed to be compatible
with object features, using a large audio dataset like ATST.

Acknowledgements and Disclosure of Funding

This work was supported by the National Research Foundation of Korea (NRF) grant (No. RS-2024-
00337945) and STEAM research grant (No. RS-2024-00464269) funded by the Ministry of Science
and ICT of Korea government (MSIT), the BK21 FOUR program through the NRF grant funded
by the Ministry of Education of Korea government (MOE), and the Center for Applied Research in
Artificial Intelligence (CARAI) funded by DAPA and ADD (UD230017TD).

References

[1] A.S.Bregman. Auditory scene analysis. In Proceedings of the 7th International Conference on
Pattern Recognition. Citeseer, 1984.

[2] G.J. Brown and M. Cooke. Computational auditory scene analysis. Computer Speech &
Language, 1994.

[3] E. C. Cherry. Some experiments on the recognition of speech, with one and with two ears.
Journal of the acoustical society of America, 1953.

[4] A.S. Bregman. Auditory scene analysis: The perceptual organization of sound. MIT press,
1994.

[5] Shihab A. S., Mounya E., and Christophe M. Temporal coherence and attention in auditory
scene analysis. Trends in Neurosciences, 2011.

[6] D-L. Wang and G. J. Brown. Computational auditory scene analysis: Principles, algorithms,
and applications. Wiley-IEEE press, 2006.

10



[71 Q. Kong, Y. Xu, W. Wang, and M. D Plumbley. A joint detection-classification model for audio
tagging of weakly labelled data. In IEEE International Conference on Acoustics, Speech and
Signal Processing, 2017.

[8] Y. Gong, Y-A. Chung, and J. Glass. PSLA: Improving audio tagging with pretraining, sampling,
labeling, and aggregation. [EEE/ACM Transactions on Audio, Speech, and Language Processing,
2021.

[9] F. Schmid, K. Koutini, and G. Widmer. Efficient large-scale audio tagging via transformer-to-
cnn knowledge distillation. In IEEE International Conference on Acoustics, Speech and Signal
Processing, 2023.

[10] A. Mesaros, T. Heittola, T. Virtanen, and M. D. Plumbley. Sound event detection: A tutorial.
IEEFE Signal Processing Magazine, 2021.

[11] E. Cakur, G. Parascandolo, T. Heittola, H. Huttunen, and T. Virtanen. Convolutional recurrent
neural networks for polyphonic sound event detection. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 2017.

[12] N. Shao, X. Li, and X. Li. Fine-tune the pretrained ATST model for sound event detection. In
IEEEFE International Conference on Acoustics, Speech and Signal Processing, 2024.

[13] P-A. Grumiaux, Srdan Kitié, L. Girin, and A. Guérin. A survey of sound source localization
with deep learning methods. The Journal of the Acoustical Society of America, 2022.

[14] D. Diaz-Guerra, A. Miguel, and J. R. Beltran. Robust sound source tracking using SRP-
PHAT and 3D convolutional neural networks. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 2020.

[15] Y. Wang, B. Yang, and X. Li. FN-SSL: Full-band and narrow-band fusion for sound source
localization.

[16] D-L. Wang and J. Chen. Supervised speech separation based on deep learning: An overview.
IEEE/ACM transactions on audio, speech, and language processing, 2018.

[17] Y. Luo and N. Mesgarani. Conv-TasNet: Surpassing ideal time—frequency magnitude masking
for speech separation. IEEE/ACM transactions on audio, speech, and language processing,
2019.

[18] I. Kavalerov, S. Wisdom, H. Erdogan, B. Patton, K. Wilson, J. Le Roux, and J. R. Hershey.
Universal sound separation. In IEEE Workshop on Applications of Signal Processing to Audio
and Acoustics, 2019.

[19] W. He. Deep Learning Approaches for Auditory Perception in Robotics. PhD thesis, EPFL,
2021.

[20] B. Veluri, J. Chan, M. Itani, T. Chen, T. Yoshioka, and S. Gollakota. Real-time target sound
extraction. In IEEE International Conference on Acoustics, Speech and Signal Processing,

2023.

