
Differentiable User Models

Alex Hämäläinen1 Mustafa Mert Çelikok1 Samuel Kaski1,2

1Department of Computer Science, Aalto University
2Department of Computer Science, University of Manchester

Abstract

Probabilistic user modeling is essential for build-
ing machine learning systems in the ubiquitous
cases with humans in the loop. However, modern
advanced user models, often designed as cogni-
tive behavior simulators, are incompatible with
modern machine learning pipelines and computa-
tionally prohibitive for most practical applications.
We address this problem by introducing widely-
applicable differentiable surrogates for bypassing
this computational bottleneck; the surrogates en-
able computationally efficient inference with mod-
ern cognitive models. We show experimentally that
modeling capabilities comparable to the only avail-
able solution, existing likelihood-free inference
methods, are achievable with a computational cost
suitable for online applications. Finally, we demon-
strate how AI-assistants can now use cognitive
models for online interaction in a menu-search
task, which has so far required hours of computa-
tion during interaction.

1 INTRODUCTION

User modeling constructs informative representations of
individual users to enable computational systems to cus-
tomize and adapt their behavior for them [Li and Zhao,
2020]. It has been extensively studied over the years, also re-
cently in recommender systems [Yu et al., 2019, Yuan et al.,
2020], human-in-the-loop machine learning [Daee et al.,
2018] and AI-assistants [Horvitz et al., 2013, Dafoe et al.,
2021]. Machine learning is needed in user modeling to infer
user-specific information based on observed user behavior.
Depending on the application, the inferred information can
be the end result or, for instance, used to parameterize a user
simulator to form predictions of user behaviors to guide the
behavior of the system.

Traditionally, salient use cases of user modeling, such as rec-
ommendation engines, have utilized user-specific preference
profiles based on users’ history. However, these approaches
are not sufficiently powerful in more complex interactive
applications, where the user plans and interacts strategically,
for instance in human-AI collaboration and human-in-the-
loop decision-making. On the other hand, while recent ML
research has shown significant success in learning accurate
neural models directly from data, this is an infeasible ap-
proach in user modeling in general, as typical user-driven
applications are data starved. In contrast, recent approaches,
e.g., Kangasrääsiö et al. [2019], Moon et al. [2022], have uti-
lized advanced general-purpose behavioral models, based on
cognitive science, in a Bayesian setting and received encour-
aging results with limited data. The probabilistic treatment
of the problem enables taking uncertainty of the inferences
into account — which fundamentally allows the system to
balance between exploration and exploitation in interaction
with the user.

A prominent body of these advanced cognitive models
is based on computational rationality [Lewis et al., 2014,
Gershman et al., 2015], which posits that seemingly irra-
tional behaviors of humans are rational under their cognitive
bounds. It follows that human behaviors can be accurately
modeled as a result of RL-based optimization given that
the underlying decision-theoretic framework and the opti-
mization procedure are specified such that they accurately
capture the appropriate bounds governing human cognition,
such as the limits of computational capacity. A concrete
example of such a model, which we consider in our exper-
iments, is the model of rational menu search [Chen et al.,
2015]. This cognitive model describes human search behav-
ior in terms of eye movements when searching for a target
item in a computer dropdown menu, while encoding the lim-
itations of human cognition and perception when processing
visual information.

Despite their many benefits, these advanced cognitive mod-
els are currently not used beyond small-scale practical appli-
cations due to two important factors: (1) they are expressed

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:alex.hamalainen@aalto.fi?Subject=Your UAI 2023 paper

as non-differentiable simulators and hence incompatible
with modern machine learning frameworks and (2) they are
computationally infeasible to be used directly in realistic
applications.

In this paper, we address these limitations: we enable com-
putationally efficient probabilistic user modeling suitable
for real-time applications — even with advanced cognitive
models that lack a closed-form likelihood. We do this by
combining the best of gradient-based and Bayesian learning:
we show how one can develop differentiable user models
which are sample-efficient by leveraging prior knowledge
from non-differentiable cognitive models and can quantify
uncertainty in their estimates. As a result, the surrogates
become widely applicable with online computational cost
independent of the complexity of the original models. The
contributions of this work are:

• We introduce a way of enabling computationally ef-
ficient inference with cognitive user models by build-
ing generalizable differentiable surrogates for them
through meta-learning.

• We demonstrate a flexible way of leveraging any ex-
isting user data during surrogate training to address
possible model misspecification in cognitive models,
especially in the case of action noise.

• With neural processes as example surrogate models,
we demonstrate comparable user modeling accuracy to
current methods with a computational time suitable for
online applications.

Our work removes a key computational bottleneck currently
hindering incorporation of users into probabilistic program-
ming models. Probabilistic user modeling based on cogni-
tive models can now be applied widely without extensive
computational budgets.

2 DIFFERENTIABLE USER MODELS

This work considers computationally efficient probabilistic
user modeling for interactive settings, between a user from a
user population and a computational system. User modeling
is brought in to guide adaptation of the behavior of such a
system for individual users; user modeling is needed for (i)
inferring user-specific information from observed user be-
haviors and (ii) then using the information for user behavior
prediction. The following subsections detail the specifics of
current approaches and their limitations, together with our
approach for addressing these limitations.

