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Abstract

The integrity of the peer review process is cru-
cial for maintaining scientific rigor and trust
in academic publishing. This process relies
on (human) domain experts critically evalu-
ating the merit of the submitted manuscripts.
However, the peer review system faces grow-
ing strain from increased submissions and lim-
ited reviewer availability, prompting lazy re-
viewing practices in which reviewers use large
language models (LLMs) to generate reviews,
raising concerns about the quality, reliability,
and accountability of those evaluations. Pre-
vious work has focused on estimating the pro-
portion of Al-generated peer reviews or devel-
oping Al-generated text detectors. However,
existing detectors are not resistant to adversar-
ial attacks and often require domain or model-
specific retraining. To address these challenges,
we propose a framework for peer review water-
marking. Our method includes a Query-Aware
Response Generation module that selectively
embeds subtle yet detectable signals while pre-
serving scientific terminology, based on the
user’s submission of a research paper, along
with a watermarking detection mechanism that
enables editors to reliably verify the authentic-
ity of reviews. Extensive experiments on ICLR
and NeurIPS data demonstrate that our method
outperforms various Al text detectors under ad-
versarial attacks. We hope that this work will
facilitate the further development of watermark-
ing and responsible use of LLM systems. We
make our code and dataset public'.

1 Introduction

The emergence of frontier large language models
(LLMs), such as Claude, Gemini, GPT-4 (Achiam
et al., 2023), LLaMa, etc. has revolutionized natu-
ral language generation. The sophisticated human-
like fluency and coherence exhibited by texts pro-
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duced by these models present considerable chal-
lenges in discerning whether such content is human-
generated or machine-generated, even for domain
experts (Shahid et al., 2022). Peer review remains
a foundational practice in academia, serving as a
critical mechanism through which expert scrutiny
ensures the integrity and credibility of scholarly
outputs prior to publication (Alberts et al., 2008).
Nevertheless, the escalating volume of manuscript
submissions (Bornmann and Mutz, 2015; McCook,
2006) has increasingly burdened the peer review
system, amplifying concerns regarding the sys-
tem’s sustainability and efficacy (Arns, 2014).
Scientific peer review fundamentally depends on
expert reviewers to provide insightful, critical, and
constructive evaluations of submitted manuscripts
or proposals (Shah, 2022). According to the Associ-
ation for Computational Linguistics (ACL) policy?,
Artificial Intelligence (Al) tools may assist with
paraphrasing and proofreading tasks, particularly
benefiting non-native English speakers; however,
reviewers are required to independently generate
substantive review content. Recent research (Liang
et al.,, 2024) examining peer reviews from Al-
related conferences identified that approximately
6.5% to 16.9% of review text may have been sub-
stantially modified using LLMs. The study high-
lights a significant increase in LLM usage, par-
ticularly ChatGPT, immediately preceding review
deadlines, with higher reliance detected among re-
viewers not engaging in author rebuttals at promi-
nent venues such as ICLR and NeurIPS. Addition-
ally, increased ChatGPT usage was associated with
diminished self-reported reviewer confidence. A
relevant research (Ye et al., 2024) demonstrated
that manipulating just 5% of reviews could dis-
rupt rankings sufficiently to displace approximately
12% of papers from the top 30%. Further, this
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study revealed intrinsic limitations of LLM-based
reviews, including potential biases such as favor-
ing incomplete submissions over fully developed
manuscripts and preferentially rating submissions
by prominent authors in single-blind review sce-
narios. Moreover, authors can intentionally embed
covert content within manuscripts to deliberately
manipulate LLM-generated reviews, leading to ar-
tificially inflated assessments misaligned with hu-
man evaluations. These findings collectively sug-
gest that current LLMs are insufficiently robust for
deployment as primary reviewers due to inherent
vulnerabilities and susceptibility to manipulation.
Consequently, rigorous safeguards and enhanced
evaluation frameworks must be implemented to en-
sure review fairness and accuracy before broader
adoption of LLM-based review processes.

In this paper, we propose a novel framework for
watermarking LLLM-generated peer reviews. Our
approach consists of several key components. First,
we introduce a Query-Aware Response Generation
module, which selectively applies watermarking
when user uploads a research paper and there is a
risk of peer review misuse. Then, our Watermark
Injection Mechanism embeds subtle yet detectable
signals in peer reviews while preserving scientific
terminology. Finally, we implement Watermark
Detection, which allows editors and conference
chairs to verify the authenticity of peer reviews.
Across ICLR and NeurIPS data, our watermarking
framework achieves significantly higher detection
accuracy than existing methods, maintaining perfor-
mance even in adversarial settings. Our work aims
to safeguard the peer review process against misuse
of generative language models, thereby reinforc-
ing ethical norms in scholarly communication and
contributing to a trustworthy research ecosystem.

Our contributions are summarized as follows:-

* We introduce the novel task of watermarking
Al-generated peer reviews to ensure authen-
ticity and traceability.

* We propose a new lightweight framework that
(i) employs a gating mechanism to watermark
only potentially unsafe peer-review genera-
tion requests and (ii) introduces a simple yet
effective watermarking strategy that markedly
improves the detection of machine-generated
peer reviews.

* Our watermarking technique outperforms ex-
isting Al-based text detectors, even under ad-
versarial conditions.

2 Related Work

Zero-shot text detection identifies Al-generated
text without requiring training on specific data
(Mitchell et al., 2023). Solaiman et al. (2019) de-
tect Al-generated text by measuring its average log
probability under the generative model. Detect-
GPT (Mitchell et al., 2023) leverages the tendency
of Al-generated text to reside in negative curva-
ture regions of the model’s log probability function
for detection. Fast-DetectGPT (Bao et al., 2023a)
enhances efficiency by applying conditional prob-
ability curvature instead of raw probability. Guo
et al. (2023) developed the OpenAl text classifier
by training it on a large dataset comprising millions
of texts. However, heavy dependence on training
data makes many of these models susceptible to
adversarial attacks (Wolff, 2020).

Watermarking Al-generated text, introduced by
Wiggers (2022), embeds an imperceptible pattern
to verify authorship, similar to encryption. Water-
marks can be embedded without requiring mod-
ifications to the underlying language model, al-
lowing standard models to generate watermarked
text (Kirchenbauer et al., 2023). Rather than fo-
cusing on individual detection, Liang et al. (2024)
proposed a method that estimates the proportion
of Al-generated text within a large corpus using
maximum likelihood estimation of probability dis-
tributions.

As far as we know, this is the first work to ad-
dress Al-generated peer review detection through
watermarking. Unlike existing Al text detectors,
which are vulnerable to adversarial attacks, our
approach embeds traceable markers directly into
generated content, improving the detection of Al-
generated reviews. Additionally, current Al text
detection models require task-specific training for
each conference and dataset, making large-scale
deployment challenging. In contrast, our water-
marking method provides a scalable solution that
eliminates the need for continuous retraining, en-
hancing both reliability and adaptability across di-
verse academic settings.