[21] Marc Delcroix, Jorge Bennasar Vazquez, Tsubasa Ochiai, Keisuke Kinoshita, Yasunori Ohishi,
and Shoko Araki. SoundBeam: Target sound extraction conditioned on sound-class labels and
enrollment clues for increased performance and continuous learning. IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 2022.

[22] H. Wang, D. Yang, C. Weng, J. Yu, and Y. Zou. Improving target sound extraction with
timestamp information. 2022.

[23] M-S. Kim, D.and Baek, Y. Kim, and J-H. Chang. Improving target sound extraction with
timestamp knowledge distillation. In IEEE International Conference on Acoustics, Speech and
Signal Processing, 2024.

[24] T. Jenrungrot, V. Jayaram, S. Seitz, and I. Kemelmacher-Shlizerman. The cone of silence:
Speech separation by localization. Advances in Neural Information Processing Systems, 2020.

11



[25] R. Gu and Y. Luo. ReZero: Region-customizable sound extraction. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 2024.

[26] Q. Kong, K. Chen, H. Liu, X. Du, T. Berg-Kirkpatrick, S. Dubnov, and M. D. Plumbley.
Universal source separation with weakly labelled data. arXiv preprint arXiv:2305.07447, 2023.

[27] K. Zmolikova, M. Delcroix, T. Ochiai, K. Kinoshita, J. éernockj/, and D. Yu. Neural target
speech extraction: An overview. IEEE Signal Processing Magazine, 2023.

[28] S. Adavanne, A. Politis, J. Nikunen, and T. Virtanen. Sound event localization and detection of
overlapping sources using convolutional recurrent neural networks. IEEE Journal of Selected
Topics in Signal Processing, 2018.

[29] Y. He, N. Trigoni, and A. Markham. SoundDet: Polyphonic moving sound event detection and
localization from raw waveform. In International Conference on Machine Learning, 2021.

[30] T. Aizawa, Y. Bando, K. Itoyama, K. Nishida, K. Nakadai, and M. Onishi. Unsupervised domain
adaptation of universal source separation based on neural full-rank spatial covariance analysis.
In IEEE 33rd International Workshop on Machine Learning for Signal Processing, 2023.

[31] S. Wisdom, H. Erdogan, D. PW. Ellis, R. Serizel, N. Turpault, E. Fonseca, J. Salamon,
P. Seetharaman, and J. R. Hershey. What’s all the fuss about free universal sound separa-
tion data? In IEEE International Conference on Acoustics, Speech and Signal Processing,
2021.

[32] K. Shimada, A. Politis, P. Sudarsanam, D. A. Krause, K. Uchida, S. Adavanne, A. Hakala,
Y. Koyama, N. Takahashi, S. Takahashi, et al. STARSS23: An audio-visual dataset of spatial
recordings of real scenes with spatiotemporal annotations of sound events. Advances in neural
information processing systems, 2023.

[33] T. N. T. Nguyen, K. N. Watcharasupat, N. K. Nguyen, D. L. Jones, and W-S. Gan. SALSA:
Spatial cue-augmented log-spectrogram features for polyphonic sound event localization and
detection. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2022.

[34] Y. Shul and J-W. Choi. CST-former: Transformer with channel-spectro-temporal attention for
sound event localization and detection. In IEEE International Conference on Acoustics, Speech
and Signal Processing, 2024.

[35] L. Xue, H. Liu, and Y. Zhou. Attention mechanism network and data augmentation for sound
event localization and detection. Technical report, DCASE2023 Challenge, June 2023.

[36] J. Hu, Y. Cao, M. Wu, F. Yang, W. Wang, M. D. Plumbley, and J. Yang. A data generation
method for sound event localization and detection in real spatial sound scenes. Technical report,
DCASE2023 Challenge, June 2023.