2.1 PROBABILISTIC USER MODELING WITH
COGNITIVE MODELS

Following the intuition presented by Kangasrääsiö et al.
[2019], we formulate the probabilistic user modeling setting

as follows: a population of users is engaged with a distri-
bution of decision-making tasks denoted by p(θT). Each
modeling scenario involves a user θU ∼ p(θU) and is fully
described by the respective user and task specific parameters
θ = {θT , θU}. The users are assumed to generate their poli-
cies π through an implicit process Pθ which they execute to
generate pairs of states and actions (s,a). The system has
access to a cognitive model p(π | θ) approximating the true
process and a corresponding prior p(θ). An important task
corresponding to this user modeling setting is the inference
problem of approximating the posterior

p(θ | (s,a)) ∝ p((s,a) | π)p(π | θ)p(θ). (1)

Computing the posterior p(θ | (s,a)) and then using the
likelihood model p(π | θ) for computing the corresponding
posterior predictive distribution p(π | (s,a)) =

∫
p(π |

θ)p(θ | (s,a))dθ would be the Bayesian choices for achiev-
ing the objectives (i) and (ii).

For cognitive models, the likelihood p(π | θ), required for
solving the Bayesian inference task for the posterior, is typi-
cally not evaluable in closed-form due to the simulator-type
nature of these models. So far, this issue has been circum-
vented by utilizing exclusively likelihood-free inference
(LFI) methods, such as approximate Bayesian computa-
tion (ABC) [Sisson et al., 2018, Sunnåker et al., 2013]
and Bayesian optimization for likelihood-free inference
(BOLFI) [Gutmann et al., 2016], as proposed by Kangas-
rääsiö et al. [2019] and Moon et al. [2022]. The basic idea
of LFI is to replace the computationally expensive simulator
p(π | θ) with an approximation that is separately learned
on the observed data [Gutmann et al., 2016], in this case
the (s,a) from each user. For user modeling, this approach
has two problems: this process requires numerous compu-
tationally expensive simulations with the cognitive model
and the data in typical user modeling applications often is
too scarce for learning a new model independently for each
user.

Moon et al. [2022] proposed circumventing the compu-
tational complexity by learning a generalizable policy-
modulation network as a surrogate for the original model,
i.e. p(π | θ), and obtained significant speed-ups for infer-
ence. However, as noted by the authors, their approach is
still prohibited by the computational cost of LFI needed for
approximating the posterior, and is not feasible for real-time
inference. Similarly, the simulation costs of cognitive mod-
els p(π | θ) are often too expensive to enable estimating
the posterior predictive in real-time applications, even if the
posterior was readily available. Furthermore, even though
LFI methods are developing fast, practical interactive set-
tings may require hierarchical approaches for generalizing
across the user models, which has been traditionally diffi-
cult with LFI [Turner and Van Zandt, 2014]. An additional
problem with LFI-based modeling is the sensitivity to model
misspecification, which is very likely in user models.

2.2 AMORTIZATION FOR COGNITIVE MODELS

In this work, we seek to address the limitations of current
approaches and to enable efficient computation for both
the likelihood and posterior models so that the posterior
predictive distribution is practical to approximate. Our ap-
proach is to amortize posterior predictive inference through
surrogate modeling. Training generalizable surrogates of-
fline enables using them during online interaction without
extensive computation.

While this approach would solve the issue of online com-
putational complexity, the offline complexity of simulating
sufficient amounts of training data for them will still be
an issue due to the vast diversity of different behaviors the
cognitive models are able to express. In particular, even if
training a generalizable surrogate for a cognitive simulator
would be achievable, as done in the work of Moon et al.
[2022], training a surrogate directly for approximating the
posterior can be ultimately be computationally intractable if
constructing the training data requires numerous repeated
evaluations with LFI (for the reference, Kangasrääsiö et al.
[2019] reported that even a single LFI result would require at
least 700 CPU hours with the menu search model). Further-
more, as we will later discuss in Section 2.5, data-efficiency
in training the surrogates is also otherwise a desirable factor
as it helps combating model misspecification in cognitive
models.

2.3 CASTING SIMULATOR-BASED MODELING
AS META-LEARNING

In order to make the surrogate training more sample-
efficient, we approach amortization task from meta-learning
perspective. Here, the key insight is that both the likelihood
and posterior models can be learned jointly with an appro-
priate policy approximation task, without ever needing to
approximate the true posterior p(θ | (s,a)), if one is sat-
isfied with using a latent representation z ∈ Z to capture
user-specific information. Following this intuition, we gen-
eralize the likelihood and posterior models to mappings h
and g:

Definition 2.1 (Amortization for cognitive models). Let S
and A denote the state and action spaces corresponding to
the user model and O =

⋃
n(S × A)n be a collection of

m observations over behavior generated by an individual
user θU in a task θT . Amortization for cognitive models
corresponds learning the following functions such that they
are evaluable during online interaction:

1. Inference of user and task representations, done by
the mapping h : O → P (Z), where P (Z) denotes a
probability distribution over a joint user and task repre-
sentation space Z , which aims to capture the properties
governing user behavior.

2. User behavior prediction, done by the mapping g : S×
Z → P (A), where P (A) is a probability distribution
over user action space.

In line with the Definition 2.1, we amortize the computa-
tion for the posterior predictive distribution over a cognitive
model through learning generalizable surrogates for the
mappings h and g. Intuitively, we are here building on the
conceptual similarity between Bayesian methods and meta-
learning (previously discussed, e.g., by Grant et al. [2018]
and Garnelo et al. [2018b]), and consider the mapping h,
i.e., computing the posterior over the user representation as
equivalent to task-specific adaptation during meta-testing
and the mapping g, i.e., computing the likelihood as analo-
gous to prediction.