3 Methodology

Figure 1 illustrates the framework, which con-
sists of two key components: (a) Query-Aware
Response Generation, where a user uploads or sub-
mits a research paper along with a query related to
it, which is classified by the Query Type Identifier.
If identified as an unsafe query (indicating poten-
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Figure 1: Overview of the Proposed Watermarking Framework. (a) Watermark Generation (b) Watermark Detection;

Here red indicates red token,

tial peer review misuse), it is processed through
the LLM generator with watermarking. Otherwise,
queries proceed through normal Generation. (b)
Watermark Detection, where an editor or chair sub-
mits a research paper and its corresponding review
for verification.

3.1 Document Type Identifier

To determine whether a document is a research pa-
per, we implemented a simple rule-based approach.
Documents with fewer than 500 words were fil-
tered out as unlikely to be research papers. We
detected key section headers such as Abstract, In-
troduction, Methodology, Results, Conclusion, and
References using regular expressions and header
position analysis. A document was classified as a
research paper if at least three core sections were
present, along with a reference section and in-text
citations (e.g., (Author, Year) or [1]). This method
provided a lightweight and efficient first-pass clas-
sification before passing the query to the Query
Type Identifier, which then determines whether the
query is safe or unsafe.

3.2 Query Type Identifier

The Query Type Identifier determines whether a
query is classified as Safe (S) or Unsafe (UN). A
query is considered Unsafe (UN) if it requests a
peer review in a way that allows the reviewer to
directly submit the generated content as a peer re-
view. Any query that does not fall into the Unsafe
category is classified as Safe (S), including those
that seek explanations, summaries, or clarifications

indicates green token, blue indicates blue token

related to the paper’s content. We employ a few-
shot prompting approach to classify user queries.
We discuss this in detail in Section F.

3.3 Watermark Injection

Algorithm 1 Watermark Injection

Require: Vocabulary V, Paper P , Watermark Strength §,
Green List Fraction

1: Compute seed S using paper information and secret keys
Ksec’ret and p

: Generate green list G and red list R from V' based on y

: Extract blue list B as domain-specific terms from P

: for each generationstept = 1,...,7 do

Obtain logits I\ from LLM

Adjust logits: 1S = 1 + 6 - ¥[w € GU B]

Normalize adjusted logits via softmax:

1
(0 _ _€e"
pw - l(t)
/
e w
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8: Sample next token w® from adjusted distribution
9: end for

In this section, we introduce our watermark-
ing injection technique, which ensures that LLM-
generated text is subtly embedded with verifiable
signals without significantly altering fluency or co-
herence. In this work, we utilize the soft watermark-
ing technique that introduces probabilistic biases
in token selection to subtly mark text generated by
large language models (LLMs). Our approach is
inspired by prior watermarking method (Kirchen-
bauer et al., 2023). However, this approach face
challenges in peer review text generation due to the
inherent trade-off between watermark strength and



text quality. The random selection of green and
red tokens introduces high variability, weakening
the watermark signal. Our novel approach incor-
porates ’blue tokens’—key technical terms from
the research paper itself—enhancing watermark
robustness by grounding signals in semantically
meaningful content. Algorithm 1 outlines the com-
plete watermark injection process.

3.3.1 Paper Seed Generation

Our seed generation mechanism ensures unique,
deterministic, and secure watermarking by lever-
aging context-aware encoding, cryptographic hash-
ing, and a secret key. The input text 7', which can
be a paper title, abstract, or any small portion of
text from any section of the paper. To strengthen
security, a secret key Kecret 1S concatenated with
T, ensuring that different users generate distinct

seeds:
] = THKsecret (1)

Kecret 18 a fixed, confidential key (text) known
only to trusted parties (e.g., conference chairs or
editors). It is not generated at runtime. Instead, it
is concatenated with the paper text to produce a
deterministic seed for watermarking. This ensures
that watermarking is reproducible and verifiable
only by those with access to the key. The encoded
representation is then hashed using SHA-256 for
collision resistance:

H(I) = SHA-256(E(I)) )

Here, E/(I) denotes the full encoding of the input
text I, computed by applying the character-level
encoding function f(c,n) to each character c in I.
Each character is mapped to its alphabetical index
and applying a shift cipher based on the text length:

fle,n) = ((ord(c) —ord("A") +n) mod 26) +1 (3)

where c is the character and n is the total num-
ber of characters in 7. This ensures that encoding
remains text-dependent, enhancing uniqueness. Fi-
nally, the hash is mapped to a bounded numeric
space using modular reduction:

St =H(I) mod pk @

Even if an attacker identifies the specific paper
text used for watermarking, they would still require
two secret keys, Kecret and pk, to decode the green
list and verify the watermark. These keys ensure
that only authorized individuals, such as the editor

or program chair, can perform detection. To main-
tain the integrity and security of the watermarking
system, Kecret and pk keys must be kept strictly
confidential and accessible only to authorized per-
sonnel.

3.3.2 Green-Red Token Partitioning

Given a vocabulary set V, we define a subset of
tokens, GG, termed as the "green list" which are fa-
vored during text generation. The remaining tokens
form the "red list" R. Instead of a probability-based
split, we use a deterministic random permutation
seeded by the paper seed generator. A fraction y
of tokens is selected as green, ensuring consistency
across runs. Let | V| denote the vocabulary size :-

Gl =VI, [Rl=(0=7)IV] )

3.3.3 Blue Token Selection

We define a subset of tokens, denoted as the blue
list B, which consists of important technical terms
extracted from a given research paper. These blue
tokens represent domain-specific terminology that
is crucial for maintaining the technical accuracy
and coherence of the generated text.

Unlike the green list G, which is deterministi-
cally selected based on a fixed fraction v of the
vocabulary, the blue list is explicitly derived from
the research content, ensuring a stronger alignment
with the subject matter of the paper. To construct
B, we utilize a language model (LLM) to extract
key technical terms from the paper by prompting it
to identify domain-relevant terminology. We found
that average number of extracted terms per paper
is approximately 43.83. We discuss this in detail in
Appendix C.

3.3.4 Logit Adjustment Mechanism

During inference, given a token sequence
wo, W1, - .., W1, the language model produces
a logit vector lg) representing the probability dis-
tribution over V. We modify these logits using a

biasing function:
19 =18 +6 KweGUB), (©6)

where J is a tunable parameter controlling the
watermarking strength, and ¥[w € G U B] is an
indicator function returning 1 if w is in the green
list G or blue list B, and 0 otherwise. The resulting
logits are then passed through the softmax function
to obtain the final token probabilities:
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This ensures that tokens in G and B are more
likely to be sampled while discouraging tokens
from R, thereby reinforcing both the structured wa-
termarking and the preservation of domain-specific
terminology.

3.4 Watermark Detection

Given a research paper, the proposed algorithm gen-
erates a deterministic seed to ensure consistency
between encoding and detection. Since each re-
search paper is unique, the generated seed remains
identical to that used during watermark insertion.
As a result, the same random token list (formerly
the green list) is reconstructed. Similarly, the blue
token list, consisting of technical terms extracted
from the paper, is also reproduced, as these terms
remain unchanged. Consequently, the marked to-
ken set, i.e., the union of random and blue tokens,
remains identical, enabling accurate watermark de-
tection. We discuss the algorithm in detail in Algo-
rithm 2.

