Published as a conference paper at ICLR 2025

WASSERSTEIN DISTANCES,
NEURONAL ENTANGLEMENT,
AND SPARSITY

Shashata Sawmya'*, Linghao Kong'*, Ilia Markov?, Dan Alistarh?>*, & Nir Shavit!-34
IMIT 2IST Austria *Neural Magic *Red Hat

{shashata, linghao, shanir}@mit.edu,

{ilia.markov, dan.alistarh}@ist.ac.at

ABSTRACT

Disentangling polysemantic neurons is at the core of many current approaches to
interpretability of large language models. Here we attempt to study how disentan-
glement can be used to understand performance, particularly under weight spar-
sity, a leading post-training optimization technique. We suggest a novel measure
for estimating neuronal entanglement: the Wasserstein distance of a neuron’s out-
put distribution to a Gaussian. Moreover, we show the existence of a small number
of highly entangled “Wasserstein Neurons” in each linear layer of an LLM, char-
acterized by their highly non-Gaussian output distributions, their role in mapping
similar inputs to dissimilar outputs, and their significant impact on model accu-
racy. To study these phenomena, we propose a new experimental framework for
disentangling polysemantic neurons. Our framework separates each layer’s inputs
to create a mixture of experts where each neuron’s output is computed by a mix-
ture of neurons of lower Wasserstein distance, each better at maintaining accuracy
when sparsified without retraining. We provide strong evidence that this is be-
cause the mixture of sparse experts is effectively disentangling the input-output
relationship of individual neurons, in particular the difficult Wasserstein neurons.

1 INTRODUCTION

Disentangling polysemantic neurons into their component, human-understandable features has been
a longstanding goal of machine learning interpretability research (Olah et al., 2020; Jermyn et al.,
2022; |[Elhage et al.,2022; |Gurnee et al., 2023} Templeton, 2024;|Gurnee et al.,|2024). While neurons
are the basic building blocks of neural network architectures, they do not map one-to-one with
specific features. Instead, neurons frequently engage in polysemantic representations, where they
are activated by multiple, unrelated concepts and detect diverse features (Arora et al., [2018; Mu &
Andreas|, [2020). It is suspected that every neuron is polysemantic to some degree (Lecomte et al.,
2023)), and so we will refer to all neurons as polysemantic in this work.

Due to the importance of highly polysemantic neurons in a network’s computation (Bricken et al.,
2023), the question of whether these neurons require more parameters naturally arises. However,
the effects of polysemanticity on network performance under weight sparsity has not been well
explored. Weight sparsification (Hoefler et al.,[2021)) aims to reduce the number of executed param-
eters in large language models (LLMs) by setting certain weight values to zero to improve efficiency.
Various sparsification algorithms have been developed for this process (Han et al.,|2015; |Sun et al.,
2023} [Frantar & Alistarh||2023). This paper investigates the relationship between an individual neu-
ron’s degree of entanglement (which we will formally define in a later section) and its ability to be
sparsified in real-world models. To the best of our knowledge, this is the first work to explore this
crucial perspective of entanglement-dependent model sparsification.

To better understand the impact of entanglement on sparsification, we introduce a novel metric that
quantifies a neuron’s degree of entanglement. This metric is the Wasserstein distance between a

“Equal contribution. Author order determined by coin toss.
!Code available at ht tps: //github.com/Shavit-Lab/Sparse-Expansion,

https://github.com/Shavit-Lab/Sparse-Expansion

Published as a conference paper at ICLR 2025

neuron’s output distribution and a Gaussian (Equation [T). We find that neurons with a particularly
high Wasserstein distance (Figure [Id, [A8d) are crucial for the performance of a network and very
sensitive to pruning. We provide evidence that a neuron’s Wasserstein distance is related to its
ability to distinguish similar inputs to different outputs through its dot product, and we refer to these
neurons as especially entangled (Equation[2). Akin to previous works investigating special types of
neurons (Gurnee et al., 2023 Stolfo et al.| 2024; \Gurnee et al., [2024)), this work explores the role of
crucial neurons with implications for interpretability, specifically in the context of network sparsity.

(a) Random neuron (b) Random neuron (c) Random neuron clusters (d) Entangled neuron (e) Entangled neuron (f) Entangled neuron clusters

Denso Denso 5
= sparsecpr | | WD: 0.050 o SPTS § WD: 0.524
RI: 1.18 Expansion B RI: 1.77

Frequency

" Output value R ‘Output value

Figure 1: The output distributions of neurons in Llama-2-7B computed densely and at 90% sparsity
on Wikitext-2. WD refers to the Wasserstein distance of the output distribution to a Gaussian. RI
refers to the relative improvement of Sparse Expansion over SparseGPT. (a) The dense output dis-
tribution of a random neuron with a WD of 0.050 is well captured by SparseGPT, and (b) expanding
this neuron via Sparse Expansion imparts only a small (18%) increase in performance. (c) The clus-
ter outputs are all concentrated in close proximity to each other. (d) SparseGPT struggles to capture
the dense distribution of an entangled neuron with a WD of 0.524. (e) Following expansion, the
sparse output of the entangled neuron is much better captured, leading to more improvement (77%).
(f) Each expert specializes over a different portion of the distribution.

To analyze the phenomenon of neuronal superposition under sparsity in greater detail, we create an
experimental framework, which we dub Sparse Expansion. It expands a model into a mixture of
sparse experts by clustering input embeddings layer-wise. Based on this clustering, Sparse Expan-
sion utilizes the input-aware nature of the SparseGPT (Frantar & Alistarhl 2023)) pruning algorithm
to specialize different sparse experts to different sets of inputs, starting from the same base weights.
Through Sparse Expansion, we are able to analyze the entangled neurons in much more detail, since
now different subgroups of the inputs are being computed with different edges (Figure|[Tf, [ASf). We
find that as a neuron lose edges, its output distribution tends to shift toward a Gaussian distribution
(Figure[A9). However, through Sparse Expansion, the original output distribution can be better pre-
served under sparse computation (Figure [Tk, [A8). We relate our findings to recent theoretical work
on the bounds of neural computation under superposition (Hanni et al.|[2024;|Adler & Shavit, [2024).

Our main technical contribution is a detailed study of how model accuracy under sparsity is related to
its degree of neuronal entanglement. In every LLM, there exist neurons that have striking, irregular
output distributions (Figure 2, [AT). These neurons have an outsized effect on model performance
and seem to be responsible for differentiating similar input vectors (Figure [2). We believe that the
existence of these neurons is a manifestation of polysemanticity in real-world language models. We
find that the Wasserstein distance to a Gaussian is a strong indicator of such neurons.

In the next section we explain such “Wasserstein neurons”, neuronal entanglement, and the im-
plication of ablating Wasserstein neurons in LLMs in detail. We then formulate our experimental
framework Sparse Expansion and show how to effectively disentangle the input-output relationship
of neurons through Sparse Expansion, as well as some empirical computational bounds. Finally, we
present some results showing its performance relative to other state-of-the-art one-shot compression
techniques in the hopes of inspiring future sparsification algorithms.

2 WASSERSTEIN NEURONS

2.1 CHARACTERIZING NON-GAUSSIAN NEURONAL OUTPUT DISTRIBUTIONS

We investigate the output distributions of individual neurons in all linear layers of transformer feed-
forward networks (FFNs) during inference. Specifically, consider a linear operation Y = W X + b,
where Y € R™** is the output matrix, W € R™*"™ is the weight matrix, b € R" is the bias vector,

Published as a conference paper at ICLR 2025

broadcasted across all neurons, and X € R™** is the input matrix, where each column represents
an input vector. Each neuron is an individual row of W, and we collect individual scalar elements
from the corresponding row in Y as the output distribution for that neuron.

We focus our analysis in Pythia-1.4B (Biderman et al) |[2023), Llama-2-7B (Touvron et al., 2023,
and Llama-3-8B (Dubey et al., [2024)). Most neurons exhibit a reasonably Gaussian output distribu-
tion after their dot product with the input vector (Figure[Th, 2h). However, we find the existence of
a small group neurons with highly non-Gaussian outputs (Figure[T{d, [2c) in all FFNs (Figure [AT).

To characterize the degree of difference in terms of the shape of these distributions—the non-
Gaussian output distributions of certain neurons with the Gaussian-like output distribution of most
neurons—we considered several metrics, such as entropy. However, the Wasserstein distance (WD)
(Kantorovich, 2006; |Villani et al.l 2009) proved to be the most effective metric for quantifying this
difference. In optimal transport theory, the WD measures the minimal transportation cost between
two distributions, taking their geometry in real space into account.

To find the WD of every neuron to the Gaussian N, we crucially first normalize the output distribu-
tions of each neuron n to have zero mean and unit variance, and compare this normalized distribution
n’ to N'(0,1). This normalization is performed because the range of neuron output distributions is
quite variable, and we wanted to prioritize the differences in the shape of the distributions, rather
than other properties. We use the 1-Wasserstein distance in one dimension, as shown in Equation [T}

Wl(n’,/\f):/o IF1(2) — o1 (2)|dz. 0

F~1and ¢~ are the inverse cumulative distribution function of n’ and NV'(0, 1), respectively, which
can be approximated with empirical data. To compute the WD of every neuron efficiently, we use
the SciPy implementation (Virtanen et al., 2020). When computing the difference metric in this
way, we find that our originally observed neurons (Figure[T[d, [A8{d) have been designated correctly
with high WD to A/. We thus term these neurons “Wasserstein neurons.” We also observe little
overlap between neurons with high mean weight magnitudes and Wasserstein neurons (Figure[A4p).

We additionally analyze Pythia-1.4B across its training, from network initialization to the final step.
We find that Wasserstein neurons do not seem to receive more weight updates than other neurons
(Figure[AZh). Interestingly, we also find that Wasserstein neurons arise relatively early on in training,
within 10-20 billion tokens (Figure [AZb). This phenomenon is likely related to and a manifestation
of other observations that fundamental model training dynamics rapidly stabilize, such as the rank
of the gradient or the largest eigenvalue of the loss hessian (Gur-Ari et al., [2018; Zhao et al.| 2024;
Noci et al.,[2024). We leave further investigations into this crucial training period to future work.