[37] Q. Wang, Y. Jiang, S. Cheng, M. Hu, Z. Nian, P. Hu, Z. Liu, Y. Dong, M. Cai, J. Du, and
C-H. Lee. The NERC-SLIP system for sound event localization and detection of DCASE2023
challenge. Technical report, DCASE2023 Challenge, June 2023.

[38] D. Lee and J-W. Choi. DeFT-Mamba: Universal multichannel sound separation and polyphonic
audio classification. In IEEE International Conference on Acoustics, Speech and Signal
Processing, 2025.

[39] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C. Moore, M. Plakal,
and M. Ritter. Audio set: An ontology and human-labeled dataset for audio events. In IEEE
International Conference on Acoustics, Speech and Signal Processing, 2017.

[40] K. Okabe, T. Koshinaka, and K. Shinoda. Attentive statistics pooling for deep speaker embed-
ding. arXiv preprint arXiv:1803.10963, 2018.

[41] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville. FiLM: Visual reasoning with a
general conditioning layer. In Proceedings of the AAAI conference on artificial intelligence,
2018.

12



[42] 1. R Roman, C. Ick, S. Ding, A. S. Roman, B. McFee, and J. P. Bello. Spatial scaper: a library
to simulate and augment soundscapes for sound event localization and detection in realistic
rooms. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2024.

[43] T. von Neumann, K. Kinoshita, C. Boeddeker, M. Delcroix, and R. Haeb-Umbach. SA-SDR: A
novel loss function for separation of meeting style data. In IEEE International Conference on
Acoustics, Speech and Signal Processing, 2022.

[44] D. Yu, M. Kolbzk, Z-H. Tan, and J. Jensen. Permutation invariant training of deep models
for speaker-independent multi-talker speech separation. In IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 241-245, 2017.

[45] J. Le Roux, S. Wisdom, H. Erdogan, and J. R. Hershey. SDR-half-baked or well done? In
IEEE International Conference on Acoustics, Speech and Signal Processing, 2019.

[46] F. Schmid, P. Primus, T. Morocutti, J. Greif, and G. Widmer. Improving audio spectrogram trans-
formers for sound event detection through multi-stage training. arXiv preprint arXiv:2408.00791,
2024.

[47] Z-Q. Wang, S. Cornell, S. Choi, Y. Lee, B-Y. Kim, and S. Watanabe. TF-GridNet: Integrating
full-and sub-band modeling for speech separation. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 2023.

[48] D. Lee and J-W. Choi. DeFTAN-II: Efficient multichannel speech enhancement with subgroup
processing. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2024.

[49] C. Quan and X. Li. SpatialNet: Extensively learning spatial information for multichannel joint
speech separation, denoising and dereverberation. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 2024.

[50] D. Mu, Z. Zhang, and H. Yue. MFF-EINV2: Multi-scale feature fusion across spectral-spatial-
temporal domains for sound event localization and detection. arXiv preprint arXiv:2406.08771,
2024.

[51] Y. Shul, D. Choi, and J-W. Choi. CST-former: Multidimensional attention-based transformer
for sound event localization and detection in real scenes. arXiv preprint arXiv:2504.12870,
2025.

[52] K. Shimada, N. Takahashi, Y. Koyama, S. Takahashi, E. Tsunoo, M. Takahashi, and Y. Mitsu-
fuji. Ensemble of ACCDOA-and EINV2-based systems with D3Nets and impulse response
simulation for sound event localization and detection. arXiv preprint arXiv:2106.10806, 2021.

[53] Y. Cao, T. Igbal, Q. Kong, F. An, W. Wang, and M. D. Plumbley. An improved event-independent
network for polyphonic sound event localization and detection. In IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, 2021.

[54] Q. T. Vo and D. K. Han. Resnet-conformer network with shared weights and attention mecha-
nism for sound event localization, detection, and distance estimation. Technical report, Technical
report, DCASE2024 Challenge, 2024.

[55] D. Mu, Z. Zhang, H. Yue, Z. Wang, J. Tang, and J. Yin. Seld-mamba: Selective state-space
model for sound event localization and detection with source distance estimation. arXiv preprint
arXiv:2408.05057, 2024.