Algorithm 2 Watermark Detection

Require: Peer Review Text R, Paper Tokens P

Ensure: Marked Token Fraction f,,, Z-Score z
1: Tokenize the peer review R using tokenizer 7
2: Generate a deterministic seed St from the paper using

the seed generator

3: Partition vocabulary V' into random tokens G and red
tokens Ryeq using St

: Extract blue tokens from the paper: O = P N Ryed

: Compute marked tokens: M = G U O

: Extract bigrams B from R and initialize marked token hit
count M., =0

: for each bigram (z,y) € B do

Increment M. ify € M

: end for

: Compute marked token fraction:

AN

—_

M.

fm = 5
|B|

11: Compute expected marked token fraction:

| M]|
Blfm] =
VI
12: Compute z-score:

T VIBIE]( — Elfn])

13: return f,,, z

We extract bigrams (k=2) as part of our detec-

tion pipeline, building on the k-gram watermark-
ing framework introduced by (Kirchenbauer et al.,
2023) and extended theoretically by (Zhao et al.,
2023). These works justify using k-grams, where k
can be tuned based on task requirements. Bigrams
offer a practical balance between local contextual
awareness and statistical reliability. Specifically,
they reduce token-level noise (e.g., repetition) and
improve robustness to paraphrasing.

We computed z score which is a standard test
statistic (Zhao et al., 2023; Kirchenbauer et al.,
2023), used to distinguish between watermarked
and non-watermarked text, with theoretical guaran-
tees on false positive and false negative rates (see
(Zhao et al., 2023), Theorems 3.3-3.5). Under this
model, the expected count of green tokens is 77,
with variance T"- (1 — ), yielding the normalized
score:

L Gl =1T ®)
T-~(1=7)

Here y indicates whether the review is water-

marked.

4 Experiments

4.1 Implementation Details

We used 1,090 papers from ICLR and NeurIPS
(year: 2022) for our experiments from (Kumar
et al., 2024). The average number of reviews per
paper is 3.88, and the average token length of the
reviews is 566.42. For generation, we used the
Llama-3.1-8B-Instruct® in our experiments. We
discuss the implementation details in Appendix A.

4.2 Main Result

Model | wio LowP HighP Token

Radar 48.02 16.16 4.24 14.14

LLM-Det 34.24 33.38 32.72 19.30

Fast Detect 60.36 13.09 3.44 43.24

Baseline Models Deep Fake 66.00 57.03 35.44 63.78
TF-Model 88.06 68.58 66.10 18.70

RR-Model 78.38 63.51 61.60 64.12

SynthID Text | 83.65 71.27 70.21 72.34

6=3.0 91.45 85.29 76.42 77.81

Our Model 6=4.0 95.20 88.14 79.56 80.32
6=5.0 98.31 92.79 84.36 83.87

Table 1: F1 Score Performance Comparison Under Dif-
ferent Attack Scenarios (values in %). Here P — Para-
phrasing; Token — Token attack; w/o — without any
attack

3https://huggingface.co/meta—llama/Llama—3.
1-8B-Instruct
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We evaluate our method against multiple Al-
generated text detectors, including RADAR (Hu
et al., 2023), DEEP-FAKE (Li et al., 2023) and
Fast-Detect GPT (Bao et al., 2023b). Additionally,
we evaluated against specialized Al-generated text
detectors for peer review, such as TF-Model (which
leverages term frequency of Al-generated tokens)
and RR-Model (a regeneration-based method) (Ku-
mar et al., 2024). For Watermarking based meth-
ods, we have included two baselines: WLLM
(Kirchenbauer et al., 2023) and SynthID Text
(Dathathri et al., 2024).

We used both Al-generated reviews and human
reviews for this experiment. During the attack
phase, we targeted only the Al-generated reviews,
as they are the ones intended to evade detection. As
shown in the Table 1, existing Al detectors exhibit
extreme sensitivity to adversarial attacks, with Fast
Detect suffering a 94.30% drop (60.36% — 3.44%)
and Radar declining by 91.17% (48.02% — 4.24%)
under high paraphrasing. Similarly, TF-Model’s F1
score decreases by 78.76% (88.06% — 18.70%)
under token attack, highlighting the brittleness of
non-watermarked approaches. In contrast, our pro-
posed watermarking method retains a performance
of 84.36% under high paraphrasing and 83.87%
under token attack (6=5.0), outperforming all base-
lines by a substantial margin. Even with lower ¢
values, our model demonstrates resilience, with
0=3.0 yielding 76.42% and 9=4.0 yielding 79.56%
under high paraphrasing, indicating consistent ad-
versarial robustness. These findings emphasize that
existing Al text detectors alone are insufficient for
detecting Al-generated text under adversarial con-
ditions. Our watermarking approach provides a
promising solution for improving the resilience of
Al generated peer review detection, even in chal-
lenging settings.

We also compare our approach with WLLM
(Kirchenbauer et al., 2023), which relies solely
on randomly selected green tokens for watermark-
ing. In contrast, our method incorporates domain-
specific tokens in addition to green tokens. Our re-
sults demonstrate that integrating domain-specific
tokens significantly enhances watermark detectabil-
ity, highlighting the importance of semantically
meaningful token selection. We discussed this in
detail in Section 4.4. Additionally, we compared
our method with SynthID Text by injecting wa-
termarks using its speculative sampling technique
and detecting them based on the weighted mean
detection score (ranging from O to 1), optimized

Without Term
85.0 —=— With Term

Accuracy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Y

Figure 2: Effect of Watermarking on varying v on with
only green token (without Term) and with green token
and blue token (With Term); 6= 2.0.

on a validation set. As shown in Table 1, SynthID
achieves F1 scores of 83.65 (no attack), 77.27 (low-
perplexity paraphrasing), 70.21 (high-perplexity
paraphrasing), and 72.34 (token substitution). Our
method, evaluated under multiple threshold settings
(9), consistently obtains higher F1 scores across all
conditions, demonstrating strong robustness and
reliability under adversarial peer review scenarios.
Additionally, we found that the Query Type Iden-
tifier achieves an accuracy of 95.5% on the test set.
Further, we studied the effect of varying the under-
lying base language model on detection accuracy.
As shown in Figure 4, our approach maintains ro-
bust performance across LLMs of different sizes
and architectures. For extended results and further
discussion, please refer to Appendix H.

4.3 Effect of varying v on Detection Accuracy

Figure 2 shows that at low green token fractions
(v = 0.1 to v = 0.3), detectability remains weak
due to an insufficient statistical signal. When too
few green tokens are available, the sampling al-
gorithm operates largely unconstrained, following
the model’s natural probability distribution with
minimal watermarking influence. As a result, the
watermark imprint is inconsistent, leading to higher
variance in detection scores. However, at v = 0.3,
detectability peaks, indicating an optimal balance
where the watermarking method biases the sam-
pling process enough to be recognized while still
allowing diverse token choices. Beyond v = 0.3,
an interesting shift occurs. As 7 increases, the
green token fraction introduces greater random-
ness into the sampling process, allowing the model
more flexibility in token selection. At~y = 0.4,
this increased entropy makes the watermark sig-
nal less distinct, leading to a temporary decline in



detectability. Interestingly, at v = 0.5, detectabil-
ity recovers, possibly due to an optimal trade-off
which watermarking constraints are still strong
enough for recognition while allowing sufficient
linguistic variation to stabilize detection. Beyond
this point, performance declines again as higher
green token fractions (v > 0.6) further increase
randomness, making the text appear more natural
and reducing watermark signal strength. At very
high ~y values (e.g., v = 0.9), nearly all tokens in
the sampling space are green, making the sampling
distribution indistinguishable from unwatermarked
text, effectively neutralizing detectability.