2.2 WASSERSTEIN NEURONS AND ENTANGLEMENT

Here, we define and study the notion of entanglement of these Wasserstein neurons in greater detail
by positing a new avenue to investigate entanglement. According to superposition theory, as the
number of features increases relative to the number of neurons, features are forced to become non-
orthogonal in order to represent more of them, thus increasing entanglement (Elhage et al.| [2022).
Consider neurons that must attend to multiple of these features. As the number of features increases,
and different features are forced to become more similar in direction, such neurons must still manage
to distinguish between them. Therefore, in this context, neurons that are highly entangled have the
task of differentiating between similar input vectors, and mapping them to different output values.

To mathematically explore this concept, we study the input-output (IO) relationship of individual
neurons. We introduce the metric “mapping difficulty” (MD), which measures how often a neuron
must generate dissimilar outputs from similar inputs through its dot product computation. The MD
for a particular neuron, given its weights and a set of inputs, is calculated as follows (Equation [2)):

_ llyi — ysll ||z — ;]|
MD(M)—@%{(v,)/ TN

No= max {llo;—ayl}, N, = median{l[s;]}

Published as a conference paper at ICLR 2025

x; and x; represent two distinct input vectors from the set of inputs X. y; and y; represent the two
output scalars as a result of the dot product of an individual neuron’s weights w with the inputs.
For every pair of inputs, we compute the L? norm of their difference, then scale the norms between
zero and one using the maximum norm N,. We then compute the L? norm of the difference in their
corresponding outputs, and normalize them with the median norm N,,. More details on the rationale
behind the normalizing factors can be found in Appendix [A:8] The MD of a neuron can thus be
calculated as the average of the ratio between the normalized difference in outputs to the normalized
difference in inputs. Intuitively, a greater MD means that a neuron generally increases the separation
of similar inputs into more dissimilar outputs.

(a) Random Neuron (b) Random Neuron (c) Entangled Neuron (d) Entangled Neuron (e) Entanglement
Output Distribution 10 Relationship Output Distribution 10 Relationship Degree

Density

Mapping Difficulty

Density
Normalized Output L2
Normalized Output L2

02 04 06 08 10 -5 -4 -2 -1 12

6 2 -3 0
Normalized Input L2 Output Value

02 4 06 08 10 00 o1 03 04 05
Normalized Input L2 Wasserstein Distance

-4 -2 0
Output Value

Figure 2: A measure of neuronal entanglement. (a) The output distribution of a random neuron. (b)
The normalized L? plot of a random neuron’s pairs of inputs and outputs. (c) The output distribution
of a Wasserstein neuron. (d) The normalized L? plot of a Wasserstein neuron’s pairs of inputs and
outputs. This neuron must map fairly similar inputs to outputs that are very far apart through its
dot product operation. The neurons are from the up projection matrix of the second FFN block in
Pythia-1.4B. (e) The MD of a neuron is highly correlated with its WD. The selected random and
Wasserstein neurons are highlighted in their respective colors.

For the two neurons we have selected before, we plot the normalized L? for pairs of inputs
(l|&; — x;||/Ns) and outputs (||y; — y;||/Ny), as defined in Equation 2| These inputs and out-
puts were collected over the course of running the Wikitext-2 dataset (Merity et al., |2016)) through
Pythia-1.4B. For the random neuron, as the difference between inputs decreases, so too does the dif-
ference between outputs (Figure |Zb). However, for the Wasserstein neuron, this is not the case—even
relatively similar inputs are mapped to outputs almost as far apart as the entire range of the neuron
(Figure |ZH). A clear trend between the MD of a neuron and its WD emerges (Figure Eh), and the
two measures are highly correlated. Thus, we propose the WD of a neuron’s output distribution to a
Gaussian as a novel metric of entanglement, with Wasserstein neurons being particularly entangled.

2.3 EFFECT OF HIGH WASSERSTEIN NEURONS ON SPARSIFICATION

In the previous section, we have related Wasserstein neurons to a novel formulation of entanglement.
Now, we show that such neurons also have a substantially outsized effect on model performance un-
der sparsity. In Llama-3-8B, if just 3% of all neurons—those with the highest WD—are sparsified
via SparseGPT in every FFN, model performance significantly degrades. This degradation is far
more severe than when 3% of random neurons are sparsified, and remains true when compared to
sparsifying the same number of other important neurons, such as those with the greatest mean and
variance in their output distributions and even those with the greatest mean weight magnitude. As
compression increases, this effect becomes more obvious (Figure Eh). Therefore, Wasserstein neu-
rons are crucial for maintaining accuracy and are severely limited in their ability to be compressed.

To better understand which specific capabilities are impacted by neuron entanglement, we evalu-
ate the Llama-3-8B model with its Wasserstein neurons sparsified across several language model
evaluation benchmarks. We select five tasks spanning four broad categories, similar to the original
Llama-3 work (Dubey et al., 2024). For reading comprehension, we use the 1-shot variant of the
SQuAD 2.0 dataset (Rajpurkar et al.,|2018). To assess knowledge reasoning and mathematical capa-
bilities, we evaluate the model on the 5-shot TriviaQA-Wiki (Joshi et al.,[2017) and 5-shot GSM8K
(Cobbe et al., [2021) datasets, respectively. Finally, to evaluate general reasoning, we test the model
on two benchmarks: an easy task, 5-shot MMLU (Hendrycks et al., 2020), and a more challenging
task, 3-shot Chain-of-Thought (CoT) Big Bench Hard (BBH) (Suzgun et al.| [2022).

Published as a conference paper at ICLR 2025

(a) Sparsifying Wasserstein (b) Ablation sparsity: 90% (c) Ablation sparsity: 95% (d) Ablation sparsity: 97%
MMLU

neurons hurts the most

High Mean

—— High Variance

101 — High Mean Weight
—— Random

9] — Wasserstein
-=-- Dense Model

Perplexity

70% 75% 80% 85% 90% 95%
Sparsity

Figure 3: Entangled neurons are much more sensitive to compression. In Llama-3-8B, 3% of neu-
rons from every FFN linear layer are sparsified via SparseGPT in an unstructured manner with a
subset of the Wikitext-2 train dataset as calibration data. (a) Sparsifying Wasserstein neurons (blue)
impairs the model more than sparsifying neurons with the highest output distribution means (orange)
and variances (green), those with the highest average mean weight magnitude (purple), and consid-
erably more than random neurons (red). Perplexity is measured on the Wikitext-2 test dataset. (b-d)
Sparsifying the Wasserstein neurons (blue) affects general and mathematical reasoning much more
than random neurons (red), as shown in the capability charts. At higher levels of neuron sparsity
(> 95%), ablating Wasserstein neurons leads to a collapse in model performance, which does not
occur with random neurons.

Our findings reveal that when just a small fraction of neurons (the top 3% Wasserstein neurons) are
sparsified, the model’s performance on complex tasks involving general reasoning and mathematical
understanding is significantly impacted. However, when the same level of sparsification is applied
to random neurons, the model is able to preserve most of its capabilities effectively. Additionally,
as a neuron is increasingly sparsified, the output distribution becomes more Gaussian (Figure [A9}
[AT0). This in turn places even more stress upon the neuron—not only is it contending with de-
creasing mean and variance of the output distribution (Figure[ATT), but also with the less expressive
distribution shape. Thus, it seems that, especially at the higher sparsities that we are analyzing, the
irregular shape of the entangled neurons is much more challenging to model with fewer weights
than a Gaussian-like distribution. Furthermore, partially due to their slightly lower mean weight
magnitudes (Figure [Adh), Wasserstein neurons are actually sparsified more by SparseGPT during
unstructured sparsity, compounding this issue (Figure[Adb). However, keeping Wasserstein neurons
dense at the cost of sparsifying all other neurons even more also does not seem to be the solution
(Appendix [A.7). To investigate the difficulty of sparsifying entangled neurons and the relationship
between superposition and performance, we introduce Sparse Expansion.

3 AN EXPERIMENTAL FRAMEWORK TO STUDY DISENTANGLEMENT

To better study Wasserstein neurons and the phenomena between entanglement, sparsity, and per-
formance that we observe, we create the experimental framework Sparse Expansion. It is inspired
by recent work on the theoretical limits of computation within superposition (Hénni et al., 2024;
Adler & Shavit, 2024). Sparse Expansion was designed to achieve two goals in real-world models.
First, it must originate from a trained dense model and not be retrained. This way, the dynamics
of a single neuron, in particular Wasserstein neurons, can still be studied in depth after the model
has been expanded. Second, from a theoretical perspective, it must test how varying the number of
effective features in the input affects the number of required weights. Therefore, the relationship
between superposition and sparsity the can be further understood.

3.1 SPARSE EXPANSION IN DETAIL

Sparse Expansion clusters the inputs to each layer into separate groups via an optional PCA di-
mensionality reduction and K-means clustering. Each expert is then sparsified via the SparseGPT
algorithm (Algorithm [AT). Briefly, SparseGPT approximates the optimal sparse matrix of a layer
with the Hessian of the error relative to the parameters of the layer Y = W X + b. Doing so yields
H = X X7, where H is the Hessian matrix.

Published as a conference paper at ICLR 2025

Sparse Expansion Expert Creation Sparse Expansion FFN Inference
Hessian H,
Cluster C, . Sparse Expert W,
-. SparseGPT Pruning USparse II

p Proj. l
Expert

Gate Proj. "

Dimensionality
Reduction and
Clustering

Up and
Gate Proj.
Router

q Sparse
Down Proj. Dovfn Proj
Router E, Expor 2

Hessian H, °

. Sparse Expert W,

= —rpT o™
SparseGPT Pruning

Figure 4: The Sparse Expansion process. One-shot expert creation process of Sparse Expansion
(left). Inference process in a FFN of an expanded model (right).