[56] T. H Falk, C. Zheng, and W-Y. Chan. A non-intrusive quality and intelligibility measure of
reverberant and dereverberated speech. IEEE Transactions on Audio, Speech, and Language
Processing, 2010.

[57] S-H. Kim, H. Nam, and Y-H. Park. Temporal dynamic convolutional neural network for text-
independent speaker verification and phonemic analysis. In IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 6742—-6746. IEEE, 2022.

[58] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam:
Visual explanations from deep networks via gradient-based localization. In IEEE International
Conference on Computer Vision, pages 618-626, 2017.

13



[59] S. Niu, J. Du, Q. Wang, L. Chai, H. Wu, Z. Nian, L. Sun, Y. Fang, J. Pan, and C-H. Lee. An
experimental study on sound event localization and detection under realistic testing conditions.
In IEEE International Conference on Acoustics, Speech and Signal Processing, 2023.

14



Appendix / Technical Appendices and Supplementary Material

This appendix is organized as follows:

* Appendix[A|provides detailed specifications for the SED decoder.

* Appendix[B]provides an in-depth analysis of the impact of the noise decoder on classification.
* Appendix [C] presents experiments on the effects of the direct and reverb decoders on DoAE.
* Appendix [D]examines the experimental results using the time-varying learnable window.

* Appendix [E] presents an analysis of the chain-of-inference mechanism.

* Appendix [ compares the proposed method with SOTA models on the ASA2 dataset and
includes a real-world demonstration.

* Appendix G| presents the experimental results along with the number of sound sources.

A Detailed specifications of the SED decoder

In this section, we provide detailed specifications of the SED decoder. The SED decoder consists of
three branches: ATST, T-CRNN, and F-CRNN. The specifications of the SED decoder are presented
in Table [5] First, in the ATST branch, the object features are converted into patches of length
T, = 4, F, = 64. The sequence length corresponds to the number of these transformed patches,
and the patches are reshaped along the channel dimension. Since the pre-trained ATST takes a
single-channel mel spectrogram as input, a linear layer is added before ATST to match the embedding
dimension, followed by adaptive pooling to align the time frame to 7" = 40. In the T-CRNN branch,
seven convolution layers are used, as in [46], followed by a linear layer after concatenating the output
of the ATST branch. The channel dimension and pooled frequency dimension are then reshaped into
a single dimension, with the time dimension treated as the sequence dimension, and passed through
a T-GRU. Finally, in the F-CRNN branch, pooling is focused on the time dimension, followed by
two convolution layers, after which the channel dimension and pooled time dimension are reshaped
into a single dimension, and the frequency dimension is treated as the sequence dimension before
passing through an F-GRU. The combined output of the ATST and T-CRNN branches then passes
through a fully connected layer with an output dimension of 1 to produce the object activation curve,
a fully connected layer with an output dimension of C' = 13 (the number of classes) to produce the
sound event map, and is subsequently combined with the output of the F-CRNN after passing through
attentive statistics pooling (ASP) [40] and a fully connected layer, producing the final class output.

Table 5: Detailed specifications of the SED decoder

SED decoder
ATST branch T-CRNN branch F-CRNN branch
(3,3)@64, LN, Mish
: : Pool 2x5 (3,3)@64, LN, Mish
tchificat
o T (33)@64, LN, Mish
R Pool 2x1
(3,3)@64, LN, Mish Pool 4x5
FC 768 Pool 2x1
(3,3)@64, LN, Mish
Pre-trained ATST Pool 2x1 (3,3)@64, LN, Mish
(3,3)@64, LN, Mish
. Pool 2x1
AdaptivePool 1D(250 — 40) (33)@64, LN, Mish Pool 4x4
FC320 Pool 2x1
FC320
GRU 320 GRU 320
FC512, Dropout FC13 Global pooling
FC64, Tanh, FC13
FC512, Dropout, FCI softmax softmax FC512, Dropout, FC13
FCI3
Activation SED Class

