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Abstract
Neural network models using predictive coding
are interesting from the viewpoint of computa-
tional modelling of human language acquisition,
where the objective is to understand how linguis-
tic units could be learned from speech without
any labels. Even though several promising predic-
tive coding -based learning algorithms have been
proposed in the literature, it is currently unclear
how well they generalise to different languages
and training dataset sizes. In addition, despite that
such models have shown to be effective phone-
mic feature learners, it is unclear whether min-
imisation of the predictive loss functions of these
models also leads to optimal phoneme-like rep-
resentations. The present study investigates the
behaviour of two predictive coding models, Au-
toregressive Predictive Coding and Contrastive
Predictive Coding, in a phoneme discrimination
task (ABX task) for two languages with differ-
ent dataset sizes. Our experiments show a strong
correlation between the autoregressive loss and
the phoneme discrimination scores with the two
datasets. However, to our surprise, the CPC model
shows rapid convergence already after one pass
over the training data, and, on average, its rep-
resentations outperform those of APC on both
languages.

1. Introduction
According to a number of influential neurocognitive hy-
potheses, the human brain uses predictive mechanisms for
perception of and learning from sensory data (Friston, 2005;
2010; Cope et al., 2017). Similar ideas have been adapted
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to unsupervised neural network models, one of them the
so-called Predictive Coding (PC) framework (see (Spratling,
2017) for a review of PC algorithms). Previously, PC has
been used in image processing (Hénaff et al., 2019) and
speech processing (Oord et al., 2018; Chung et al., 2019;
Chung & Glass, 2019; Lian et al., 2019; Schneider et al.,
2019).

The PC-based models are of special interest for low-resource
speech technology, where access to labelled data is limited,
but also for research on early language acquisition, where
neurocognitively motivated approaches are of particular in-
terest. In the latter, good models of human language learning
should learn linguistic information from speech without any
a priori linguistic specification. In both low-resource pro-
cessing and modelling of human learning, the models should
generalise across languages. Low-resource systems should
also work with small datasets, whereas high-quality datasets
used to study language learning are also often limited in
size. One of the resulting challenges is the application of
the same models across the different corpora, where a good
system would require little if any hyperparameter optimi-
sation across the different use cases. Since hyperparameter
optimisation is time-consuming and often not feasible, the
use of conventional hyperparameters is common.

In this paper, we examine the performance of PC models
applied to learn of phonemic representations from speech
in the context of two new languages, French and Mandarin,
whose corpora are also smaller compared to the original
studies. The work contributes to the understanding of these
models, and provides support for model selection when
applying these models to real low-resource scenarios. We
focus on three questions: a) is there a consistent relationship
between the model loss functions and phoneme selectivity
of the learned representations across different datasets, b)
how much is this relationship affected by the dataset type
and size, and c) how does learning in these models compare
a function of the amount of training data available?

2. Predictive Coding Models
In this section, we will explain the two selected PC models,
APC (Chung et al., 2019) and CPC (Oord et al., 2018). The
fundamental difference between the two is the optimisation
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problem that each model tries to solve. More specifically,
APC uses an autoregressive loss trying to predict future in-
put features accurately while CPC uses a contrastive loss
that focuses on distinguishing real future latent representa-
tions from false future. The authors of APC argue that there
is evidence that a low contrastive loss implies the existence
of a classifier with a low unimodal loss (Chung et al., 2019).
In contrast, in CPC, the authors claim that unimodal losses
are not convenient when we want the model to excel in cap-
turing the relationships between the data and its context in
high dimensional data such as time-frequency structure of
speech (Oord et al., 2018).

2.1. Contrastive Predictive Coding

The underlying motivation for CPC is to extract informa-
tion from the temporal context that serves to describe the
data more effectively. To achieve this, CPC’s authors pro-
pose a model that aims to maximise the mutual information
between the data and its future context.

The architecture comprises two blocks. In the first block,
a non-linear encoder processes the input features (raw au-
dio waveform in the original paper). The outputs of this
block are called the latent representations, zt. This block
is followed by an autoregressive block that produces so-
called context latent representations ct using the history of
previous latent representations z≤t. Using ct, the model
predicts latent representations k time steps ahead using
z′t+k = Wkct, which correspond to the predictive cod-
ing part.

