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Abstract
Data plays a fundamental role in training Large001
Language Models (LLMs). Efficient data man-002
agement, particularly in formulating a well-003
suited training dataset, is significant for enhanc-004
ing model performance and improving training005
efficiency during pretraining and supervised006
fine-tuning stages. Despite the considerable007
importance of data management, the current008
research community still falls short in provid-009
ing a systematic analysis of the effects of data010
management strategy selection, methodologies011
for evaluating curated datasets, and the ongoing012
pursuit of improved strategies. Consequently,013
the exploration of data management has at-014
tracted more and more attention among the re-015
search community. This survey provides a com-016
prehensive overview of current research in data017
management within both the pretraining and018
supervised fine-tuning stages of LLMs, cover-019
ing various noteworthy aspects of data man-020
agement strategy design: data quantity, data021
quality, domain/task composition, etc. Looking022
toward the future, we extrapolate existing chal-023
lenges and outline promising directions for de-024
velopment in this field. Therefore, this survey025
serves as a guiding resource for practitioners026
aspiring to construct powerful LLMs through027
efficient data management practices.028

1 Introduction029

Large Language Models (LLMs) have shocked030

the natural language processing (NLP) community031

with their strong performance and emergent abil-032

ities (OpenAI, 2023; Touvron et al., 2023a; Wei033

et al., 2022). According to previous studies (Ka-034

plan et al., 2020; Hoffmann et al., 2022), LLMs’035

achievements depend heavily on self-supervised036

pretraining over processed vast volumes of text037

data. Recent research (Zhou et al., 2023a; Ouyang038

et al., 2022) further enhances LLMs’ instruction-039

following ability and performance on downstream040

tasks through Supervised Fine-Tuning (SFT) on041

deliberately curated instruction datasets.042

Organizing a well-suited training dataset using 043

collected data, which we define as data man- 044

agement, is vitally important and challenging in 045

both the pretraining and SFT stages of LLMs. In 046

the pretraining stage, constructing datasets with 047

high-quality data is essential for efficient train- 048

ing (Jain et al., 2020; Gupta et al., 2021). To 049

equip LLMs with diverse and comprehensive abili- 050

ties, heterogeneous dataset composition with mix- 051

tures of domains is also required (Gao et al., 2020; 052

Longpre et al., 2023b; Shen et al., 2023). How- 053

ever, many prominent LLMs do not enclose (Anil 054

et al., 2023; OpenAI, 2023) or only document 055

the techniques used in the construction of their 056

pretraining dataset (Brown et al., 2020; Work- 057

shop et al., 2022; Touvron et al., 2023a), leaving 058

the reasons and effects of choosing specific data 059

management strategies absent. In the SFT stage, 060

LLMs’ performance and instruction-following abil- 061

ities are primarily evoked by carefully constructed 062

instruction datasets (Sanh et al., 2022; Ouyang 063

et al., 2022). Although a handful of instruction 064

datasets/benchmarks have been proposed (Wang 065

et al., 2022; Köpf et al., 2023; Wang et al., 2023c; 066

Taori et al., 2023; Si et al., 2023; Anand et al., 067

2023), practitioners still find it confusing about the 068

effects of instruction datasets on the performance 069

of fine-tuned LLMs, leading to difficulties in choos- 070

ing proper data management strategies in LLM SFT 071

practices. 072

To address these challenges, it is necessary to 073

conduct a systematic analysis of LLM data manage- 074

ment, including the effect of data management strat- 075

egy selection, the evaluation of curated datasets, 076

and the latest pursuit of improved strategies. There- 077

fore, this survey aims to provide a comprehensive 078

overview of current research in LLM data man- 079

agement, as shown in Figure 1. Section 2 focuses 080

on LLM pretraining data management, including 081

the research on data quantity, data quality, domain 082

composition, and data management systems. Sec- 083
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Data Quantity (§2.1)
Scaling Laws Kaplan et al. (2020), DeepMind Chinchilla Scaling Law (Hoffmann et al., 2022)

Data Repetition Muennighoff et al. (2023), Hernandez et al. (2022)

Data Quality (§2.2)

Deduplication Lee et al. (2021), Silcock et al. (2022), SemDeDup (Abbas et al., 2023)

Quality Filtering Marion et al. (2023), Longpre et al. (2023b), MiniPile(Kaddour, 2023)

Toxicity Filtering Xu et al. (2021), Welbl et al. (2021), Longpre et al. (2023b)

Diversity & Age Lee et al. (2023a), D2 Pruning (Maharana et al., 2023), Longpre et al. (2023b)

Domain Composition (§2.3) Longpre et al. (2023b), DSIR (Xie et al., 2023b), DoReMi (Xie et al., 2023a), DoGE (Fan et al., 2023)

Data Management Systems (§2.4) Data-Juicer (Chen et al., 2023a), Oasis (Zhou et al., 2023c)
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Data Quantity (§3.1) LIMA (Zhou et al., 2023a), DMT (Dong et al., 2023), Song et al. (2023)

Data Quality (§3.2)

Instruction Quality Instruction Mining (Cao et al., 2023), SELF (Lu et al., 2023a)

Instruction Diversity #InsTag (Lu et al., 2023b), Explore-Instruct (Wan et al., 2023)

Instruction Complexity #InsTag (Lu et al., 2023b), FollowBench (Jiang et al., 2023)

Task Composition (§3.3) ELM (Jang et al., 2023), DMT (Dong et al., 2023), Tulu (Wang et al., 2023b)

