
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WORLDCRAFT

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Worldcraft, a hybrid implicit method for generating vast, interactive
3D worlds at unprecedented scale and speed by modeling them as exchangeable
sequences of latent 3D objects. In contrast to existing methods that produce lim-
ited scenes, Worldcraft’s novel approach constructs expansive environments com-
prising thousands of elements, extending to over a million objects in seconds, on a
single GPU. The resulting created worlds are defined in terms of possessing cer-
tain essential properties: Object Individuality, Collective Semantics, and Expand-
ability. To achieve this with both speed and scale, we conceptualize world gener-
ation as a set generation problem, introducing three key technical innovations: (i)
Hierarchical and Exchangeable Sequence Modeling ensures Object Individuality
while capturing Collective Semantics; (ii) Hybrid Implicit Generation Method en-
ables rapid creation of vast worlds, supporting both Scale and Expandability; and
(iii) Multi-level Indexing Functions allow efficient manipulation across scales,
reinforcing Collective Semantics and enabling on-demand generation for Speed
and Expandability. We demonstrate Worldcraft’s capabilities using Minecraft as
a test-bed, generating complex, interactive environments that users can explore.
However, this approach is applicable to any suitable platform, potentially revolu-
tionizing various applications in 3D environment generation.

Figure 1: Worldcraft enables the generation of large scale 3D interactive environments. Each image
is a screenshot taken from generated world rendered in Minecraft. The world contains over 1 million
3D assets and is a fully interactive game environment. In our context an asset is not a single block
but a collection of 4096 blocks termed a chunk.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 INTRODUCTION

Digital media and simulators often require large scale interactive 3D environments comprised of
thousands of individual assets. While there has been recent progress in generating these assets
by combining NeRF-like methods (Mildenhall et al., 2021; Yariv et al., 2021; Poole et al., 2022;
Jain et al., 2022), generating the world they populate remains an open problem. Current methods
for world generation rely on explicitly labeled graphs (Li et al., 2019), autoregressive approaches
(Ritchie et al., 2019; Paschalidou et al., 2021) or operate on scenes of a fixed size (Tang et al., 2024)
which limit their applicabilty to large scale and variably sized environments. More recent frame-by-
frame modeling techniques (Bruce et al., 2024; Valevski et al., 2024) sidestep the issue of scale but
fail to capture the persistent, explorable nature of a real world.

In this paper, we take the concept of world seriously, drawing a clear distinction between a world and
the scenes generated by existing methods. We define a world as having three essential properties,
largely (and usefully) similar to Minecraft’s world model: (i) Object Individuality: Each element
possesses a unique identity (analogous to a single block in Minecraft); (ii) Collective Semantics:
Multiple objects aggregate to form larger, semantically meaningful structures (comparable to a "re-
gion" in Minecraft); (iii) Expandability: The generation process is dynamic, capable of creating
new areas as they are explored. In contrast to existing methods, our approach can generate worlds
comprising over a million elements on a single, consumer GPU. Thus richly complex worlds rather
than mere scenes are achievable both quickly and efficiently. These requirements, combined with
our achievements in scale and speed, preclude all existing generative methods (to the best of our
knowledge) in the field of 3D environment generation, without significant modifications.

At the core of our technical contribution is casting world generation as a set generation problem –
this paradigm shift allows us to create entire worlds at scale and speed, while fulfilling the unique
properties in our design of a world. Inspired by Ashcroft et al. (2023) generating complex vector
drawings with an implicit set space, Worldcraft models the distribution of the top-level parameter
of a hierarchy, rather than directly learning the log-likelihood of a permutation-invariant sequence.
We then transform a sampled parameter through a series of index functions into a set representing
the world. This innovative approach enables us to overcome the limitations of existing methods and
achieve our ambitious goals in world generation.

It follows that our key technical innovations all directly tackle the challenges of scale, speed, and
our defined world properties:

1. Assumption of Exchangeability: We represent worlds as an exchangeable sequences of la-
tent variables, leveraging the General Representation Theorem (De Finetti, 1929; 1970) to
implicitly to represent complex joint distributions through top-level parameters of a hierar-
chy. This enables us to maintain Object Individuality while simultaneously capturing col-
lective semantics, as the hierarchical structure allows for individual elements to be unique
yet form coherent, larger structures and the use of latent variables allows for flexibility in
the 3D asset representation.

2. Hybrid Implicit Generation Method: We combine a prescribed probabilistic model (Diggle
& Gratton, 1984; Mohamed & Lakshminarayanan, 2016), specifically a Denoising Diffu-
sion Probabilistic Model (Ho et al., 2020), with deterministic subjective mapping functions
to efficiently generate large, variable-sized worlds. This hybrid approach is key to achiev-
ing both the Scale and Speed requirements, allowing us to generate thousands of elements
rapidly on a single GPU.