During inference, each input will be passed through the PCA and K-means model to decide its
expert, then routed to the corresponding expert for the matrix multiply (Algorithm [A2). As the
routing is done via K-means on a lower dimension, and the PCA is a very low dimension matrix
multiply operation, both are inexpensive to add on to normal LLM inference. Furthermore, routing
in this manner prevents the need to train and run a more expensive router.

Our design explicitly achieves the goals we set out. First, by starting from a dense model, we are
able to study how the separation of inputs affects individual neurons, which we would not be able to
do for the same neuron index across experts in a MoE model such as Mixtral (Jiang et al., 2024) and
DeepSeek (Guo et al.l[2025). Second, by utilizing SparseGPT, each expert has its weights sparsified
and tailored to a subset of inputs, testing the theoretical limits of how many weights are necessary
to model a given number of features.

3.2 SPARSE EXPANSION DISENTANGLES NEURONS

We revisit the output distributions of neurons to determine the effect that clustering has in a sparse
setting. First, we repeat the sparsification experiment conducted in Figure [3]on Wikitext-2 in Llama-
3-8B. Now, for just the neurons we pruned, we expand them into 16 experts and measure the recovery
in performance. Sparse Expansion is able to recover significant performance following Wasserstein
neuron sparsification, much more than it does during random neuron expansion. However, the
recovery in performance for random neurons is not as noticeable, because these neurons were not
under significant entanglement initially (Figure Ph). Furthermore, both the weighted cluster WD
and weighted cluster MD of the majority of neurons decreases as a result of Sparse Expansion.
The weighted cluster WD and MD are calculated as the average WD and MD within each cluster,
weighted by cluster size. This is especially true for Wasserstein neurons, where 98% of neurons
have a decrease in weighted WD by a median of 42% per neuron (Figure 5p), and where 96% of
neurons have a decrease in weighted MD by a median of 9% per neuron (Figure [5t).

For Llama-2-7B (Figure [I) and Pythia-1.4B (Figure [A8), both models and both neuron
types—random and Wasserstein—improve through Sparse Expansion, with the entangled neuron
showing greater improvement. Furthermore, for the random neuron and especially for the entan-
gled neuron, the geometry of the sparse output distribution in Sparse Expansion much more closely
matches that of the dense distribution.

We also provide a visualization for the specialization of each cluster. Figure [l|and Figure |A8|each
show the sparse output distributions of each individual cluster, with a different color per expert. For
the randomly selected neurons, there is still an improvement, although each expert is for the most
part responsible for approximately the same range and shape. For the entangled neurons, there is
significant specialization for different parts of the distribution further away from the mode.

However, Sparse Expansion is not limited to improving just Wasserstein neurons. Across different
sparsities and across different models, all but a tiny fraction of neurons improve through Sparse
Expansion (Figure [AT2). Thus, like other work regarding polysemanticity (Lecomte et al., 2023}
Bricken et al.l [2023)), we believe that, in fact, every neuron is to some extent in entanglement.
However, Wasserstein neurons are the most obviously entangled ones, and they benefit more from
sparse disentanglement, especially at higher sparsities. Finally, we note that other metrics of the
dense neuronal output distribution, such as their means and variances, fail to act as a predictor of
neuronal improvement to the degree that the Wasserstein distance to a Gaussian does (Figure

Published as a conference paper at ICLR 2025

(a) Recovery in Sparse Expansion (b) Sparse Expansion reduces WD (b) Sparse Expansion reduces MD
6

-

—— Wasserstein
-- Wasserstein SE
—— Random
-~ Random SE

y=x y=x

=
°
-

°
2
©

3

°
~

Normalized Perplexity

~

s
Weighted cluster mapping difficulty

Weighted cluster Wasserstein distance
°

05 06 15 20

25 30 35 40 45
Dense mapping difficulty

0
0% 75% 80% 85% 90% 9% 0o o1
Sparsity Dense Wasserstein distance

Figure 5: Sparse Expansion recovers performance of Wasserstein neurons. (a) Although Wasserstein
neurons are penalized more under sparsity, they also recover better in Sparse Expansion compared to
random neurons. We quantify this recovery using normalized perplexity relative to the dense model.
Data from Llama-3-8B. (b) As a result of Sparse Expansion, the median decrease in WD per neuron
is 19%. Although a few neurons with an initially low dense WD exhibit a higher average weighted
WD, the majority (68%) of all neurons show a decrease in weighted WD. This is especially true in
the top 10% of neurons with an originally high WD—the Wasserstein neurons. (c) Sparse Expansion
also decreases the weighted MD by a median of 2% per neuron. 70% of all neurons and 96% of
Wasserstein neurons show a decrease in weighted MD, the latter with a median decrease of 9% per
neuron. (b, c) Data collected from of the up projection matrix in the second FFN of Pythia-1.4B.

[AT3). Thus, we believe that the WD to normal for a neuron’s output distribution is a very suitable
and intuitive metric of entanglement within a neuron.

3.3 MORE SPARSE EXPERTS BETTER FIT THE OUTPUT DISTRIBUTION

The complex dense output distribution of highly entangled neurons is difficult to model with a single
sparse expert, as in the case of SparseGPT. In Figure[6] we show the output distribution of a Wasser-
stein neuron in both dense and sparse computation. As the number of sparse experts increases, the
output distribution of the sparse computation more closely matches that of the dense computation, as
measured in the WD between the two distributions. Furthermore, the relative improvement (RI) of
Sparse Expansion over SparseGPT increases. In this paper, RI is measured as the ratio of the RMSE
between the SparseGPT sparse computation and the dense computation, to the RMSE between the
Sparse Expansion sparse computation and the dense computation.

1 Cluster 2 Clusters 4 Clusters 8 Clusters 16 Clusters

‘WD: 0.27 WD: 0.20 WD: 0.16 ‘WD: 0.12
RI: 1.00 RI: 1.24 RI: 1.31 RI: 1.65

Frequency

Sz g
Output Value

Figure 6: Modeling recovery with more experts. The sparse computation output distribution (red)
better matches the dense one (blue) with more clusters. Sparsity is set to 90% for each expert.
Here, WD refers to the Wasserstein distance between the Sparse Expansion sparse and dense output
distributions, rather than to a Gaussian. RI represents relative improvement of Sparse Expansion
(n > 1 clusters) over SparseGPT (n = 1 cluster). This is the same neuron from Figure 2.

3.4 WASSERSTEIN DISTANCE BEST EXPLAINS IMPROVEMENT

So far, we have claimed that Wasserstein distance is not only a pertinent indicator of neuronal entan-
glement, but also a predictor of its improvement in Sparse Expansion over SparseGPT. To test this
idea, we compare how well the RI is modeled by a neuron’s output WD, mean output magnitude,
and output variance. Of these metrics, a neuron’s Wasserstein distance is most correlated with its
improvement in sparse computation from disentanglement (Figure [7} [AT3).

Published as a conference paper at ICLR 2025

Wasserstein distance best explains improvement from Sparse Expansion

S
=)
B
>
N}
n
o
=)
S

2.01 R™2=0.15 2.01 R*2=0.11 : 2.01 R*2=0.19

Relative improvement
= g I
s o @

-
S

5 10 15 0 2 4 6 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6
Optimal number of Gaussians Mean magnitude Variance Wasserstein distance

Figure 7: Wasserstein distance best explains improvement among tested metrics. The RI of each
neuron in Pythia-1.4B was calculated as before and compared against the optimal number of Gaus-
sians needed to model its output distribution (gray), the average magnitude of its output distribution
(orange), the variance of its output distribution (green), and the Wasserstein distance of its output
distribution to normal (blue). For each metric, the line of best fit is calculated, and the coefficient
of determination R? is found. For each optimal number of Gaussians, the mean improvement is
marked. Of these metrics, the Wasserstein distance best correlates with relative improvement. Data
collected from of the second up projection layer in Pythia-1.4B.

In addition, we test whether the estimated number of components in a Gaussian mixture model
(GMM) is enough to explain the improvement as a result of disentanglement. Specifically, given
a neuronal output distribution, we applied Gaussian mixture modeling to determine the optimal
number of Gaussians required to model the distribution, using the Bayesian Information Criterion
(BIC) for evaluation. BIC is a metric that penalizes model complexity and tries to identify the
minimum number of Gaussians which can optimally model the distribution. However, when testing
the optimal number of Gaussians between one and sixteen models, our findings indicated almost no
correlation (R? < 0.001) between the optimal number of Gaussians and the relative improvement
in the Sparse Expansion setup, as seen in Figure Thus, in our experiments, we find that the
Wasserstein distance is a better indicator than others that we have tested.

3.5 THEORETICAL IMPLICATIONS OF SPARSE EXPANSION

Recent theoretical work (Hanni et al., [2024; |Adler & Shavit, 2024)) investigates the algorithmic up-
per and lower bounds of polysemantic neuronal computation in toy examples. To explore empirical
evidence along this body of work for real-world models, we investigate the improvements made by
Sparse Expansion in Pythia-1.4B in 80% unstructured sparsity. We estimate the approximate num-
ber of effective features a set of inputs has by applying PCA to the set and finding the minimum
number of components required to reach 90% explained variance. As expected, the average mini-
mum required components for the inputs to the experts, weighted by the number of inputs in each
group, decreases after clustering for every FFN weight matrix (Figure [8h).

To provide empirical evidence on the bounds of computation under entanglement, we explore mod-
eling ability compared to the number of input features. To identify a bound for minimum error under
sparse computation, we consider the RMSE of each clustered sparse output to the dense output, nor-
malized to the overall RMSE for that layer as a proxy for computational ability. We compare this
to the number of required PCA components for said cluster as before. Across all clusters in all
layers of the network, there is a linear front that emerges in log-log scale: as the number of required
components increases, so too does the minimum error (Figure). Next, we consider the bound
on maximum improvement in sparse computation under entanglement. When a cluster has fewer
effective features, since each expert has the same number of parameters, Sparse Expansion allocates
relatively more parameters to model these features than SparseGPT does, as the latter must ac-
count for all inputs. However, when a cluster has many required components, Sparse Expansion and
SparseGPT allocate a similar amount of parameters, leading to relatively lower improvement. There-
fore, performance improvements increase with fewer effective features. However, beyond a certain
point, adding more features no longer yields further performance gains. This trend is also visible in
the linear frontier of the log-log plot (Figure [8c). Thus, we provide some empirical demonstrations
of the existence of bounds of both loss and improvement of sparse computation under entanglement.

