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Abstract

Recent works began to automate the design of
agentic systems using meta-agents that propose
and iteratively refine new agent architectures. In
this paper, we examine three key challenges in a
common class of meta-agents. First, we investi-
gate how a meta-agent learns across iterations and
find that simply expanding the context with all
previous agents, as proposed by previous works,
performs worse than ignoring prior designs en-
tirely. We show that the performance improves
with an evolutionary approach. Second, although
the meta-agent designs multiple agents during
training, it typically commits to a single agent at
test time. We find that the designed agents have
low behavioral diversity, limiting the potential
for their complementary use. Third, we assess
when automated design is economically viable.
We find that only in a few cases—specifically,
two datasets—the overall cost of designing and
deploying the agents is lower than that of human-
designed agents when deployed on over 15,000
examples. In contrast, the performance gains for
other datasets do not justify the design cost, re-
gardless of scale.

1. Introduction

Agentic systems powered by language models demonstrated
remarkable abilities to perform complex tasks and became
a transformative force in many domains, including cutting-
edge research and development (Swanson et al., 2024; Lu
et al., 2024b; Yamada et al., 2025), financial services (Ok-
pala et al., 2025; Xiao et al., 2025), and task automation
(Fourney et al., 2024). Until recently, these systems were de-
signed by researchers who built their domain knowledge into
their agent architectures. However, a persistent trend in ma-
chine learning research, known as the Bitter Lesson (Sutton,
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2019), suggests that hand-designed solutions are eventually
replaced by solutions developed via scalable approaches
that leverage search and learning. To this end, recent works
have taken the first steps in the direction of automating the
design of agentic systems (Hu et al., 2024; Li et al., 2024;
Saad-Falcon et al., 2024; Niu et al., 2025; Nie et al., 2025;
Shang et al., 2025; Wang et al., 2025; Ye et al., 2025; Zhang
et al., 2025b;a). Our work focuses on a common class of
meta-agents that follow the sample—evaluate—iterate pattern
(see Figure 1, Algorithm 1) and highlights three challenges.

Meta Learning We begin by examining the assumption
that the meta-agent effectively learns from previously dis-
covered agents. Our analysis reveals that the meta-agent
framework proposed by Hu et al. (2024) does not meaning-
fully leverage prior designs. In fact, it performs worse than
a baseline that ignores prior designs entirely. In contrast, we
demonstrate that an evolutionary context curation strategy,
where the generation of the next agent is conditioned on the
previous best-performing agents (parents), yields improved
performance.

Diversity and Complementarity While the meta-agent
generates a set of candidate agents, typically only one is
deployed, neglecting potential synergies among them. If
the designed agents were behaviorally diverse, where each
specializes in particular types of queries, this would en-
able dynamic selection of the most suitable agent per query.
However, we find that the designed agents often lack be-
havioral diversity, which is even more pronounced when
evolutionary strategies are used.

Economic Viability For a meta-agent to be economically
viable, the fixed cost of designing a new agent must be
justified by corresponding improvements in performance.
We formalize this trade-off by defining the total cost of a
meta-designed agent as the sum of a fixed design cost and
a per-example inference cost. This raises the key question:
How many test examples are needed before the cost per
correct response becomes lower when using the designed
agent? In our experiments, we find this break-even point
occurs at approximately 15,000 examples for MMLU and
DROP. In contrast, for other datasets, the performance gains
do not justify the design cost, regardless of the scale of
deployment.
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Figure 1. Overview of the meta-agent framework. The Meta-Agent iteratively samples and evaluates agents, refining its outputs through
a feedback loop. We focus on three key dimensions: (1) learning from previously designed agents; (2) diversity and complementarity of

generated agents; and (3) economic viability.