To maximise the mutual information between input features
and context representations, the authors introduce InfoNCE
loss. This loss is based on Noise-Contrastive Estimation
(NCE) (Gutmann & Hyvärinen, 2010). Assuming there is a
noise distribution close to the data distribution, the model
can learn by comparison. The model reaches this aim by
discriminating the samples taken from the data distribution
and the ones taken from the noise distribution, which are
called negative samples. In CPC, the negative samples are
randomly taken from the data distribution as in (Bengio
& Senécal, 2008). The InfoNCE loss corresponds to the
categorical cross-entropy loss (see Eq. (1)), where a density
ratio gives the score of the sample classification. The model
does not require to learn the probabilistic data distribution
directly, instead uses a log-bilinear model for the density
ratio, fk(xt+k, ct) = exp(zTt+kWkct).

LInfoNCE = −log fk(xt+k, ct)∑
xj∈X fk(xj , ct)

(1)

2.2. Autoregressive Predictive Coding

Based on the hypothesis that a low contrastive loss implies
the existence of a linear classifier with a low unimodal loss

(Chung et al., 2019), authors of APC propose an autore-
gressive model for the PC. APC is similar to autoencoder
architectures in which the target features are the same as the
input features, except that in APC, the target features are
the input features occurring in future time steps.

APC architecture consists of a‘PreNet’ block that maps the
input features (80-dim log Mel spectrograms in the original
paper) to a new vector space, an autoregressive model, and
a‘PostNet’ block implementing the PC part. The ‘PostNet’
block predicts the future k features xt+k, using the latent
representation (zt) output by the autoregressive model. As a
result, the model learns the probability distribution of future
features. APC uses the Mean Absolute Error (MAE) as the
loss function to optimise the training (see equation 2), where
yt+k is the prediction for the signal xt+k. Therefore, the
latent representations should then encode information that
helps the model to reconstruct the input features k steps in
the future.

LMAE =

∑N−k
t=1 |xt+k − yt+k|

N − k
(2)

3. Experimental Setup
In this section, we describe the corpora, model architec-
tures, and the experimental setup we used to analyse the
relationship between APC and CPC validation losses and
their performance in a phoneme discrimination task.

3.1. Datasets and phoneme discrimination tasks

We tested APC and CPC models on a subset of the track 1 of
the Zero Resource Speech Challenge 2020 datasets (Dunbar
et al., 2017) that focuses on learning of phoneme-sensitive
features in an unsupervised manner. The subset contains 24
h of French and 2.5 h of Mandarin conversational speech
for model training, and 47, 096 and 21, 247 one second ut-
terances for testing in the two languages, respectively. The
training datasets are composed of a few speakers with more
speech (approx. 20 min for Mandarin and 2 h for French),
and several speakers with short recordings (about 10 min
each). We tried to maximise speaker diversity (unique speak-
ers) in the training while maintaining train/validation split
ratio of 80%/20% as closely as possible.

In the context of the challenge, the task consists of learn-
ing speech representations that are convenient for phoneme
discrimination, for which the challenge incorporates a min-
imal pair ABX-task (Schatz et al., 2013; 2014). The task
measures the phonemic discriminability of the learned rep-
resentations (Versteegh et al., 2015; Dunbar et al., 2017). In
our experiments, the evaluation tool provided by the chal-
lenge was used to calculate the ABX scores. ABX scores are
reported separately for within-speaker (minimal pair tokens
always from the same talker) and across-speaker conditions
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(tokens from different speakers), where the latter better re-
flects speaker-independent phonemic categorisation.

3.2. Implementation of the PC models

As input features, 39 MFCC (13 static + ∆ + ∆∆) coeffi-
cients were extracted using a window length of 25 ms and a
window shift of 10 ms. The data was split into 2 s samples.
For each epoch, the order of the input data was randomised.
All models were trained in a monolingual setup.

For APC, we followed the implementation published by
(Chung et al., 2019). The network consists of three fully
connected layers with 128 units with ReLU activations for
‘PreNet’ with 20% of dropout, three GRU layers with 512
units and residual connections (Wu et al., 2016) for the
predictive part, and one convolutional layer with kernel size
of one for the ‘PostNet’. We used an initial learning rate of
10−4 unless otherwise specified. The prediction was carried
out five frames (50-ms) ahead.

