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Abstract

Training neural PDE solvers is often bottlenecked by expensive data generation
or unstable physics-informed neural network (PINN) that involves challenging
optimization landscapes due to higher-order derivatives. To tackle this issue, we pro-
pose an alternative approach using Monte Carlo approaches to estimate the solution
to the PDE as a stochastic process for weak supervision during training. Recently,
an efficient discretization-free Monte-Carlo algorithm called Walk-on-Spheres
(WoS) has been popularized for solving PDEs using random walks. Leveraging
this, we introduce a learning scheme called Walk-on-Spheres Neural Operator
(WoS-NO) which uses weak supervision from WoS to train any given neural oper-
ator. The central principle of our method is to amortize the cost of Monte Carlo
walks across the distribution of PDE instances. Our method leverages stochastic
representations using the WoS algorithm to generate cheap, noisy, yet unbiased
estimates of the PDE solution during training. This is formulated into a data-free
physics-informed objective where a neural operator is trained to regress against
these weak supervisions. Leveraging the unbiased nature of these estimates, the
operator learns a generalized solution map for an entire family of PDEs. This
strategy results in a mesh-free framework that operates without expensive pre-
computed datasets, avoids the need for computing higher-order derivatives for
loss functions that are memory-intensive and unstable, and demonstrates zero-shot
generalization to novel PDE parameters and domains. Experiments show that for
the same number of training steps, our method exhibits up to 8.75× improvement
in L2-error compared to standard physics-informed training schemes, up to 6.31×
improvement in training speed, and reductions of up to 2.97× in GPU memory
consumption.

1 Introduction

Partial Differential Equations (PDEs) are fundamental mathematical tools for modeling a wide range
of physical, geometric, and engineering systems. These equations describe how quantities vary across
a domain, with applications spanning diverse scientific fields. A common thread across these fields is
the challenge of solving the governing PDEs, a task often complicated by the complex and irregular
geometries of the underlying domains.

Traditional methods for solving PDEs on complex geometries often fall into two broad categories:
grid-based methods and grid-free approaches. Grid-based methods, such as finite difference method
(FDM), finite volume method (FVM), and finite element method (FEM), discretize the domain into a
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Figure 1: Weak Supervision Loss with WoS: Our algorithm learns the given family of parametrized
Poisson equations ∆u = f on ΩT ⊂ Rd and u|∂ΩT

= g and is agnostic to underlying neural operator
architecture. The WoS method defines the recursive process of the random walk, stopping once the
boundary or the maximum number of steps is reached. The source contribution f(ξi) is computed
for each intermediate point ξi before jumping to the next point ξi+1. We achieve variance reduction
by controlling the number of walks L to improve the fidelity of the weak solution. Ĝ1,WoS[a](ξ)
denotes the estimation of 1-trajectory WoS estimation. ξK denotes the termination condition where
the boundary value g(ξK) is added if the point is within the tolerance region and operator estimates
Gθ[a](ξK) is used otherwise. We illustrate the overall learning process, with WoS integral serving as
the weak supervision for the neural operator.

grid or mesh and numerically solve PDEs over those partitions. Although these methods are highly
accurate and widely used, their performance depends on the level of discretization, and they can
become computationally prohibitive for large-scale problems or domains with complex geometries.
Moreover, when the meshes are highly irregular or faulty, with cracks and sliver faces, they require
computationally expensive geometric healing before they can be used in FEM [6].

Among the class of grid-free numerical techniques are the Monte Carlo-based methods [23]. These
methods express the solution of the PDE as the recursive path integral formulation and define a Monte
Carlo estimator for the integral equation [14]. Among them, WoS is a notable technique that utilizes
Brownian motion to estimate solutions to elliptic PDEs, notably the Poisson family of equations [19]
by simulating particle trajectories and their interaction with domain boundaries. WoS avoids the
complexities associated with grid dependencies by computing point-wise estimates, independent of
other points. While conventional solvers like Finite Element Method (FEM) for Poisson equations are
more efficient on simple domains, they encounter significant bottlenecks on complex, non-watertight
geometries [24] where mesh generation, a prerequisite for FEM, is computationally expensive or
prone to failure. By leveraging WoS, we bypass this volumetric meshing bottleneck entirely, enabling
scalable learning directly on raw geometry. However, Monte Carlo methods such as WoS suffer from
slow convergence due to the high variance [24]. Achieving accurate estimates requires performing
a large number of particle walks to reach the domain boundary, often of the order of 104 to 106, to
converge to the expected solution, leading to significant computational overhead.