3. Multi-level Indexing Functions: We introduce a system that allows reconstruction of the
world hierarchy at multiple levels, enabling flexible generation and manipulation of world
subsets. This directly supports Expandability, allowing for dynamic creation of new areas
as they are explored.

These contributions collectively ensure that we can generate vast, coherent worlds that meet our
key requirements. Our set-based approach facilitates the creation of large-scale environments with
Object Individuality, the exchangeable sequence modeling captures Collective Semantics across dif-
ferent scales, and the multi-level indexing enables the Expandability needed for truly interactive and
potentially infinite worlds. Finally it is important to emphasize that Worldcraft is not a tailored solu-
tion to generating Minecraft environments but a flexible framework with a range of design choices
that enable its application to a wide range of platforms.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 3D SCENES: REPRESENTATION AND GENERATION

Implicit functions represent 3D scenes by capturing their underlying volumetric fields from multi-
view images through Neural Radiance Fields (NeRFs) (Mildenhall et al., 2021) and SDFs (Yariv
et al., 2021; Zhu et al., 2023). This allows for reconstruction of novel views (Mildenhall et al.,
2021) and scene geometry (Yariv et al., 2021), optimized (Zhang et al., 2020a) through voxelisation
(Sun et al., 2022) and hashgrids (Müller et al., 2022). Flexibility in implicit representations further
allows extension to dynamic scenes through time-specific deformation in 3D space (Cai et al., 2022;
Liu et al., 2022a) or by adding a new time dimension altogether (Xian et al., 2021; Shao et al.,
2023) for 4D representation. Despite offering high-fidelity novel view generation (Mildenhall et al.,
2021), implicit radiance fields often suffer from poor surface and geometry reconstruction (Darmon
et al., 2022). NeRF like methods have proven powerful building blocks in larger 3D generative sys-
tems (Chan et al., 2021; Schwarz et al., 2020; Gu et al., 2021; Liu et al., 2022b; Poole et al., 2022;
Chung et al., 2023). Explicit representations for 3D objects popularly as tangible meshes (Liu et al.,
2023) accurately capture surface and geometry (Liu et al., 2021). However, extending meshes for
3D scenes is non-trivial as complexity quickly accumulates from connected objects and scene hier-
archies. Recent works suggest using explicit 3D gaussians (3DGS) (Kerbl et al., 2023) as a flexible
representation for complex scenes through anisotropic splatting. 3D Gaussian Splatting offers much
faster rendering and higher fidelity novel view estimations than corresponding implicit NeRF-based
approaches. Surface reconstruction from 3DGS scenes is possible with underlying scene SDFs
(Chen et al., 2023; Lyu et al., 2024) and constrained gaussian formation (Guédon & Lepetit, 2024).
Both explicit and implicit representation of 3D objects allow for a latent representation of the object.

Scene synthesis is the task of generating realistic 3D scenes of distinct objects often from an exist-
ing catalogue of 3D assets. Recent approaches have sought to employ a procedural techniques (Qi
et al., 2018; Prakash et al., 2019; Devaranjan et al., 2020; Kar et al., 2019). These require specific
pre-defined rule sets which can be expensive and time consuming to create. An alternative approach
is to model a scene as a graph(Li et al., 2019; Wang et al., 2019; Zhou et al., 2019; Luo et al., 2020;
Purkait et al., 2020; Zhang et al., 2020c;b; Keshavarzi et al., 2020; Di et al., 2020; Gao et al., 2024),
explicitly modelling the relationship between objects in the scene. Paschalidou et al. (2021) formu-
lated this problem as a set generation problem and employed a permutation autoregressive approach
to generate small scale scenes. Diffusion models have also been employed to this effect (Tang et al.,
2024; Yang et al., 2024). What differentiates Worldcraft from existing approaches is the scale of the
set generation problem, the use of a hybrid implicit generation method and a hierarchy that instead
of modelling explicit relationships between objects uses parameters to represent semantic concepts.

3 WORLDCRAFT

We propose modelling 3D interactive world X , as an exchangeable sequence of latent variables that
represent 3D assets. As 3D objects may have different represenations but can all be endcoded into a
latent space this enables a degree of flexibilty with the method.

Exchangeability: Exchangeability is the property of a sequence of random variables that joint
probability measure does not change based on the order of observation of the random variables.

p(x1, x2, ..., xn) = p(xπ1
, xπ2

, ..., xπn
) (1)

This is shown by equation 1 where for all permutations π defined on the set {1, 2, ...n} the joint
probability measure does not change and that this is true for all subsets. Exchangeability forms the
basis of the General Representation Theorem (De Finetti, 1929; 1970).