B Impact of the noise decoder on classification

We conducted a detailed analysis to investigate the impact of the noise decoder on classification.
Figure [6] presents a class-wise comparison of classification recall performance between the cases
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with and without the use of the noise decoder. Without the noise decoder, the classification recall for
domestic sounds is 49.4%, which is lower than other classes. This is due to the similar time-frequency
characteristics of domestic sounds and background noise (from the TAU-SNoise DBEI), leading the
model to misclassify domestic sounds as noise and remove them. However, after adding the noise
decoder, the classification recall for domestic sounds increased significantly to 64.9%, showing an
improvement of 15.5% points. Furthermore, the recall performance for almost classes improved.
These results indicate that although the noise decoder estimates the noise waveform, it significantly
influences classification performance.

In Figure[7] the t-SNE analysis further confirmed that without the noise decoder, domestic sounds
(represented in purple) have unclear boundaries with other classes, but when the noise decoder is
employed, the boundaries between the domestic sound and other classes are more clearly delineated.
This suggests that the noise decoder explicitly estimates the noise, allowing the model to better
distinguish between foreground sources and noise. In summary, employing a noise decoder addresses
the issue in previous approaches where the undenoised background noise degraded classification
performance.

Per-class classification performance comparison

w/o Noise decoder| g
w/ Noise decoder |p868

domestic male musical clapping music laughter walk & knock  water door  female bell telephone average
sound speech instrument footsteps tap speech

Figure 6: Per-class classification performance with and without noise decoder
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Figure 7: T-SNE comparison with and without noise decoder

C Effect of direct and reverb decoder on DoAE

To investigate the effect of estimating direct and reverberant foreground signals separately on DoAE,
we conducted a detailed analysis. Estimating direct and reverberant signals separately introduces the
dereverberation task in addition to the denoising and separation tasks, which can lead to a decrease in
overall separation performance. However, as shown in Figure[8] the LE histogram for DoAE reveals
an increase in the number of samples with LE within 10 degrees, while the number of samples with
LE greater than 10 degrees decreases. This indicates that even though the direct and reverb decoders
are part of the audio decoder, they positively influence DoAE performance.

To understand how the dereverberation task affects DoAE, we performed a cosine similarity analysis
between the convolution kernel weights. Figure 0] compares the cosine similarity between the first
convolution kernel weights of the DoA decoder and those of the direct and reverb decoders. The
results show that the similarity between the DoA decoder and the direct decoder is higher than that
between the DoA decoder and the reverb decoder. This suggests that the DoA decoder relies more on
the direct components than the reverb components for DoAE. In reverberant environments, DoAE

https://zenodo.org/records/6408611
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(a) Estimating the direct + reverb signal (b) Estimating the direct signal and reverb signal separately
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Figure 8: Comparison of LE histograms when estimating (a) direct + reverb signals together and (b)
direct and reverb separately.
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Figure 9: Comparison of cosine similarity between the weight of the first convolution kernel of the
DoA decoder and the convolution kernel weights of (a) direct decoder and (b) reverb decoder
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is more challenging compared to anechoic environments. This observation implies that learning to
separate direct and reverb components within the object features can improve DoAE by ensuring that
the direct components are properly embedded in the features.

Furthermore, to evaluate the performance of dereverberation, we compared the results of reverberant,
direct (dereverberation, SI-SDRy) and reverb source separation (SI-SDRy,), as well as the speech-to-
reverberation modulation ratio (SRMR) [56]]. SRMR is only calculated for classes corresponding to
male and female speech. The experimental results demonstrate that the proposed model performs
well in dereverberation, achieving performance comparable to full source separation. Additionally,
with an SRMR of 6.5, the model indicates strong dereverberation effectiveness.