4.4 Effect of Domain-Specific Token Selection
on Watermark Detectability

The results in Figure 2 demonstrate that incor-
porating important domain-specific tokens (blue
tokens) alongside green tokens significantly im-
proves watermark detectability across all thresh-
olds compared to using only green tokens. This
also highlights that our approach improves upon
WLLM. The improvement is particularly notable
at lower thresholds (v = 0.1 to v = 0.3), with
performance gains exceeding 10% at v = 0.1 and
~v = 0.2. This suggests that while random green to-
ken selection introduces high variability, leading to
a weaker watermark signal, integrating important
technical terms from the research paper enhances
detection robustness by grounding the watermark
in semantically meaningful and contextually sig-
nificant words. Interestingly, at higher thresholds
(y > 0.6), the performance difference reduces,
likely due to the increased randomness in token
selection making the watermark less distinguish-
able. These findings underscore the effectiveness of
domain-aware token selection in improving water-
mark detectability while maintaining text fluency.

4.5 Effect of Watermarking Strength (J) on
Detection Accuracy

The graph demonstrates a positive correlation be-
tween watermarking strength (6) and detection ac-
curacy. As ¢ increases from 2 to 6, the accuracy
of watermark detection improves from 86.51% to
99.54%. This trend shows that increasing the wa-
termarking bias enhances the distinguishability of
Al-generated text. The primary reason for this im-
provement is that a higher § more strongly biases
the model’s token selection toward a predefined
set of “green list” and “blue list” tokens, mak-
ing it easier to detect the watermark statistically.

Effect of Watermarking Strength (&) on Perplexity and Accuracy
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Figure 3: Effect Of Watermarking Strength (9) on Per-
plexity and Accuracy; § = 2.0

This controlled alteration in token probabilities in-
creases the reliability of detection algorithms, as
deviations from a natural distribution become more
pronounced.

4.6 Effect of Watermarking Strength (J) on
Perplexity

Perplexity is a fundamental metric used to evaluate
the confidence of a language model in its predic-
tions. Lower perplexity values indicate that the
model assigns higher probabilities to its predicted
tokens, signifying more fluent and coherent text
generation. Conversely, higher perplexity suggests
greater uncertainty, implying that the text deviates
from the model’s natural distribution. In water-
marking studies, minimizing the impact on per-
plexity is crucial to ensure that the watermarked
text remains natural and human-like (Kirchenbauer
et al., 2023).

From Figure 3, we observe a consistent increase
in perplexity as the watermarking strength ¢ in-
creases from 2 to 6. Specifically, perplexity rises
from 4.27 at 6 = 2 to 6.30 at § = 6. At the same
time, accuracy improves from 86.51% at § = 2 to
99.54% at § = 6. This behavior occurs because
watermarking forces the model to prefer certain
tokens ("green list" or "blue list"), which may not
always align with the most natural token choices.
This trade-off is an essential consideration for wa-
termarking techniques. While higher ¢ ensures
more robust watermark detection, excessive per-
plexity increases can negatively impact readability
and coherence.

4.7 Impact of Watermarking on Downstream
Decision Prediction

To further evaluate the practical quality of water-
marked text, we performed a downstream task-



based analysis using aspect-based decision predic-
tion. Specifically, we used the DeepASPeer (Ku-
mar et al., 2022) which predicts paper acceptance
decisions from peer reviews using sentiment in-
formation for aspects such as novelty, substance,
and soundness. Our results show that the model
achieved an accuracy of 75.6% on unwatermarked
reviews and 74.23 % on watermarked reviews. This
marginal drop of 1.74% suggests that watermark-
ing has minimal impact on aspect-based sentiment
structure and does not significantly degrade the
informativeness required for downstream decision-
making tasks. This automatic evaluation further
complements our qualitative findings, indicating
that watermarked reviews retain their functional
quality for scholarly applications.

5 Robustness Analysis

Since reviewers may deliberately alter water-
marked text to evade detection, we evaluate the
robustness of our method.

5.1 GPT Paraphrasing

Given GPT’s effectiveness in high-fidelity para-
phrasing (Hassanipour et al., 2024), we employed
it in two distinct settings: low-degree and high-
degree paraphrasing. A detailed discussion of the
paraphrasing procedure is provided in Appendix E.
Experimental results reveal that GPT-based para-
phrasing attacks substantially compromise the de-
tection performance of existing models. Under
high-degree paraphrasing, Radar and FastDetect-
GPT perform particularly poorly, with F1 scores
declining sharply to 4.24% and 3.44%, respectively.
Even the strongest baseline, TF-Model, experi-
ences a performance drop from 88.06% (no attack)
to 66.10%, highlighting the susceptibility of cur-
rent detectors to paraphrastic transformations. In
contrast, our model exhibits significantly greater
robustness, achieving F1 scores of 92.79% and
84.36% under low- and high-degree paraphrasing,
respectively, at a watermarking strength of 6 = 5.0.
As ¢ increases, the model maintains higher detec-
tion accuracy, even under aggressive paraphrasing
conditions.

5.2 Token Attack

We also performed a token attack (adjective) (Ku-
mar et al., 2024). The Adjective Attack targets
frequently occurring adjectives in Al-generated
text and replaces them with their less frequent syn-
onyms while preserving the overall meaning. The

results show that baseline models struggle to main-
tain performance under this attack. For instance,
Radar and LLM-Det experience substantial drops
in F1 scores, reducing to 14.14% and 19.30%, re-
spectively. Similarly, TF-Model and RR-Model,
which initially performed well without attacks, de-
cline to 18.70% and 64.12%, indicating their vul-
nerability to subtle lexical transformations. In con-
trast, our model remains highly robust, achieving
83.87% F1 at § = 5.0, demonstrating its ability to
detect Al-generated text even when common adjec-
tives are perturbed. These findings underscore the
susceptibility of existing detectors to lexical style
attacks and the effectiveness of our method under
such perturbations.

6 Human Analysis

We conducted a qualitative analysis of 80 peer re-
views generated under different watermarking in-
tensities (0 = 3.0, 4.0, 5.0) to assess their Coher-
ence, Consistency, and Fluency. The evaluation
was conducted by three experts in ML and scien-
tific writing, each with 10+ years of experience and
15+ publications. They independently assessed the
reviews and resolved discrepancies through discus-
sion, ensuring consensus. We found that 6-3.0 was
the most readable, §-4.0 introduces some reword-
ing but remains logically coherent and effective,
and 6-5.0 resulted in overly complex phrasing that
could hinder comprehension. Additionally, the blue
list contributed to an increased density of technical
terms in 6-5.0 , making the reviews more complex
but not necessarily more informative. We discuss
this in detail with examples in Appendix B.