General Representation Theorem: This theorem has several versions (De Finetti, 1929; 1970;
Hewitt & Savage, 1955; Diaconis & Freedman, 1984; 1987) but the core concept remains the same
that given an exchangeable sequence X = {xi}ni=1 an integral representation of the joint distribution
p(X) can be provided as:

p(X) =

∫
F

n∏
i=1

F (xi)dQ(F) (2)

In which F is an unknown distribution function and Q(F) = limn→∞ Pn(F̂n) is defined as the
limiting measure on the empirical distribution function F̂n. When indexed by some parameter θ ∈ Θ

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

, Θ ⊆ Rn the joint distribution may be written as:

p(X) =

∫
Θ

n∏
i=1

p(xi|θ)p(θ)d(θ) (3)

The implications of this are that (Bernardo, 1996); for any subset of an exchangeable sequence of
real valued random quantities there must exist some parametric model p(x|θ) labeled by a parameter
θ ∈ Θ and there exists a probability distribution for θ with density p(θ). As a result p(θ) implicitly
represents p(X). This relationship was utilized by Ashcroft et al. (2023) to generate sets of variable
cardinality representing complex vector drawings. A set was decomposed into conditionally inde-
pendent parametric density functions of the sets individual elements. A generative model was then
used to generate latent represents of the set which then conditioned a second model which generated
elements of the set.

Hierarchical Model: A large exchangeable sequence X can be divided into subsets such that X =
{Xi}mi=1 and Xm = {xi}ni=1. Then joint probability measure can then be defined as:

p(X) =

∫
Θ1

m∏
i=1

n∏
j=1

pi(xij |θ1i)p(θ11,, θ1m)dθ1, ..., dθ
1
m (4)

Each subset is labelled by a corresponding θ1k, the first level of hyper parameters in the hierarchical
model, and as such we can treat the original sequence as a sequence of exchangeable parameters,
p(X) = p(θ11,, θ

1
m). The joint probability measure p(X) can then be defined as:

p(θ11,, θ
1
m) =

∫
Θ2

m∏
i=1

p(θ1i |θ2)p(θ2)d(θ2) (5)

Where θ2 ∈ Θ2 is an n-dimensional, second level parameter that labels the distribution of random
variables (θ11,, θ

1
m). This process can be repeated to establish an n-level hierarchy such that the

distribution p(θn) implicitly represents p(X).

Implicit Method: Instead of directly learning the distribution p(X) we learn the distribution p(θ2),
the distribution of the top level parameter of the hierarchy and use a series of indexing functions
to transform this parameter into X . To do this we first divide the world into subsets of spatially
similar elements, we term these subsets regions. Each region is modelled as an indexed family such
that there exists a parametric surjective mapping function, fα(ui) → xi, u ∈ U1 that index the
subsets. We define our index set, U1, as Cartesian product of a known set I1 and the parameter θ1k
that represents the subset:

U1 = {(i, θk) | i ∈ I1 and θ1∈Θ
1} (6)

Given a value θ1k and a trained function fα1(ui) → xi, we can reconstruct the subset, however we
must first obtain this value θ1k.The world can be represented as an exchangeable sequence of the
parameters that label the distribution of elements in each region such that X = (θ11,, θ

1
m). As

such we can treat X as an indexed family comprised of these labelling parameters and repeat the
same process as with the regions. As in the previous step we use a parametric surjective mapping
function fα2(ui) → θi, u ∈ U2 to index with sequence. The index set, U2, is defined as the
Cartesian product of the top level parameter θ2 and a new known set I2.

U2 = {(i, θ2m) | i ∈ I2 and θ2 ∈ Θ2} (7)

As with the previous step we may now reconstruct X provided we have the initial top level parameter
of the hierarchy θ2. In order to reconstruct the entire sequence X we need some initial condition θ2j
that is an implicit representation of the distribution p(X).