2. Related Works

Our primary reference is ADAS (Hu et al., 2024), which has
introduced meta-agent search with the idea of searching for
agents in the code space. MAS-GPT (Ye et al., 2025) and
ScoreFlow (Wang et al., 2025) develop meta-agents by train-
ing a model to dynamically generate multi-agent systems
for a given query. AgentSquare (Shang et al., 2025) and
Archon (Saad-Falcon et al., 2024) explore modular agent
architectures and use discrete module recombination to ef-
ficiently search design spaces. AutoFlow (Li et al., 2024),
Weak-for-Strong (Nie et al., 2025), and ADAS (Hu et al.,
2024) use a meta agent that follows the sample-evaluate-
iterate paradigm (Algorithm 1). Other recent meta-agent ap-
proaches include Multi-agent Supernet (Zhang et al., 2025a),
Flow (Niu et al., 2025), and AFlow (Zhang et al., 2025b).
Erol et al. (2025) examined the cost of producing a cor-
rect response, which is directly relevant to our economic
viability analysis.

Algorithm 1 Meta Agent: Sample-Evaluate-Iterate
1: Diain # set of training examples

2: F # initial agents library
3: A= {(fo,,50,) | fo, € F} #archive
4: for tin [T] do
5. A= @(A) # select current context
6:  fe ~TI(- | A) # sample, revise, debug
7 8¢ = eval(fy) # evaluate
8:  A.append(f, s:) # add to archive
9: #iterate
10: end for
3. Setup

Following Hu et al. (2024), we define an agent as a com-
puter program (Python function) that takes a question as
input, makes language model calls to compute a response,
and returns the result. Let f; denote an agent and score

s; = eval(fi, Dyain) € RMwin be the evaluation vector con-
taining the agent ¢’s evaluation scores for each example in
the training dataset Dy,;,. The agent f; is represented by
code. The archive, A, is a set of discovered agents {f;}
and their corresponding evaluations on the training set. We
initialize the archive with the agents in the initial agents
library, F, and their corresponding evaluations.! At each
iteration, the meta-agent samples a new agent design using
a language model, II, conditioned on a curated subset of the
current archive, A. The function ¢ implements this curation
step. The sampling step is followed by revisions to ensure
proper formatting and debugging with execution feedback.
Finally, the new agent, f;, is added to the archive A2 Algo-
rithm 1 outlines the design procedure. We experiment with
three instantiations of context curation (¢):

Cumulative. ¢¢ is identity, and the generation of the
next agent is conditioned on all the previously discovered
architectures, as in Hu et al. (2024).

Parallel. ¢p maps any archive to only the subset that
contains 7 agents in the initial library and corresponding
evaluation scores. Hence, the meta-agent ignores the previ-
ously designed architectures, effectively parallel sampling
the new agents.

Evolutionary. ¢pg selects a subset of size 7 agents from
A with the best evaluation scores (parents of the next agent).
The generation of the next agent is conditioned on a higher
quality subset of the previously discovered architectures at
each iteration.

3.1. Tasks and Models

Closely following the prior work (Hu et al., 2024), we eval-
uate our agentic design setup on 1) mathematical reason-

'The content of F is discussed in Appendix A.1.
Appendix A.2 elaborates on our experimental setup.
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Dataset Best Agent Best-5 Avg. Best-10 Avg. Best-15 Avg. Test Performance (Best Agent)
C P E C P E C P E C P E 1 C P E
714 725 744 681 693 71.5 666 668 69.7 649 649 68.2 648 7T1.9 726 73.2
DROP (20) “.2) (3.2) (1.1) (1.2) @45 (©0.8) (1.1) @&7) (©.6) (1.8) @47 (1.3) (3.2) (7.8 5.1
414 562 56.5 325 484 504 274 434 46.0 224 39.8 427 384 412 51.8 53.5
MGSM (6.2) (10.5) (4.7) (13.8) (9.8) (0.8) (16.6) (7.9 (1.6) (17.1) (5.3) (2.5 (2.8) 4.8) (7.6) (2.0)
747 763 176.6 730 73.8 748 703 724 737 680 71.1 727 628 662 67.8 65.8
MMLU 2.0) (1.6) 2.7 @2.1) 4 27 (2 25 24 @G0 @G0 23 23 42) (0.8 (3.3)
323 352 338 264 322 312 225 304 29.8 207 291 288 30.0 29.7 31.3 28.5
GPQA (2.6) (2.8) (2.2) (&7 (1.5 (09 (124) (1.1) (0.8) (13.2) (0.6) (0.5 (24 2.7 (0.0 (3.1)
Avg. 550 60.0 60.3 500 559 57.0 467 532 548 440 512 531 49.0 522 559 55.2