7 Conclusion and Future Work

In this work, we introduced a novel watermark-
ing framework for detecting LLM-generated peer
reviews. Through extensive evaluation on ICLR
and NeurIPS data, our method demonstrated con-
sistently higher detection accuracy than existing
baselines, especially under various adversarial at-
tacks. While watermarking is still an emerging
technique, we believe our framework offers a scal-
able and low-overhead approach to enhancing the
reliability of peer review by enabling traceable de-
tection of Al-generated peer reviews supporting
editors and chairs in preserving trust within schol-
arly communication.

In future, we aim to extend detection to hybrid
Al-human-generated reviews.



Limitations

Our method of generating paper seed is sensitive
to paper text. If a paper text is highly modified, the
green token selection could change unpredictably,
making wrong detection. A more robust hashing
mechanism (e.g., leveraging semantic embeddings
rather than text-based hashing) could improve sta-
bility. Our method is tailored for reviews that are
entirely Al-generated. However, a reviewer might
draft key bullet points on a paper and then use
ChatGPT to develop them into full paragraphs. We
recommend investigating this aspect in future re-
search. While our current evaluation focuses on
ML conferences to ensure experimental rigor and
comparability, we agree that extending the evalu-
ation to other domains (e.g., journals or interdis-
ciplinary venues) would provide valuable general-
ization insights. Also, watermark effectiveness can
be affected by the model’s familiarity with domain-
specific content. If an LLM fails to appropriately
incorporate key technical terms, it may underuti-
lize watermarked tokens, potentially weakening the
signal or resulting in false negatives.

Also, our proposed generative watermarking
framework, like other watermarking approaches,
does not provide a complete solution for detect-
ing Al-generated text; rather, it serves as a com-
plement to other detection methods. In particu-
lar, applying such watermarks requires cooperation
among the entities deploying LL.M-based peer re-
view systems. We discuss more about the practical
deployment of this framework in detail in Appendix
G. Detecting Al-generated text from entities that
choose not to use watermarking requires alterna-
tive strategies, such as post hoc analysis. Addition-
ally, the growing prevalence of open-source models
poses a significant challenge, as their decentralized
deployment makes watermark enforcement diffi-
cult (Dathathri et al., 2024).

Ethics Statement

For this study, we used an open-source dataset. We
do not take a stance on whether using Al tools for
peer reviews is inherently positive or negative, nor
do we claim definitive evidence that reviewers are
relying on ChatGPT for drafting. The primary goal
of this system is to aid editors/chair in detecting
potentially Al-generated reviews, and it is designed
solely for internal editorial use, not for authors or
reviewers.

Although this watermarking method is designed

to mitigate the misuse of Al in peer reviews, it also
introduces potential risks. For instance, if the water-
marking mechanism of a specific LLM were to be
publicly exposed, a malicious actor could exploit
it to generate unethical content embedded with the
model’s watermark. To prevent such misuse, we
strongly recommend safeguarding the integrity of
the system by keeping key components such as the
hash function keys used for green and red list par-
titioning confidential and restricted to authorized
users.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Bruce Alberts, Brooks Hanson, and Katrina L Kelner.
2008. Reviewing peer review.

Martijn Arns. 2014. Open access is tiring out peer
reviewers. Nature, 515(7528):467-467.

Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi
Yang, and Yue Zhang. 2023a. Fast-detectgpt: Ef-
ficient zero-shot detection of machine-generated
text via conditional probability curvature. CoRR,
abs/2310.05130.

Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi
Yang, and Yue Zhang. 2023b. Fast-detectgpt: Effi-
cient zero-shot detection of machine-generated text
via conditional probability curvature. arXiv preprint
arXiv:2310.05130.

Lutz Bornmann and Riidiger Mutz. 2015. Growth rates
of modern science: A bibliometric analysis based
on the number of publications and cited references.
Journal of the association for information science

and technology, 66(11):2215-2222.

Sumanth Dathathri, Abigail See, Sumedh Ghaisas, Po-
Sen Huang, Rob McAdam, Johannes Welbl, Van-
dana Bachani, Alex Kaskasoli, Robert Stanforth,
Tatiana Matejovicova, Jamie Hayes, Nidhi Vyas,
Majd Al Merey, Jonah Brown-Cohen, Rudy Bunel,
Borja Balle, A. Taylan Cemgil, Zahra Ahmed, Kitty
Stacpoole, Ilia Shumailov, Ciprian Baetu, Sven
Gowal, Demis Hassabis, and Pushmeet Kohli. 2024.
Scalable watermarking for identifying large language
model outputs. Nat., 634(8035):818-823.

Alexander R Fabbri, Wojciech Krysciniski, Bryan Mc-
Cann, Caiming Xiong, Richard Socher, and Dragomir
Radev. 2020. Summeval: Re-evaluating summariza-
tion evaluation. arXiv preprint arXiv:2007.12626.

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang,
Jinran Nie, Yuxuan Ding, Jianwei Yue, and Yupeng


https://doi.org/10.48550/ARXIV.2310.05130
https://doi.org/10.48550/ARXIV.2310.05130
https://doi.org/10.48550/ARXIV.2310.05130
https://doi.org/10.48550/ARXIV.2310.05130
https://doi.org/10.48550/ARXIV.2310.05130
https://doi.org/10.1038/S41586-024-08025-4
https://doi.org/10.1038/S41586-024-08025-4
https://doi.org/10.1038/S41586-024-08025-4

Wu. 2023. How close is chatgpt to human experts?
comparison corpus, evaluation, and detection. CoRR,
abs/2301.07597.

Soheil Hassanipour, Sandeep Nayak, Ali Bozorgi,
Mohammad-Hossein Keivanlou, Tirth Dave, Abdul-
hadi Alotaibi, Farahnaz Joukar, Parinaz Mellatdoust,
Arash Bakhshi, Dona Kuriyakose, et al. 2024. The
ability of chatgpt in paraphrasing texts and reducing
plagiarism: a descriptive analysis. JMIR Medical
Education, 10(1):e53308.

Xiaomeng Hu, Pin-Yu Chen, and Tsung-Yi Ho. 2023.
RADAR: robust ai-text detection via adversarial
learning. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

ISO/IEC JTC 1/SC 42. 2023. Standards for artificial
intelligence: Trustworthiness. https://www.iso.
org/committee/6794475.html. Accessed: 2024-
05-17.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023.
A watermark for large language models. In Interna-
tional Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research,
pages 17061-17084. PMLR.

Sandeep Kumar, Hardik Arora, Tirthankar Ghosal, and
Asif Ekbal. 2022. Deepaspeer: towards an aspect-
level sentiment controllable framework for decision
prediction from academic peer reviews. In Proceed-
ings of the 22nd ACM/IEEE Joint Conference on
Digital Libraries, pages 1-11.

Sandeep Kumar, Mohit Sahu, Vardhan Gacche,
Tirthankar Ghosal, and Asif Ekbal. 2024. ‘quis cus-
todiet ipsos custodes?” who will watch the watch-
men? on detecting Al-generated peer-reviews. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pages
22663-22679, Miami, Florida, USA. Association
for Computational Linguistics.

Yafu Li, Qintong Li, Leyang Cui, Wei Bi, Longyue
Wang, Linyi Yang, Shuming Shi, and Yue Zhang.
2023. Deepfake text detection in the wild. arXiv
preprint arXiv:2305.13242.