We define a generative model over the top level parameters of the hierarchy θ2 ∈ Θ2: pϕ(θ2) with
trainable parameters ϕ where D̄ is a dataset comprised of these top level parameters. We realise
pϕ(θ

2) with a Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020). Specifically
we train a parametric noise estimator ϵϕ on the noisy parameters θ2t =

√
αtθ

2 +
√
1− αtϵ for all

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Worldcraft generation process
Sample: θnk ∼ pα(θ

n) from the top level of the hierarchy
for n in levels do:

for i ∈ In, θnk ∈ (θn1 ,, θ
n
m) do

Reconstruct: fαn(θnk , i) = θn−1
u

end for
end for
Reconstruct bottom level of the hierarchy:
for i ∈ I1, θ1k ∈ (θ11,, θ

1
m) do

Reconstruct: fα(θ1k, i) = xu

end for
for xu ∈ XK do

Decode: Dα(xu) = ai
end for

World

Region

Asset
(Chunk)

Observable
data
(Block)

Worldcraft Hierarchy Visualization Concept Process

Generation

Reconstruction

Reconstruction

Decoding

Function

Figure 2: The Worldcraft method has three stages, generation, reconstruction and decoding. In the
context of Minecraft a top level parameter is generated that represents the entire world. This param-
eter labels a model that reconstructs the exchangeable sequence of parameters, each representing a
region, that label a second model. Each region is then reconstructed and the resulting latent assets
decoded creating the observable world.

t ∈ [1, T] where αt ∈ [0, 1] is a monotonically decreasing diffusion schedule which estimates the
noise component ϵ in:

min
ϕ

Eθ2∈D̄, ϵ∼N (0,I), t∼U(1,T)

[∣∣∣∣ϵϕ (θ2t, t)− ϵ
∣∣∣∣2
2

]
. (8)

We term this a hybrid implicit method as the initial parameter that is transformed into the set X , is
sampled from a prescribed probabilistic model θ2j ∼ pϕ(θ

2) The generation process for the entire set
X is detailed in Algorithm 1, where pα̂(θ

n) is a trained generative model, fα̂n(in, θk) is a learned
mapping function and Dα̂(xi) is a decoder taking the latent variable xi as an input and returning
the observable data ai. This algorithm details the full reconstruction of the hierarchy but any subset
may be generated through a partial reconstruction. Figure 2 shows the application of the Worldcraft
algorithm to Minecraft.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 MINECRAFT

In this section we detail the application of the Worldcraft approach to generating large scale 3D
interactive environments. We do so by generating Minecraft worlds. All experiments and results
were conducted on a single RTX 4090.

4.1 DATA

BottomTop

Figure 3: Top: Pixel maps of a single generated Minecraft region generated at different elevations.
Minecraft worlds are not just surface level features but include complex underground structures from
caves to lava lakes. Bottom: A top down and side on view of the generated region from inside of
the game world show casing the complex 3D structure of a region.

The basic unit of a Minecraft world is a block. A block has two components: an ID, which ranges
from 0− 255 and controls what type of block it is and a state which ranges from 0− 15 controlling
additional properties of the block. Not all block IDs have 16 block states, invalid combinations of
IDs and states result in a block state error, in these cases we use block state 0 for the given ID. A
16 × 16 × 16 group of blocks forms a chunk. Chunks always contain 4096 blocks where empty
space or air, is represented by an air block. A region may have up to 32 × 32 × 16 chunks, this
region can be up to a 134 million dimensional object, the make up of a single region is shown in
Figure 3. A world is comprised of any number of regions arranged in 2D grid. In Minecraft data is
stored in files that represent regions and so for the practical reason of easily generating, saving and
then loading the data into the game engine we employ the following hierarchy as shown in Figure 2.
The entire world is represented by the second level parameter θ2, a region by θ1 and each asset by
xi and the blocks by the decoded xi

Dataset:The main motivation behind using Minecraft as a test case for the Worldcraft method is
the ability to utilize its procedural generation to create a large scale 3D world. We generated two
datasets, the first was comprised of 2 million chunks to train the asset (chunk) encoder. The second
was a Minecraft world of 1200 regions consisting of 9.8 million chunks. For the full process of how
generate and convert the Minecraft world into usable 3D data please refer to Appendix A.1.

4.2 ASSET ENCODING

The first step in our method is encode the 3D asset, in this case a chunk, into a latent representation.
To do so we employ a 3D convolutional variational autoencoder. We represent each chunk as two
channel cube, with the first channel corresponding to the block ID and the second channel the block
state. We train the model with a loss function comprised of three components, a weighted KL
regularization term, a cross entropy loss for the block-id channel and a cross entropy loss for the
block state channel. Our model was trained for 800k steps with a batch size of 128 and constant
learning rate of 0.0002.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Compression: 16x Blockstate errors: 11794 Compression: 32x Blockstate errors: 10699

Compression: 64x Blockstate errors: 5096 Compression: 128x Blockstate errors: 1007

Figure 4: A comparison of the reconstruction accuracy of the chunk encoder at different bottle
neck dimensions. Left:The same region was passed through autoencoders with different bottleneck
size. While assets encoded into higher dimensional spaces have a higher accuracy and include more
fine grain details such as foliage, they are prone to more block state errors and erroneous blocks
appearing. This can be seen in the top two screenshots where the terrain on the left is more complex
and features small bushes. However lava, ice and other erroneous blocks begin appearing.