Data-Efficient Learning (§3.4)
AlShikh et al. (2023), Attendu and Corbeil (2023), Ivison et al. (2023),
DiverseEvol (Wu et al., 2023), Xu et al. (2023b), Data-Juicer (Chen et al., 2023a)

Figure 1: Taxonomy of research in data management for pretraining and supervised fine-tuning of Large Language
Models. For space limitation, only representative works are listed here. Please see the full taxonomy in Appendix C.

tion 3 discusses the data quantity, data quality, task084

composition, and data-efficient learning techniques085

in the SFT stage of LLMs. Looking into the fu-086

ture, Section 4 presents the existing challenges and087

promising future directions in training data man-088

agement for LLMs. Through this survey, we are089

devoted to offering a guiding resource to practi-090

tioners attempting to build powerful LLMs with091

efficient data management practices.092

2 Pretraining of LLM093

Data management is found to be important in the094

pretraining stage of many prominent LLMs (Ope-095

nAI, 2023; Touvron et al., 2023a; Wei et al., 2022).096

Understanding the effects of these data manage-097

ment strategies is also crucial for building strong098

LLMs. In this section, we will discuss current099

works trying to disclose the working scheme of100

data management in the pretraining stage of LLMs.101

2.1 Data Quantity102

The amount of data required for efficient pretrain-103

ing of LLMs is an ongoing research topic in NLP104

communities. First, scaling laws (Kaplan et al.,105

2020; Hoffmann et al., 2022) are proposed to depict106

the relationship between model size and training107

dataset size - with model size continuously increas-108

ing, the demand for more training data will also109

increase consistently. Then, the exhaustion of text110

data draws researchers’ attention to data repetition111

in LLMs’ pretraining (Muennighoff et al., 2023;112

Xue et al., 2023; Tirumala et al., 2023).113

2.1.1 Scaling Laws 114

Before the popularization of LLMs, the relation- 115

ship between training dataset size and the per- 116

formance of Transformer-based language mod- 117

els (Vaswani et al., 2017) had already attracted 118

researchers’ attention. Kaplan et al. (2020) use 119

Transformers and cross-entropy loss to study the 120

empirical scaling laws for language model perfor- 121

mance. They find that the model performance has 122

a power-law relationship with training dataset size 123

or model size, respectively, when not bottlenecked 124

by each other and the training computing budget. 125

They further depict the dependence between model 126

size N and training dataset size D as: 127

L(N,D) =
[(Nc

N

)αN
αD +

Dc

D

]αD (1) 128

where L is the test loss, D is the number of train- 129

ing tokens, N is the number of model parameters, 130

αD and αN are the power-law components for the 131

scaling of D and N , respectively, and Dc and Nc 132

are constant numbers 1. 133

Fitting Equation 1, they conclude that model 134

performance improves predictably as long as the 135

model size and training dataset size are scaled up 136

simultaneously. Still, overfitting will happen if 137

either of them is fixed while the other increases. 138

Given fixed computing budget C, they analyze the 139

optimal allocation of Dopt ∼ C0.27 and Nopt ∼ 140

1The precise numerical values of Dc and Nc depend on
vocabulary size and tokenization and do not have fundamental
meaning.
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C0.73, showing that the model size should increase141