To formalize the idea, let s ∈ S, a ∈ A and (s,a) =
{(s1, a1), . . . , (sn, an)} ∈ O. Our goal is to learn the map-
pings h and g, with optimizable parameters {ψ, ϕ}, to ap-
proximate the posterior pψ(z | (s,a)) and the likelihood
pϕ(a | s, z) with respect to a latent representation z ∈ Z .
The corresponding posterior predictive model can here be
written as p{ψ,ϕ}(a | s, (s,a)) =

∫
pϕ(a | s, z)pψ(z |

(s,a))dz. The surrogates should jointly minimize the fol-
lowing objective for policy approximation, while generaliz-
ing over the ground-truth user and task population (θ ∼ p(θ)
and π ∼ p(π | θ)):

min
ϕ,ψ

Eθ∼p(θ),s∈S

[
δ
[
π(a | s), p{ψ,ϕ}(a | s, (s,a))

]]
, (2)

where δ is a dissimilarity function (e.g., KL-divergence)
and the observations (s,a) are assumed to have been gen-
erated by executing π in the underlying environment. In
Section 3, we demonstrate how a solution to this problem
can be approximated with neural processes.

Consistently with numerous current meta-learning ap-
proaches (e.g., Finn et al. [2017], Garnelo et al. [2018b]), we
propose a modeling workflow with separate offline (meta-
training) and online (meta-testing) phases described below.
We additionally expand on mitigating the effects of possible
model misspecification in cognitive models.

2.4 META-TRAINING AND META-TESTING

Algorithm 1 specifies the proposed meta-training proce-
dure, to enable generalization of the surrogates h and g over
the population of interest p(θ). The procedure needs to be
complemented with an appropriate meta-learning loss for
approximating a solution to Eqn. 2 in terms of {ψ, ϕ}, de-
pending on the implementations of h and g. In Section 3,
we exemplify this with neural processes.

The corresponding meta-testing, i.e., task-specific adapta-
tion phase is straightforward: mappings h and g can be
utilized for inferring user representations z ∼ pψ(z | (s,a))

w.r.t. observed (s,a) and for predicting user behaviors
a ∼ pϕ(a | s, z) on states of interest s ∈ S.

Algorithm 1 Meta-training cognitive model surrogates

Require: A distribution over users: p(θU)
Require: A distribution over tasks: p(θT)
Require: A cognitive model: p(π | θ)
Initialize h and g with {ψ, ϕ}
repeat

Sample θ = {θU , θT }, θU ∼ p(θU), θT ∼ p(θT)
Generate π ∼ p(π | θ)
Generate n trajectories (s,a) by executing π
Optimize {ψ, ϕ} with respect to (s,a) with an appro-
priate training loss

until done

Note that consistently with Garnelo et al. [2018b], the pro-
posed meta-learning workflow deliberately differs from
many other popular meta-learning approaches, such as
model-agnostic meta-learning (MAML) [Finn et al., 2017]
and Reptile [Nichol and Schulman, 2018], by fully ex-
cluding the gradient-based optimization loop during task-
specific adaptation phase. Instead, the adaptation phase is
here reduced to a forward pass through h. Not only is this
computationally faster, enabling online computation, the
probabilistic nature of our approach can also enable inter-
active systems to balance between exploration-exploitation
trade-offs. As we demonstrate in our experiments, these ben-
efits additionally translate into improved modeling accuracy.

2.5 MODEL MISSPECIFICATION IN COGNITIVE
MODELS.

Model misspecification is a relevant issue in behavioral user
modeling. While typical LFI-approaches are highly sensitive
to misspecification, this can be mitigated with our approach
by combining observed user data with simulated data and
meta-training the surrogates again, when new observations
become available. We demonstrate in Section 4.2 that this
approach enables balancing between modeling accuracy and
data requirements — especially in practical interactive user
modeling applications which only have limited collections
of user behavior datasets available.

3 USER MODELING WITH NEURAL
PROCESSES

We use neural processes (NP) [Garnelo et al., 2018b] as an
example solution for implementing and learning the map-
pings h and g of Definition 2.1. First, we briefly cover the
relevant background on NPs and then explain in detail how
they can be adapted for user modeling.

3.1 BACKGROUND ON NEURAL PROCESSES

Neural processes [Garnelo et al., 2018b] are a family of
neural latent-variable models combining properties of neural
networks and Gaussian processes (GP). Specifically, they
are differentiable solutions for representing uncertainty over
functions that may be utilized for few-shot approximation.
For our purposes, NPs are particularly fitting as they match
Definition 2.1 and that the meta-learning objective (Eqn. 2)
can be readily computed for them.

NPs model a set of functions {fd}d where each fd : X → Y
is assumed to be drawn from an underlying stochastic pro-
cess fd ∼ F . NP approximates the underlying process
F with a neural network g. As each function fd drawn
from the process F represents an individual instantiation of
the process, a latent variable z is introduced for capturing
the instance-dependent variation in F as fd(x) = g(x, z).
NPs consist of an encoder, an aggregator and a condi-
tional decoder. The encoder is a neural network for con-
structing representations ri = hϕ((x, y)i) at given observa-
tions (x, y)i. The aggregator, α, constructs permutation-
invariant summaries of the encoded representations as
r = α({ri}) = 1

n

∑n
i=1 ri. The summaries are further

utilized to parametrize a (multivariate Gaussian) latent dis-
tribution z ∼ N (µ(r), Iσ(r)). The conditional decoder,
gψ(xT , z), is a neural network that is conditioned on sam-
ples from the latent distribution to estimate fd(xT) = y at
locations xT .

NP meta-training procedure samples individual instantia-
tions fd ∼ F of the stochastic process F . Here, each func-
tion fd is evaluated at a varying number of inputs to produce
a dataset of tuples (x, y)di . Each dataset is then divided into
separate context (x1:m, y1:m) and target (xm+1:n, ym+1:n)
sets. Intuitively, here the context set represents the fully
observed function evaluations while the target xm+1:n rep-
resents the locations at which the model aims to approxi-
mate ym+1:n. The context and target sets are input to the
encoder and the conditional decoder respectively, and the
model parameters {ϕ, ψ} are optimized with respect to
the NP-variant of Evidence lower-bound (ELBO). For fur-
ther information about NPs and their training, see Garnelo
et al. [2018b]. Finally, note that the low complexity of NPs
(O(n+m)) makes them suitable for real-time scenarios.