Figure 5: Each pixel map shows the same region reconstructed with different models. The colored
squares indicate the area in the region that the corresponding screenshot was taken. The pixel map
shows that the terrain from the Large model is more complex and higher in details than the Small
model. This can be more easily seen in the screenshots where the Small model omits details such as
lava caves, trees etc.

We compared the reconstruction accuracy of chunks at different compression levels as show in Fig-
ure 4. While there is a trade off between the reconstruction accuracy of each chunk and the size
of the bottle neck in the autoencoder a further consideration is the visual quality. Lower dimension
latent representations while providing less fine grain detail were more stable than their high dimen-
sional counter parts. We found a suitable balance between compactness, detail and stability to be at
128. Each region is then represented as an exchangeable sequence Xk of 128 dimension latents.

4.3 RECONSTRUCTION

Our goal in reconstruction is that given some parameter θk ∈ Θ is to reconstruct the exchangeable
sequence that parameter implicitly represents. For a controllable reconstruction process we include
the use of an an index set I such that we want to learn some function fα(i, θk) → xi that maps from
i and θk onto x.

Indexing: While a Minecraft region is a 32 × 16 × 32 3D grid of chunks, above 8 chunks in y
it is almost exclusively empty space. As such we define an index set I = {(x, y, z)| x ∈ X, y ∈
Y and z ∈ Z} resulting in a set with a maximum cardinality of 8192. We scale each index to between
zero and one. Each value is then passed through a fourier transform to obtain an n-dimensional
positional embedding. In this case we are using the indexing of each element in the sequence to
assign it a position in the region.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Model Parameters (M) Time (s) Block State Errors
Small 51 1.19 2635

Medium 93 1.28 3115
Large 126 1.35 3557

Table 1: We compare the reconstruction time for a region given a latent variable θ1 for the three
different models alongside the block state errors. As with the chunk encoding regions with more
fine grain details have a larger number of block state errors.
θk: We use a learnable dictionary of embeddings as parameters to represent each region. We thus
use a dictionary of 1200, 256 dimension embeddings each corresponding to a unique region.

Model: For the reconstruction model we use a multi-layer perceptron. The positional embedding
are concatenated with the parameter θk and then input to the model. The model is trained with an
MSE loss regularized by a scaled KL-loss. We trained three different region reconstruction models,
the properties of which are shown in Table 1. Figure 5 shows the visual differences in reconstruction
between then Small and Large model. The Small and Medium models were trained for 3.5k epochs
with a batch size of 4096 and a learning rate of 0.001 that we decayed before the end of training. The
Large model had a similar scheme but was trained for 5k epochs. Figure 7 shows linear interpolation
performed between two parameters with the Large model.

Latent reconstruction: We follow a similar reconstruction process for the sequence of parameters
with the exception that we use a 2D indexing as a world is comprised of regions assigned to a
position in a 2D grid. We created 200 worlds comprised of 144 regions out of the original data set.

Alternative Indexing: Minecraft is a dense 3D grid of chunks, for which we know all possible
asset positions. This enables us to efficiently explicitly index the set. However in 3D spaces that are
continuous this option is less effective as it requires us to either explicitly train the model to assign
a latent variable to each possible point in the space or to learn continuous representation. There is
however an alternative indexing method that does not require us to know the potential position of an
object in advance. If we define our index set in a 1D space and add the position (and any other meta
information) of the asset as an output of the model then we are able to not only model continuous
3D spaces but also we do not need to train our model on any empty space.

4.4 WORLD GENERATION

The final stage in applying the Worldcraft method is to train a generative model over the parameter
space of the latent reconstruction model which then acts as an implicit probability measure over the
entire world. To do so we use a Denoising Diffusion Probablistic Model (DDPM) and the same MLP
based network architecture as Ashcroft et al. (2023). Once the model is trained we can then perform
the full process by sampling from the model, reconstructing the latent sequence, reconstructing the
sequence of encoded assets and finally decoding these latent variables into observable data. This
process takes 225s for a world comprised of 144 regions. There is an increased amount of time per
region as the data needs to saved before rendering. A full generated world can be seen in Figure 6.

5 CONCLUSION

We have presented Worldcraft, a novel and flexible framework for generating large scale interactive
3D environments that satisfies our three conditions for a world: Object Individuality, Collective
Semantics and Expandability. Instead of directly learning the distribution of a large set of objects we
learn the distribution of the top level parameter of the hierarchy and then reconstruct the set through
a series of mapping functions. By prioritizing worlds over scenes, this potentially revolutionary set-
based approach enables us to generate large scale interactive 3D environments comprised of over a
million distinct objects on a single consumer grade GPU, with possible applications across a range
of platforms.