faster than the training dataset size.142

Following the power-law relationship proposed143

by Kaplan et al. (2020), Hoffmann et al. (2022) con-144

duct experiments on much larger language models145

and arrive at a new scaling law:146

L(N,D) = E +
A

Nα
+

B

Dβ
(2)147

where they empirically fit E = 1.69, A = 406.4,148

B = 410.7, α = 0.34 and β = 0.28. The optimal149

allocation of Dopt and Nopt are also analyzed as150

Dopt ∼ C0.54 and Nopt ∼ C0.46. Hence, they151

draw a different conclusion that model and training152

dataset sizes should scale roughly at the same rate153

with a larger computing budget.154

2.1.2 Data Repetition155

While Kaplan et al. (2020) and Hoffmann et al.156

(2022) focus on scaling law with unique data157

trained only for one epoch, Hernandez et al. (2022)158

address the issue about text overlap in the training159

dataset and study the scaling law with a small frac-160

tion of repeated data. They observe a strong double161

descent phenomenon (Nakkiran et al., 2021) caused162

by repeated data, where a peak of test loss appears163

in the middle range of repetition frequency, i.e., the164

number of epochs trained on repeated data. They165

also show that repeated data can cause a divergence166

from power-scaling law (Kaplan et al., 2020) on167

model sizes larger than 100M parameters.168

According to the scaling law, more training data169

is required as the model size grows, raising con-170

cerns about the exhaustion of high-quality train-171

ing data (Villalobos et al., 2022; Hoffmann et al.,172

2022). Addressing these concerns, several works173

study the consequence of repeatedly pretraining174

on the whole datasets for multiple epochs. Muen-175

nighoff et al. (2023) find that with constrained data176

and fixed computing budgets, repeatedly training177

on the whole dataset up to 4 epochs only causes178

trivial harm to test loss compared to training on179

unique new data. They also propose a scaling law180

on repeated training depicting the diminishing of181

returns with more repetition and larger model sizes.182

Xue et al. (2023) also observe a multi-epoch degra-183

dation in model performance and find that dataset184

size, model parameters, and training objectives are185

the key factors to this phenomenon. They further186

find that commonly used regularization techniques187

are not helpful in alleviating multi-epoch degrada-188

tion, except for dropout. Instead of simply repeat-189

ing over the whole dataset, Tirumala et al. (2023) 190

show that repeatedly training on carefully selected 191

data can outperform that on randomly selected new 192

data, whilst repeatedly training on randomly se- 193

lected data cannot, suggesting a feasible way of 194

repeating on intelligently selected data. 195

2.2 Data Quality 196

High-quality data is crucial in machine learning 197

tasks (Jain et al., 2020; Gupta et al., 2021). In the 198

pretraining of LLMs, quality assurance techniques 199

are adopted and usually form a data management 200

pipeline (Rae et al., 2021; Nguyen et al., 2023; Tiru- 201

mala et al., 2023), including deduplication, quality 202

filtering, and toxicity filtering. Other aspects like 203

data diversity and data age are also studied. 204

2.2.1 Deduplication 205

Deduplication is widely used in many LLMs’ data 206

management procedures and the preprocessing of 207

many publicly available datasets (Brown et al., 208

2020; Workshop et al., 2022; Touvron et al., 2023a; 209

Raffel et al., 2020). Lee et al. (2021) use N-gram 210

similarity with MinHash (Broder, 1997) to de- 211

tect duplications in training datasets and find that 212

deduplication is beneficial in memorization miti- 213

gation, train-test overlap avoidance, and training 214

efficiency improvement while keeping model per- 215

plexity. Kandpal et al. (2022) also show that dedu- 216

plication can considerably lower the success rate 217

of privacy attacks aiming at model memorization. 218

Among practices of deduplication, N-gram- 219

and-hashing is the most commonly adopted tech- 220

nique (Lee et al., 2021; Borgeaud et al., 2022; Rae 221

et al., 2021). Silcock et al. (2022) compare it with 222

two model-based neural approaches and conclude 223

that neural approaches can significantly outperform 224

traditional N-gram-and-hashing methods. Abbas 225

et al. (2023) propose SemDeDup to remove se- 226

mantic duplicates that lie closely in the pre-trained 227

model’s embedding space and apply clustering to 228

reduce the searching computation. 229

2.2.2 Quality Filtering 230

Public datasets like Common Crawl 2 and mul- 231

tilingual datasets (Kreutzer et al., 2022) usually 232

contain low-quality data that hampers the training 233

of LLMs. Hence, existing works usually perform 234

quality filtering using hand-crafted heuristics (Yang 235

et al., 2019; Raffel et al., 2020; Nijkamp et al., 236

2https://commoncrawl.org/, a large text corpus contains
raw web page data, metadata extracts, and text extracts.
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2022), a trained classifier (Brown et al., 2020; Gao237