3.2 ADAPTING NEURAL PROCESSES FOR USER
MODELING

Neural processes can be adapted as concrete implementa-
tions for the required mappings h and g and for approxi-
mating a solution for Equation 2 within the proposed meta-
training procedure (Algorithm 1). First, we recognize that
Equation 2 is essentially a function approximation problem
to which NPs can be applied — the true behavior-generative
process p(π | θ) can essentially be treated as a stochastic

process P where each instantiation π ∼ P represents a
policy. The NP latent variable z is utilized for capturing
user/task representations and the mappings h and g can be
implemented with the NP encoder pϕ(π | z) and condi-
tional decoder pψ(z | (s,a)). The meta-training procedure
is adapted as follows: the sampled behaviors (s,a) are split
into context and target sets and the parameters {ψ, ϕ} can
be optimized according to NP-ELBO.

In addition to the vanilla NPs, we consider also attentive
neural processes (ANP) Kim et al. [2019], conditional neu-
ral processes (CNP) [Garnelo et al., 2018a] and attentive
conditional neural processes (ACNP). ANPs are essentially
NPs with the difference of including attention in the encoder
architecture. The attention acts as a local latent variable, al-
lowing ANPs to capture both global and local information
affecting user behaviors. CNPs (and ACNPs) implement the
latent encoding h as a deterministic mapping, thus lacking
an important ability of sampling on Z .

4 EXPERIMENTS

We conduct three experiments where we compare our ap-
proach against other ways one could conceivably try to solve
the problem — although this has not been previously done.
The first is a demonstration in a benchmark gridworld envi-
ronment. The second is a menu search task where a cognitive
user model, justified and validated by earlier cognitive sci-
ence studies, allows us to study real-user performance with
simulations. The third experiment is a reasonably realistic
menu search assistant scenario.

Comparison methods and baselines. We assess the mod-
eling capabilities of the proposed solution in terms of its
ability to predict the actions of individual agents, as a func-
tion of the number of previous observations of their behavior
in the modeling task of Equation 2. This metric directly eval-
uates the posterior predictive but also indirectly the quality
of the posteriors over user representations z ∈ Z . Unless
otherwise specified, the experiments aim to simulate realis-
tic user modeling applications by limiting the training data
to observations from ∼ 1000 simulated users.

We compare our approach against two baselines and three al-
ternative surrogate architectures. The alternative surrogates
are transformers trained with MAML and Reptile, and a
standard transformer. MAML and Reptile act as alternative
representative meta-learning approaches to the policy ap-
proximation task over user population, while the transformer
intends to provide a reference point for the performance of
sequential models which are frequently used in alternative
user modeling domains, such as sequential recommenda-
tion. None of the alternative surrogate architectures are fully
consistent with the proposed meta-learning procedure and
are applied to the policy approximation task on simulated
data directly instead. We also include comparisons between

Figure 1: Gridworld results. Left: Modeling accuracy as a
function of the number of observed full episodes. The best
NP-based model (here ANP) achieves comparable results to
the upper bound given by an oracle; all NP-based models
are clearly better than alternatives. The figure illustrates
the gradual improvement of the predictions of NPs as more
episodes are perceived. The BO results are averaged over the
number of context trajectories due to the small sample size.
Right: Illustration of ANP uncertainty update on policy
predictions. The predictions (gray arrows) align towards the
implicitly inferred possible goal states (green rectangles).
In the upper figure, the predictions are conditioned on one
observed trajectory (orange arrows). In the lower figure, we
observe that the system implicitly infers the location of the
positive reward, within the accuracy of two squares, after
perceiving the second trajectory. The dark green and red
squares are the true positive and negative reward states.

several alternative NP architectures. Details are included in
the Supplement.

The two baselines are a Bayesian Optimization (BO) model
and a population average predictor. Furthermore, we provide
results from an oracle, acting as an upper bound for the per-
formance of any solution, including LFI. Both the BO base-
line and the oracle utilize the cognitive model p(π | θ) di-
rectly for prediction — the oracle parametrizes the cognitive
model with the true user parameters while BO utilizes MAP
estimates. The population average predictor directly approx-
imates the population level action distribution p(a | s) for
each state without any user-specific conditioning.

Even though it would be an important baseline, we were
not able to produce any representative results with LFI due

Table 1: Modeling accuracy as a function of the number of observed full episodes in the menu-search setting of Section 4.2.

Episodes ANP Reptile MAML Transformer Oracle Population avg.
0 0.937± 0.011 0.829± 0.054 0.774± 0.033 0.920± 0.035 0.970± 0.002 0.921± 0.012
1 0.953± 0.011 0.921± 0.021 0.916± 0.026 0.922± 0.021
2 0.954± 0.011 0.930± 0.020 0.928± 0.025 0.931± 0.017
5 0.955± 0.010 0.944± 0.017 0.943± 0.021 0.926± 0.012
9 0.955± 0.010 0.954± 0.016 0.952± 0.014 0.928± 0.009

to its immense computational complexity. For reference,
Kangasrääsiö et al. [2019] compared several LFI-methods,
including BO, on exactly the same Menu Search model
used in our experiments. They gave 700h of CPU-time for
each method to run only one individual inference task and
noted that it is likely that none of the methods converged.
Obtaining conclusive accuracy results with LFI in our exper-
iment setting is practically intractable as at least hundreds
of individual inference results would be needed. Here, we
consider the BO-baseline as an approximate lower-bound
for LFI performance. Although converging faster than LFI,
BO is still computationally very heavy, due to the expensive
simulation costs, and feasible only in our first experiment.