Recent works have explored the integrations of neural networks with WoS to accelerate PDE
solvers [13, 20]. These methods improve the solution accuracy, reduce the prediction variance,
and amortize the prediction cost by using neural networks to learn from rough estimations from WoS,
reducing the computational cost of explicitly simulating numerous random walks. However, such
approaches are often parameterization-dependent: changes in the PDE parameters (e.g., source terms
or coefficients) or variations in the domain geometry require the network to be retrained from scratch.
This limitation hinders their ability to support zero-shot generalization on complex problems.

To this end, neural operators [12, 1, 11] offer a promising solution by directly learning the mapping
between PDE coefficient and boundary functions to the solution, enabling zero-shot generalization
to unseen geometries and PDEs. Such data-driven neural operator frameworks, however, rely on
ground-truth solutions typically generated using FEM a priori. While these models achieve zero-shot
generalization, the necessity of pre-computed training data introduces significant computational and
memory overhead, particularly for large-scale meshes and high-dimensional problems. Extensions of
physics-informed neural networks (PINNs) to neural operators [15] aim to overcome the need for
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Figure 2: Given arbitrary, unseen input geometry and boundary conditions, we compare our method
(WoS-NO) with WoS at equal execution time, and with DeepRitz and PINO at equal training time.
We visualize the relative absolute error against the analytic solution (the ground truth). We show
that WoS-NO achieves the strongest performance (lowest relative absolute error) in comparison with
other baselines. During equal-time training, WoS-NO achieves 2.1× overall improvement than PINO
and 1.59× than DeepRitz. During inference, WoS-NO achieves 3.73× better performance than WoS
under the same time constraint.

data by minimizing the PDE residual; however, this requires (higher-order) derivative computations
and suffers from optimization challenges [9], particularly when the training data are scarce.

Our Approach: We enable physics-informed training of neural operators without the need for
precomputed data by using pointwise Walk-on-Spheres estimates. In particular, we define a derivative-
free regression objective using weak supervision from solution estimates generated with a minimal
number of WoS trajectories. Due to the unbiasedness of the estimates, this simple and inexpensive
regression objective still learns the groundtruth solution operator. Moreover, our strategy amortizes the
cost of WoS simulations across the family of PDEs, enabling the trained operator to infer solutions for
unseen PDE instances and geometries in fractions of a second. While prior (neural) WoS approaches
incur significant costs to adapt to new problem instances, our operator learning framework achieves
an inference cost ofO(1) for unseen configurations. We demonstrate strong generalization, achieving
8.75× improvement in comparison with physics-informed learning while reducing the memory by
2.4×. Furthermore, we illustrate the zero-shot generalization of our method for surface Laplace
inpainting and fluid simulations.

Our key contributions can be summarized as follows.

Weak Supervision and Data-Free Operator Training: We introduce a learning paradigm that
requires no pre-computed solution data from expensive solvers like FEM. Our method bypasses the
optimization challenges and computational costs of physics-informed losses by instead regressing
against weak supervision from cheap and unbiased estimations of the stochastic PDE solvers, such as
WoS algorithm. We prove that such a paradigm shift from physics loss to stochastic loss reduces the
GPU memory significantly while achieving stronger generalization and efficiency.

Amortized Variance Reduction Across PDEs: The proposed framework amortizes the cost of
Monte Carlo walks across an entire distribution of PDE instances. Using weak supervision, the
stochastic training process converges to the true solution operator, effectively learning to denoise the
weak signals over the given family of Poisson PDEs.

3



Zero-Shot Generalization: The trained operator can predict new PDE instances (e.g., with different
boundary values, coefficient functions, or geometries) in a single forward pass, without retraining or
additional simulations.

2 Background

We provide in this section necessary backgrounds on Walk-on-Spheres and neural operators for
understanding WoS-NO.

2.1 Monte Carlo Methods for PDEs

Grid-free Monte Carlo methods are particularly advantageous for problems involving complex
geometries, high-dimensional spaces, or irregular domains where traditional grid-based numerical
methods face significant meshing bottlenecks [30, 26, 25, 32]. The foundation of Walk-on-Spheres
(WoS) [19] lies in the probabilistic interpretation of PDEs, specifically connecting the solution of
Poisson equations to the expected values of stochastic Brownian motion. Crucially, WoS computes
the solution at any query point independently, relying solely on the statistical properties of random
walks without requiring a global mesh or linear system solve. While WoS has been successfully
applied in computer graphics [24] and electrostatics [4], it relies on sampling efficiency. Recent
approaches have introduced variance reduction techniques, such as gradient control variates [14, 24]
and boundary value caching [18], to improve convergence rates. In the context of deep learning,
hybrid approaches have emerged that use neural networks for variance reduction [20] or as cached
surrogates [13]. However, these methods largely focus on accelerating the WoS solver itself rather
than using WoS as weak supervision for training models.