A limitation of Worldcraft is that it requires large amounts of training data. Data scarcity is already
a challenge in 3D generation tasks but by representing entire worlds of over a million objects as a
single sample for generative model learning the distribution of the top level parameters this exacer-
bates the problem. The method was only tested on Minecraft however we argue with suitable index
functions and asset encoding it may be applied to a range of different platforms. In future work
directly testing this method on other types of 3D data and addressing the data scarcity will be key.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: Top: We show a scaled down pixel map of a generated world. The orange square indicates
a single region as shown in Figure 5. Each small colored square indicates the area in which the screen
shorts were taken. Bottom: Screenshots taken from withing the generated world. The colored box
indicates the area in which they were taken.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Linear Interpolation

Figure 7: These pixel maps show the surface level features of regions reconstructed for a given θ1

obtained by linearly interpolating between two samples.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 ETHICS STATEMENT
All training data generated, and rendered results were done in a valid copy of Minecraft. Generative
models carry with them several ethical concerns and while our models are trained on and generate
Minecraft data the application of our methods to other generative tasks by bad actors may result in
disinformation or other damaging content or be used to violate copyright.

7 REPODUCIBILTY STATEMENT
We detail in Appendix A.1 the tools used to extract Minecraft data for training the model as well as
the method used to generate this training data. Minecraft worlds are by the nature random so there
may be slight variations in reproducing the results by generating the data. In addition we detail the
training procedures for the models used in this paper either directly or by referring to the scheme
used by other authors

REFERENCES

Alexander Ashcroft, Ayan Das, Yulia Gryaditskaya, Zhiyu Qu, and Yi-Zhe Song. Modelling com-
plex vector drawings with stroke-clouds. In The Twelfth International Conference on Learning
Representations, 2023.

José M Bernardo. The concept of exchangeability and its applications. Far East Journal of Mathe-
matical Sciences, 4:111–122, 1996.

Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative inter-
active environments. In Forty-first International Conference on Machine Learning, 2024.

Hongrui Cai, Wanquan Feng, Xuetao Feng, Yan Wang, and Juyong Zhang. Neural surface re-
construction of dynamic scenes with monocular rgb-d camera. Advances in Neural Information
Processing Systems, 35:967–981, 2022.

Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein. pi-gan: Periodic
implicit generative adversarial networks for 3d-aware image synthesis. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 5799–5809, 2021.

Hanlin Chen, Chen Li, and Gim Hee Lee. Neusg: Neural implicit surface reconstruction with 3d
gaussian splatting guidance. arXiv preprint arXiv:2312.00846, 2023.

Jaeyoung Chung, Suyoung Lee, Hyeongjin Nam, Jaerin Lee, and Kyoung Mu Lee. Luciddreamer:
Domain-free generation of 3d gaussian splatting scenes. arXiv preprint arXiv:2311.13384, 2023.

François Darmon, Bénédicte Bascle, Jean-Clément Devaux, Pascal Monasse, and Mathieu Aubry.
Improving neural implicit surfaces geometry with patch warping. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6260–6269, 2022.

Bruno De Finetti. Funzione caratteristica di un fenomeno aleatorio. In Atti del Congresso Inter-
nazionale dei Matematici: Bologna del 3 al 10 de settembre di 1928, pp. 179–190, 1929.

Bruno De Finetti. Torino: Einaudi, engl. transl.(1974) theory of probability, 1970.

Jeevan Devaranjan, Amlan Kar, and Sanja Fidler. Meta-sim2: Unsupervised learning of scene struc-
ture for synthetic data generation. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XVII 16, pp. 715–733. Springer, 2020.

Xinhan Di, Pengqian Yu, Hong Zhu, Lei Cai, Qiuyan Sheng, Changyu Sun, and Lingqiang Ran.
Structural plan of indoor scenes with personalized preferences. In Computer Vision–ECCV 2020
Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part IV 16, pp. 455–468. Springer,
2020.

Persi Diaconis and David Freedman. Partial exchangeability and sufficiency. Statistics: applications
and new directions, pp. 205–236, 1984.

Persi Diaconis and David Freedman. A dozen de finetti-style results in search of a theory. In Annales
de l’IHP Probabilités et statistiques, volume 23, pp. 397–423, 1987.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Peter J Diggle and Richard J Gratton. Monte carlo methods of inference for implicit statistical
models. Journal of the Royal Statistical Society Series B: Statistical Methodology, 46(2):193–
212, 1984.