4.1 EXPERIMENT 1: GRIDWORLD
ENVIRONMENT

Setting. The first experiment scenario is based on a simple
10× 10 gridworld environment. In this setting, we consider
modeling Monte Carlo Tree Search (MCTS) [Browne et al.,
2012] agents with unknown reward functions and MCTS pa-
rameters. This benchmark scenario evaluates the modeling
system’s ability to approximate the uncertainty over user
policies. In this experiment, we assume that a generative
user model and a parameter prior are available, capturing
the true generative process of the population.

The gridworld environment is defined as a partially observ-
able Markov decision process (POMDP) with deterministic
transition dynamics. The action space consists of four pos-
sible actions that correspond to the agent relocating from
its current state to adjacent states. Each gridworld scenario
always contains two reward states - one with a positive re-
ward and one with a negative reward. The agents gain no
rewards or penalties other than from the given states. The
full setting details are given in the Supplement.

Modeling task. The modeling task is to predict the subse-
quent actions of agents sampled from the population. Each
scenario assigns the modeling system with observed trajec-
tories from a varying number of previous episodes and a
partial trajectory from the current episode generated by the
agent. The task is to predict the remaining actions of the
trajectory in the current episode. All information about the
agent, excluding the observed trajectories, is hidden during
both training and evaluation (except for the oracle).

Results. The NP-family models are mostly able to out-
perform all the baselines (Fig. 1) with the ANP converging
close to the performance of the oracle. It is likely that the
BO-baseline has not properly converged, although given
clearly the largest amount of computation time, and it may
not act as a reliable approximation for LFI performance. Fi-
nally, the transformer and MAML are unable to generalize
to the task, likely due to the too limited amount of training
data.

Comparisons between the NP-family models suggest that,
in terms of NP architecture, the most impactful factor con-
tributing to the modeling performance is attention, i.e., lo-
cal latent variables, as ANP and ACNP outperform their
non-attentive counterparts. Consistent with the probabilistic
treatment of h (Def. 2.1), stochasticity of the global latent
variables z (ANP and NP) also seems to improve the results.
Because ANP was clearly the best of the NP methods, and
hence remaining NP-models would not affect conclusions,
we omit the NP, CNP and ACNP models for the following
experiments, to save computation.

4.2 EXPERIMENT 2: MENU SEARCH
ENVIRONMENT

Setting. Our second experiment is based on the Menu
Search model of Kangasrääsiö et al. [2019], a modified
version of Chen et al. [2015]. The Menu Search model
is a cognitive model describing human search behavior in
terms of eye movements (saccades) when searching for
a target item in a computer dropdown menu. Motivated
by computational rationality [Gershman et al., 2015], the
model simulates user behavior as a result of optimizing the
search behavior with RL given their cognitive constraints of
the user. The details are given in the Supplement.

Modeling task. In this experiment, we apply our method
for modeling agents whose search behavior is specified by
the Menu Search model. As in the first experiment, we
train the model parameters on data simulated with the given
cognitive model. For each simulation, we sample a new
menu, together with its element-wise information about the
target word, as specified by Kangasrääsiö et al. [2019].

Modeling accuracy. Table 1 summarizes the obtained
modeling accuracies. We notice that after one observed tra-

Table 2: Modeling accuracies for different numbers of observed full episodes with the ANP-based system when trained with
data partially from a misspecified user model and partially from the true population. Here, the percentages denote the share
of the training data generated with the misspecified user model.

Episodes ANP 0% ANP 25% ANP 50% ANP 75% ANP 100%
0 0.937± 0.011 0.920± 0.015 0.895± 0.016 0.888± 0.013 0.852± 0.017
1 0.953± 0.011 0.923± 0.012 0.899± 0.014 0.891± 0.013 0.854± 0.016
2 0.954± 0.011 0.925± 0.012 0.901± 0.014 0.892± 0.012 0.857± 0.016
5 0.955± 0.010 0.926± 0.012 0.902± 0.014 0.894± 0.012 0.862± 0.016
9 0.955± 0.010 0.926± 0.012 0.902± 0.014 0.895± 0.012 0.865± 0.016

jectory, the ANP-based model achieves results comparable
to the oracle upper bound. Unlike in the previous experi-
ment, most of the users seemed to converge to a relatively
narrow and finite set of search strategies, simplifying the
difficulty of the modeling problem. As a result, MAML and
the transformer achieve clearly higher relative accuracy than
in the previous experiment, despite the limited training data.

Model misspecification. We study the effects of model
misspecification in cognitive models by repeating the mod-
eling task with a noisy model. This model represents an
otherwise accurate Menu Search model, but roughly 35% of
the saccades are modeled randomly into incorrect locations
instead of following the policy of the correct model (full
implementation details in the Supplement). We repeat the
meta-training with different percentages of data obtained
from the true user population. We explore both our solu-
tion’s robustness against the model with action noise and its
ability to adapt to the true generative process.

The results are gathered in Table 2. First, we observe that our
approach can remain robust against user model noise: even
when trained solely on data coming from the noisy model
(ANP 100%), the modeling accuracy remains reasonably
good and surpasses the accuracy of the noisy model (≈
65%). Secondly, it can be seen how our solution adapts to
the ground-truth generative process when the proportion of
the ground-truth data increases. We repeated the scenario
by meta-training the ANP only on data from the true user
population. We found that the noisy model improved the
results when the number of observed real users was under
200 (i.e., here percentage < 20%), after which it had a
hindering effect on the predictions. However, we expect that
the utility of misspecified models can be significantly higher
in more complex modeling problems where more data is
required to generalize to the problem.