Published as a conference paper at ICLR 2025

(a) Clustering decreases (b) Emperical bound for (c) Emperical bound for
required components ini error maximum improvement

3500 . .
« Up projection layer . Y . Upproj
« Down projection layer 3 cluster

3000

Down proj
° cluster

2500

2000

1500

Normalized RMSE
Relative improvement

1000 ‘N L e . . . Uppro
o e : . cluster

Required components for clusters

Down proj
® cluster 10°

500 1000 1500 2000 2500 3000 3500 100

10’ 10% 10° 10
Required components for all inputs Required components

10t 0 109
Required components

Figure 8: Empirical demonstrations of performance bounds. (a) As a result of clustering, the
weighed average minimum number of components to capture 90% of the explained variance de-
creases for every layer. (b) As the number of required components for a particular cluster increases,
so too must the error. (¢) As the number of required components for a particular cluster decreases,
Sparse Expansion improves more over SparseGPT, but up to a bound. Data collected in Pythia-1.4B.

3.6 SPARSE EXPANSION PERFORMANCE

We evaluate how well Sparse Expansion performs against other competitive one-shot pruning tech-
niques, including in terms of inference speed (Table[A3)). Despite its leading evaluation performance
(Figure [0} Table [AT] [A3)), this method is likely not practically implementable without further opti-
mizations to counteract the increase in memory footprint, including tuning the number of clusters
per neuron (Figure [A3). Nevertheless, we hope that Sparse Expansion serves as an inspiration for
future sparsification techniques that address entanglement for better performance.

3.6.1 MODELS, DATASETS, AND SETUP

We use the Pythia series of pre-trained LLMs to evaluate how Sparse Expansion performs across
model sizes, from Pythia-70M to Pythia-12B. We further evaluate Sparse Expansion across the entire
Llama-2 family. We use a subset of the Wikitext-2 train dataset as calibration data for input-aware
pruning and evaluate using the corresponding test set through the perplexity metric. Furthermore,
to evaluate the performance of Sparse Expansion in out-of-distribution (OOD) data, we evaluate the
sparse model in 5 zero-shot standard benchmark tasks in both Llama and Pythia. For our perfor-
mance benchmarks, we use 16 clusters at each level of routing in Sparse Expansion. We rely upon
the RAPIDS library (Raschka et al.,|2020) to accelerate the PCA and K-means models by orders of
magnitude. We utilize and build upon the SparseGPT GitHub repository.

3.6.2 PERFORMANCE ACROSS SCALES

We evaluate the performance of Sparse Expansion against other one-shot pruning techniques across
a range of model sizes in Pythia and sparsities in Llama-2-7B (Figure [0). Across all model sizes
of Pythia, Sparse Expansion outperforms all other pruning techniques at 50% unstructured sparsity,
approaching dense performance as model size increases. Moreover, for Llama-2-7B, across all levels
of sparsity, Sparse Expansion outperforms all other techniques. At higher levels of sparsity, the gap
in performance between the techniques grows. We run further experiments on the entire Llama 2
family as well, and Sparse Expansion similarly outperforms other methods (Table [A3)). Finally,
our experiments show Sparse Expansion outperforming contemporary pruning algorithms in OOD

settings as well (Table[AT] [A2).

4 RELATED WORK

Polysemanticity There is a plethora of ongoing research contributing to the understanding of pol-
ysemanticity in neural networks from a mechanistic interpretability perspective (Bricken et al., 2023
Huben et al., 2023} Lecomte et al., 2023} Templeton| 2024). These efforts primarily rely upon sparse
autoencoders to disentangle output activations into human-interpretable features, losing information
specific to individual neurons in the process. As we focus on neurons due to their direct role in
network pruning, we derive our own formulation of entanglement as an extension of prior notions.
There are also other works that investigate individual neuronal responses directly utilizing tech-

Published as a conference paper at ICLR 2025

(a) Performance Across Sizes (b) Performance Across Sparsities

1.0 =k~ Dense -~ Dense
=k— Magnitude —8— Magnitude
Wanda 28 Wanda

=h— SparseGPT —@— SparseGPT
—k— Sparse Expansion —8— Sparse Expansion

24

2.0

Cross Entropy Loss (log PPL)
w
°

10-1 100 10! 10% 20% 30% 40% 50% 60% 70% 80%
Activated Parameters per Inference (Billions) Effective MLP Sparsity per Inference

Figure 9: Sparse Expansion across model sizes and sparsities. (a) Performance comparisons on
Wikitext-2 perplexity between Magnitude Pruning (MP), Wanda, SparseGPT, and Sparse Expansion
on Pythia models from sizes of 70M parameters to 12B parameters. Every FFN in each model
was sparsified to 50% sparsity. Each star represents a particular model size on the dense curve,
and the corresponding sparsified model is the marker directly to its left on the sparse curves. (b)
Performance for Llama-2-7B at different levels of sparsity for MP, Wanda, SparseGPT, and Sparse
Expansion. The x-axis points in both graphs take into account the cost of routing.

niques such as sparse probing (Gurnee et al.l 2023)), as well as those that identify special neuron
types in LLMs, such as Universal neurons (Gurnee et al., 2024) and Confidence Regulatory neu-
rons (Stolfo et al., [2024). However, there is no recent literature tying polysemanticity and neuronal
entanglement to sparse network performance.

Compression A multitude of advanced weight pruning algorithms, such as Wanda (Sun et al.}
2023)) and SparseGPT (Frantar & Alistarh, 2022), and quantization algorithms (Kim et al., 2023
Dettmers et al., 2022; |/Ashkboos et al.| [2024; |[Egiazarian et al., 2024; Dettmers et al.l 2023} |[Zhao
et al., 2023} [Lin et al. [2024) exist. Most advanced algorithms are input-aware so as to specialize
the weights to the most important input features. Other pruning approaches, such as SWAP (You &
Cheng| 2024)) and WD-based channel pruning (Duan & Li, [2020), have also used WD, though for
the gradient of the loss or for channel similarity, rather than for analyzing neurons. While outliers
in the features and weights are known to be the among the most challenging factors to address when
quantizing to extremely low bits, no equivalent understanding has been made for high sparsities.

5 CONCLUSION AND DISCUSSION

In this work, we for the first time demonstrate the impact of neuronal entanglement on network
performance under weight sparsity, a previously unexplored avenue. From our work and others, we
suspect that every neuron is to some extent entangled, but that this entanglement of features is easier
for some neurons to resolve than it is for others. We explore this notion of entanglement through our
metric of mapping difficulty, and find that Wasserstein distance is a novel, highly pertinent indicator
of entangled neurons that must differentiate similar inputs into different outputs. Furthermore, as
Wasserstein neurons in particular are incredibly sensitive to sparsification, we posit that the robust-
ness of a neuron to sparsity is directly dependent on its degree of entanglement. Finally, we have
shown that our experimental framework Sparse Expansion is an effective way to disentangle the
complex entangled state of a sparse neuron, and use it to explore computational bounds in empir-
ical real-world models. The disentanglement provided by Sparse Expansion benefits Wasserstein
neurons the most, providing further support that such neurons are the most entangled.

In future work, we plan to study Wasserstein neurons in the framework of mechanistic interpretabil-
ity to understand what circuits they form. From our insight that more entangled neurons are harder to
sparsify, we will investigate creating efficient, entanglement-aware sparsification algorithms to pre-
serve performance at higher sparsities. Looking forward, perhaps just as outlier features and weights
are well understood to be one of the most significant challenges when quantizing to fewer bits, so
too can neuronal entanglement be understood as the challenge of pruning to higher sparsities.

10

Published as a conference paper at ICLR 2025

6 ACKNOWLEDGMENTS

The authors would like to extend their gratitude to Lori Leu for her insightful comments on the
application of the Wasserstein distance metric. We also wish to thank Elias Frantar for his help in
working with the SparseGPT implementation and his advice for the project. Additionally, we would
like to thank Tony Tong Wang and Thomas Athey for their valuable feedback and constructive
discussions.

This work was supported by an NIH Brains CONNECTS UO01 grant and AMD’s Al & HPC Fund.

11

Published as a conference paper at ICLR 2025

REFERENCES

Micah Adler and Nir Shavit. On the complexity of neural computation in superposition. arXiv
preprint arXiv:2409.15318, 2024.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear algebraic struc-
ture of word senses, with applications to polysemy. Transactions of the Association for Compu-
tational Linguistics, 6:483-495, 2018.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated 1lms. arXiv
preprint arXiv:2404.00456, 2024.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397-2430. PMLR, 2023.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, et al. Towards monosemanticity: Decom-
posing language models with dictionary learning. Transformer Circuits Thread, 2, 2023.

Roberto Lopez Castro and Dan Alistarh. Sparse marlin: a fast sparse plus 4-bit kernel for generative
inference. https://github.com/IST-DASLab/Sparse—Marlin, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318-30332, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized repre-
sentation for near-lossless 1lm weight compression. arXiv preprint arXiv:2306.03078, 2023.

Haoran Duan and Hui Li. Channel pruning for accelerating convolutional neural networks via
wasserstein metric. In Proceedings of the Asian Conference on Computer Vision, 2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan Al-
istarh. Extreme compression of large language models via additive quantization. arXiv preprint
arXiv:2401.06118, 2024.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
tion. arXiv preprint arXiv:2209.10652, 2022.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475-4488,
2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323-10337. PMLR, 2023.

Elias Frantar and Dan Alistarh. Marlin: a fast 4-bit inference kernel for medium batchsizes. https:
//github.com/IST-DASLab/marlin, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

12

https://github.com/IST-DASLab/Sparse-Marlin
https://github.com/IST-DASLab/marlin
https://github.com/IST-DASLab/marlin

Published as a conference paper at ICLR 2025

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754, 2018.