et al., 2020; Du et al., 2022; Touvron et al., 2023a),238

or threshold filtering using criteria like perplex-239

ity (Wenzek et al., 2020; Muennighoff et al., 2023).240

Kaddour (2023) constructs a subset of the Pile (Gao241

et al., 2020) called MiniPile by filtering out low-242

quality embedding clusters.243

Quality filtering is usually proven to be benefi-244

cial in model performance improvement (Longpre245

et al., 2023b), despite the reduction of training data246

quantity and variety. Several carefully filtered high-247

quality datasets are proposed to train lightweight248

language models and achieve outstanding perfor-249

mances (Gunasekar et al., 2023; Li et al., 2023b;250

Javaheripi and Bubeck, 2023; Penedo et al., 2023).251

However, Gao (2021) finds that aggressive filtering252

might lead to performance degradation on a wide253

range of tasks for GPT-like LLMs due to the poor254

representativity of the filtering proxy objectives.255

To address this issue, Marion et al. (2023) compre-256

hensively examines three data quality estimators,257

i.e., perplexity, Error L2-Norm (EL2N), and memo-258

rization factor. Surprisingly, they find that pruning259

datasets based on perplexity and retaining the mid-260

dle proportion of data performs better than more261

complicated techniques like memorization. How-262

ever, no combination of pruning strategies seems263

to achieve consistently high performance.264

2.2.3 Toxicity Filtering265

Toxicity refers to the text content which is266

"rude, disrespectful, or unreasonable language267

that is likely to make someone leave a discus-268

sion" (Gehman et al., 2020; Welbl et al., 2021).269

As raw text corpora usually contain toxic text (Luc-270

cioni and Viviano, 2021; Longpre et al., 2023b),271

toxicity filtering aims to remove text with undesir-272

able toxic text in the pretraining datasets, further273

preventing LLMs from generating toxic utterances.274

Similar to quality filtering, heuristic and rule-based275

filtering (Lees et al., 2022; Gargee et al., 2022;276

Friedl, 2023) and N-gram classifiers (Raffel et al.,277

2020) are usually adopted as toxicity filters. Al-278

though effective in model detoxifying, Longpre279

et al. (2023b) discover that toxicity filtering reduces280

the risk of toxic generation by sacrificing model281

generalization and toxicity identification ability.282

Moreover, Xu et al. (2021) and Welbl et al. (2021)283

find that training dataset detoxification leads to the284

marginalization of minority groups like dialects285

and minority identity mentions.286

2.2.4 Diversity & Age 287

Some works focus on other aspects of data man- 288

agement in the pretraining stage of LLMs. For 289

example, Lee et al. (2023a) show that the format 290

diversities of publicly available pretraining datasets 291

are high when measured by Task2Vec diversity co- 292

efficient (Miranda et al., 2022). Maharana et al. 293

(2023) propose D2 Pruning to balance data diver- 294

sity and difficulty in data selection. They represent 295

a dataset as an undirected graph with samples as 296

nodes, difficulty scores as node properties, and dis- 297

tances in the embedding space as edge weights. 298

Then, a forward and reverse message passing strat- 299

egy is adopted to select a subgraph enveloping both 300

diverse and difficult data samples. 301

Longpre et al. (2023b) explore the age of the 302

evaluation dataset and conclude that the temporal 303

shift between evaluation and pretraining data will 304

lead to inaccurate performance estimation and the 305

temporal misalignment might not be overcome by 306

fine-tuning, especially for larger models. 307

2.3 Domain Composition 308

Public available pretraining datasets (Gao et al., 309

2020) usually contain mixtures of data collected 310

from multiple sources and domains. Many promi- 311

nent models (Thoppilan et al., 2022) are also 312

trained on a mixture of data from different domains. 313

Efforts are made to explore the impact of domain 314

mixtures on the pre-trained models’ performance. 315

Longpre et al. (2023b) experimentally conclude 316

that domains with high quality (Books) and high 317

diversity (Web) in the Pile (Gao et al., 2020) are 318

broadly helpful. They also show that including as 319

many data domains as possible is beneficial. Shen 320

et al. (2023) arrive at the same point and emphasize 321

the importance of global deduplication to remove 322

overlaps among different domains. Longpre et al. 323

(2023b) and Shen et al. (2023) all agree that spe- 324

cific mixtures may excel in evaluation benchmarks 325

for targeted tasks, but the former claim that the 326

inclusion of diverse web domains may perform 327

better than specific mixtures in certain tasks. Code- 328

Gen2 (Nijkamp et al., 2023) studies programming 329

and natural language mixtures and finds that mod- 330

els trained with mixtures do not perform better than 331

but closely to domain-matched models given the 332

same computing budget. 333

Several methods are also proposed to find the 334

proper domain composition weights. DSIR (Xie 335

et al., 2023b) formulates the problem as a distribu- 336

4



tion matching problem between a large raw unla-337

beled dataset and some unlabeled target samples,338

which is solved using classic importance resam-339

pling approach (Rubin, 1988). Without knowl-340

edge of downstream tasks or target distributions,341

DoReMi (Xie et al., 2023a) trains a small proxy342

model using Group Domain Robust Optimization343

(Group DRO) (Oren et al., 2019; Sagawa* et al.,344

2020) to generate domain weights. Improved from345

DoReMi (Xie et al., 2023a), Fan et al. (2023) pro-346

pose DoGE which reweights training domains to347

minimize the average validation loss across all348

training domains or on a specific unseen domain.349

A gradient-based generalization estimation func-350

tion is adopted to measure the contribution of each351

domain to other domains. Then, higher weights are352

assigned to domains with higher contributions.353

2.4 Data Management Systems354

Addressing the difficulty in pretraining data man-355

agement, integrated data management systems are356

beneficial for LLM practitioners with different de-357

mands. Chen et al. (2023a) provide a data process-358

ing system Data-Juicer featuring the generation359

of diverse data recipes. They provide over 50 ver-360

satile data management operators and dedicated361

tools targeting users with different purposes. A362

timely feedback evaluation loop is also supported.363

Zhou et al. (2023c) also propose a pretraining data364

curation and assessment system Oasis, which can365

perform interactive rule filtering, debiased neural366

quality filtering, adaptive document deduplication,367

and holistic data assessment.368

3 Supervised Fine-Tuning of LLM369

Based on the general knowledge and capabilities370

learned in the pretraining stage, supervised fine-371

tuning (SFT) is proposed to further improve LLMs372

with instruction-following ability and alignment373

with human expectations (Wei et al., 2021; Sanh374

et al., 2022; Ouyang et al., 2022). Many efforts375

have been made to construct instruction data using376

human crowd-sourcing (Wang et al., 2022; Köpf377

et al., 2023), self-instruct (Wang et al., 2023c; Taori378

et al., 2023) or adaptation of existing datasets (Si379

et al., 2023; Anand et al., 2023). Although LLMs380

fined-tuned with existing instruction datasets have381

achieved remarkable performance in various NLP382

tasks, the impacts of instruction data management383

on fine-tuned models are still under debate.384

3.1 Data Quantity 385

The explorations of the relationship between scal- 386

ing instruction data quantity and fine-tuned model 387

performance diverge in two directions. One branch 388

of research focuses on scaling down the instruction 389

data quantity to improve training efficiency (Zhou 390

et al., 2023a; Chen et al., 2023b). For example, 391

LIMA (Zhou et al., 2023a) carefully curates 1,000 392

high-quality samples and experimentally justifies 393

their hypothesis that only limited instruction tun- 394

ing data is needed to expose the knowledge and 395

capabilities that the LLM has already acquired dur- 396

ing pretraining. Chen et al. (2023b) observe that 397

maybe a single instruction is sufficient for single 398

task-specific LLM fine-tuning, and 16K samples 399

with 1.9M tokens may be sufficient to train a model 400

specialized in the natural language inference (NLI) 401

task. Another branch of research argues that scal- 402

ing up the instruction data quantity is crucial for 403

success (Wei et al., 2021; Sanh et al., 2022). 404

Addressing this conflict, several works attempt 405

to analyze the scaling patterns for different tasks 406

or different model abilities. Ji et al. (2023) con- 407

duct an empirical study on 12 major real-world 408

online user cases and show that scaling up the in- 409

struction data leads to continuous improvement in 410

tasks such as extraction, classification, closed QA, 411

and summarization while leading to little improve- 412

ment in tasks such as math, code, and chain-of- 413

thought. Disagree with Ji et al. (2023), Dong et al. 414

(2023) find that general ability can be enhanced 415

with about 1,000 samples and improves slowly af- 416

ter then, while mathematical reasoning and code 417

generation improve consistently with the increas- 418

ing of instruction data amount. Similarly, Yuan 419

et al. (2023) observe a log-linear relation between 420

instruction data amount and models’ mathemati- 421

cal reasoning performance, but stronger pre-trained 422

models improve less with more instruction tuning 423

data. Song et al. (2023) conduct experiments cov- 424

ering ten distinct in-domain abilities and three out- 425

of-domain abilities, showing that the developments 426

of most abilities are consistent with data scaling. 427

Still, each ability develops at different paces dur- 428

ing instruction tuning, while some abilities show 429

completely different patterns. 430

3.2 Data Quality 431

Data quality is always a focal point in the SFT of 432

LLMs, addressing instruction quality, diversity, and 433

complexity. Here, we focus more on managing and 434
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analyzing existing instruction data instead of in-435