4.3 EXPERIMENT 3: MENU SEARCH ASSISTANT

Setting. In our third experiment, we aim to demonstrate
the practical utility of the proposed approach for interactive
systems by extending the Menu Search environment into
a reasonably realistic AI-assistant scenario. First, we scale
the environment to consider two levels of hierarchy: the

menu consists of a main menu whose elements act as links
to sub-menus; we use the menus of the previous experiment.

Secondly, we introduce an AI assistant equipped with the
proposed user modeling system. The task of the assistant is
to utilize the modeling system to infer the target elements of
the users based on observed search behaviors in the current
menu, and to propose sub-menus for the users. Intuitively,
a successful assistant should guide the users to menus that
are likely to contain the true target for them, to shorten their
search time. The assistant is allowed to provide any guidance
only after the user is independently searched through at least
one sub-menu. We implement the assistant as a simple rule-
based agent that conditions its actions on the simulated user
behaviors a ∼ pϕ(a | s, z), z ∼ pψ(z | (s,a)). Further
details on the experiment setting are in the Supplement.

Results. Table 3 compares the performance of the re-
sulting assistant against a non-assisted user, a MAML-
based, a Reptile-based, and a transformer-based solutions.
The MAML and Reptile-based solutions require gradient-
computation during test-time leading to modeling times
greatly higher than the response time between human ac-
tions (≈ 300ms) in this experiment. This prevents online
user model updates, hence hindering the effectiveness of
the assistance. We also include results with an assistant
that has full knowledge of the users’ target elements to
provide an upper-bound. We notice that the ANP-guided
assistant can significantly reduce the user’s search time and
almost reaches the upper-bound performance of the assis-
tant that has perfect knowledge. The observed results are
encouraging regarding the ability of our solution to guide
the behaviors of real-time interactive systems.

5 RELATED WORK

Our work connects to a larger body of research considering
user modeling in interactive AI. For instance, Carroll et al.
[2019] and Strouse et al. [2021] share the idea that efficient
interaction with humans requires the AI to have an accurate
model of the human. In contrast to many this line of works,
our work concentrates on using models based on cognitive
and behavioral sciences as priors, instead of ML-experts
hand-crafting the models from scratch or learning them

Table 3: User search times and modeling/simulation times per assistant action with different assistant systems in Section 4.3.

Assistant type Search time (s) Time saved (%) Modeling time per action (ms)
No assistance 4.774± 0.235 − −
MAML 4.089± 0.645 14.3 1174.922± 43.760
Reptile 3.973± 0.519 16.8 1053.342± 37.988
Transformer 2.918± 0.191 38.8 1.140± 0.442
ANP 2.590± 0.226 45.7 8.460± 6.495
Full knowledge 2.577± 0.162 46.0 −

from large collections of user data. Using such models has
been impractical up to now, and this the problem we now
solve.

Inverse reinforcement learning (IRL) [Ng et al., 2000] con-
siders a related problem to ours, aiming to recover agents’
reward functions based on observed behaviors. Although it
has been previously utilized also in user-centric problems
[Chandramohan et al., 2011], our perspective is more gen-
eral as we consider inference over arbitrary user parameters
(instead of only rewards) and over varying policy-generative
algorithms/processes. This allows our approach to be uti-
lized for inference with a wide range cognitive models,
where user behaviors are not necessarily optimal and are
governed by human biases. Imitation learning (IL) [Hussein
et al., 2017], on the other hand, considers learning models
to imitate human (expert) behaviors on a given task. The
crucial difference to our setting is that, unlike with IL, we do
not necessarily seek to solve the task the human is solving,
but to probabilistically model humans and their behaviors.

Using transfer and meta-learning in RL problems has been
previously widely studied. For instance, Yao et al. [2018]
used HiP-MDPs [Doshi-Velez and Konidaris, 2016] for
modeling differences in environment dynamics and to fur-
ther parametrize a policy. Similarly, Galashov et al. [2019]
propose a probabilistic framework for sequential decision-
making that they instantiate with NPs for meta-learning. In
contrast to this line of works, the novelty of our work is
not about a generalizable solution to distributions of RL
tasks, but rather about a generalizable method for making
modeling with cognitive models practical. This is an impor-
tant distinction because cognitive models are not necessarily
compatible with the RL formalism — even when they are,
they are based on computational rationality, and specifically
tailored to account for cognitive limitations. Adapting these
limitations to existing frameworks, such as HiP-MDPs, is
not trivial and necessarily requires manual effort.

Our work also connects to a line of research studying infer-
ence for decision making agents in the context of probabilis-
tic programming. However, most of the approaches make
restricting assumptions either regarding the behavior gener-
ative processes of the users or the inference objectives and
could be applied only for very limited types of problems. For
instance, Zhi-Xuan et al. [2020] consider online inference of

boundedly-rational agents but their approach can be applied
only in discrete and deterministic environments to capture
only agent goals. Furthermore, their solution assumes that
the agents start planning their policy from scratch during
interaction — in practical interactive settings, humans might
already have a partial or complete plans at the beginning of
interaction. On the other hand, many other works, such as by
Seaman et al. [2018], assume that the likelihood for the gen-
erative process p(π | θ) can be evaluated for MCMC, which
is often an unrealistic assumption with advanced cognitive
models.

Many computational approaches motivated by cognitive sci-
ence share parallels with our objectives. For instance, com-
putational rationality [Lewis et al., 2014, Gershman et al.,
2015] and Theory of Mind (ToM) [Premack and Woodruff,
1978] have motivated numerous computational approaches
such as Bayesian ToM [Baker et al., 2011], Machine Theory
of Mind [Rabinowitz et al., 2018] and the Menu Search
model [Chen et al., 2015] for modeling human behaviors.
Furthermore, Peltola et al. [2019] utilize ToM for model-
ing users with their own models of the interactive system
in bandit settings. Among others, these models are prime
candidates our method can be applied to.