2.2 Neural Operators

Neural operators define a class of discretization-agnostic, data-driven solvers that learn mappings
between infinite-dimensional function spaces [2, 8, 17, 27]. Unlike traditional solvers that depend
on fixed mesh resolutions, these methods learn integral kernel operators, allowing for zero-shot
super-resolution. Despite their inference efficiency, standard neural operators are fundamentally
data-driven. To reduce data dependence, Physics-Informed Neural Operators (PINO) integrate PDE
constraints directly into the loss function [15]. However, PINO reintroduces significant optimization
challenges: the loss landscape becomes highly complex, leading to training instabilities and sensitivity
to hyperparameter tuning [28, 16]. Furthermore, PINO relies on automatic differentiation to compute
PDE residuals, which incurs high memory costs and scales poorly with geometric complexity [20].
While recent approaches like the Multi-Level Monte Carlo Operator (MLMC) attempt to accelerate
training by decomposing the loss across fidelity levels [22], they still fundamentally rely on the
existence of pre-computed ground truth data. This creates a clear need for a training paradigm that is
both data-free (like PINO) and computationally stable, a gap our WoS-NO framework addresses.

3 Problem Setting

Let ΩT ⊂ Rd be an open, bounded, connected, and sufficiently regular domain with T ∈ T as our
distance function (e.g. signed distance function) defining the shape of the geometry. We consider the
Poisson family of equations with source function family F , boundary function family B, and solution
function family U . The parameterized elliptic PDE problem with Dirichlet boundary conditions is
given by the following system:

{
P[u] = f, on ΩT ,

u = g, on ∂ΩT ,
(1)

with a differential operator

P[u] := 1
2Tr(σσ

⊤Hessu) + µ · ∇u. (2)
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where f ∈ F is source function and g ∈ B boundary function both defined on the domain ΩT and
assumed to be sufficiently smooth.

Assuming the solution operator of the elliptic equation exists in the parameterized PDE family, our
goal is to learn a solution operator G : A = T × F × B → U , such that a = (T, f, g) 7→ u, where u
is the solution of the equation 1 over arbitrary combinations of T, f and g.2

3.1 Walk-on-Spheres from the Operator Perspective

We generalize the derivation from neural Walk-on-Spheres [20] from the operator perspective. For
our paper, we focus on Poisson equations. Poisson equations can be reformulated as stochastic
differential equations driven by a random variable ξ, defined over the domain ΩT . The stochastic
differential equation is given by dXξ

t = µ(Xξ
t )dt+ σ(Xξ

t )dWt, X
ξ
0 ∼ ξ, where Wt is a standard

d-dimensional Wiener process, and µ and σ are time-dependent parameters with µ = 0 and σ =
√
2I

for Poisson equations.

By utilizing Walk-on-Spheres, we can reformulate the solution operator GWoS : A → U for the
Poisson equation as the expectation of the following form:

G[a](ξ) = GWoS[a](ξ) = E[g(Xξ
τ )−

∑
k≥0

∫ τk

0

f(Xξ
t )dt|ξ], (3)

where we define τk = τ(Brk , ξk) ≜ inf {t ∈ [0,∞) : Xξk
t /∈ Brk} to be the stopping time within a

sphere B of radius rk centered at ξk and rk = dist(ξk, ∂ΩT ) ∈ (0,∞) at the k-th step of the random
walk, τ = τ(Ω, ξ), and ξk+1 ∼ Xξk

τk
∼ U(∂Brk(ξk)), ξ0 = ξ. We defined more detailed derivations

of each term in Appendix B.

In practice, we can approximate the operator with Monte Carlo (MC) simulation to obtain
GWoS[a](ξ) ≈ ĜL,WoS = 1

L

∑L
i=1 WoSi[a](ξ), where L is the number of trajectories with

WoSi[a](ξ) = g(ξiK)−
K−1∑
k=0

|Brik
(ξik)|f(γi

k)Grik
(γi

k, ξ
i
k), (4)

and K is the maximum step of WoS, a = (T, f, g) ∈ A, G is the Green’s function defined in
Appendix B, and γi

k ∼ U(Brik
(ξik)).