Weixin Liang, Zachary Izzo, Yaohui Zhang, Haley Lepp,
Hancheng Cao, Xuandong Zhao, Lingjiao Chen, Hao-
tian Ye, Sheng Liu, Zhi Huang, Daniel A. McFarland,
and James Y. Zou. 2024. Monitoring ai-modified con-
tent at scale: A case study on the impact of chatgpt on
Al conference peer reviews. CoRR, abs/2403.07183.

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming
Hu, Xi Zhang, Lijie Wen, Irwin King, Hui Xiong,
and Philip Yu. 2024. A survey of text watermarking
in the era of large language models. ACM Computing
Surveys, 57(2):1-36.

10

Alison McCook. 2006. Is peer review broken? submis-
sions are up, reviewers are overtaxed, and authors are
lodging complaint after complaint about the process
at top-tier journals. what’s wrong with peer review?
The scientist, 20(2):26-35.

Mary L McHugh. 2012. Interrater reliability: the kappa
statistic. Biochemia medica, 22(3):276-282.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D. Manning, and Chelsea Finn. 2023.
Detectgpt: Zero-shot machine-generated text detec-
tion using probability curvature. In International
Conference on Machine Learning, ICML 2023, 23-
29 July 2023, Honolulu, Hawaii, USA, volume 202
of Proceedings of Machine Learning Research, pages
24950-24962. PMLR.

National Institute of Standards and Technology (NIST).
2023. Ai 100-4: Reducing risks posed by synthetic
content. Technical report, NIST.

Nihar B Shah. 2022. Challenges, experiments, and com-
putational solutions in peer review. Communications
of the ACM, 65(6):76-87.

Wajiha Shahid, Yiran Li, Dakota Staples, Gulshan Amin
Gilkar, Saqib Hakak, and Ali A. Ghorbani. 2022. Are
you a cyborg, bot or human? - A survey on detecting
fake news spreaders. IEEE Access, 10:27069-27083.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Radford,
and Jasmine Wang. 2019. Release strategies and
the social impacts of language models. CoRR,
abs/1908.09203.

Kyle Wiggers. 2022. Openai’s attempts to watermark ai
text hit limits. TechCrunch, December, 10.

Max Wolff. 2020. Attacking neural text detectors.
CoRR, abs/2002.11768.

Rui Ye, Xianghe Pang, Jingyi Chai, Jiaao Chen, Zhenfei
Yin, Zhen Xiang, Xiaowen Dong, Jing Shao, and
Siheng Chen. 2024. Are we there yet? revealing the
risks of utilizing large language models in scholarly
peer review. arXiv preprint arXiv:2412.01708.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and
Yu-Xiang Wang. 2023. Provable robust water-
marking for ai-generated text. arXiv preprint
arXiv:2306.17439.

A Details on Implementation

Our goal is to simulate a real-world scenario in
which a reviewer might use a LLM to generate a
peer review by providing the manuscript as input.
Therefore, in our framework, if the input consists
of a research paper and an unsafe query, the output
is the corresponding peer review.


https://doi.org/10.48550/ARXIV.2301.07597
https://doi.org/10.48550/ARXIV.2301.07597
https://doi.org/10.48550/ARXIV.2301.07597
https://www.iso.org/committee/6794475.html
https://www.iso.org/committee/6794475.html
https://www.iso.org/committee/6794475.html
https://proceedings.mlr.press/v202/kirchenbauer23a.html
https://doi.org/10.18653/v1/2024.emnlp-main.1262
https://doi.org/10.18653/v1/2024.emnlp-main.1262
https://doi.org/10.18653/v1/2024.emnlp-main.1262
https://doi.org/10.18653/v1/2024.emnlp-main.1262
https://doi.org/10.18653/v1/2024.emnlp-main.1262
https://doi.org/10.48550/ARXIV.2403.07183
https://doi.org/10.48550/ARXIV.2403.07183
https://doi.org/10.48550/ARXIV.2403.07183
https://doi.org/10.48550/ARXIV.2403.07183
https://doi.org/10.48550/ARXIV.2403.07183
https://proceedings.mlr.press/v202/mitchell23a.html
https://proceedings.mlr.press/v202/mitchell23a.html
https://proceedings.mlr.press/v202/mitchell23a.html
https://www.nist.gov/publications/ai-100-4-reducing-risks-posed-synthetic-content
https://www.nist.gov/publications/ai-100-4-reducing-risks-posed-synthetic-content
https://www.nist.gov/publications/ai-100-4-reducing-risks-posed-synthetic-content
https://doi.org/10.1109/ACCESS.2022.3157724
https://doi.org/10.1109/ACCESS.2022.3157724
https://doi.org/10.1109/ACCESS.2022.3157724
https://doi.org/10.1109/ACCESS.2022.3157724
https://doi.org/10.1109/ACCESS.2022.3157724
https://arxiv.org/abs/1908.09203
https://arxiv.org/abs/1908.09203
https://arxiv.org/abs/1908.09203
https://arxiv.org/abs/2002.11768

The model was loaded in FP16 precision, with
a fixed PyTorch generation seed (123) for repro-
ducibility. The generation parameters were con-
figured as follows: top_k = 0, temperature = 0.7,
and beam size = 1. We use the below generation
prompt for our experiments :-

System: You are a Research Scientist. Your
task is to thoroughly and critically read the
paper and write a peer review of it.

User: Instructions 1. Read the paper criti-
cally and only write a peer review. Do not
include any other content.

2. The peer review must contain the fol-
lowing sections: - Paper Summary: A con-
cise summary of the paper’s key contribu-
tions and findings. - Strengths: Highlight
the notable strengths of the paper. - Weak-
nesses: Identify any limitations or areas of
concern. - Suggestions for Improvement:
Provide constructive feedback for the au-
thors to enhance their work. - Recommen-
dation: State whether the paper should be
accepted, revised, or rejected.

Paper: {paper_content}

To test the efficiency of the Query Type Iden-
tifier, we manually created 150 queries, equally
divided into unsafe and safe categories. We di-
vided this into 50% for validation and 50% test.
We used the same model for this task as we did
for generation, i.e., Llama-3.1-8B-Instruct. The
watermark classifier was trained using a fully con-
nected neural network with two hidden layers (16
and 8 neurons, both with ReLLU activation) and an
output layer of size 2 for binary classification. The
dataset was standardized using StandardScaler and
evaluated using 5-fold stratified cross-validation.
Each fold had an 80-20% split for training and val-
idation, with one fold reserved for testing. The
model was optimized using the Adam optimizer
with a learning rate of 0.001 and weight decay of
le-4, and trained using cross-entropy loss. Early
stopping was applied with a patience of 500 epochs
and a maximum of 10,000 epochs, selecting the
best model based on validation loss. Model per-
formance was evaluated using accuracy with final
results averaged across all folds. All experiments
were conducted on an NVIDIA A100 80GB GPU
using PyTorch.
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B Detailed Human Evaluation

Following the annotation guidelines for Coherence,
Consistency, and Fluency (Fabbri et al., 2020), we
asked the annotators to rank the three outputs. They
discussed any discrepancies and reached an agree-
ment when their ranking were different. The anno-
tators were paid 20 USD per hour. We found that
0 = 3.0 performed better in terms of Coherence,
Consistency, and Fluency in 87%, 89%, and 92%
of the cases, respectively. Similarly, for § = 4.0,
we found that it performed better than 6 = 5.0 in
T7%, 719%, and 82% of the cases for Coherence,
Consistency, and Fluency, respectively. To quan-
tify agreement, we computed the inter-annotator
agreement, achieving a Cohen’s Kappa coefficient
(McHugh, 2012) of 0.8629, which indicates strong
agreement among annotators. Based on their com-
ments we discuss the below observation:-

B.1 Linguistic Fluency and Readability

We found that increasing the watermarking strength
progressively reduced linguistic fluency. Reviews
generated with §-3.0 exhibited natural and well-
structured sentences, while 9-4.0 introduced slight
verbosity and rewording. However, §-5.0 resulted
in excessive sentence expansion, leading to unnatu-
ral phrasing and reduced readability.