struction generation methods discussed in previous436

surveys (Zhang et al., 2023b; Wang et al., 2023e).437

3.2.1 Instruction Quality438

Many researchers have found that the quality of in-439

struction data is one of the most important factors440

in improving model performance (Chia et al., 2023;441

Zhou et al., 2023a; Ding et al., 2023). During the442

construction of instruction data, there is usually443

a filtering step to select high-quality instructions444

generated by models. Wang et al. (2023d) use445

perplexity as the criterion to select the most ap-446

propriate instructions from the pool of candidate447

instructions generated by open-source models. Cao448

et al. (2023) propose an automatic data selector In-449

struction Mining to evaluate instruction data quality450

without human experts’ interventions. They first451

hypothesize that the inference loss of a fine-tuned452

model on an evaluation set can serve as a proxy453

for data quality filtering objectives. Then, they use454

a set of heuristic-based and model-based natural455

language indicators to predict the inference loss456

without actually fine-tuning LLMs.457

Instead of using indicators to filter low-quality458

instructions, several works (Li et al., 2023a; Lu459

et al., 2023a; Ye et al., 2023; Madaan et al., 2023)460

leverage the power of fine-tuned LLM itself to eval-461

uate the quality of instructions. Li et al. (2023a) as-462

sign quality scores to augmented instructions using463

the language model and iteratively improve model464

prediction. Similarly, SELF (Lu et al., 2023a) and465

Self-Refine (Madaan et al., 2023) prompts LLM to466

provide self-feedback on their own responses in the467

iterative model evolution processes. Strong LLMs468

like ChatGPT are also adopted as quality judges469

during instruction collection (Ye et al., 2023).470

3.2.2 Instruction Diversity471

The intention and semantic diversity of instructions472

is another important factor that has shown positive473

effects on model performance improvement (Zhou474

et al., 2023a; Ding et al., 2023; Taori et al., 2023).475

Self-Instruct (Wang et al., 2023c) adopts ROUGE-476

L similarity to filter out the newly generated in-477

structions that are too similar to the existing ones.478

To better evaluate the instruction diversity of SFT479

datasets, #InsTag (Lu et al., 2023b) is proposed as480

an open-set fine-grained tagger using ChatGPT 3.481

Specifically, it first prompts ChatGPT to provide482

3https://chatgpt.openai.com/

tags for given queries in an open setting, then per- 483

forms a normalization procedure to deal with the 484

noise in the raw tagging. With the generated tags, 485

they quantify instruction diversity as the unique 486

tag coverage rate in the overall tag set. Popular 487

open-set SFT datasets are analyzed using #InsTag, 488

showing that larger dataset sizes tend to be more 489

diverse and induce higher performance. 490

Diversity can be challenging in domain-specific 491

tasks due to data constraints. Thus, Wan et al. 492

(2023) propose an approach called Explore-Instruct 493

to enlarge the data coverage through active explo- 494

ration using LLMs. Explore-Instruct starts from 495

representative domain user cases and searches the 496

variations and possibilities by looking ahead into 497

potential fine-grained sub-tasks and backtracking 498

alternative branches in the search space. 499

3.2.3 Instruction Complexity 500

The complexity of instructions also attracts re- 501

searchers’ attention, especially in developing 502

LLMs with complex instruction-following and rea- 503

soning abilities (Xu et al., 2023a; Luo et al., 2023; 504

Mukherjee et al., 2023). Several works endeavor to 505

quantify and evaluate instruction complexity. Us- 506

ing aforementioned tags, #InsTag (Lu et al., 2023b) 507

quantifies complexity as the average tag number 508

assigned to each query in a dataset. He et al. (2023) 509

evaluate complex instruction with eight features ad- 510

dressing the length, contents, and formats of input 511

texts and task descriptions. 512

To explore instruction complexity, Zhao et al. 513

(2023b) propose Tree-Instruct to enhance the com- 514

plexity of instruction data controllably. It treats 515

the instruction as a semantic tree and constructs 516

new complex instructions by adding nodes to the 517

tree. Through experiments, they find that increased 518

complexity can lead to continuing performance im- 519

provement. What’s more, the improvement does 520

not come from the increased number of tokens, 521

as a few complex instructions still outperform di- 522

verse but simple instructions under the same token 523

budget. They also show that curriculum instruc- 524

tion tuning ranging from easy to difficult might 525

not be as helpful as expected, indicating the neces- 526

sity of enhancing complexity. Evol-Instruct (Xu 527

et al., 2023a; Luo et al., 2023) rewrites instructions 528

step by step with operations such as increasing 529

reasoning, adding constraints, in-breadth evolving, 530

deepening, and complicating input with code and 531

table. Similarly, Jiang et al. (2023) incrementally 532

augment instructions with constraints on content, 533
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situation, style, format, and example, proposing534