Under the assumption that the solution exists as shown in [10], we have the equation G[a](ξ) =

GWoS[a](ξ) ≈ ĜL,WoS[a](ξ), meaning that we can approximate the ground truth solution G with
stochastic estimator ĜL,WoS while controlling the fidelity with the number of trajectories L.

3.2 Walk-on-Spheres as Weak Supervision

We propose the following general loss formulation to learn families of parameterized Poisson
equations as a conditional expectation

Lθ = E[∥Gθ − G∥2] = E[E[∥Gθ[a](ξ)− GWoS[a](ξ)∥2
∣∣ξ]], (5)

which follows from the tower property and the definition of the WoS operator.

We generate unbiased high-variance weak supervision with WoS ĜL,WoS over a small number of
trajectories L ≤ 10. This allows fast ground truth generation on the fly in each epoch for regressing
the neural operator. The empirical loss then becomes

L̂θ =
1

NM

M∑
j=1

N∑
i=1

∥Gθ[aj ](ξi)− ĜL,WoS[a
j ](ξi)∥2. (6)

2Whenever the context is clear, we write ΩT ≜ Ω for simplicity
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The entire pipeline is shown in more visual details in Figure 1. Moreover, the cache incurs an
additional space complexity of O(MN), where M is the number of PDE instances and N is the
number of points per instance. We add ablation studies on design choices and hyperparameters in
Appendix F.

4 Scene Setup

This section outlines the setups for our experiments. We structure our evaluation across two funda-
mental problem classes: linear Poisson with constant and varying coefficients. The WoS framework
is most directly suitable for linear and screened forms of Poisson PDEs. In order to extend WoS to
varying coefficients test cases, we linearized the governing equation into a screened form using the
delta-tracking method [26] and formulated the delta-tracking variant of WoS loss for the operator.
Our operator thereby takes both spatial coefficient functions and geometry as inputs.

4.1 Poisson Equations on Parameterized Domains

We follow the settings proposed in [21] to define a linear version of the Poisson equation on
parameterized geometries as follows

∆u(x) = f(x), x ∈ ΩT

u(x) = g(x), x ∈ ∂ΩT
(7)

where u ∈ U and ΩT ⊂ R2. The source function is a sum of radial basis functions denoted by f(x) =∑2
i=1 βie

∥x−µi∥2
2 , where β ∈ R1 and µi ∈ R2. The boundary term is a periodic function defined in

the polar-coordinate system as follows g(x) = b0 + b1cos(θ) + b2sin(θ) + b3cos(2θ) + b4sin(2θ),
where b0:4 ∼ U(−1, 1).

4.2 Second Order PDEs with Spatially Varying Coefficients

We consider PDEs with spatially varying coefficients defined over irregular domains. The second-
order elliptic PDE is denoted as

∇ · (α∇u(x)) + vω · ∇u(x)− σu(x) = −f(x), x ∈ ΩT

u(x) = g(x), x ∈ ∂ΩT
(8)

where, ΩT ⊂ R3 is the domain defined by distance T , α ∈ C2(ΩT ,R+), vω ∈ C2(ΩT ,R3), and
σ ∈ C(ΩT ,R>0). As presented in [13, 26], α represents the diffusion coefficient, vω is the drift
coefficient and σ denotes the absorption coefficient.

We consider a variant of this PDE by assuming vω = 0, and define a delta-tracking-based WoS loss.
This is done so by making the following substitutions to equation 8. U(x) =

√
α(x)u(x), g′(x) =√

α(x)g(x), f ′(x) =

√
α(x)

α(x) f(x), σ′(x) = σ(x)
α(x) +

1
2 (

∆α(x)
α(x) + |∇ ln(α(x))|2

2 ). This reformulation
leads to a screened variant of equation 3:

GWoS,∆[a](ξ) = E[e−σ̄τkg′(Xξ
τk
) +

∑
k≥0

∫ τk

0

f(Xξ
t , U)dt|ξ], (9)

We derive the delta-tracking algorithm in Section C. This is adapted to a new loss function as follows:

L̂θ,∆ =
1

NM

M∑
j=1

N∑
i=1

∥Gθ[aj , αi, σi](ξi)− ĜL,WoS,∆[a
j ](ξi)∥2, (10)

where ĜL,WoS,∆[a
j ](ξi) is an L-trajectory empirical mean of estimations with Delta tracking such

that ĜL,WoS,∆[a](ξ) ≈ GWoS,∆[a](ξ).