For CPC, we followed the implementation provided by
(Schneider et al., 2019) for the contrastive loss calculation.
We also followed the adaptation of the encoder proposed
by (Chung et al., 2019) for using acoustic features as input
features. The architecture consists of three fully connected
layers with 512 units with ReLU activations for the encoder,
and one GRU layer with 256 units for the autoregressive
model, both blocks trained with a dropout of 20%. As in
(Schneider et al., 2019), we used ten negative samples taken
from the batch and predicted 12 steps frames, that is 120 ms
ahead. We used an initial learning rate of 10−3.

We trained all models using a batch size of 32, and using
Adam optimiser (Kingma & Ba, 2015). For all models, we
used PCA to reduce the dimension of the latent vectors used
for ABX task (maintaining 95% of the variance), as the orig-
inal dimensionality was too high for the ABX-scoring tool
to handle. The reported ABX-scores correspond to the ex-
tracted latent representations zt for both models. Although
context latent representations ct were also analysed for the
CPC model, we only report latent representations as there
were no notable differences between ct and zt.

3.3. Experiments

To assess the correlation between the validation loss and
the ABX scores, the APC and CPC models were trained
for 100 epochs and saving the models every ten epochs
for ABX-scoring (‘APC-1’ and ‘CPC-1’). Each model was
trained three times with random initialisation to consider
the influence of initial parameters. In the case of CPC, we
ran an additional experiment (‘CPC-2’) to investigate the
behaviour of the model during the first ten epochs in more
detail, saving after each of the first 10 epochs and then every
10 epochs, and running the experiment twice.

Table 1. Percentage of the French dataset used for training. The
number of hours that the percentage represents, and the number of
samples for the training set (T.) and for the validation set (V.)

PERCENTAGE HOURS T. SAMPLES V. SAMPLES

100 25.1 36, 031 9, 182
75 18.8 27, 023 6, 886
50 12.6 18, 015 4, 591
25 6.3 9, 007 2, 295

To calculate the correlation, Pearson’s correlation coefficient
(r) was adopted; however, in cases were the linear correla-
tion was not evident in the scatter plot, we also calculated
Spearman’s rank correlation coefficient (rs). Additionally,
the significance of the correlation coefficients was validated
performing a hypothesis test for r and using the critical
value (Zar, 1972) for rs. In both cases with a significance
level of α = 0.05 (critical values equal to rs = 0.678, and
t = 1.86). The t test statistic for r was calculating with the
formula t = r

√
n− 2/

√
1− r2, where n is the number of

points used for calculating r.

Regarding the relationship between the dataset size and the
performance of the predictive model, we train four mod-
els varying the percentage of samples for the training data
from 100% to 25% decreasing on 25% each time. For this
analysis, the French dataset was employed, see table 1.

4. Results
Fig. 1(a) shows the validation loss and the ABX-scores of
the APC model for the French and Mandarin datasets (APC-
1). A striking correlation between the two values can be
seen for the two languages; although the slope for Mandarin
data is higher than for French data. There is also more
variability in the French runs (r = 0.817± 0.076 for ABX
across-speaker; r = 0.725±0.159 for ABX within speaker)
than in the Mandarin dataset (r = 0.991± 0.005 for ABX
across-speaker; r = 0.978±0.009 for ABX within-speaker).
Since the French training started to overfit already after 20
epochs (with increasing validation loss), we re-ran these
experiments for French dataset but using a lower learning
rate (lr = 10−5) (APC-2). As a result, the variability
among the runs was reduced (r = 0.997± 0.001 for ABX
across-speaker and r = 0.809 ± 0.248 for ABX within
speaker. See Supplementary Material, Fig. S1 for the scatter
plot).

In the first experiment for CPC (CPC-1), there was little
relative variation in both the InfoNCE loss and the ABX-
scores. A closer analysis revealed that the validation loss
was decreasing with more epochs, whereas the ABX-scores
were oscillating with small changes (standard deviation for
the three runs: SD = 0.217 for ABX across-speaker for
Mandarin; SD = 0.318 for ABX within-speaker for Man-
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(b) CPC-2

Figure 1. Scatter plots of the APC-1 and CPC-2 models ABX performance as a function of validation loss, including a detailed picture of
the first ten epochs for the CPC model. Symbol markers: (+) First run, (·) Second run, and (*) Third run.

darin; SD = 0.145 for ABX across-speaker for French;
SD = 0.174 for ABX within-speaker for French). This
behaviour suggested the model was converging to phoneme-
like representations already in the first ten epochs. To evalu-
ate this hypothesis, we ran a second experiment also evaluat-
ing all the models from the ten first epochs. To our surprise,
the CPC model shows a rapid convergence after one pass
over the training data (see ABX-scores for larger values
of the validation loss). The oscillation pattern observed in
the previous experiments persists with later epochs, and the
change in overall ABX-score is nearly zero for almost all
cases except for Mandarin ABX across-speaker condition,
where a slight improvement is observed with more train-
ing. Notably, the CPC ABX performance after one epoch is
already comparable to the APC best results.