Table 6: Dereverberation performance of proposed model
SI-SDR  SI-SDR;  SI-SDR;, SRMR
10.8 10.8 10.1 6.5

D Detailed analysis on time-varying learnable window

In this section, we present experiments to investigate the role and functionality of the time-varying
learnable window. In the audio encoder, the short-time Fourier transform (STFT) is widely used to
convert a waveform into a complex spectrogram. Unlike speech separation, which considers only the
speech class, USS involves various classes, necessitating dynamic adjustments to the configuration of
the window. Although many conventional methods rely on fixed windows [28| 12, |38]], this reliance
limits their performance [57]]. To address this limitation, we propose a time-varying learnable window
that can dynamically adjust the window configuration for both USS and ASA.

We conducted a detailed ablation study on the effect of the time-varying learnable window. The
results are presented in Table[7] Initially, we compared encoding methods using complex STFT
and learnable 1D convolution kernels. The performance of complex STFT generally exceeded that
of the 1D convolution kernel, suggesting that while the 1D convolution kernel extracts learnable
features, complex STFT is more effective at explicitly capturing frequency information in the feature
representation. Additionally, the time-invariant learnable window learns a fixed window across time,
resulting in a window length that is similar to that of the STFT. The time-invariant learnable window
can be obtained by performing mean pooling in the temporal dimension before being passed through
the linear layers of the time-varying learnable window. Next, we examined TDY-CNN [57], which
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Table 7: Ablation study results of time-variant learnable window

o USS SED DoAE Complexities
Variation ¢ cpi SDRi+ ER | F11 LE | LR+ SEFP L po O NiAcss
STFT 108 115 300 69.8 193 760 0237 8.1(+96.8) M 99.0 G
1D Conv 7.8 88 402 59.0 27.1 61.2 0338 9.0(+96.8)M 99.2 G
Hime-invariant 10.7 114 313 68.1 195 756 0246 82 (+96.8)M 99.1 G
learnable window
TDY-CNN 105 113 297 70.0 189 763 0235 9.0(+96.8) M 99.4 G

Time-variant

= 11.0 11.7 28.8 70.2 18.5 769 0.230 8.2 (+96.8) M 99.1 G
learnable window
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Figure 10: Comparison of source separation performance for each class: (a) conventional STFT, (b)
time-varying learnable window

learns attention weights for each time frame to control how much information is passed through,
capturing phoneme variation. However, this approach has the limitation of being unable to adjust the
frequency band information. In contrast, the proposed method allows for control over the frequency
band by adjusting the width of the main lobe.

Figure 10| presents a comparison of separation performance for each class. The results show a signifi-
cant improvement in the separation performance of sporadic sounds, such as door and knock events.
Despite being transient, the time-varying learnable window effectively captures the characteristics of
these sound objects, allowing the model to improve separation performance.

Figure [IT] shows a comparison of the sample between conventional STFT and the proposed time-
varying learnable window. Figure[TT[a) shows the time-domain waveform of the audio mixture, and
Figure [TT[(b) plots its frame-wise standard deviation over time. Figure [TTfc), (d), and (e) present
the SED result of conventional STFT, that of time-varying learnable window, and ground truth,
respectively, with binary values between 0 and 1 (black indicates 0, white indicates 1). The results
show that with conventional STFT, object 1 was not captured, and object 3 failed in both classification

(c) conventional (d) time-varying (e) ground truth
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Figure 11: (a) Time-domain waveform of the audio mixture, (b) window length along the time frame,
SED results for (c) conventional STFT, (d) time-varying learnable window, (e) ground truth.
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Figure 12: (a) Spectrogram of the audio mixture, GradCAM results for (b) conventional STFT, (c)
time-varying learnable window.

and activation estimation. However, using the proposed method, the model can detect object 1, which
improves the sound event detection performance of object 3.

Finally, Figure [T2] shows a GradCAM [58]] analysis of the separated object features immediately
after the object splitter, to examine how well the object features encapsulate the properties of the
corresponding sound objects. The model with conventional STFT struggled with object separation,
as regions of speech are still embedded within telephone regions. In contrast, the proposed method
more effectively isolates the telephone regions by suppressing most of the speech-related components.
This demonstrates that the proposed approach effectively separates sound objects based on auditory
information.