FollowBench to evaluate LLMs’ constraint follow-535

ing ability.536

3.3 Task Composition537

Since LLMs have shown surprisingly emergent538

abilities in handling various NLP tasks, multitask539

fine-tuning appears promising to improve LLMs’540

generalization performance on unseen tasks. The541

benefits of increasing the number of tasks in SFT542

have been experimentally proven on models with543

different sizes ranging from 3B to 540B parame-544

ters (Wang et al., 2022; Sanh et al., 2022; Wei et al.,545

2021; Chung et al., 2022).546

Besides the scaling of the number of tasks, the547

mixture ratio of data targeting different tasks is548

also found to be critical (Iyer et al., 2022; Longpre549

et al., 2023a). Dong et al. (2023) focus on task550

composition among mathematical reasoning, code551

generation, and general human-aligning abilities.552

Compared with individual source data, They find553

that model abilities are improved when the mixed554

data amount is small but decreased otherwise. The555

results indicate that larger amounts of mixed data556

lead to conflicts among learning different abilities.557

They further vary the ratio of general and special-558

ized data and conclude that the impact of data ratio559

might lie in the similarity degree of data format and560

data distribution among different SFT tasks.561

Divergent from compositing multiple tasks to-562

gether, some works claim that integration of LLMs563

tuned on single task data can outperform one LLM564

tuned on multiple tasks (Jang et al., 2023; Chen565

et al., 2023b). Jang et al. (2023) state that training566

expert LLMs to form an expert library is benefi-567

cial in negative task transfer avoidance, continually568

learning new tasks without catastrophic forgetting,569

and compositional abilities improvement. Wang570

et al. (2023b) conduct analysis on factual knowl-571

edge, reasoning, multilinguality, coding, and open-572

ended instruction following abilities of models573

trained with 12 instruction datasets and experimen-574

tally show that different instruction datasets may575

correspond to different specific abilities. What’s576

more, winning across all evaluations using a single577

dataset or combination seems to be challenging.578

3.4 Date-Efficient Learning579

Addressing different aspects of instruction data580

management, a handful of works propose to fine-581

tune LLM more data-efficiently with subset selec-582

tion or specially designed fine-tuning strategies.583

Data Quantity AlShikh et al. (2023) introduce 584

Instruction Following Score (IFS) to measure 585

LLMs’ instruction-following ability and serve as 586

an early-stopping criterion. It is defined as the per- 587

centage of responses predicted as "answer-like" by 588

a binary classifier. Based on observations of dif- 589

ferent scaling patterns for different abilities, Dong 590

et al. (2023) propose Dual-stage Mixed Fine-tuning 591

(DMT) strategy to learn specialized abilities and 592

general abilities sequentially while keeping a small 593

proportion of specialized data to prevent forgetting. 594

Data Quality Several works focus on selecting 595

a subset of instruction data with the highest qual- 596

ity. Cao et al. (2023) adopt BlendSearch (Wang 597

et al., 2020) to automatically select the best sub- 598

set. AlpaGasus (Chen et al., 2023c) uses strong 599

LLMs as auto-graders and selects data with scores 600

above a threshold in the Alpaca dataset (Taori et al., 601

2023). Attendu and Corbeil (2023) propose a dy- 602

namic data pruning method that periodically filters 603

out unimportant examples during SFT using ex- 604

tended versions of EL2N metric (Paul et al., 2021; 605

Fayyaz et al., 2022). Without discarding data sam- 606

ples, OpenChat (Wang et al., 2023a) considers the 607

general SFT data as a mixture of a small amount of 608

expert data and a large amount of sub-optimal data 609

without any preference labels. Then, Conditioned- 610

RLFT strategy is proposed, which treats different 611

data sources as coarse-grained reward labels and 612

optimizes the LLM as a class-conditioned policy. 613

To enhance instruction diversity in the chosen sub- 614

sets, DiverseEvol (Wu et al., 2023) uses an itera- 615

tive data sampling technique that selects new data 616

points with maximized distances from any existing 617

ones in model embedding space. 618

Task Composition Given a small amount of tar- 619

get task data, Ivison et al. (2023) select the rel- 620

evant multitask subsets for fine-tuning according 621

to the similarity between the pre-trained model’s 622

representations of the target and mixed task data. 623

Similarly, Dynosaur (Yin et al., 2023a) treats task 624

selection based on data representations as a replay 625

strategy in continual learning scenarios to mitigate 626

catastrophic forgetting issues and improve general- 627

ization to unseen tasks. Yue et al. (2023) build 628

math generalist models MAmmoTH through in- 629

struction tuning on a unique hybrid of chain-of- 630

thought and program-of-thought rationales in math. 631

Others LoBaSS (Zhou et al., 2023b) introduces 632

learnability as a new dimension of SFT data selec- 633

7



tion that data can be learned more effectively by the634

model are preferable and data lacking informative635

content or excessively demanding for the model636

should be avoided. The proposed learnability is fur-637

ther measured as the loss difference between fine-638

tuned and pre-trained models. Xu et al. (2023b)639

propose a contrastive post-training technique treat-640

ing data acquired from LLMs with different levels641

of abilities as contrastive pairs. They also use a642

data curriculum scheme where the model learns643

progressively from the "easier" to the "harder " part.644

Data-Juicer (Chen et al., 2023a) also implements645