Table 1. Meta-Agent Performance: Parallel context curation outperforms cumulative curation, while evolutionary approaches
lead to further improvements. Columns 1-12 report performance on D, for: the single Best Agent (cols 1-3), and the averages of the
top 5 (cols 4-6), top 10 (cols 7-9), and top 15 (cols 10-12) agents, evaluated under three context curation strategies: Cumulative (C),
Parallel (P), and Evolutionary (E). Columns 13-16 show the D, performance of the agent that achieves the highest score on Dygin. |
denotes the test performance of the best agent from the Initial library selected based on its training performance. Averaged across 3 runs.

ing abilities in a multi-lingual setting, MGSM, (Shi et al.,
2022), 2) reading comprehension, DROP, (Dua et al., 2019),
3) multi-task problem solving, MMLU, (Hendrycks et al.,
2021), and 4) graduate-level science questions, GPQA (Rein
etal., 2023). From these datasets, we sample disjoint subsets
Diain to compute s;, and Dy to be used as held-out evalua-
tion. The details of our experimental setup are explained in
Appendix A.2. All the results we report are averaged across
3 runs.

4. Experiments
4.1. Learning

Table 1 compares three context curation strategies for meta-
agent design. We find that cumulative context curation does
not outperform parallel context curation, suggesting that
ADAS-style meta-agents derive limited benefits from prior
agent designs and perform worse than ignoring prior designs
entirely.

In contrast, evolutionary context curation improves perfor-
mance, yielding up to a +10% gain over cumulative con-
text on MGSM. This suggests that selectively including
high-quality prior designs in context enables more effective
meta-learning.

4.2. Diversity and Complementarity

To investigate the potential synergies between the generated
agents, we turn our attention to the behavioral diversity of
the agent pool and analyze whether the agents have similar
behavior on training examples. How often the questions
they get right overlap? Do they make the same mistakes?

We analyze agent diversity by computing similarities be-
tween evaluation vectors. Let s; = eval(f;, Digin) € RViin
be the evaluation vector for agent f;. Stacking s; as rows,

we obtain S, which, in effect, represents embeddings of
each agent from the perspective of the training questions
(see Figure 6). We then compute the cosine similarity matrix
C, where the entry ¢, j corresponds to the cosine similarity
(si,sj) (see Figure 7). This pairwise similarity metric fa-
vors agents that succeed on the same examples. We show
the histograms of pairwise similarities (entries of C) in Fig-
ure 8 and the histograms for the average similarity of an
agent to the rest of the agents (row averages of C) in Figure
2.

Figure 2 shows the similarity distributions, with evolution-
ary context curation generally exhibiting higher similarity
scores. We observe that cumulative context curation yield
lower similarity overall compared to parallel and evolution-
ary context curation. Moreover, while parallel and evolu-
tionary context curation yield similar performance, parallel
context curation exhibits slightly lower similarity and pro-
duces more diverse agents. Notably, in GPQA, parallel
context curation yields both better-performing and more
diverse agents. Our analysis of coverage (Table 2)—the pro-

DROP MGSM MMLU GPQA Avg.
C 96.6 89.1 99.2 919 942
P 96.0 95.3 97.7 944 959
E 936 93.0 99.2 919 944

Table 2. Coverage. Proportion of questions correctly answered at
least by one of the designed agents. The designed agents includes
all 90 agents designed across 3 runs.

portion of questions correctly answered at least by one of
the designed agents—shows that parallel context curation
vields the highest coverage, highlighting its effectiveness in
promoting exploration.
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Figure 2. Agent Diversity: Cumulative context curation yields lower overall similarity. Parallel context curation produces greater
agent diversity compared to evolutionary curation, highlighting an exploration exploitation trade-off. Histograms of agent
similarities (row averages of C), excluding agents with zero performance (all-black rows of S in Figure 6, and corresponding dark blue
rows and columns of C in Figure 7). Each subplot shows histograms of averaged similarity scores for each agent (x-axis) and their

frequency (y-axis) across 3 runs.
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Figure 3. Average inference cost per test query: C > E > P
> 1. For agents in the initial library F' (Initial), agents designed
by meta agent with ¢ (Cumulative), agents designed by meta
agent with ¢p (Parallel), agents designed by meta agent with ¢
(Evolutionary). Averaged across all agents from 3 runs.