Gege Gao, Weiyang Liu, Anpei Chen, Andreas Geiger, and Bernhard Schölkopf. Graphdreamer:
Compositional 3d scene synthesis from scene graphs. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 21295–21304, 2024.

Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt. Stylenerf: A style-based 3d-aware
generator for high-resolution image synthesis. arXiv preprint arXiv:2110.08985, 2021.

Antoine Guédon and Vincent Lepetit. Sugar: Surface-aligned gaussian splatting for efficient 3d
mesh reconstruction and high-quality mesh rendering. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 5354–5363, June 2024.

Edwin Hewitt and Leonard J Savage. Symmetric measures on cartesian products. Transactions of
the American Mathematical Society, 80(2):470–501, 1955.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter Abbeel, and Ben Poole. Zero-shot text-guided
object generation with dream fields. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 867–876, 2022.

Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci, Justin Yuan, Matt Rusiniak, David
Acuna, Antonio Torralba, and Sanja Fidler. Meta-sim: Learning to generate synthetic datasets.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4551–4560,
2019.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Mohammad Keshavarzi, Aakash Parikh, Xiyu Zhai, Melody Mao, Luisa Caldas, and Allen Y Yang.
Scenegen: Generative contextual scene augmentation using scene graph priors. arXiv preprint
arXiv:2009.12395, 2020.

Manyi Li, Akshay Gadi Patil, Kai Xu, Siddhartha Chaudhuri, Owais Khan, Ariel Shamir, Changhe
Tu, Baoquan Chen, Daniel Cohen-Or, and Hao Zhang. Grains: Generative recursive autoencoders
for indoor scenes. ACM Transactions on Graphics (TOG), 38(2):1–16, 2019.

Jia-Wei Liu, Yan-Pei Cao, Weijia Mao, Wenqiao Zhang, David Junhao Zhang, Jussi Keppo, Ying
Shan, Xiaohu Qie, and Mike Zheng Shou. Devrf: Fast deformable voxel radiance fields for
dynamic scenes. Advances in Neural Information Processing Systems, 35:36762–36775, 2022a.

Minghua Liu, Minhyuk Sung, Radomir Mech, and Hao Su. Deepmetahandles: Learning deforma-
tion meta-handles of 3d meshes with biharmonic coordinates. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12–21, 2021.

Zhen Liu, Yao Feng, Michael J Black, Derek Nowrouzezahrai, Liam Paull, and Weiyang Liu.
Meshdiffusion: Score-based generative 3d mesh modeling. arXiv preprint arXiv:2303.08133,
2023.

Zhengzhe Liu, Yi Wang, Xiaojuan Qi, and Chi-Wing Fu. Towards implicit text-guided 3d shape
generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 17896–17906, 2022b.

Andrew Luo, Zhoutong Zhang, Jiajun Wu, and Joshua B Tenenbaum. End-to-end optimization
of scene layout. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3754–3763, 2020.

Xiaoyang Lyu, Yang-Tian Sun, Yi-Hua Huang, Xiuzhe Wu, Ziyi Yang, Yilun Chen, Jiangmiao Pang,
and Xiaojuan Qi. 3dgsr: Implicit surface reconstruction with 3d gaussian splatting. arXiv preprint
arXiv:2404.00409, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 2021.

Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative models. arXiv
preprint arXiv:1610.03483, 2016.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM transactions on graphics (TOG), 41(4):1–15,
2022.

Despoina Paschalidou, Amlan Kar, Maria Shugrina, Karsten Kreis, Andreas Geiger, and Sanja Fi-
dler. Atiss: Autoregressive transformers for indoor scene synthesis. Advances in Neural Informa-
tion Processing Systems, 34:12013–12026, 2021.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022.

Aayush Prakash, Shaad Boochoon, Mark Brophy, David Acuna, Eric Cameracci, Gavriel State,
Omer Shapira, and Stan Birchfield. Structured domain randomization: Bridging the reality gap
by context-aware synthetic data. In 2019 International Conference on Robotics and Automation
(ICRA), pp. 7249–7255. IEEE, 2019.

Pulak Purkait, Christopher Zach, and Ian Reid. Sg-vae: Scene grammar variational autoencoder to
generate new indoor scenes. In European Conference on Computer Vision, pp. 155–171. Springer,
2020.

Siyuan Qi, Yixin Zhu, Siyuan Huang, Chenfanfu Jiang, and Song-Chun Zhu. Human-centric indoor
scene synthesis using stochastic grammar. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5899–5908, 2018.