Table 2 lists the correlation coefficients calculated for the
averaged performance of the APC model (Mandarin APC-1
and French APC-2). Since the relationship between the
InfoNCE loss and the ABX-scores is highly variable for
the CPC model across the runs, we calculated the correla-
tion coefficients for each run (CPC-1 (run id)). All APC
correlation coefficients were found to be significant with
significance criterion of α = 0.05 (t = 42.260 for APC-2
FR ABX across-speaker; t = 6.637 for APC-2 FR ABX
within-speaker; t = 22.923 for APC-2 MA ABX across-
speaker; t = 13.461 for APC-2 MA ABX within-speaker).
The CPC model, on the other hand, shows both positive
and negative correlation for the same language (see, e.g., r
of ABX across-speaker score for CPC-1 (1,3) MA). This
remarkable discrepancy highlights the variability between
runs when the model has rapidly converged.

Table 3 shows the correlation coefficients obtained for the
CPC model for the first ten epochs (CPC-2) for both lan-
guages. The relationship between the validation loss and
the ABX across-speaker score shown in Fig. 1(b) was also
reflected in the correlation coefficients obtained. Both r and
rs are significant and exhibit a strong positive correlation

Table 2. Correlation coefficients between the validation loss and
the ABX-scores for the French (FR) and Mandarin (MA) datasets.
Pearson’s (r) and Spearman’s Rank (rs) correlation coefficients
are reported for ABX-scores. (∗) ρ < 0.05. Analysis of APC
averaged performance and CPC runs.

MODEL
ACROSS-SPEAKER WITHIN-SPEAKER

r rs r rs

APC-2 FR 0.998∗ 1.000∗ 0.920∗ 0.879∗

APC-1 MA 0.992∗ 0.903∗ 0.979∗ 0.867∗

CPC-1 (1) FR -0.202 -0.115 -0.703∗ -0.770∗

CPC-1 (2) FR 0.920∗ 0.867∗ 0.836∗ 0.588
CPC-1 (3) FR -0.511 -0.661∗ -0.228 -0.055
CPC-1 (1) MA -0.705∗ -0.552 -0.525 -0648∗

CPC-1 (2) MA 0.282 0.006 -0.759∗ -0.782∗

CPC-1 (3) MA 0.913∗ 0.782∗ 0.310 0.430

throughout the training (r(8) = 0.972, ρ < 0.05 for the first
and r(8) = 0.960, ρ < 0.05 for the second run). The strong
correlation for the ABX across-speaker score also shows a
feature of the InfoNCE loss that is worth noting, although
it was exhibited for some runs only. The selection of the
negative samples could have an impact on the information
that is favoured in the representations (Oord et al., 2018;
Chung et al., 2019). The rationale behind this is that by
using the same utterance to extract the negative samples, the
information about speaker features will not be relevant for
distinguishing true and negative samples, thus encouraging
phonemic information. We run additional experiments to
evaluate if the ratio change (relative proportion of change
between consecutive epochs) for the validation loss was cor-
related to the ABX-scores, but our results did not provide
statistical evidence of such correlation.

As for the dataset size comparison, Table 4 shows the ABX-
scores obtained after training the APC model with different
dataset size for the French language. Unlike earlier, the
model was trained with a learning rate of 10−5, as this
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Table 3. Correlation coefficients for the first ten epochs of the CPC
model. (∗) ρ ≥ 0.05.

MODEL
ACROSS-SPEAKER WITHIN-SPEAKER
r rs r rs

CPC-2 (1) FR 0.218∗ 0.219∗ -0.869 -0.851
CPC-2 (2) FR 0.795 0.255∗ -0.323∗ -0.608∗

CPC-2 (1) MA 0.948 0.988 -0.406∗ 0.285∗

CPC-2 (2) MA 0.957 0.964 -0.587∗ -0.479∗

Table 4. Performance of the APC model as a function of the dataset
size.