6 DISCUSSION

In this work, we have addressed the so-far unaddressed prob-
lem of enabling probabilistic user modeling with complex
cognitive models in real-time applications. We introduced
a meta-learning approach for training widely applicable
differentiable surrogates for approximating posterior predic-
tive estimation with cognitive models. We studied neural
process models as example implementations for the surro-
gates and demonstrated comparable modeling performance
to likelihood-free inference with computational cost suitable
for online applications. We also showed that the proposed
solution allows AI-assistants to utilize cognitive user mod-
els computationally feasibly, for instance in a previously
studied menu-search task. In a larger scale, the solution not
only removes a computational bottleneck currently hinder-
ing incorporation of users into probabilistic programming
models, but also enables real-time user modeling in various
applications where they currently are not possible within
usually available computational budgets.

We also demonstrated how the effects of model misspecifi-
cation in cognitive models can be mitigated in the surrogates
by incorporating observed user data in the training. Impor-
tantly, we observed that our approach provided robustness
against action noise while adapting to the true population
as more behavior data became available. Based on these
observations, we conclude that the proposed solution can
be particularly useful in application domains where user
data are limited or behavioral user models can be slightly
misspecified, although future studies are still required in
settings where the misspecification is caused by more sys-
tematic biases.

It is crucial to note that amortization for probabilistic user
modeling with cognitive models, as detailed in Section 2,
has not been previously widely studied. Apart from LFI,
which is computationally intractable for our problems, we
are not aware of any solutions which could act as either
relevant baselines or alternatives to the proposed approach.
Specifically, all the experimented alternative surrogate im-
plementations, such as MAML and transformers, are not
fully consistent with the probabilistic nature of the problem,
limiting their applicability in practice. We further note that
also neural processes feature several compromises in com-
parison to a fully Bayesian setting with cognitive models:
although supporting posterior predictive estimation, they
cannot be directly adapted for Bayesian inference in an ex-
plicit, predefined parameter space and they do not necessar-
ily follow all constraints coming from the known structure
of the behavioral model due to amortization. Future research
should adapt and develop alternative surrogate solutions to
address these drawbacks.

Interesting avenues for future research include utilizing the
surrogates in full probabilistic programming pipelines, al-
though we hypothesize that this should already be possible
within certain limits with our approach. Other attractive ex-
tensions could consider alternative surrogate architectures
to handle, for instance, non-stationarity in cognitive mod-
els and settings with multiple data modalities. Regarding
ethical considerations, user modeling has always been a
double-edged tool and can potentially be abused to serve
other interests than those of users — this should be taken
carefully into account in all of its applications. As a generic
tool to mitigate some of these issues, we recommend com-
bining user systems with privacy preservation with differen-
tial privacy.

Acknowledgements

We would like to thank Sebastiaan De Peuter, Pierre-
Alexandre Murena and Sammie Katt for their valuable
advice and feedback. This work was supported by the
Academy of Finland (Flagship programme: Finnish Cen-
ter for Artificial Intelligence FCAI and decision 345604)
Humane-AI-NET and ELISE Networks of Excellence Cen-

tres (EU Horizon: 2020 grant agreements 952026 and
951847), and UKRI Turing AI World-Leading Researcher
Fellowship (EP/W002973/1). We also acknowledge the
computational resources provided by the Aalto Science-IT
Project from Computer Science IT.

References

Chris Baker, Rebecca Saxe, and Joshua Tenenbaum.
Bayesian theory of mind: Modeling joint belief-desire
attribution. In Proceedings of the annual meeting of the
cognitive science society, volume 33, 2011.

Cameron B Browne, Edward Powley, Daniel Whitehouse,
Simon M Lucas, Peter I Cowling, Philipp Rohlfshagen,
Stephen Tavener, Diego Perez, Spyridon Samothrakis,
and Simon Colton. A survey of monte carlo tree search
methods. IEEE Transactions on Computational Intelli-
gence and AI in games, 4(1):1–43, 2012.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths,
Sanjit Seshia, Pieter Abbeel, and Anca Dragan. On the
utility of learning about humans for human-ai coordina-
tion. Advances in neural information processing systems,
32, 2019.

Senthilkumar Chandramohan, Matthieu Geist, Fabrice
Lefevre, and Olivier Pietquin. User simulation in dia-
logue systems using inverse reinforcement learning. In
Twelfth Annual Conference of the International Speech
Communication Association, 2011.

Xiuli Chen, Gilles Bailly, Duncan P Brumby, Antti
Oulasvirta, and Andrew Howes. The emergence of inter-
active behavior: A model of rational menu search. In Pro-
ceedings of the 33rd annual ACM conference on human
factors in computing systems, pages 4217–4226, 2015.

Pedram Daee, Tomi Peltola, Aki Vehtari, and Samuel Kaski.
User modelling for avoiding overfitting in interactive
knowledge elicitation for prediction. In 23rd Interna-
tional Conference on Intelligent User Interfaces, pages
305–310, 2018.

Allan Dafoe, Yoram Bachrach, Gillian Hadfield, Eric
Horvitz, Kate Larson, and Thore Graepel. Cooperative
ai: machines must learn to find common ground, 2021.

Finale Doshi-Velez and George Konidaris. Hidden parame-
ter markov decision processes: A semiparametric regres-
sion approach for discovering latent task parametrizations.
In IJCAI: proceedings of the conference, volume 2016,
page 1432. NIH Public Access, 2016.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep net-
works. In International conference on machine learning,
pages 1126–1135. PMLR, 2017.

Alexandre Galashov, Jonathan Schwarz, Hyunjik Kim,
Marta Garnelo, David Saxton, Pushmeet Kohli, SM Es-
lami, and Yee Whye Teh. Meta-learning surrogate
models for sequential decision making. arXiv preprint
arXiv:1903.11907, 2019.