Daniel Ritchie, Kai Wang, and Yu-an Lin. Fast and flexible indoor scene synthesis via deep con-
volutional generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 6182–6190, 2019.

Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. Graf: Generative radiance fields
for 3d-aware image synthesis. Advances in Neural Information Processing Systems, 33:20154–
20166, 2020.

Ruizhi Shao, Zerong Zheng, Hanzhang Tu, Boning Liu, Hongwen Zhang, and Yebin Liu. Ten-
sor4d: Efficient neural 4d decomposition for high-fidelity dynamic reconstruction and rendering.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16632–16642, 2023.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast conver-
gence for radiance fields reconstruction. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 5459–5469, 2022.

Jiapeng Tang, Yinyu Nie, Lev Markhasin, Angela Dai, Justus Thies, and Matthias Nießner. Dif-
fuscene: Denoising diffusion models for generative indoor scene synthesis. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 20507–20518, 2024.

Dani Valevski, Yaniv Leviathan, Moab Arar, and Shlomi Fruchter. Diffusion models are real-time
game engines, 2024. URL https://arxiv.org/abs/2408.14837.

Kai Wang, Yu-An Lin, Ben Weissmann, Manolis Savva, Angel X Chang, and Daniel Ritchie. Planit:
Planning and instantiating indoor scenes with relation graph and spatial prior networks. ACM
Transactions on Graphics (TOG), 38(4):1–15, 2019.

Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil Kim. Space-time neural irradiance fields
for free-viewpoint video. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 9421–9431, 2021.

13

https://arxiv.org/abs/2408.14837

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yandan Yang, Baoxiong Jia, Peiyuan Zhi, and Siyuan Huang. Physcene: Physically interactable
3d scene synthesis for embodied ai. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16262–16272, 2024.

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume rendering of neural implicit surfaces.
Advances in Neural Information Processing Systems, 34:4805–4815, 2021.

Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. Nerf++: Analyzing and improving
neural radiance fields. arXiv preprint arXiv:2010.07492, 2020a.

Song-Hai Zhang, Shao-Kui Zhang, Wei-Yu Xie, Cheng-Yang Luo, and Hong-Bo Fu. Fast
3d indoor scene synthesis with discrete and exact layout pattern extraction. arXiv preprint
arXiv:2002.00328, 2020b.

Zaiwei Zhang, Zhenpei Yang, Chongyang Ma, Linjie Luo, Alexander Huth, Etienne Vouga, and
Qixing Huang. Deep generative modeling for scene synthesis via hybrid representations. ACM
Transactions on Graphics (TOG), 39(2):1–21, 2020c.

Yang Zhou, Zachary While, and Evangelos Kalogerakis. Scenegraphnet: Neural message passing
for 3d indoor scene augmentation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 7384–7392, 2019.

Jingsen Zhu, Yuchi Huo, Qi Ye, Fujun Luan, Jifan Li, Dianbing Xi, Lisha Wang, Rui Tang, Wei Hua,
Hujun Bao, et al. I2-sdf: Intrinsic indoor scene reconstruction and editing via raytracing in neural
sdfs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 12489–12498, 2023.

A APPENDIX

A.1 MINECRAFT

On this section we provide specific details about Minecraft and its use in this work. Each world in
Minecraft is given a name when created. In the game directory a sub directory with that name will
contain a regions sub directory. This directory contains .MCA files. Each .MCA file contains all of
the chunks in a region. By geenrating an empty world this sub directory will be empty and we can
place our generated data in there to render the data.

Game version: We used Minecraft version 1.12.1 to generate our data. The reason for this is that
more modern versions of Minecraft swapped from the block state, block ID system for determining
blocks and simply assign a block an ID between 0−4095. We rendered all of our results in Minecraft
1.2.1

Rendering: All of the results rendered in this paper were done with BSL shaders on. This is not a
requirement.

Data Generation: Minecraft generates new terrain within a range of the player in the world. To
save the potentially hundreds of hours it would take to exhaustively explore the expansive world we
used as a data set we used a world pregenerator mod. This causes the world to generate without the
need for manually moving around the world. It took roughly 24 hours to generate the world.

Data extracting: To convert the Minecraft data from the .MCA files into usable data we use the
anival-parser python library and save the data numpy arrays, where each array contains the entire
region.

A.2 SAMPLES

We provide additional samples from generated Minecraft worlds.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 8: Additional samples taken from a generated world.

15

	Introduction
	3D scenes: representation and generation
	Worldcraft
	Minecraft
	Data
	Asset encoding
	Reconstruction
	World Generation

	Conclusion
	Ethics statement
	Repoducibilty statement
	Appendix
	Minecraft
	Samples