We provide an abstract view of the training pipeline of WoS-NO in Algorithm 1 and the definition of
diffusion and absorption terms in Appendix C.
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5 Implementation

The WoS framework is implemented using the zombie C++ library [24]. We leverage python
bindings to make calls from the training framework. While we do not generate datasets for training,
we generate domains (shapes) and PDE family coefficients. We provide the data generation details
along with training details in Section D.

6 Experiments

This section presents the empirical validation of our proposed framework. Our evaluation is struc-
tured into three parts: benchmarking against baseline methods, quantifying amortization gains, and
demonstrating generalization to diverse applications.

First, we benchmark our framework against two classes of data-free PDE solvers: Physics-Informed
Neural Operators (PINOs) and Deep Ritz methods (which we extend to neural operators from (au-
thor?) [31]). For the comparison against the traditional Walk-on-Spheres (WoS) solver, we conduct
an equal sample analysis and equal time analysis. This involves averaging the outputs from multiple
independent runs of both our trained operator and the WoS solver to evaluate and compare the
consistency of their solutions under an identical sampling budget.

Second, we quantify the amortization gains of our operator, which is the computational speedup at
inference time that offsets the initial cost of training. We measure this in two settings. For unseen
PDE parameterizations, we quantify the gain by measuring the throughput of the traditional WoS
solver; specifically, we calculate the number of new problem instances it can solve from scratch
within the total wall-clock time required for our operator to converge to an L2 relative error of 10−3.
To analyze scalability, we then compare the wall-clock time of our neural solver against the WoS
solver across various resolutions, demonstrating our method’s efficiency on finer discretizations.

Finally, we showcase the versatility of our framework by applying it to a diverse set of domains
beyond physics, including fluid dynamics and image inpainting.

6.1 Comparisons with Baselines

We benchmark our proposed WoS-NO against two established data-free baselines: the Physics-
Informed Neural Operator (PINO) and the Deep Ritz Operator. We evaluate all methods on key metrics
including training time, final accuracy on unseen PDEs, and computational resource consumption.
The results are summarized in Table 1 and Table 2.

Table 1: Performance and compute comparison of our WoS-NO against data-free baselines on
the linear Poisson family. All methods were trained for 20,000 steps, with the evaluation metrics
averaged over 1000 unseen linear parameterizations. Our approach achieves the highest accuracy
with significantly lower GPU resource consumption.

APPROACH TRAINING TIME (Min)
(20K steps)

AVERAGE
L2 ERROR ±Std

PEAK GPU
MEMORY (MB)

PEAK GPU
POWER USAGE (W)

PINO 85.25 2.5e−3 ± 4.7e−3 1523.5 78.43
Deepritz Operator 35.401 1.0e−2 ± 1.6e−2 859.43 49.52
WoS-NO 13.5 8.2e−4 ± 5.4e−4 627 48.81

The data in Table 1 and Table 2 highlight the advantages of our method. Our WoS-NO achieves the
lowest L2 error while simultaneously reducing peak GPU memory and power consumption compared
to both baselines. It remains faster than both PINO and Deepritz.

In Figure 1 right, we make comparisons of predictions for the linear Poisson family over diverse
geometries using WoS-NO, ground truth, PINO, DeepRitz, and WoS. We see that WoS-NO’s pre-
dictions are much closer to the ground truth than other methods. Moreover, while WoS results in
very noisy predictions, WoS-NO smooths out noises from training and makes smooth predictions in
different geometries, proving its efficiency and strong performance in learning the solution operator
for parametrized PDEs with weak supervision.
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Table 2: Performance and compute comparison of our WoS-NO against data-free baselines on Poisson
equations with spatially varying coefficients. All methods were trained for 50,000 steps, with the
evaluation metrics averaged over 1000 unseen spatially varying parameterizations. Our approach
achieves the highest accuracy with significantly lower GPU resource consumption.

APPROACH TRAINING TIME (Min)
(50K steps)

AVERAGE
L2 ERROR ±Std

PEAK GPU
MEMORY (MB)

PEAK GPU
POWER USAGE (W)

PINO 411 9.4e−3 ± 1.1e−2 8587.9 122.85
Deepritz Operator 198 1.1e−2 ± 2.4e−2 3903.1 116.59
WoS-NO 188 9.0e−3 ± 7.9e−3 2886.3 103.90

Figure 3: Left: Training Poisson equations with spatially varying coefficients with equal time for 200
minutes, WoS-NO demonstrates the lowest L2 error while converging the fastest. In contrast, PINO
requires a much longer time to converge. Middle:After WoS-NO training is finished, we compare the
amount of time needed to achieve the same level of accuracy as L2-error to achieve the same L2 error
as a well-trained WoS-NO for 4096 pointwise estimations. Right: GINO, Transolver and GNOT are
trained on DeepRitz, PINO and WoS-NO losses, and across all three operator architectures, WoS-NO
is the strongest with the lowest L2-error.