PERCENTAGE ACROSS-SPEAKER WITHIN-SPEAKER

100 19.265 12.790
75 19.921 13.202
50 19.878 12.879
25 20.358 13.074

x̄± SD 19.856±0.449 12.986 ± 0.186

was found to improve training stability in the earlier exper-
iments. Considering the strong correlation between MAE
and the ABX-scores, each model was chosen based on the
lowest validation loss. The differences in the ABX-scores
are relatively negligible when taking into account that the
models were trained for a maximum of 100 epochs (usually
with the lowest validation loss value). This implies that
the models could still improve their representations with
more training. That being said, with only 25% of the total
data, that is 6.3 h of the French dataset, the APC model
already converged with the hyperparameters here defined.
Contradictory to the idea that more training data improves
the performance, this result shows that hyperparameter tun-
ing would be more beneficial in this case than increasing
the training data. For CPC, it was problematic because we
could not use the validation loss as the selection criterium,
and we could not conduct the experiments in time. However,
see the supplementary material for an upper bound of the
true performance assuming a rapid convergence.

As a final comparison, Table 5 lists the best ABX-scores
obtained for the APC-1 and CPC-1 models, and the training
epoch for which the best model was obtained. We also
report CPC-2 model only after one epoch of training to
demonstrate its fast learning. MFCC-based ABX-scores
are also reported as a baseline. Both PC models improved
the ABX-scores in comparison with the baseline, except
for Mandarin ABX within-speaker score. The CPC model
outperforms the APC model in both languages and ABX-
scores.

5. Discussion and Conclusions
In this paper, we analysed the behaviour of PC models in
the context of phoneme discrimination tasks with relatively

Table 5. Best ABX-scores obtained for the APC and CPC models
among all the three runs of the first experiment and ABX-scores
of the CPC model in the first epoch of the second experiment. In
bold the lowest scores.

MODEL EPOCH ACROSS-S WITHIN-S

APC-1 FR 10 18.698 11.740
APC-1 MA 100 12.624 10.197
CPC-1 FR 10 17.500 9.791
CPC-1 MA 20 11.837 9.185
CPC-2 FR 1 17.463 9.854
CPC-2 MA 1 13.058 9.202
MFCC FR - 21.050 10.150
MFCC MA - 14.584 9.140

small datasets. Our experiments confirmed that APC and
CPC models are also suitable for relatively small corpora. In
the original papers, the APC and CPC models were trained
on 100- and 360-hour subsets from Librispeech (Panayotov
et al., 2015), respectively. Our results show that these mod-
els also learn phoneme-discriminating representations from
much smaller corpora down to mere 2.5 hours of speech.

A very high and consistent correlation (r ≈ 0.97) between
the MAE loss and ABX scores was found for the APC
model across the two datasets. However, this correlation was
affected by the sampling of epochs for the ABX evaluation,
where a large proportion of the scores were obtained after
the model had already saturated in performance. Despite
this effect, which could easily be avoided by using early
stopping, the APC behaves similarly for both datasets.

On the contrary, there was no significant correlation between
validation loss and ABX scores for the CPC model. In fact,
our results suggest that the CPC model was rapidly converg-
ing to effective phoneme-sensitive representations already
during the first ten epochs. After this, the model continues
learning representations that improve the predictive loss, but
this is not reflected in better phonemic representations. The
latter requires further experiments to understand the under-
pinning of this behaviour. Interestingly, the very good CPC
performance already after one pass over the training data
resembles the conditions of human language acquisition,
where a child never has access to the same input twice.

Finally, APC results are especially important as they could
be interpreted as evidence of adaptability to different dataset
sizes and robustness to different languages; the validation
loss can be employed for selecting the model when extract-
ing phonemic features for different datasets. On the other
hand, although the CPC model obtained the best ABX scores
in early iterations, its validation loss is less directly linked
with the phonemic nature of the learned representations in
the case of small datasets.
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S1. Supplementary Material
S1.1. Code and statistical data

Our implementation of the APC and CPC model and
all the data points and statistical metrics could be
found on https://github.com/SPEECHCOG/pc_
models_analysis

S1.2. Scatter plots

Figure S1 shows the APC-2 experiment for the French
dataset. Figure S2 illustrates the CPC-1 experiment, three
runs for each language with 100 epochs per run, and fig-
ure S3 is the detailed view of the ABX across-speaker scores
over epochs for the three runs of the French dataset.
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Figure S1. Scatter plot of the French APC model ABX perfor-
mance as a function of the validation loss (APC-2). Model trained
with lr = 10−5. Symbol markers: (+) First run, (·) Second run,
and (*) Third run.