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris Bert-
simas. Finding neurons in a haystack: Case studies with sparse probing. arXiv preprint
arXiv:2305.01610, 2023.

Wes Gurnee, Theo Horsley, Zifan Carl Guo, Tara Rezaei Kheirkhah, Qinyi Sun, Will Hathaway,
Neel Nanda, and Dimitris Bertsimas. Universal neurons in gpt2 language models. arXiv preprint
arXiv:2401.12181, 2024.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Kaarel Hinni, Jake Mendel, Dmitry Vaintrob, and Lawrence Chan. Mathematical models of com-
putation in superposition. arXiv preprint arXiv:2408.05451, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. Journal of
Machine Learning Research, 22(241):1-124, 2021.

Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse
autoencoders find highly interpretable features in language models. In The Twelfth International
Conference on Learning Representations, 2023.

Adam S Jermyn, Nicholas Schiefer, and Evan Hubinger. Engineering monosemanticity in toy mod-
els. arXiv preprint arXiv:2211.09169, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Leonid V Kantorovich. On the translocation of masses. Journal of mathematical sciences, 133(4):
1381-1382, 2006.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023.

Victor Lecomte, Kushal Thaman, Trevor Chow, Rylan Schaeffer, and Sanmi Koyejo. Incidental
polysemanticity. arXiv preprint arXiv:2312.03096, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device 1lm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87-100, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Jesse Mu and Jacob Andreas. Compositional explanations of neurons. Advances in Neural Informa-
tion Processing Systems, 33:17153-17163, 2020.

13

Published as a conference paper at ICLR 2025

Lorenzo Noci, Alexandru Meterez, Thomas Hofmann, and Antonio Orvieto. Why do learning
rates transfer? reconciling optimization and scaling limits for deep learning. arXiv preprint
arXiv:2402.17457, 2024.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 5(3):e00024-001, 2020.

Denis Paperno, German Kruszewski, Angeliki Lazaridou, Ngoc-Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Ferndndez. The lambada dataset:
Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1525-1534, 2016.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822, 2018.

Sebastian Raschka, Joshua Patterson, and Corey Nolet. Machine learning in python: Main develop-
ments and technology trends in data science, machine learning, and artificial intelligence. arXiv
preprint arXiv:2002.04803, 2020.

Alessandro Stolfo, Ben Wu, Wes Gurnee, Yonatan Belinkov, Xingyi Song, Mrinmaya Sachan,
and Neel Nanda. Confidence regulation neurons in language models. arXiv preprint
arXiv:2406.16254, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Adly Templeton. Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet.

Anthropic, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: funda-
mental algorithms for scientific computing in python. Nature methods, 17(3):261-272, 2020.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
W-NUT 2017, pp. 94,2017.

Lei You and Hei Victor Cheng. SWAP: Sparse entropic wasserstein regression for robust network
pruning. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=LJWizuuBUy.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tiangi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving. arXiv preprint arXiv:2310.19102, 2023.

14

https://openreview.net/forum?id=LJWizuuBUy

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 PSEUDO-CODE FOR SPARSE EXPANSION

Algorithm [AT] describes the sparsification process of Sparse Expansion. The sparse experts are
created in a layer-wise sequential fashion for each linear layer of every FFN transformer block to
create the sparse model. Algorithm [A2]refers to the inference procedure of Sparse Expansion once
the model is pruned following the methods described in Algorithm|[AT|and Section[3.1]

Algorithm A1 Sparse Expansion model generation. The following layerwise procedure can be
repeated for each linear layer in the transformer.

1: procedure LAYERWISE SPARSE EXPANSION SPARSIFICATION PROCESS
2: {z} < x; € R™ //set of calibration inputs to layer

W < m xn [//layer weights

¢ //number of clusters

r [//factor to reduce dimensionality by

R <~ PCA(%) //new PCA object with ™ components

Rfit({z}) //fit R to inputs

K + Kmeans(c) //new K-means object with ¢ initial centroids

9: K fit({R(x)}) //fit K to dimensionality reduced inputs

10: for j =1,2,3...cdo

P RDIUN R

11: X; < {z|K(R(z)) = j} [//group {x} into its component clusters
12: W; <~ W //make a copy of the original weight matrix

13: S; < SparseGPT //make a SparseGPT object

14: Wi« S;.sparsify(W;, X;) /lsparsify W; using X

Algorithm A2 Sparse Expansion inference. The following layerwise procedure is repeated at infer-
ence time for each clustered layer.

1: procedure LAYERWISE SPARSE EXPANSION INFERENCE PROCESS
2: {z} < x; € R™ [Iset of inputs to layer
{W?} //set of experts
R //PCA model
K //K-means model
fori=1,2,3...do
j < K(R(x;)) //find the cluster assignment of x
y; < Wj(z;) //run inference with the correct expert

PRDIN AR

15

Published as a conference paper at ICLR 2025

A.2 DISTRIBUTION OF WASSERSTEIN DISTANCES ACROSS ALL LLAMA-2-7B FFN LAYERS
After collecting the Wasserstein distance to the normal distribution for every neuron, we find that
all up and gate projection matrices in each Llama-2-7B FFN block have high WD neurons. We also
find that certain down projection matrices also have high WD neurons, though most do not.

(a) Wasserstein Distances for Neurons in the Up Projection Matrix in Llama 2-7B

o o
>]

o
o

° o
& S

Wasserstein Distance
o
S

e

o
o

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
FFN Block

(b) Wasserstein Distances for Neurons in the Gate Projection Matrix in Llama 2-7B

o]
o =3

o
=

Wasserstein Distance
s o
S &

o

'%##%%%%%%%%%%%#%%%%%%%%%%%%#@%@%

0

o

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
FFN Block

c) Wasserstein Distances for Neurons in the Down Projection Matrix in Llama 2-7B

Wasserstein Distance
o 13 o o
& % & 8

o

e

j# é%i%¥$+$$$+$$Ll$$$%%+$+++iiil$

0 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
FFN Block

o
=S

Figure Al: High Wasserstein distance neurons in each layer. Many neurons with a high WD to
the Gaussian distribution exist in every FFN block, and in every up (a) and gate projection (b)
specifically. Certain down projection layers also have high WD neurons (c). The box plots show the
range of non-outliers, as well as the first quartile, the median, and the third quartile of neuronal WD.
The outliers are defined as 1.5 times the interquartile range less than the first or more than the third
quartile and are represented by the points.

16

Published as a conference paper at ICLR 2025

A.3 SPARSE EXPANSION PERFORMANCE IN OUT-OF-DISTRIBUTION DATA

We evaluate the performance of Llama—3.2—1BE] (Table and Pythia-1.4B (Table on a range
of natural language modeling tasks, including ARC-e (Easy) and ARC-c (Challenge) for arithmetic
reasoning, Lambada (Paperno et al.,[2016) for contextual word prediction, SciQ (Welbl et al.,[2017)
for scientific question answering, and MMLU for multitask general knowledge assessment. As
dense Pythia-1.4B does not score better than random chance on MMLU, we do not benchmark it
on this task. We compare various pruning algorithms at 50% sparsity, including Magnitude Pruning
(MP), Wanda, SparseGPT, and Sparse Expansion with 16 clusters, to the dense baseline. Sparse
Expansion consistently excels across both models, achieving the highest scores on tasks among

sparsification algorithms.

Table Al: Performance of Llama-3.2-1B under different pruning algorithms.

Algorithm Sparsity | ARC-e ARC-¢c Lambada SciQ MMLU
Dense 0% 65.488 31.314 53.969 914 37.701
Magnitude 50% 45.244 22.354 4.677 67.1 23.493
Wanda 50% 50.800 23.635 31.457 852 25428
SparseGPT 50% 55.640 24.403 31.613 86.8 25.046
Sparse Expansion 50% 57.713 26.962 35.807 87.5 28.729

Table A2: Performance of Pythia-1.4B under different pruning algorithms.

Algorithm Sparsity | ARC-e ARC-¢c Lambada SciQ
Dense 0% 61.742 27.389 48.981 86.9
Magnitude 50% 42.003 19.198 1.533 69.0
Wanda 50% 54.630 23.976 45.041 85.7
SparseGPT 50% 56.608 24.061 44.615 85.8
Sparse Expansion 50% 58.449 25.720 46.424 86.3

Zhttps://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/

17

Published as a conference paper at ICLR 2025

A.4 NEURONAL ENTANGLEMENT TRAJECTORY ACROSS TRAINING IN LLMS

Entanglement over the course of LLM training in Pythia-1.4B

(A) Progression of Wasserstein Distance Across Steps

ol
L]

025 ¥ —&— ¥ .

0.20 4

—§— Top 3% WD Neurons
—§— Bottom 3% WD Neurons
—§— Average

0.15

0.10

Wasserstein Distance

0.05

N N
2 LS B

%,
%,

Training Steps
(B) Change of Neuron Weights Across Steps

1.75

1.50

1.25 1

1.00

0.75

0.50 1

Normalized L2 Weight Difference

0.254 —&— Top 3% WD Neurons
——§— Bottom 3% WD Neurons
0.00 —&- Average
o L L H D o N O o o Q Q Q Q 9
S & & F & & & & & & & & &
NN 5 W) & A & b & N) 5 W

Training Steps

Figure A2: Analyzing neuronal entanglement during training. The intermediate checkpoints of
Pythia-1.4B are available over the course of its training, from initialization to completion. Thus, we
collect data from 17 different checkpoints over the course of its training, first at intervals of 5,000
steps, then at intervals of 10,000 steps after step 20,000. (a) We calculate each neuron’s output
distribution WD to a Gaussian as before in Equation[I] We do so for each training step. From the
WD of neurons in the last training step, we separate out the top 3% of neurons with the highest WD
and the bottom 3% of neurons with the lowest WD. We also find the average WD across all neurons.
The progression of neuronal WD across training reveals that all neurons initially exhibit a Gaussian-
like distribution, as expected, but some neurons rapidly differentiate into entangled neurons with
very high WD and within just 5,000 steps (corresponding to approximately 10 billion tokens). The
WD of such neurons then levels off afterward. (b) Using the same groups as in (a), we visualize
the change in neuronal weights. We calculate the L? norm between each neuron’s weights at each
training step and its weights at model initialization (step 0), and normalize this value by the L? norm
of the neuron’s weights at initialization. Notably, neurons with high WD do not demonstrate more
changes in their weights over the course of training than the average neuron, or neurons with low
WD. Error bars represent one standard error of the mean. Neurons are from the up projection matrix
in the second FFN block of Pythia-1.4B.