B.1.1 Example (6-3.0 vs. §-4.0 vs. 6-5.0)

* 0-3.0: "The proposed model effectively re-
duces computational complexity while main-
taining comparable performance with state-
of-the-art methods. However, additional
evaluation on out-of-distribution tasks would
strengthen the paper.”

0-4.0:  "The proposed model provides an
effective approach to reducing computa-
tional complexity while ensuring that perfor-
mance remains competitive with state-of-the-
art methodologies. Further assessment on
out-of-distribution tasks could help verify its
robustness."

* 0-5.0: "The proposed model, as introduced
by the authors, offers a compelling approach
to addressing computational complexity while
ensuring that performance levels remain com-
petitive with current state-of-the-art method-
ologies. Nevertheless, to comprehensively val-
idate the robustness of the approach, further
evaluation on out-of-distribution tasks should



be conducted to provide a more complete as-
sessment."”

We observed that §-3.0 maintained conciseness,
0-4.0 introduced slightly more complex phras-
ing without significant readability loss, and 6-5.0
contained excessive verbosity, making the review
harder to read.

B.2 Logical Coherence and Idea Flow

Logical coherence was largely preserved in 6-3.0
and 6-4.0, but 0-5.0 introduced redundancy that
disrupted idea flow. Higher watermarking levels
resulted in multiple rewordings of the same point,
artificially increasing the review length.

B.2.1 Example (§-3.0 vs. §-4.0 vs. 6-5.0)

* §-3.0:  "The LMUFormer architecture is
well-designed and effectively combines the
strengths of LMUs and Transformer models.
However, the authors should provide a more
detailed complexity analysis to strengthen
their claims."

0-4.0: "The LMUFormer architecture success-

fully integrates the advantages of LMUs and
Transformer models while maintaining compu-
tational efficiency. However, a more detailed
complexity analysis would further substanti-
ate its effectiveness."

0-5.0: "The LMUFormer model, as presented
in the paper, introduces a well-structured and
well-thought-out architectural design that suc-
cessfully integrates the advantages of LMUs
and Transformer models. However, while the
presented work is promising, an additional
in-depth complexity analysis would be benefi-
cial in order to further substantiate the claims
made by the authors regarding the model’s
efficiency and applicability."”

We found that §-3.0 was direct and logically
structured, 0-4.0 introduced slight elaboration
while maintaining coherence, and §-5.0 resulted
in unnecessary repetition, disrupting logical pro-
gression.

B.3 Redundancy and Verbosity

We observed that 0-5.0 significantly increased re-
dundancy, whereas 6-4.0 introduced only minor
rewording. 0-3.0 remained the most precise and
concise.

B.3.1 Example (6-3.0 vs. §-4.0 vs. §-5.0)

* 0-3.0: "Conv-LoRA enhances SAM’s seg-
mentation performance by incorporating
lightweight convolutional parameters. While
this represents an effective extension, further
real-world validation is needed."

6-4.0: "Conv-LoRA improves SAM’s segmen-
tation capabilities by introducing lightweight
convolutional parameters, reinforcing its ef-
fectiveness in downstream tasks. However,
additional real-world validation would help
confirm its robustness."

6-5.0:  "The Conv-LoRA framework intro-
duces an effective approach for improving
SAM’s segmentation performance by inte-
grating lightweight convolutional parameters.
This enhancement allows SAM to perform bet-
ter in various segmentation tasks. While this
methodology is promising, additional real-
world validation would further reinforce the
practical utility and applicability of this ap-
proach.”

We found that §-3.0 was the most precise, §-4.0
introduced slight elaboration without unnecessary
repetition, and 6-5.0 contained inflated and redun-
dant phrasing.

B.4 Technical Terminology and the Blue List
Effect

We observed that §-5.0 contained a higher density
of technical terms, likely due to the influence of the
blue list. While this ensured technical accuracy, it
also led to increased sentence complexity, making
readability more difficult.

B.4.1 Example (5-3.0 vs. 9-4.0 vs. 6-5.0)

* 0-3.0: "The proposed fine-tuning approach ef-
fectively adapts the model to domain-specific
segmentation tasks, ensuring efficient perfor-
mance without significantly increasing param-
eter count.”

* §-4.0: "The fine-tuning strategy optimizes the
model for domain-specific segmentation tasks,
maintaining efficiency while minimizing pa-
rameter growth."

* 0-5.0: "The fine-tuning methodology pro-
posed by the authors strategically inte-
grates parameter-efficient training techniques



within the optimization framework to en-
hance domain-specific segmentation tasks
while maintaining computational efficiency
and preserving model scalability."”

C Details about Blue Token Selection

The Blue Token Selection process is designed to ex-
tract domain-specific technical terms from research
papers, ensuring high relevance and precision. By
leveraging a structured set of filtering rules, this
approach systematically identifies key concepts,
mathematical terms, dataset names, and acronyms
while excluding common stopwords and generic
phrases. Table 2 contains the detailed prompt we
used for our experiment.

D Details on output Reviews

Our generated peer reviews average 546 tokens,
which is sufficient for reliable watermark detection.
Prior studies (Liu et al., 2024) have demonstrated
that watermarking techniques are effective on texts
of moderate length. For example, watermarked
texts exceeding 600 tokens have been shown to be
generally robust against various attacks, including
paraphrasing and rewriting. Moreover, our exper-
imental results confirm that the proposed water-
marking method performs reliably at the typical
length of our generated reviews. We show an out-
put with and without watermarking in Table 3.

E GPT Paraphrasing

Table 4 presents the prompt used for GPT-based
paraphrasing. We used GPT-40 model for para-
phrasing.

The decoded output is the watermarked text
when compared with our models, ensuring water-
mark retention analysis, and the non-watermarked
text for Al text detectors, allowing evaluation of
Al-generated content detection.

F Query Type Identifier

The Query Type Identifier is designed to classify
queries related to peer review into Safe (S) or Un-
safe (UN) categories based on their potential for
ethical misuse. This classification system helps en-
sure that Al-generated content is not directly used
in peer review submissions, thereby maintaining
the integrity of the review process. Queries ex-
plicitly requesting a full peer review that could be
submitted as-is are marked as Unsafe (UN), while
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those seeking explanations, clarifications, or sum-
maries are classified as Safe (S). Table 5 presents
the prompt used for the classification task.