7 Future Work

A challenging test for the generalizability of a PDE solver is Poisson surface reconstruction. Current
methods, such as physics-informed neural fields, often require per-scene optimization and struggle to
generalize to new inputs without retraining. Our framework, however, can be applied in a zero-shot
manner by reformulating the task as a Poisson problem. The standard approach seeks to find an
indicator function χ of the surface’s interior whose Laplacian equals the divergence of the input
point cloud’s normal field, N , i.e., ∆χ = ∇ ·N. One promising direction is to model the surface
reconstruction as a stochastic integral; such an approach, which we leave for future work, could pave
the way for a truly general-purpose, training-data-free foundational Poisson solver.
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A Background: Operator Learning

A neural operator [8] is a data-driven approximation of mappings between function spaces denoted
as Gθ : A → U such that Gθ ≈ G, where G is defined in equation 3.

A neural operator is composed of pointwise and integral operators, which can be represented as the
discretization of the kernel-integral transform, where the learnable kernel is parameterized by neural
networks. In our work, we propose the use of neural operators to learn the integral presented in
Equation (3). We define a neural operator based on GINO [12] to approximate the unknown Green’s
function by formulating it as a kernel integral as shown below

G[a](ξ) = u(ξ; a) :=

∫
ΩT

κθ(ξ, γ)a(γ)dγ. (11)

In the discrete setting, this is represented as a summation, denoted as

G[a](ξ) ≈
∑
j

κθ(ξ, γj)a(γj). (12)

We follow the model architecture presented in GINO [12]. The input, represented as point clouds, is
projected onto a uniform latent grid, and the input functions a = (f, g, T ) are integrated by the FNO.
We use a second GNO to evaluate the integral over a desired set of validation points defined over the
same spatial domain but may differ from the input point clouds.

B Derivation of Walk-on-Spheres

We present a more detailed derivation of Walk-on-Spheres.

Given equation 3.1, we apply Itô’s lemma to the process u(Xξ
t ) and can reformulate the Poisson

equation as

g(Xξ
τ ) = u(ξ) +

∫ τ

0

f(Xξ
t )dt+

√
2

∫ τ

0

∇u(Xξ
t )dWt, (13)
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where τ = τ(Ω, ξ) = inf{t ∈ [0,∞) : Xξ
t /∈ Ω} is the stopping time or the first exit time of the

stochastic process from the domain Ω.

By writing the equation in an expectation form, we can get

u(x) = E
[
g(Xξ

τ )−
∫ τ

0

f(Xξ
t )dt

∣∣ξ = x

]
, (14)

since
∫ τ

0
∇u(Xξ

t )dWt has an expectation zero, see, e.g., (author?) [3, Theorem 10.2].

By restricting the domain Ω to an open sub-domain Ω0 ⊂ Ω with ξ0 = ξ ∈ Ω0 and τ0 = τ(Ω0, ξ),
we can rewrite the expectation as

u(ξ) = E
[
u(Xξ

τ0)−
∫ τ0

0

f(Xξ0
t )dt

∣∣ξ] . (15)

To recursively solve the equation, we further define the random variable ξ1 ∼ Xξ
τ0 with sub-domain

Ω1 ⊂ Ω containing ξ1 and τ1 = τ(Ω1, ξ1). We get

u(Xξ
τ0) ∼ u(ξ1) = E

[
u(Xξ1

τ1 )−
∫ τ1

0

f(Xξ1
t )dt

∣∣ξ1] . (16)

As a result, we can define a recursive solution

u(ξ) = E

[
g(Xξ

τ )−
∑
k≥0

∫ τk

0

f(Xξk
t )dt

∣∣∣∣∣ξ
]
. (17)

The second term in 17 can be computed by using Green’s function such that

E[
∫ τk

0

f(Xξ
t )dt] =

∫
Brk

(ξk)

f(y)G(ξk, y)dy (18)

which can be solved through Monte Carlo integrations such that

E[
∫ τk

0

f(Xξ
t )dt] = |Brk(ξk)|E[f(y)Grk(y, ξk)] (19)

where y ∼ U(Brk(ξk)) and

Gr(y, z) :=

{
1
2π log r

∥y−z∥ , d = 2,

Γ(d/2−1)
4πd/2

(
∥y − z∥2−d − r2−d

)
, d > 2,

(20)

C Derivation of Delta Tracking

We follow the derivation presented in [26].