18

Published as a conference paper at ICLR 2025

A.5 OPTIMIZATIONS FOR PRACTICAL IMPLEMENTATION

To evaluate the inference latency of Sparse Expansion we implemented a Sparse Expansion layer
based on PyTorch and optimized sparse-quantized GPU kernels called Sparse Marlin (Frantar &
Alistarh, 2024 [Castro & Alistarh| [2024), which supports the INT4 + 2:4 sparsity format. To better
utilize the compression kernel, we use both sparsification and quantization to demonstrate speedup.
We use a linear layer of appropriate size as an upper bound approximation for our router cost, which
is followed by 4 bit, 2:4 sparse matrix multiplication. We have run the layer-wise benchmarks for
the typical layers sizes from Llama models on a single RTX3090 GPU. We can see in Table[A3]that
Sparse Expansion allows us to get up to a 4.8 x speedup over the dense baseline. The speedup comes
from the highly-compressed linear layer representation. Although there is overhead compared to a
regular compressed matrix due to the presence of the router, such overhead decreases as layer size
increases.

Table A3: Sparse Expansion inference speedup. Layer-wise single batch inference latency (in us).
The layer sizes are chosen specifically to match the layers of Llama-2-7B and Llama 2 70B.

| Layer Size I 4k x 12k [4k x 22k [11k x 4k | 8k x 10k [8k x 57k [28k x 8k |
Dense 132 227 114 220 1168 556
Sparse Expansion 76 76 75 76 241 138
Speedup 1.7x 3.0x 1.5% 2.9% 4.8x% 4.0x
Sparse 26.8 447 24.4 423 216 109
Overhead 2.9x% 1.7x 3.1x 1.8x% 1.1x 1.3%

Additionally, we investigate how many experts different neurons need to improve performance. We
find the relative improvement of each neuron, as defined in Section @ across a different number
of total experts. Specifically, we choose 2, 4, 8, and 16 experts for Sparse Expansion, compared to
SparseGPT with its single expert. In this setting, we analyze the top 3% of neurons with the high-
est WD as well as the bottom 3% of neurons with the lowest WD, as defined before (Equation EI)
We observe that Wasserstein neurons benefit far from Sparse Expansion than average for increasing
clusters (left). Additionally, we split neurons into decile groups based on their relative improvement
at 16 clusters. We find that, indeed, certain groups of neurons benefit very little from further addi-
tional experts past eight experts (right). Thus, further optimizations can be made to reach a balance
between performance and memory increase.

Variation in neuronal improvement across the number of clusters

1.30 1.30
—— Top 3% WD neurons
—— Bottom 3% WD neurons
1.25 { —+ Average 1.251
-
=1
[
g 1.20 1.204
[
>
o
a2 1.15 1.151
E
; 1.10 1.104
b=|
T — [min,D1) — [D5, D)
g 1.05 1.051 —— [D1,D2) —+ [D6, D7)
—+ [D2, D3) [D7, D8)
—+— [D3,D4) [D8, D9)
1.00 1.001 —— D4, D5) [D9, max]
12 4 8 16 12 4 3 16
Number of clusters Number of clusters

Figure A3: Improvement across clusters for different groups of neurons. (a) Wasserstein neurons
benefit much more from Sparse Expansion than average with increasing clusters. (b) Different
deciles of neurons have varying degrees of improvement from Sparse Expansion. Dn indicate the
deciles from D1 to D9. The decile groups are decided by their relative improvement at 16 clusters.
For example, the first decile group consists of relative improvements between the minimum and D1
at 16 clusters, the second decile group consists of relative improvements between D1 and D2 at
16 clusters, and so on. Error bars represent one standard error of the mean. Neurons from the up
projection matrix of the second FFN block of Pythia-1.4B.

19

Published as a conference paper at ICLR 2025

A.6 WASSERSTEIN NEURONS DO NOT HAVE PARTICULARLY HIGH WEIGHTS

To understand whether Wasserstein neurons arise from having substantially higher weights than av-
erage, we measure the mean weight magnitude for each neuron. We find that Wasserstein neurons
do not have weight magnitudes that are particularly above average; if anything, there seems to be
a slight negative correlation between a neuron’s WD and its mean weight magnitude (Figure [Adp).
To investigate how this difference affects sparsification, we sparsify this layer to 80% unstructured
sparsity via SparseGPT, calibrated with Wikitext-2. This takes into account both weight magnitude
as well as the influence of the inputs via the Hessian matrix. Wasserstein neurons are especially
sensitive to sparsity and have an outsized impact on model performance, even more so than neurons
with high average weight magnitude (Figure[3)). However, these neurons are sparsified slightly more
than average by this current advanced sparsification approach. This suggests that future sparsifica-
tion schemes should take into account a neuron’s WD and degree of entanglement, rather than just
its weights and the Hessian.

(b) Wasserstein neurons are

(a) Wasserstein neurons do not sparsified slightly more than
have particularly high weights average by current approaches
0.045
90%
0.040 R72=0.23
8 80%
£ 0035
=i
g
£ 0.030 2 70% 1
z §
=2 2,
|5} 1]
2 0.025
=] 60%
fie}
[}
2 0.020
50% R™2 = 0.20
0.015
0.010 L . ; ‘ ‘ ‘ 40% ‘ ‘ . ‘ ‘
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
Wasserstein distance Wasserstein distance

Figure A4: Wasserstein neurons do not have particularly large weights, in terms of their average
magnitude, and so are sparsified slightly more. (a) Neurons with high WD do not have large average
weight magnitudes. Of the top 3% of neurons with the highest WD, just one is also within the top
3% of neurons with the largest average weight magnitudes. (b) Partially as a result of their lower
than average weights, Wasserstein neurons tend to be sparsified slightly more than average in an
unstructured setting. The top 3% Wasserestein neurons are sparsified 6% more than average. The
neurons are from the up projection of the second FFN in Pythia-1.4B.

20

Published as a conference paper at ICLR 2025

A.7 DIMINISHING RETURNS FOR KEEPING ENTANGLED NEURONS FULLY DENSE

As shown in Figure [3] entangled neurons are particularly sensitive to pruning. We design an exper-
iment to understand the opposite effect on model performance, namely of keeping the Wasserstein
neurons dense. In our setup, we selectively keep the top % of Wasserstein neurons dense, while
pruning each of the remaining neurons to a sparsity of 55— % to maintain an overall target spar-
sity of s%. This approach is compared against a baseline where all neurons are pruned to the same
sparsity percentage s%, abbreviated as same sparsity per neuron (SSPN) in the table and equivalent

to x = 0%.

We conduct this experiment on Llama-2-7B. We use SparseGPT to sparsify the neurons, use part
of the Wikitext-2 train set as calibration data, and evaluate on the Wikitext-2 test set. As illustrated
in Table[A4] keeping Wasserstein neurons dense at the cost of sparsifying every other neuron more
to achieve a target sparsity does not enhance model performance. Additionally, model performance
worsens progressively as the proportion of neurons kept dense (x%) increases, since now less en-
tangled neurons are also being kept dense. This behavior is likely due to the fact that the benefit of
allowing Wasserstein neurons to retain all of their weights is outweighed by the cost of sparsifying
every other already sparse neuron even more.

Table A4: Perplexity of Llama-2-7B on Wikitext-2 while sparsifying to s% overall and preserving
2% of Wasserstein neurons.

s =50% s =60% s =T10% s =80% s =90%
SSPN (x = 0%) 6.219 7.420 12.73 33.26 366.0
x = 3% 6.259 8.023 14.70 40.40 395.7
x=5% 6.345 8.131 16.03 46.67 629.5
x="T% 6.366 8.547 17.37 61.95 978.3
= 10% 6.522 9.232 19.48 79.53 8066

21

Published as a conference paper at ICLR 2025

A.8 DERIVING MAPPING DIFFICULTY AS A METRIC OF ENTANGLEMENT

We show more reasoning behind the choice of the normalizing factors N, and N, in Equation
IZI First, we choose N, = maxi<i<j<n{||®; — x;||} to be the maximum L? norm between a
pair of inputs to simply scale all L? norms to be between 0 and 1. Next, we choose N, =
median; <;<j<n{||yi —y;||} to be the median based on the following observations. Specifically, we
would like to preserve and highlight the fact that there are many IO pairs that have a relatively low
difference in their inputs, but are mapped to very different outputs, one group of which is circled in
purple in Figure [A5[.

First, we considered using the maximum L2, as we did for N,,. However, note that there is a very
small number of samples that drives the maximum to be much further away from meaningful data
points in both the random and Wasserstein neurons. Next, we considered the mean. Due to the
presence of the outlier data points of interest that have a much greater difference in output than
expected, the mean is also driven much higher for the Wasserstein neuron. Indeed, observe that for
the Wasserstein neuron, the mean is much greater than the mode, while they are much more similar
for the random neuron. We therefore use the median to normalize for inter-neuron differences in the
expected range of their output differences, but to also be robust to outliers that would obfuscate the
IO pairs of interest through an inflated mean.