G Implementation Strategy

Our watermarking mechanism integrates at the de-
coding stage of text generation and thus does not
require direct access to proprietary model internals
or explicit model identification. Editors or chairs
would not need to detect which specific LLM re-
viewers use; instead, they can mandate a standard
watermarking plugin provided as a lightweight li-
brary to ensure watermark insertion regardless of
the LLM'’s origin. Policymakers have recognized
watermarking as essential for ensuring content au-
thenticity, with standards bodies such as NIST ex-
plicitly recommending watermark integration for
synthetic content provenance (of Standards and
, NIST). Moreover, international standards com-
munities (e.g., (ISO/IEC JTC 1/SC 42, 2023)) are
actively developing watermarking methodologies,
facilitating their inclusion into broader Al gover-
nance frameworks. Thus, chairs can convincingly
advocate for widespread adoption by referencing
these emerging guidelines and incentivizing com-
pliance through established governmental and in-
stitutional policies.

H Effect of Varying Base LLMs

To rigorously assess the generalizability of our wa-
termark detection method, we evaluated our frame-
work in different settings using gemma-2-2b-it
(2B parameters), Llama-3.1-8B-Instruct (8B
parameters), and Qwen-14B (14B parameters).
These models span an order of magnitude in size
and differ notably in their tokenization schemes,
decoding strategies, and inductive biases. Despite
these substantial variations, our watermark detec-
tion approach consistently achieves high accuracy,
yielding F1 scores of 96.9%, 98.3%, and 97.8%,
respectively (see Figure 4). The minimal variation
of only 1.4 percentage points underscores the wa-
termark’s resilience to differences in the underlying
language model. The method’s consistent perfor-
mance across multiple LLMs demonstrates that our
framework is model-agnostic and readily transfer-
able, making it a practical tool for watermarking in
the peer review domain.



Role Content

System You are a highly advanced Al specializing in scientific text processing.

User Your task is to extract important technical terms from a given research
paper. These terms will be used for further analysis.

Instructions 1. Extract the following types of terms:

* Technical Concepts (e.g., “self-attention”, “hyperparameter tuning”,
“zero-shot learning”)

* Mathematical & Statistical Terms (e.g., “gradient descent”, “log-
likelihood estimation”, “Bayes theorem”)

¢ Machine Learning/Dataset Names (e.g., “ResNet”, “BERT”, “Ima-
geNet”, “MNIST”)

* Key Nouns & Phrases Related to the Paper’s Topic (e.g., “archi-

”

tecture design”, “model convergence”, “loss function™)

* Acronyms of Important Models & Techniques (e.g., “LSTM”,
6‘CNN’7, 4£SVM7’, 6‘GAN’9)

LR RT3

* Scientific Terminology (e.g., “thermodynamic equilibrium”, “quan-

LEINNT3

tum entanglement”, “protein folding”)
2. Do NOT include:

¢ Common Stopwords (e.g., “and”, “or”, “the”, “but”, “therefore”)

LR N3

* General Academic Phrases (e.g., “this paper presents”, “in conclu-

LR N3

sion”, “as shown in Figure”)

e Adverbs or Common Verbs (e.g., “significantly”, “appears”,

LR N3

“seems”, “performs”)

* Generic Words Unrelated to the Paper’s Topic (e.g., “data”,

“study”, “results”, “important”, “analysis”)
3. Output Format:

* Provide the extracted terms in a single, comma-separated string
without duplicates.

Input Paper: {paper_content}

Table 2: Prompt for Extracting Technical Terms from Research Papers
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Aspect

Peer Review Without Watermark

Peer Review With Watermark

Paper Summary

Strengths

Weaknesses

Suggestions for Im-
provement

Proposes ModernTCN, a pure convo-
lutional model for time series anal-
ysis. Modernizes TCN to handle
long- and short-term tasks efficiently,
outperforming Transformer models
across five key tasks.

e Identifies limitations in tradi-
tional TCNs.

* Demonstrates task generality
and efficiency.

* Outperforms Transformer-

based models.

» Offers comprehensive experi-
mental results.

* Assumes data stationarity.

¢ Lacks detail on TCN modifica-
tions.

* No comparison with other con-
volution models.

* No computational complexity
analysis.

¢ Detail time series modifications
to TCN.

* Compare with convolutional
baselines.

* Include complexity analysis.

* Discuss potential real-world ap-
plications.

Introduces ModernTCN with cross-
time and cross-variable dependency
modeling, inspired by computer vi-
sion. Shows state-of-the-art per-
formance with efficient architecture
across five tasks.

* Addresses prior convolutional
limitations with modern design.

* Leverages decoupling structure
for dependency modeling.

e Includes ablation studies and
ERF analysis.

» Strong empirical results across
tasks.

* Assumes multivariate input; no
univariate discussion.

* Omits complexity comparison
with prior work.

* No application examples in spe-
cific domains.

* Clarify assumptions around data
types.

* Add complexity comparison
with other models.

* Present domain-specific use
cases.

Table 3: Comparison of Peer Reviews Generated Without and With Watermark
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Prompt Type Content

GPT-4o0 Para- System: You are a highly advanced Al specializing in paraphrasing and text
phrasing Prompt  rewriting.
User: Your task is to paraphrase the given review at two different intensity levels
while maintaining the original sentiment and meaning.

Instructions:

¢ 1. Paraphrase the review in two intensity levels:

— Low Paraphrasing: Minimal word changes while preserving sentence
structure and key phrases.

— High Paraphrasing: Complete creative rewrite with new analogies,
inverted sentence structures, and fresh expressions.

* 2. Output Format: Provide the paraphrased versions in valid JSON format.

Input: Review: {decoded_output}

Note: This prompt was used with the GPT-40 model for paraphrasing.

Table 4: Prompt Used for GPT-40-Based Paraphrasing at Two Intensity Levels
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Prompt Type Content

Query Type Clas- System: You are a highly advanced Al specializing in scientific text processing.
sification Prompt User: Your task is to classify queries related to peer review into Safe (S) or
Unsafe (UN).

Guidelines:

* Un-Safe (UN): A query is considered Unsafe if it requests a peer review
in a way that enables the reviewer to directly submit the generated content.
Even if the intent seems legitimate, the classification is based on the risk of
unethical use, not the user’s intention.

* Safe (S): Any query not falling into the unsafe category. This includes
requests for explanations, summaries, or clarifications of paper content.

Examples:

* Example 1
Prompt: "Write a peer review of this paper, covering summary, strengths,
and weaknesses."
Classification: UN

* Example 2
Prompt: "Assess the quality of this paper and provide a detailed peer
review."
Classification: UN

e Example 3
Prompt: "Provide a structured review covering strengths, weaknesses, and
recommendations."
Classification: UN

* Example 4
Prompt: "Summarize the main findings of this paper in a few sentences."
Classification: S

e Example 5
Prompt: "Explain the methodology section in simpler terms."
Classification: S

* Example 6
Prompt: "What are the key contributions of this paper?"
Classification: S

Final Classification Task:
Prompt: [INSERT PROMPT]
Classification: [S/UN]

Table 5: Prompt for Classifying Peer Review Queries as Safe or Unsafe
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Figure 4: Effect of varying LLM architectures on water-
mark detection performance (0 = 3.0).
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