Marta Garnelo, Dan Rosenbaum, Christopher Maddi-
son, Tiago Ramalho, David Saxton, Murray Shanahan,
Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Con-
ditional neural processes. In International Conference on
Machine Learning, pages 1704–1713. PMLR, 2018a.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio
Viola, Danilo J Rezende, SM Eslami, and Yee Whye
Teh. Neural processes. arXiv preprint arXiv:1807.01622,
2018b.

Samuel J Gershman, Eric J Horvitz, and Joshua B Tenen-
baum. Computational rationality: A converging paradigm
for intelligence in brains, minds, and machines. Science,
349(6245):273–278, 2015.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Dar-
rell, and Thomas Griffiths. Recasting gradient-based
meta-learning as hierarchical bayes. arXiv preprint
arXiv:1801.08930, 2018.

Michael U Gutmann, Jukka Corander, et al. Bayesian opti-
mization for likelihood-free inference of simulator-based
statistical models. Journal of Machine Learning Research,
2016.

Eric J Horvitz, John S Breese, David Heckerman, David
Hovel, and Koos Rommelse. The Lumiere project:
Bayesian user modeling for inferring the goals and needs
of software users. arXiv preprint arXiv:1301.7385, 2013.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and
Chrisina Jayne. Imitation learning: A survey of learning
methods. ACM Computing Surveys (CSUR), 50(2):1–35,
2017.

Antti Kangasrääsiö, Jussi PP Jokinen, Antti Oulasvirta, An-
drew Howes, and Samuel Kaski. Parameter inference
for computational cognitive models with approximate
Bayesian computation. Cognitive science, 43(6):e12738,
2019.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Gar-
nelo, Ali Eslami, Dan Rosenbaum, Oriol Vinyals, and
Yee Whye Teh. Attentive neural processes. arXiv preprint
arXiv:1901.05761, 2019.

Richard L Lewis, Andrew Howes, and Satinder Singh. Com-
putational rationality: Linking mechanism and behavior
through bounded utility maximization. Topics in cognitive
science, 6(2):279–311, 2014.

Sheng Li and Handong Zhao. A survey on representation
learning for user modeling. In IJCAI, pages 4997–5003,
2020.

Hee-Seung Moon, Seungwon Do, Wonjae Kim, Jiwon Seo,
Minsuk Chang, and Byungjoo Lee. Speeding up inference
with user simulators throughpolicy modulation. In CHI
Conference on Human Factors in Computing Systems,
pages 1–21, 2022.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse
reinforcement learning. In Icml, volume 1, page 2, 2000.

Alex Nichol and John Schulman. Reptile: a scalable met-
alearning algorithm. arXiv preprint arXiv:1803.02999, 2
(3):4, 2018.

Tomi Peltola, Mustafa Mert Çelikok, Pedram Daee, and
Samuel Kaski. Interactive ai with a theory of mind. In
Computational Modeling in Human-Computer Interac-
tion, 2019.

David Premack and Guy Woodruff. Does the chimpanzee
have a theory of mind? Behavioral and brain sciences, 1
(4):515–526, 1978.

Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan
Zhang, SM Ali Eslami, and Matthew Botvinick. Ma-
chine theory of mind. In International conference on
machine learning, pages 4218–4227. PMLR, 2018.

Iris Rubi Seaman, Jan-Willem van de Meent, and
David Wingate. Nested reasoning about autonomous
agents using probabilistic programs. arXiv preprint
arXiv:1812.01569, 2018.

Scott A Sisson, Yanan Fan, and Mark Beaumont. Handbook
of approximate Bayesian computation. CRC Press, 2018.

DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes,
and Richard Everett. Collaborating with humans without
human data. Advances in Neural Information Processing
Systems, 34:14502–14515, 2021.

Mikael Sunnåker, Alberto Giovanni Busetto, Elina Num-
minen, Jukka Corander, Matthieu Foll, and Christophe
Dessimoz. Approximate bayesian computation. PLoS
computational biology, 9(1):e1002803, 2013.

Brandon M Turner and Trisha Van Zandt. Hierarchical
approximate bayesian computation. Psychometrika, 79
(2):185–209, 2014.

Jiayu Yao, Taylor Killian, George Konidaris, and Finale
Doshi-Velez. Direct policy transfer via hidden parameter
markov decision processes. In LLARLA Workshop, FAIM,
volume 2018, 2018.

Zeping Yu, Jianxun Lian, Ahmad Mahmoody, Gongshen
Liu, and Xing Xie. Adaptive user modeling with long and
short-term preferences for personalized recommendation.
In IJCAI, pages 4213–4219, 2019.

Fajie Yuan, Xiangnan He, Alexandros Karatzoglou, and
Liguang Zhang. Parameter-efficient transfer from sequen-
tial behaviors for user modeling and recommendation.
In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information
Retrieval, pages 1469–1478, 2020.

Tan Zhi-Xuan, Jordyn Mann, Tom Silver, Josh Tenenbaum,
and Vikash Mansinghka. Online bayesian goal inference
for boundedly rational planning agents. Advances in Neu-
ral Information Processing Systems, 33:19238–19250,
2020.

	Introduction
	Differentiable user models
	Probabilistic user modeling with cognitive models
	Amortization for cognitive models
	Casting simulator-based modeling as meta-learning
	Meta-training and meta-testing
	Model misspecification in cognitive models.

	User modeling with neural processes
	Background on neural processes
	Adapting neural processes for user modeling

	Experiments
	Experiment 1: Gridworld environment
	Experiment 2: Menu search environment
	Experiment 3: Menu search assistant

	Related work
	Discussion