(a) Random Neuron Output Distribution (b) Random Neuron 10 Relationship (c) Entangled Neuron Output Distribution (d) Entangled Neuron IO Relationship

ed Output L2

Density
Density
Non-normalized Output L2

2 0 10 20 30 10 50 R 1 2 2 30 0 50

S -1 - 0 3 2 -1 o
Output Value Non-normalized Input L2 Output Value Non-normalized Input L2

Figure AS: Deriving a normalization constant for the difference in outputs. (a) The output distribu-
tion of a random neuron. (b) The non-normalized relationship between the L? norm between pairs
of inputs and the L? norm between their corresponding outputs for the random neuron. (c) The out-
put distribution of a Wasserstein neuron. (d). The non-normalized relationship between the L? norm
between pairs of inputs and the L? norm between their corresponding outputs for the Wasserstein
neuron. Note how the mean is much higher than the median. One group that has a much higher
output L? norm than expected for its relatively low input L? norm is circled in purple. These are the
same neurons from Figure 2]

22

Published as a conference paper at ICLR 2025

A.9 ADDITIONAL CLUSTERS IMPART MORE PERFORMANCE

To understand how Sparse Expansion scales with the number of experts per linear layer, we test its
performance from 2 to 32 experts. Interestingly, with 2 experts, very little performance benefits are

realized. However, with each doubling of experts following 2 experts, we realize a nearly constant
linear improvement in perplexity.

Sparse Expansion performance
improves with more clusters

7.00 1 ¢

6.75 1

---- SparseGPT
—e— Sparse Expansion
---- Dense

Perplexity
2

9

Q

o
|

5.50 1

5.25 1

20 2l 22 2 24 2
Number of clusters

Figure A6: Increasing the number of clusters improves Sparse Expansion performance in Llama-2-
7B.

23

Published as a conference paper at ICLR 2025

A.10 FURTHER EXAMPLES OF DISENTANGLEMENT

We present additional evidence of neuronal disentanglement in Pythia-1.4B and Llama-2-7B. Figure
[A7]shows the recovery of the dense output distribution with increasing experts in Llama-2-7B. This
is analogous to Figure [A9] where we see a similar trend in Pythia models. Clustering gradually
decreases the WD of the sparse output to that of the dense, thus improving upon SparseGPT, equiv-
alent to the single cluster case. Moreover, this results in direct improvement of model performance
as depicted in figure[A6]

1 Cluster 2 Clusters 4 Clusters 8 Clusters 16 Clusters

WD: 0.028 WD: 0.022 WD: 0.020 WD: 0.013 WD: 0.010
RI: 1.00 RI: 1.03 RI: 1.05 RI: 1.39 RI: 1.43

Figure A7: Modeling recovery with more experts in Llama-2-7B. Use of more experts can recover
the dense output distribution even at very high sparsity, which is set to 90% for each expert. This is
the same neuron from Figure [T{.

Analogous to Figure [I] we observe the effect of clustering inputs on a random neuron and an en-
tangled neuron in the gate projection of the second FFN of Pythia-1.4B. SparseGPT fails to capture
the output distribution of the high WD neuron as it does for a random neuron. With clustering via
Sparse Expansion, both neurons improve, but the entangled neuron improves more. The granular
analysis of the component clusters within both neurons reveals the specialization to vastly different
parts of the output distribution in the entangled neuron as compared to the normal neuron (Figure

[A3).

(a) Random Neuron (b) Random Neuron (c) Random Neuron Clusters (d) Entangled Neuron (e) Entangled Neuron (f) Entangled Neuron Clusters

WD: 0.105 WD: 0.274
RI: 1.23

WD: 0.082

RI: 1.00 RI: 1.87

Figure A8: Sparse Expansion disentangles neurons in Pythia-1.4B. The dense output distribution
of a random neuron, along with its sparse via SparseGPT (a) and via Sparse Expansion (b) sparse
output distributions. The dense output distribution of a random neuron, along with its sparse via
SparseGPT (d) and via Sparse Expansion (e) sparse output distributions. For both the random and
entangled neuron, component clusters are shown in a distinct color to visualize their range (c, e).
WD represents the Wasserstein distance between the Sparse Expansion sparse output distribution
and the dense distribution. RI represents relative improvement. These are the same neurons from

Figure[2]

24

Published as a conference paper at ICLR 2025

A.11 PERFORMANCE ACROSS THE LLAMA FAMILY

We analyze the performance of Sparse Expansion against other sparsification algorithms across
all members of the Llama-2 family—Llama-2-7B, Llama-2-13B, and Llama-2-70B—both under
sparsity and joint sparsity-quantization compression (Touvron et al., [2023).

Table A5: Sparse Expansion across the Llama family.

| | Sparsity | Bits || Llama-2-7B [Llama-2-13B [Llama-2-70B |

Dense 0% 16-bit 5.1168 4.5736 3.3192
MP 50% 16-bit 16.029 6.8270 4.9846
Wanda 50% 16-bit 6.7757 5.8527 4.0219
SparseGPT 50% 16-bit 5.7082 5.0521 3.9013
Sparse Expansion 50% 16-bit 5.5839 4.9728 3.8791
SparseGPT 2:4 16-bit 6.9767 5.9934 4.8002
Sparse Expansion 2:4 16-bit 6.4456 5.6255 4.6671
SparseGPT 2:4 4-bit 7.2759 6.1101 4.9036
Sparse Expansion 2:4 4-bit 6.5745 5.7151 4.7586
SparseGPT 2:4 3-bit 13.076 6.5055 5.2552
Sparse Expansion 2:4 3-bit 7.0757 5.9872 5.0588

Sparse Expansion outperforms all other pruning techniques for both 50% unstructured sparsity as
well 2:4 sparsity in all Llama models (Figure[A5)). In addition to non-quantized sparsity, we consider
how Sparse Expansion performs in the context of compression with 2:4 structured sparsity and
quantization via GPTQ (Frantar et al.| 2022)). We first sparsify each linear layer in each FFN block
to 2:4 sparsity, then quantized to 3 and 4 bits. Our method outperforms SparseGPT across all models
and across both conditions and in all models (Figure[AS).

Across multiple model sizes, sparsity and compression levels, and advanced models, Sparse Expan-
sion attains state-of-the-art performance for post-training one-shot sparsification when compared to
other highly competitive pruning techniques. We do so by leveraging the powerful pruning algo-
rithm of SparseGPT and combining it with input specialization to utilize the insights we gain from
how entangled neurons behave under sparsity.

Because GPTQ (Frantar et al.} [2022), a leading post-training quanization scheme, also relies upon
the Hessian matrix for its algorithm, we combine it with SparseGPT for combined one-shot com-
pression. Sparse Expansion also outperforms native SparseGPT and GPTQ across all compression
settings.

25

Published as a conference paper at ICLR 2025

A.12 EFFECT OF SPARSITY ON NEURONAL OUTPUT DISTRIBUTIONS

With increasing sparsity, the sparse output distributions of the high WD neurons and random neurons
converge toward the normal distribution (Figure [A10). A specific example of a neuron is shown in

Figure[A9]

Sparsity - 0% Sparsity - 50% Sparsity - 90% Sparsity - 95% Sparsity - 99%
WD: 0.44 WD: 0.44 WD: 0.34 WD: 0.28
|
o
=]
5]
=]
o
2
58
411‘“|2432l0]"6ut5uti}alu;2442'“]

Figure A9: Increasing sparsity induces normality. A highly entangled neuron’s dense distribution
(blue) and sparse distribution (red). As sparsity increases, the output distribution of the sparse neuron
becomes progressively more Gaussian. WD represents the Wasserstein distance. This is the same
neuron from Figure 2.

Progression of Wasserstein Distance Across Sparsities

040 — Top 3% WD Neurons
—e— Random 3% Neurons
0.35 ~#- Bottom 3% WD Neurons

0.30

Wasserstein Distance
°
s
3

0.0 01 0.2 03 04 05 0.6 0.7 0.8 09 1.0
Sparsity

Figure A10: Output distributions become more normal under sparsity. The Wasserstein distance
between a neuron’s normalized sparse output distribution and the Gaussian distribution is shown as
sparsity increases for the top 3% of entangled Wasserstein neurons, the same number of bottom 3%
WD neurons, and a random sample of 3% of the neurons. For highly entangled neurons, the WD
decreases significantly at higher sparsities whereas it remains more or less constant for the bottom
3% of neurons and for the random neurons. Range indicates maximum and minimum WD for a
group. Data collected from of the second up projection matrix in Pythia-1.4B.

26

Published as a conference paper at ICLR 2025

Furthermore, with increasing sparsity, the magnitudes of the means and variances of each neurons’
sparse output distribution both shift toward zero. This is reasonable, as with fewer nonzero weights
to combine together features, both the mean and variance should decrease in magnitude.

Normalized mean and variance of neurons with increasing sparsities

1.00 Lo

°
&

o
=

°
©
8
°
>

(Normalized to dense)

Mean (Normalized to dense)
°
&
°

Variance

0.80 02

Sparsity Sparsity

Figure A11: Mean and variance shift toward zero under sparsity. Across all neurons, with increasing
sparsity, the magnitude of the mean of output distribution (left) and the variance of the output distri-
bution (right) both tend toward zero. Both mean and variance have been normalized to their dense
values. Error bars represent one standard error. Data collected from of the second up projection
matrix in Pythia-1.4B.

27

Published as a conference paper at ICLR 2025

A.13 ALL NEURONS IMPROVE, BUT ENTANGLED NEURONS IMPROVE MORE AT HIGHER
SPARSITIES

Measuring the relative improvement of each neuron through Sparse Expansion, we find that all
neurons improve as a result of Sparse Expansion across both Pythia-1.4B and Llama-2-7B. Thus,
we believe that every neuron has some level of innate entanglement, and so all neurons can be and
are improved. Interestingly, we note that, with increasing sparsity, highly entangled Wasserstein
neurons tend to improve more.