Let us define the PDE to be as follows

∇ · (α(x)∇u)− σu(x) = −f(x), x ∈ Ω

u(x) = g(x), x ∈ ∂Ω
(21)

We expand the second order term and apply the identity ∇ ln(α(x)) = ∇α(x)/α(x)

∆u(x) +∇ ln(α(x)) · ∇u(x)− σ(x)

α(x)
u(x) = −f(x)

α(x)
(22)

We eliminate the first order operator by applying Girsanov transformation.

∆U(x)− σ′(x)U(x) = −f ′(x), x ∈ Ω

U(x) = g′(x), x ∈ ∂Ω
(23)

11



Where, U(x) =
√

α(x)u(x), g′(x) =
√

α(x)g(x), f ′(x) =

√
α(x)

α(x) f(x), σ′(x) = σ(x)
α(x)+

1
2 (

∆α(x)
α(x) +

|∇ ln(α(x))|2
2 )

We introduce a coefficient σ̄ > 0, to shift the heterogenity to a source term. The equation then
becomes

∆U(x)− σ̄U(x) = −f ′(x, U), x ∈ Ω

U(x) = g′(x), x ∈ ∂Ω
(24)

where f ′(x, U) = f ′(x) + (σ̄ − σ′(x))U(x). Using the Feynman-Kac formulation, we derive

U(ξ) = E[e−σ̄τg′(Xξ
τ ) +

∫ τ

0

e−σ̄tf ′(Xξ
t , U)dt

∣∣ξ]. (25)

Similar to the derivation of the original Walk-on-Spheres, we define the integral as

U(Xξ
τ0) ∼ u(ξ1) = E[e−σ̄τ1U(Xξ1

τ1 ) +

∫ τ1

0

e−σ̄tf ′(Xξ1
t , U)dt

∣∣ξ1]. (26)

By solving this recursively, we find that

U(ξ) = E[(Πk≥0e
−σ̄τk)g′(Xξ

τ ) +
∑
k≥0

(Πi≤ke
−σ̄τi)

∫ τk

0

e−σ̄tf ′(Xξk
t , U)dt|ξ]. (27)

To evaluate the solution iteratively, we need to reformulate E[e−σ̄τkU(Xξk
τk
)|ξk] and

E[
∫ τk
0

e−σ̄τkU(Xξk
t )dt|ξk].

The first term can be approximated using the Poisson kernel P σ̄

E[e−σ̄τkU(Xξk
τk
)|ξk] =

∫
∂Brk

(ξk)

U(z)P σ̄(z)dz, (28)

and the second term can be approximated using Green’s function Gσ̄

E[
∫ τk

0

e−σ̄tU(Xξk
t )dt|ξk] =

∫
Brk

(ξk)

f ′(y, U)Gσ̄(ξk, y)dy, (29)

As such, the new integral can be recursively represented as a solution operator G∆ of screened Poisson
equations

Ĝ∆[a](ξ) =
1√
α(ξ)

(

∫
B(c)

f(y)Gσ̄(ξ, y)dy+∫
∂B(c)

√
α(z)Ĝ∆[a](z)P σ̄(ξ, z)dz)

(30)

where, Gσ̄ is Green’s function and P σ̄ is the Poisson kernel, given by the normal derivative of Green’s
function at the boundary. Refer [26] for more detailed derivations.

C.1 Definition of terms for Poisson with spatially varying coefficients

In this section, we define all terms in spatially-varying coefficient Poisson as shown in Section 4

Boundary term g: We define the boundary term using the parametric equation g(x) =
sin(πΦαx0) cos(2πΦαx1) + (1 − cos(πΦαx0))(1 − sin(2πΦαx1)) + sin2(3πΦαx2), where Φα

is the diffusion frequency. We denote that u(x) = g(x).

Diffusion Coefficient α: Diffusion coefficient describes the rate of diffusion of a physical quantity
(e.g. heat) in a spatial medium. We define it as α(x) = exp(−x2

1 + cos(4πΦαx0) sin(3πΦαx1))
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Absorption Coefficient σ: Absorption coefficient allows for damping and amplification and is
denoted as σ(x) = Amin + (Amax − Amin)(1 + 0.5 sin(2πx0) cos(0.5πx1)), where Amax and
Amin are coefficients representing the minimum and maximum values for absorption.

Source term f : We compute the source term as f(x) = −α∇2u−∇α · u+ σu. We approximate
the gradient and the Laplacian from the closed-form expression.