4.3. Economic Viability

In Figure 3, we observe that the agents designed using ¢¢
have the highest average inference costs, followed by those
designed using evolutionary context, ¢ z. Among the meta
agents, the one that uses parallel context curation produces
the least costly agents on average, a trend also observed
among the best-performing agents (Figure 5). However,
agents designed by the meta agent still remain more costly
than those in the initial library.

To identify the point where the cost per correct response
of a designed agent becomes lower than the agents in the
initial agents library, we combine the inference cost of the

best agent (Figure 5) with the fixed cost of agent design.

The fixed design cost, Cy, includes the total cost of all
the sampling step (Algorithm 1, line 6; Figure 13) and
evaluation costs to compute s; (Algorithm 1, line 7). The
total cost of an agent is the sum of Cj and a per-example
inference cost, Cj:Cy + n - Cj.

In Figure 4, the intersection of the red solid line with another
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Figure 4. Cost Efficiency: Highest performing agent from the
initial library generates the outputs with same total perfor-
mance at lower cost. Number of questions solved (solid lines)
and attempted (dashed lines) versus cost spent for agents with
best training set performance. The x-intercept indicates the fixed
cost Cy (0 for agents in initial library); the slope beyond reflects
variable cost per attempt or per solution.

solid line marks the break-even point, where deploying
the meta-agent lowers the cost per correct response. This
occurs at approximately n = 15,000 examples for DROP
and MMLU with parallel context curation. In contrast, for
other datasets and context curation methods, performance
gains do not justify the associated costs at any scale.

5. Conclusion

Our analysis highlights key trade-offs between (1) final
performance and behavioral diversity and (2) performance
relative to cost. Evolutionary context curation boosts per-
formance but reduces diversity. While meta-agent-driven
design can produce cost-effective agents in some cases, the
performance gains rarely justify the increased design and
inference costs, even at scale.
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Impact Statement

For meta-agents, the unchecked generation and execution
of complex systems may present safety risks. Such systems
are difficult to audit or control prior to deployment within
automated design loops.
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A. Experimental Setup Details
A.1. Initial Agents Library

Our initial agent library, F', consists of the following meth-
ods: (1) Chain-of-Thought (Wei et al., 2023), which
prompts the language model to output its reasoning before
arriving at an answer; (2) Majority Voting, which selects
the consensus response from multiple generated answers; (3)
Refinement from Feedback (Madaan et al., 2023), where
the model iteratively improves its answer based on self-
feedback; (4) LLM-Debate (Du et al., 2023), where multi-
ple language model instances are prompted to debate with
each other; (5) Quality-Diversity (Lu et al., 2024a), which
generates and ensembles diverse responses; (6) Routing,
which directs tasks to the most appropriate language model
instances prompted to behave like an expert of a subject;
and (7) Stepping-back (Hu et al., 2024), which encourages
the model to first reflect on relevant scientific principles
before answering. This is consistent with the setup in Hu
et al. (2024).

A.2. Experimental Setup

Number of Iterations. In all our experiments, we use
T = 30.

Dataset Size. For each of our MGSM, MMLU, DROP
datasets, we select 128 examples from our dataset as train-
ing examples, denoted as Dy, and 200 examples as test
examples, denoted as D.y. For GPQA, we use 32 samples
as training examples and the remaining 160 samples as test
examples. To reduce the variance during training, we use
each training example from GPQA 5 times and compute
scores using 5 x 32 = 160 evaluations. Performance is
measured using F1-score for DROP and accuracy for the
other datasets.
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Models. In our experiments, we use gpt—-3.5 as the
engine of the LanguageModel class. We use a larger,
more powerful model, gpt—4o, as the engine of the meta-
agent. This is consistent with the setup in Hu et al. (2024).