S1.3. CPC dataset size experiment

In the case of the CPC model, there was not a significant
correlation between the validation loss and the ABX-scores.
As a consequence, it was less accurate to use the validation
loss as the selection criterium of the model than for the APC
model. To offer an upper bound of the real performance
of the CPC model, we ran the dataset size experiment (see
subsection 3.3) assuming a rapid convergence. For this
experiment, we used the same architecture as explained in
subsection 3.2. Table S1 shows the ABX-scores obtained
after training the model for ten epochs with different dataset
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Figure S2. Scatter plot of the CPC model ABX performance as a
function of the validation loss (CPC-1). Symbol markers: (+) First
run, (·) Second run, and (*) Third run.
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Figure S3. ABX across-speaker scores as a function of the epoch
for the three runs of the French CPC model (CPC-1). Symbol
markers: (+) First run, (·) Second run, and (*) Third run.

size for the French language. As in APC, by using roughly
six hours of the French dataset (25%) the model obtained
ABX-scores comparable to the ABX-scores obtained with
the full dataset.

On the other hand, unlike the APC model, the ABX across-
speaker score shows a slight improvement by increasing
the dataset size. The infoNCE loss benefits from more
data for the comparison of negative and true samples result-
ing in more speaker-independent phoneme representations.
However, notice that the differences in the ABX within-
speaker scores are relatively negligible. This behaviour is

https://github.com/SPEECHCOG/pc_models_analysis
https://github.com/SPEECHCOG/pc_models_analysis


Analysis of Predictive Coding Models for Phonemic Representation Learning in Small Datasets

Table S1. Performance of the CPC model as a function of the
dataset size. Assuming a rapid convergence in 10 epochs.

PERCENTAGE ACROSS-SPEAKER WITHIN-SPEAKER

100 16.872 10.325
75 17.535 11.166
50 17.778 10.361
25 18.406 10.478

x̄± SD 17.648±0.634 10.583 ± 0.394

comparable to the results for the Mandarin CPC-2 models,
where the ABX across-speaker score was improving over
time, whereas the ABX within-speaker score was oscillating
around the same value (see figure 1(b)). Further experiments
are necessary to understand this behaviour.

S1.4. APC with Mean Square Error loss

To explore the behaviour of the APC model with a differ-
ent unimodal loss, we ran an extra experiment utilising the
Mean Square Error (MSE) loss for training the model. Sim-
ilar to previous experiments, we ran the model three times
for 100 epochs and evaluated the performance on the ABX
task every ten epochs for the Mandarin dataset.

Figure S4 shows the APC model ABX performance as a
function of the MSE loss. The behaviour is comparable to
APC with MAE loss. The Pearson’s correlation coefficients
are r = 0.953 ± 0.014, ρ < 0.05 for ABX across-speaker
score and r = 0.908 ± 0.005, ρ < 0.05 for ABX within-
speaker score. These results expose a high correlation be-
tween the ABX-scores and the MSE loss.
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Figure S4. Scatter plot of the Mandarin APC model ABX perfor-
mance as a function of the Mean Square Error loss. Model trained
with lr = 10−4. Symbol markers: (+) First run, (·) Second run,
and (*) Third run.

In order to compare the correlation coefficients of the two

APC models (with MAE loss and with MSE loss), we
performed a Z-test. We set the level of significance to
α = 0.05 indicating a critical value of ±1.96 and employed
Fisher’s transformation for the correlation coefficients of
the averaged performance (APC (MSE): r=0.956 for ABX
across-speaker and r=0.915 for ABX within-speaker; APC
(MAE): r=0.992 for ABX across-speaker and r=0.979 for
ABX within-speaker. All coefficients with ρ < 0.05). The
observed Z values are Zobs = −1.672 for ABX across-
speaker and Zobs = −1.326 for ABX within-speaker. We
did not find sufficient evidence to conclude a significant
difference between the correlation coefficients of the APC
(MAE) model and the APC (MSE) model.
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