E Detailed study on Chain-of-Inference

In this section, we conduct a case study to understand the underlying mechanism of the Col. It was
observed that the model struggled with SED before applying the Col, whereas the SED performance
improved after its application. We then analyzed the fundamental reasons for this improvement.
Figure Eka), (b), and (c) present the SED output for the model without Col, the model with Col,
and the ground truth, respectively. By comparing the performance before and after applying Col, an
improvement is observed in the SED estimation for object 1 and object 3. To investigate the cause
of this difference, we examined the DoAE results for object 1 and object 3 before applying Col
in Figure [T3[d) and (e), and the multi-clue attention maps with SED as the query and DoA as the
query in Figure[I3|f) and (g), respectively. In the DoAE results, for object 1, DoA vectors below the
onset threshold (0.5) suggest the potential presence of an object, while for object 3, the estimated
DoA closely matches the ground truth. This indicates that the classification of object 3 was refined
through Col by leveraging the nearly accurate DoAE. Furthermore, examining the attention maps,
the attention map with SED as the query identified four objects, whereas the one with DoA as the
query identified five. This demonstrates the successful correction of object 1, which was mistakenly
classified as silence, by utilizing DoA information.

Table 8: Performance comparison by repeating chain-of-inference

USS SED DoAE SELD | Complexities
SI-SDRi 1 SDRiT|ER | F1 T LE | LR 1 Param. MAC/s
without Col 11.0 11.7 [28.8 70.2 18.5 769 0.230 | 8.2 (+96.8)M 99.1 G
Col (Ist stage)| 11.2 12.0 |25.0 74.1 17.0 78.1 0.206 |12.1 (+96.8) M 104.0 G
Col (2nd stage)| 11.1 119 [26.8 723 17.2 77.5 0.216 [16.0 (+96.8 M) 1189 G

Stage

Additionally, the Col mechanism utilizes the high-level information (DoA, SED) to refine the object
feature separation based on the temporal coherence matching (TCM), so using the same mechanism
multiple times can bias the results towards the direction of prioritizing TCM. We present the results
of performing the chain-of-inference multiple times as Table[8] As a result, using Col only once
resulted in the highest performance.
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F Comparison with SOTA models for ASA2 dataset and real-world
demonstration

Comparison USS and SELD performance on ASA2 dataset We compared the performance of the
proposed DeepASA model on the ASA2 dataset with that of other SOTA models in Table[9] First,
the proposed model achieved superior USS performance compared to other models [26 47, 149} 38|,
even though it operates with a MIMO setup and performs a dereverberation task. Despite having a
lightweight feature aggregation module compared to DeFT-Mamba, the model still achieved SOTA
performance. This improvement is likely due to the ability of the model to utilize various auditory
information, such as class, activation, DoA, and noise, enabling better separation of foreground
sources. Next, in terms of SELD performance, the proposed model significantly outperformed
existing models. This is because ASA?2 consists entirely of polyphonic audio, and earlier approaches
that estimate the outputs directly from mixtures are unsuitable for such overlapped sources. Our
model avoids this limitation by separating the objects.

Real-world demonstration To evaluate the applicability of the proposed method and dataset in
real-world scenarios, we experimented using a pre-trained model without fine-tuning. The experiment
was carried out in a real office environment, where three sound objects (male speech, music, and a
telephone) were placed. Among these, the male speech was a moving source. The miniDSP ambiMIK-
1 was utilized for capturing the sound, which is different from the microphone configuration for the
pre-training dataset. The results demonstrate that the pre-trained DeepASA model can be applied to
USS, SED, and DoAE tasks in real-world conditions, confirming its feasibility. A demo video of the
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Table 9: Comparison with SOTA models on ASA2 dataset