pipelines and operators for LLM fine-tuning.646

4 Challenges and Future Directions647

The exploration of data management and its impact648

on LLM pretraining and SFT is still an ongoing649

task. In this section, we point out several challenges650

and corresponding future directions in the research651

of training data management for LLMs.652

Comprehensive and Fine-grained Understand-653

ing As discussed in previous sections, many ef-654

forts have been made to understand the impacts655

of data management on different training stages656

addressing different aspects. While current studies657

contribute valuable pieces to the puzzle, a com-658

prehensive understanding of the entire picture is659

still lacking. Moreover, explorations using differ-660

ent datasets and models on different tasks may661

lead to contradictory conclusions, e.g., the trade-662

off between quality and toxicity filtering (Long-663

pre et al., 2023b), fine-tuning with a few high-664

quality data (Zhou et al., 2023a) v.s. data scal-665

ing (Wei et al., 2021), task composition (Wang666

et al., 2022) v.s. expert models (Jang et al., 2023),667

etc. Hence, more fine-grained understanding is668

required to solve these conflicts.669

General Data Management Framework Al-670

though Data-Juicer (Chen et al., 2023a) and Oa-671

sis (Zhou et al., 2023c) propose data management672

systems to compose various data recipes in either673

the pretraining or SFT stage of LLM, practitioners674

still need to spend efforts on organizing suitable675

datasets. A general data management framework676

suitable for a broad range of applications to reduce677

data management costs is an urgent and worthy fu-678

ture direction in developing and promoting LLMs.679

Data Curriculum Besides choosing better train-680

ing data, data curriculum addressing the arrange-681

ment of data learning orders is also an important682

part of data management, e.g., learning from gen- 683

eral abilities to target abilities or from easier tasks 684

to harder tasks. There are a few works focusing 685

on data curriculum in the training of LLMs (Xu 686

et al., 2023b; Dong et al., 2023; Yin et al., 2023a). 687

Although effective in practice, there is still a lack 688

of analysis of data curriculum strategies. 689

Conflict Data Separation In the collection of 690

training data, conflicts among the responses to the 691

same query may exist. For example, given the same 692

query, LLMs playing different roles may generate 693

different responses. Mixing these samples together 694

could lead to negative impacts on model perfor- 695

mance because of the response conflicts. Thus, 696

how to separate and effectively learn from these 697

data samples is an interesting topic in the future. 698

Multimodal Data Management Current re- 699

search in data management mostly focuses on nat- 700

ural language processing. With the application of 701

LLMs extending to multimodalities like vision, au- 702

dio, etc., the construction of multimodality datasets 703

becomes more and more important. The proposed 704

multi-modal LLMs usually construct their own 705

instruction-tuning datasets collected from bench- 706

mark adaptation (Zhang et al., 2023a; Gao et al., 707

2023) or self-instruction (Pi et al., 2023; Yang 708

et al., 2023b). The hybrid composition of language- 709

only and multimodal data is also adopted in some 710

works (Dai et al., 2023; Zhao et al., 2023c). It is 711

interesting to see the impacts of multimodal data 712

management on the performance of fine-tuned mul- 713

timodal LLMs, e.g., the data scaling law in multi- 714

modal instruction fine-tuning, the quality-control 715

techniques in multimodal dataset construction, and 716

task balancing in multitask multimodal training. 717

5 Conclusions 718

This paper overviews the training data management 719

of LLMs. We discuss the pretraining and super- 720

vised fine-tuning stages of LLM successively and 721

summarize the up-to-date research efforts into data 722

quantity, data quality, and domain/task composi- 723

tion for each stage, as well as data management 724

systems in the pretraining stage and data-efficient 725

learning in the SFT stage. Finally, we highlight 726

several challenges and future directions for LLM 727

training data management. We hope this survey can 728

provide insightful guidance for practitioners and 729

inspire further research in efficient training data 730

management for the development of LLMs. 731
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Limitations732

In this survey, we provide an overview of train-733

ing data management for LLMs. Despite our best734

efforts, there may still be several limitations re-735

maining in our work.736

The exploration of training data management737

expands across a wide range of datasets from dif-738

ferent sources, models with different architectures739

and sizes, and tasks addressing the different abil-740

ities of LLMs. Due to the page limit, we do not741

include the technical details for each work, which742

may lead to certain confusion. Thus, we recom-743

mend interested researchers to read specific papers744

for more information.745

As the research of LLMs develops vigorously,746

works are published or preprinted at a rapid speed.747

We tried our best to cover the up-to-date works748

proposed in the recent two years, but some works749

may be inevitably missed in this survey. We will750

continually pay close attention to the latest research751

developments to supplement our work.752

In this work, we put our main efforts into train-753

ing data management for LLMs. However, the754

management strategy for evaluation data are also755

important in the development of LLMs. Here, we756

leave discussion in this field in our future work.757
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A Other Aspects of Data Management1522