Improvement at 80% sparsity Improvement at 90% sparsity
2.2 1 2.2
R™2 =0.13 R™2 =0.19

2.04 2.0 °

Relative improvement

00 01 02z 03 04 05 06 00 01 02z 03 04 05 06

Wasserstein distance ‘Wasserstein distance
Improvement at 80% sparsity Improvement at 90% sparsity
229 R~2=0.07 229 Rr~2=0.14
o 204 2.0
=] .
]
3 18- 18
2 . . .
g* 1.6
2] .* e .
ERES P R TP
o DR T A L A
g1z W—:—-‘—“—"—
L
1.0 * .
T T T T T T T T T T T T T T
00 01 0.2 0.3 04 05 0.6 0.0 0.1 0.2 03 04 05 0.6
Wasserstein distance Wasserstein distance

Figure A12: Entangled neurons improve more at higher sparsities. Relative improvement of each
neuron in the second up projection matrix in Pythia-1.4B (top row) and in the second gate projection
matrix in Llama-2-7B (bottom row) with respect to their WD from the Gaussian. Two sparsity
levels, 80% and 90%, are shown. Sparse Expansion improves the expressibility of every neuron,
thus improving performance. However, the entangled neurons improve more with higher sparsities,
as visible in the right column.

28

Published as a conference paper at ICLR 2025

A.14 THE WASSERSTEIN DISTANCE BEST CAPTURES WHICH NEURONS IMPROVE

We also consider whether the magnitude of the mean of the output distribution or the variance of the
distribution would be good predictors of the degree of neuronal improvement through Sparse Expan-
sion. However, across both Pythia-1.4B (Figure [7) and Llama-2-7B (Figure [AT3), the Wasserstein
distance from the normal is a better predictor of relative improvement, as defined previously. Though
there is some correlation of the magnitude of the mean and variance of the output distribution with
the relative improvement in Pythia-1.4B, that is not the case in Llama-2-7B. Furthermore, using the
WD to predict neuronal improvement yields the highest coefficient of determination, R2, across both
models.

Wasserestein distance best explains improvement from Sparse Expansion

50/ R*2=1000 50] R¥2=003 20l RP2=014
= .
a
S 184 , 1.8 1.8
g .
[«
>
2 161 16 16
g
2 144 1.4 1.4
=1
=
2 12 1.2 1.2

1.0+ 1.0 1o *

0 1 2 3 i 0.0 05 10 15 20 00 01 02 03 04 05 06
Mean Magnitude Variance Wasserstein distance

Figure A13: Wasserstein distance best captures improvement. Relative improvement of each neuron
in the second gate projection matrix in Llama-2-7B with respect to the magnitude of the mean,
variance, and Wasserstein distance from normal of the dense output distribution. Neurons pruned to
90% sparsity.

29

Published as a conference paper at ICLR 2025

A.15 OUTPUT DISTRIBUTIONS OF ENTANGLED NEURONS IN PYTHIA AND LLAMA

Figures [AT4] and [AT5]show the non-trivial, non-Gaussian output distribution of a subset of neurons
from the Pythia-1.4B and Llama-2-7B models, illustrating examples of entangled neurons. We
observe such neurons in every FFN block of the LLMs we investigated and believe that the existence
of these neurons is a global phenomenon in transformers.

Neuron 3491 (WD: 0.57)

Neuron 5224 (WD: 0.55)

Neuron 7723 (WD: 0.55)

Neuron 5776 (WD: 0.54)

Neuron 152 (WD: 0.52)

16000

-
&

Neuron 1892 (WD: 0.47)

Neuron 2586 (WD: 0.45)

10000

8000

6000

4000

2000

-
.
—

Neuron 6859 (WD: 0.45)

10000

000

6000

4000

2000

5 4 -3 2 -1 0 1

Neuron 649 (WD: 0.45)

16000 10000
12000 14000
14000
8000
12000
10000 12000
8000 10000 10000 6000
8000
000 8000
6000 6000 4000
4000
4000 4000
2000
2000 2000 2000
ol ol LE 0
5 -4 -3 -2 -1 0 1 5 -4 3 -2 -1 0 1 5 4 -3 2 -1 0 1 -6 -1 -2 0 S 4 3 -2 -1 0 1
Neuron 5176 (WD: 0.50) Neuron 851 (WD: 0.49) Neuron 3314 (WD: 0.48) Neuron 1168 (WD: 0.48) Neuron 509 (WD: 0.47)
10000 12000 12000
10000

Neuron 6984 (WD: 0.45)

L_
o
-

14000

12000

10000

8000

6000

10000

000

6000

4000

2000

—
—

-
-
-
-

Neuron 6754 (WD: 0.44)

Neuron 8061 (WD: 0.44)

Neuron 5918 (WD: 0.43)

6000

4000

2000

43 2 -1 0 1

Neuron 3918 (WD: 0.43)

% 5 4 -3 2 -1 0 1 -4) 0 2 4 03 o2 a0 1
Neuron 7157 (WD: 0.45) Neuron 3192 (WD: 0.45) Neuron 115 (WD: 0.45) Neuron 61 (WD: 0.44) Neuron 2402 (WD: 0.44)
12000 2000
00 10000
7000
10000 00
6000 800 6000
8000 5000

—

=3 2 -1 0

Neuron 1745 (WD: 0.43)

-
—
—

5 -4 -3 -2 -1 0

Neuron 845 (WD: 0.43)

Neuron 3114 (WD: 0.43)

Neuron 7518 (WD: 0.43)

7000

6000

5000

4000

3000

2000

1000

=

o

-4 -2 0

Neuron 6355 (WD: 0.42)

2000

Neuron 1624 (WD: 0.42)

—
—

2000

8000

4000

2000

~
=
—

2000

6000

4000

2000

Figure A14: Dense output distributions of top 30 high WD neurons in Pythia-1.4B. The distributions
are shown for the neurons of the up projection matrix in the second FFN block.

30

Published as a conference paper at ICLR 2025

Neuron 4640 (WD: 0.50)

Neuron 5459 (WD: 0.47)

Neuron 2347 (WD: 0.45)

Neuron 9154 (WD: 0.42)

Neuron 5308 (WD: 0.41)

12000
10000
10000 8000
10000
10000 7000
8000
8000
8000 000 6000
000 5000 5000
6000 6000
4000
2000
4000 4000 4000 2000
2000
2000 2000
1000
ol o 3
33 2 3 o0 1 3 5% a1 o 1 3 3 o 1 2 3 Y ° 1 2 3
Neuron 5632 (WD: 0.41) Neuron 1684 (WD: 0.40) Neuron 5753 (WD: 0.40) Neuron 9146 (WD: 0.38)
12000 8000 12000 8000
12000
oo 7000 7000
10000 10000
6000 6000
8000
8000 5000 8000 5000
6000 6000 4000 6000 a000
3000 3000
4000 4000 000
2000 2000
2000 2000
2000 1000 1000
3 o o 3 ol
T T S S5 2 a0 13 3 2 a o 1 3 3 2 a o 1 3
Neuron 10437 (WD: 0.38) Neuron 4665 (WD: 0.37) Neuron 3385 (WD: 0.37) Neuron 7211 (WD: 0.36)
14000 8000 8000
7000 14000
7000 7000
12000
000 12000
6000 6000
w000 10000 10000
5000 5000
4000 8000 8000
4000 4000
6000 6000
3000 3000 2000
2000 4000 4000 2000 2000
1000 2000 2000 1000 1000
o o o o o
52 a0 1 2 3 o =2 3 7 T o0 1 2 3 & 3 P L
Neuron 3431 (WD: 0.35) Neuron 4638 (WD: 0.34) Neuron 3352 (WD: 0.34) Neuron 40 (WD: 0.33)
7000
8000
6000 8000 6000 8000
7000
5000
5000
6000 6000 6000
2000 5000 a000
3000 4000 4000 3000 4000
3000
2000 2000
2000 2000 2000
1000 1000 1000
ol o o o ol
D3 2 a6 1 o2 3 I o 1 2 3 T o1 2 3 3 2 a o 1 2
Neuron 2184 (WD: 0.33) Neuron 704 (WD: 0.33) Neuron 1829 (WD: 0.32) Neuron 10173 (WD: 0.32)
7000 8000
6000
6000 7000 8000 8000
w00 5000
5000
5000 2000 6000 6000
000
000 3000
3000 000 2000
3000
2000 2000
2000 2000 2000
1000 1000 1000
o o o o o
I o 1 2 3 T S S T I 1 2 3 T o 1 H 3
Neuron 4650 (WD: 0.31) Neuron 3359 (WD: 0.31) Neuron 10144 (WD: 0.31) Neuron 5806 (WD: 0.31)
10000
7000 6000
8000 8000 8000
6000 000
s000
6000 6000 6000 4000
4000
2000
2000 4000 3000 4000
2000
2000
2000 2000 2000
1000 1000
o o o o o
T 6 1 2 3 = I o 1 3 & S Y o T z

Figure A15: Dense output distributions of top 30 high WD neurons in Llama-2-7B. The distributions
are shown for the neurons of the up projection matrix in the sixteenth FFN block.

31

	Introduction
	Wasserstein Neurons
	Characterizing non-Gaussian neuronal output distributions
	Wasserstein neurons and entanglement
	Effect of high Wasserstein neurons on sparsification

	An experimental framework to study disentanglement
	Sparse Expansion in detail
	Sparse Expansion disentangles neurons
	More sparse experts better fit the output distribution
	Wasserstein distance best explains improvement
	Theoretical implications of Sparse Expansion
	Sparse Expansion performance
	Models, datasets, and setup
	Performance across scales

	Related Work
	Conclusion and Discussion
	Acknowledgments
	Appendix
	Pseudo-code for Sparse Expansion
	Distribution of Wasserstein distances across all Llama-2-7B FFN layers
	Sparse Expansion Performance in out-of-distribution data
	Neuronal entanglement trajectory across training in LLMs
	Optimizations for practical implementation
	Wasserstein neurons do not have particularly high weights
	Diminishing returns for keeping entangled neurons fully dense
	Deriving Mapping Difficulty as a metric of entanglement
	Additional clusters impart more performance
	Further examples of disentanglement
	Performance across the Llama family
	Effect of sparsity on neuronal output distributions
	All neurons improve, but entangled neurons improve more at higher sparsities
	The Wasserstein distance best captures which neurons improve
	Output distributions of entangled neurons in Pythia and Llama