B. Other Related Works

Agentic Systems Agentic systems have demonstrated re-
markable success across a range of domains. Several agen-
tic systems have advanced scientific automation, including
frameworks for end-to-end research (Lu et al., 2024b), au-
tonomous paper writing (Yamada et al., 2025), nanobody
design in a virtual lab (Swanson et al., 2024), and multi-
agent ideation (Su et al., 2025). Beyond research, agentic
systems have demonstrated effectiveness in complex opera-
tional contexts, including generalist problem-solving (Four-
ney et al., 2024; Lu et al., 2025), financial modeling and
trading (Okpala et al., 2025; Xiao et al., 2025), and robotics
manipulation (Singh et al., 2024).

Recursive Self-Improvement STOP (Zelikman et al.,
2024), Promptbreeder (Fernando et al., 2023), Godel Agent
(Yin et al., 2025), and Zhou et al. (2024) implement re-
cursive self-improvement by enabling agents to iteratively
refine their own prompts, code, or internal reasoning logic.

C. Limitations

Scope Our work focuses on a class of meta-agent ap-
proaches that follow the sample—evaluate—iterate pattern.
While restricting our scope to this setup enables us to high-
light general patterns, our findings may not apply directly
to the broader space of possible meta-agent paradigms.

Evaluation We evaluate performance primarily in terms
of accuracy and F-1 scores. Our findings may not directly
translate to domains where consistency is critical, or where
different utility metrics are more appropriate.

Economic Viability Our analysis of economic viability
is most suited for domains with strong verifiers as it em-
phasizes the cost of sampling a correct or high-performing
answer. Other formulations may be better suited for differ-
ent applications.

Similarity Computation Cosine similarity favors align-
ment between agents that succeed on the same examples.
The metric reaches its maximum (1) when agents can solve
the same set of questions. However, favoring alignment
introduces an overall bias toward high-performing agents.
Due to this bias, high-performing agents appear more simi-
lar, whereas agents that fail consistently appear orthogonal.
As a robustness check, we also computed Hamming dis-
tances between binary score vectors and observed similar

trends (Figure 9, 10).

Meta Evaluation Meta-agent evaluations involve multi-
ple sources of stochasticity, including (1) LM output ran-
domness, (2) error propagation in chained reasoning in-
side agents, (3) meta-agent sampling variability, (4) meta
trajectory-level divergence due to different sampled agents,
and (5) stochasticity in training evaluation results for the
designed agents, which can then lead the trajectories in dif-
ferent directions. Robust evaluation thus requires multiple
trajectory samples for reliable conclusions. Due to the exten-
sive costs of larger-scale evaluations, the results we present
are averaged across 3 runs.

D. Additional Results
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Figure 5. Average inference cost per test query of the best
agents. For best agent in the initial library F’ (Initial, see Appendix
A.1), best agent designed by meta agent with ¢ (Cumulative),
best agents designed by meta agent with ¢p (Parallel), best agent
designed by meta agent with ¢ (Evolutionary). Averaged across
the single best agents from 3 runs. Best agent is selected based on
the highest training performance.
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Figure 6. Score matrix S, where each row corresponds to an agent and each column to a dataset example. A cell is white if the agent
answers correctly and black otherwise. For DROP, gray indicates intermediate F1 scores; for GPQA, gray denotes partial correctness
across repeated attempts. The normalized rows, s;, serve as agent embeddings, capturing performance across training questions.
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Figure 7. Cosine similarity matrix C, with agents reordered by descending average similarity to all other agents.
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Figure 8. Histograms of agent similarities (entries of C), excluding agents with zero performance (all black rows of S in Figure 6, and
corresponding dark blue rows and columns of C in Figure 7). Only the upper triangular entries of C (excluding the diagonal) are used, as
C is symmetric. Each subplot shows histograms of similarity scores (x-axis) and their frequency (y-axis).
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Figure 9. Figure 2 with (1 - Hamming distance) as the similarity metric. All nonzero entries of S are set to 1.
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Figure 10. Figure 8 with (1 - Hamming distance) as the similarity metric. All nonzero entries of .S are set to 1.
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Figure 11. Training performance of designed agents across iterations. The dotted red line shows the performance of the best agent from
the initial library.
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Figure 13. Design cost of the next agent across iterations. While costs remain stable with Parallel and Evolutionary context curation, they
increase linearly with increasing context length in Cumulative context curation.
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