For LLMs1523

A.1 Social Bias1524

Besides the marginalization of minority groups1525

caused by data detoxifying mentioned in Sec-1526

tion 2.2.3, several works (Kurita et al., 2019; Nan-1527

gia et al., 2020; Meade et al., 2022; Feng et al.,1528

2023) find that pre-trained LLMs can capture social1529

biases contained in the large amounts of training1530

text. Evaluating on the C4.EN (Raffel et al., 2020)1531

dataset, Dodge et al. (2021) recommend document-1532

ing the social biases and representational harms as1533

well as excluded voices and identities in large web1534

text corpora. Using a dataset of U.S. high school1535

newspaper articles, Gururangan et al. (2022) also1536

argue that the quality filters used for GPT-3 (Brown1537

et al., 2020) prefer newspapers published by larger1538

schools located in wealthier, educated, and urban1539

ZIP codes, leading to a language ideology. Feng1540

et al. (2023) conduct a comprehensive case study1541

focusing on the effects of media political biases in1542

the pretraining corpus on the fairness of hate speech1543

detection and misinformation detection w.r.t. parti-1544

san leanings and how it is propagated to language1545

models even further to downstream tasks.1546

As addressed in previous research, there is still1547

a large gap between current prominent LLMs and1548

ideal LLMs without social biases. Many questions1549

are worth exploring, such as how to mitigate the1550

potential biases in pretraining datasets, the exis-1551

tence of bias in the SFT datasets, and whether it is1552

feasible to reduce social bias through SFT.1553

A.2 Prompt Design1554

Current instructions are either heuristically de-1555

signed by human (Wang et al., 2022; Köpf et al.,1556

2023) or synthetically generated by prominent mod-1557

els (Peng et al., 2023; Ding et al., 2023). The choice1558

of prompts might cause significant model perfor- 1559

mance variation (Gonen et al., 2022; Weber et al., 1560

2023). Early attempts include manual reformula- 1561

tion of prompts into the ones easier to follow for 1562

language models (Mishra et al., 2022), and choos- 1563

ing prompts with the lowest perplexity to get the 1564

most significant gains in model performance (Go- 1565

nen et al., 2022). Recently, Liang et al. (2023) 1566

develop a format transfer framework UIT to trans- 1567

fer instructions from different datasets into unified 1568

formats automatically. 1569

Some works focus on studying the impact of 1570

prompt phrasing. Khashabi et al. (2022) surpris- 1571

ingly find that the discretized interpretation of con- 1572

tinuous prompts is not always consistent with the 1573

discrete prompts describing the same task as heuris- 1574

tically expected. Yin et al. (2023b) find that remov- 1575

ing the descriptions of task output, especially the 1576

label information, might be the only reason for 1577

performance degradation. They also propose an 1578

automatic task definition compression algorithm 1579

to remove almost half or more of the tokens while 1580

improving model performance. Kung and Peng 1581

(2023) also remove all semantic components in 1582

task definitions but the output space information. 1583

They achieve comparable model performance using 1584

the modified task definitions and delusive examples 1585

containing incorrect input-output mappings. Based 1586

on their experiment results, they cast doubts on the 1587

performance gain of fine-tuned models and state 1588

that the model may only learn superficial patterns 1589

during instruction tuning. 1590

Besides the choice of phrasing, the generation 1591

source of prompts is another factor in prompt de- 1592

sign. Gudibande et al. (2023) raise questions on 1593

fine-tuning a weaker language model on outputs of 1594

a stronger model and find that the imitation model 1595

might adapt to mimic the stronger model’s style but 1596

not its functionality. Similarly, Song et al. (2023) 1597

also observe that human-designed data can out- 1598

perform synthetically generated data from GPT- 1599

4 (OpenAI, 2023) to a relatively large extent. 1600

A.3 Hallucinations 1601

Despite their strong power, LLMs are notorious for 1602

their hallucinations, i.e. the generation of input-, 1603

context- or fact-conflicting contents (Zhang et al., 1604

2023c). Several works in hallucination trace down 1605

the occurrence of hallucination to the lack of per- 1606

tinent knowledge and the internalization of false 1607

knowledge from the pretraining corpora (Li et al., 1608

2022; McKenna et al., 2023; Dziri et al., 2022). 1609

16



To mitigate hallucination, the curation of pretrain-1610

ing corpora is adopted by many LLMs, mainly fo-1611

cusing on the extracting of high-quality data, e.g.,1612

GPT-3 (Brown et al., 2020), Llama 2 (Touvron1613

et al., 2023b), and Falcon (Penedo et al., 2023).1614

The manually curated (Zhou et al., 2023a) and au-1615

tomatically selected (Chen et al., 2023c; Cao et al.,1616

2023; Lee et al., 2023b) high-quality instruction1617

data are also experimentally shown to be effective1618

in reducing hallucination during the SFT stage. It1619

can be seen from the previous research that data1620

management in both the pretraining and SFT stages1621

can be a promising solution to hallucination.1622

B Related Surveys1623

As LLMs draw more and more attention, a hand-1624

ful of surveys have been published or preprinted1625

addressing different aspects of their development.1626

Related to our work, several of them also include1627

parts of the data preparation process in the pretrain-1628

ing or SFT of LLM. Zhao et al. (2023a) review the1629

development of LLMs and the latest advancements1630

covering a wide range of topics. Yang et al. (2023a)1631

also provide an overview of the LLM evolution and1632

discuss the related techniques from model, data,1633

and downstream tasks. Also concentrating on data,1634

Zha et al. (2023) introduce data-centric AI and1635

its related tasks and methods for general machine1636

learning models instead of LLMs. Zhang et al.1637

(2023b) survey the instruction tuning of LLMs and1638

its related methodologies, data construction, appli-1639

cations, and so on. Wang et al. (2023e) review the1640

technologies aligning LLMs with human expecta-1641

tions including data collection, training methodolo-1642

gies, and model evaluation.1643

Unlike previous surveys, this survey provides1644

a systematic and detailed overview of data man-1645

agement at both the pretraining and SFT stages1646

of LLMs. We focus on the proper organization1647

of training datasets and discuss recent research1648

addressing the effects of different data manage-1649

ment strategies, the evaluation of curated train-1650

ing datasets, and the latest advances in training1651

data management strategies, providing a guiding1652

resource for practitioners aiming to build powerful1653

LLMs through efficient data management.1654

C Taxonomy1655

The full taxonomy of research discussed in this1656

survey is illustrated in Figure 21657
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Figure 2: Taxonomy of research in data management for pretraining and supervised fine-tuning of Large Language
Models (LLM).
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