USS SED DoAE Complexities
model SI.SDRit SDRit ER| FIt LE] LRt SELDL|  piam.  MAC/
ByteDance-uss [7] 52 83 - - - - T [ 2880 M 401G
TE-GridNet [47) 87 107 - - - - - 147M 462G
SpatialNet [49] 9.6 10.2 - - - - - 7.3 M 71.8 G
DeFT-Mamba [38] | 104 113 - ] - - - 36M 838G
EINV2 [53] - S 485 395 271 515 0431 515M  67G
ResNet Conformer [59] - - 457 410 266 537 0.414 13.6 M 7.6 G
SELD-Mamba [35) - . 435 47 255 567 039 751M  43G
MFF-EINV2 [50] - - 421 432 258 607 0381 S48M 143G
DeepASA (wlo ATST) | 110 117 301 69.5 185 748  0.240 82M 910G
DeepASA 110 117 288 702 185 769 0230 |82(+968)M 99.1G
(+) Chain-of-inference| 11.2:01 12.0:01 25.0:04 74.1s05 17.0:05 78.1:04 0.206:0001 | 12.1 (+96.8) M 104.0 G

real—:vvlorld experiment and example results from the ASA2 dataset are available on the page linked
belo

Additionally, we conducted an experiment by fine-tuning the pretrained DeepASA over datasets
generated from real-world room impulse responses (RIRs). The fine-tuned model was then evaluated
by unseen real-world RIRs. From Table the experimental results show a slight decrease in
USS performance, as well as in most of SELD performance. This performance degradation can
be attributed to the discrepancy in the hidden representation of simulation and real RIRs. Ideally,
training with a large set of RIRs, including both simulated and measured RIRs, would improve the
generalizability of models.

Table 10: Comparison between datasets with simulated and real-world RIRs
USS SED DoAE
RIR SI-SDRi 1 SDRi 1 ER | F11 LE | LR { SELD
simulated RIR|  11.0 11.7 28.8 70.2 18.5 76.9 0.230
real RIR 10.6 114 327 664 13.4 72.3 0.254

G Experimental results along with the number of sound sources

We performed inference when the number of sound sources was within the maximum estimable
range [2, 5]. and when it exceeded the maximum estimable range [6, 7]. The experimental results are
presented in Table |11} When the number of foreground sources is 6 or 7, resulting in a sharp decline
in performance. The experimental results show that when there are 6 sources, two sources are not
separated, leading to very low performance only for the two sources. When there are 7 sources, three
sources are mixed and mapped to one track in most cases, resulting in very low performance for three
of the sources.

Table 11: Experimental results along with the number of sound sources

USS SED DoAE

Number of sources SI-SDRi 1 SDRi 1 ER | F11 LE | LR 1 SELD |
2 17.7 171 22.1 824 10.5 88.5 0.143

3 14.6 145 224 80.8 13.1 86.3 0.160

4 8.5 10.6 338 65.6 209 72.5 0.269

5 7.9 103 349 645 22.1 71.3 0.280

Total 2.4 59 47.7 485 403 545 0418

6| Top 4 average 7.0 9.6 382 61.2 25.6 66.7 0.311
Bottom 2 average -6.8 -1.5 69.1 23.1 69.7 30.1 0.636
Total 0.2 4.5 59.0 36.6 51.7 424 0.521

7| Top 4 average 6.6 9.1 389 60.6 29.2 645 0.325
Bottom 2 average -8.3 -1.6 858 4.6 81.7 129 0.784

*https://huggingface.co/spaces/donghoney22/DeepASA
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: These are the provided in the lines 1-9 in the Abstract and the lines 42-58 in
the Introduction. We propose a novel approach that not only performs multi-task learning
as a foundation model but also emulates human auditory scene analysis by reasoning over
multiple auditory cues.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This is provided in the lines 357-361 in the Conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The Method section and the Appendix section contain the details of our
proposed method for reproducing the main experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: To support reproducibility, we provide access to the ASA2 dataset used in our
experiments. The code will be released publicly if the paper is accepted.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: This is provided in the lines 207 — 226 in the Experimental settings sections.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The performance of the final proposed model was evaluated by conducting
statistical significance tests over five runs with different random seeds.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resource in the Experimental
Settings section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Authors carefully read the NeurIPS Code of Ethics and preserved anonymity.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: This is provided in the lines 352-356 in the Conclusion section.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve IRB approvals nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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