D Experimental Settings

D.1 Domain Generation

Linear Setting For the linear settings, we generate the domain ΩT by sampling points in the polar
coordinate system. The domain ΩT is disc-like, centered at the origin with its boundary radius
defined by r(θ) = r0[1 + c1 cos(4θ) + c2 cos(8θ)]. We fix r0 = 1, and c1, c2 are varying parameters
uniformly sampled such that c1, c2 ∼ U(−0.2, 0.2). To sample points inside the domain, we use a
rejection-sampling strategy to ensure that all points lie strictly inside the boundary. For any candidate
point (x0, x1), we compute its polar coordinates, specifically the angle θ = arctan2(x1, x0) and the
radial distance r =

√
x2
0 + x2

1. A point is deemed to belong to the domain if r < r0, where r0 is
calculated for the given θ. We first over-sample a uniform grid of candidate points in the rectangular
region enclosing Ω. Each candidate point is evaluated against the domain boundary to determine
whether it is within. Points that satisfy this criterion are retained, and the desired number of domain
points is then sampled uniformly from the retained set. This approach ensures that the sampled
points represent the geometry of the domain. In contrast, boundary points are explicitly generated
by evaluating parametric boundary equations for uniformly spaced values of θ. This guarantees an
accurate representation of the domain boundary for enforcing Dirichlet boundary conditions.

Varying Coefficient Setting For the experiments with Poisson with varying coefficients, we use
meshes from the ShapeNet dataset [5] to define complex geometries. To sample domain and boundary
points, we compute a fast signed distance field (SDF) estimate using the Bounding Volume Hierarchy
(BVH). Domain points are identified by evaluating the SDF of a set of candidate points relative to
the mesh, where points with a negative SDF (indicating that they lie inside the mesh) are retained.
Boundary points are sampled by selecting points with an absolute SDF value within a small threshold
ϵ = 0.01, corresponding to points located at a distance of approximately ϵ from the mesh surface.
The use of BVH speeds up the SDF computation by efficiently finding the nearest points on the mesh
surface.

Algorithm 1: Training of Vanilla WoS-NO without Caching
1 Input: Neural operator Gθ parameterized by θ, the number of epochs E, distance function T ,

source term f , bound term g, Walk-on-Spheres operator ĜL,WoS, the number of trajectories L,
domain ΩT , input function space A = T × F × B, learning rate γ

2 Output: Learned parameters θ
3 for i← 0...E do
4 a = (T, f, g)← sample from A
5 {ξj}j ← sample from ΩT

6 {yj}j ← vmap[ĜL,WoS[a]({ξj}j)]
7 L̂(θ) = MSE(Gθ[a](ξj), yj)
8 θ ← step(γ,∇θL̂(θ))
9 end

E Training details

We train our model on a set of 4000 PDE instances defined over unique geometries. As our framework
is primarily architecture independent, we leverage 3 architectures within the neural operator class -
GINO [12], GNOT [7] and Transolver [29]. During training, we sample 1024 domain and boundary
points, respectively, from the instance and this forms the input to the model, alongside the pointwise
source, (diffusion, and absorption for the varying coefficient case) values computed on the samples.
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We evaluate the performance on unseen geometries and unseen PDE parameters. To train the model,
we use the Adam optimizer, with a learning rate of 1e-3 and a weight decay of 1e-6. We use the linear
WoS-based residual for the linear and the delta tracking residual for the varying coefficient one. The
training process includes a learning rate scheduler (ReduceLROnPlateau), which reduces the learning
rate by a factor of 0.9 when the validation loss stagnates for 2 consecutive epochs. All experiments
were performed on NVIDIA RTX 3060 GPU.

E.1 Hyperparameters for the models

GINO For the GINO module, an embedding dimension of 16, with a maximum of 600 positional
embeddings. The graph construction radii for input, and output, were set to 0.1, 0.1, and 0.05,
respectively. The input and output transforms are linear; the input channel MLP has hidden layers of
[4, 256, 512, 256, 3] and the output channel MLP has layers of [128, 512, 1024, 512, 64]. The FNO
module consists of 4 layers with [20, 20] Fourier modes. The hidden, lifting, and projection channel
dimensions were set to 64, 256, and 64, respectively. We used Group Normalization, a channel MLP
expansion factor of 0.5, 8 features for AdaIn, and a tensor factorization rank of 0.8.

GNOT The GNOT model is a Transformer-based architecture with 12 layers with a hidden dimen-
sion of 128. The attention mechanism employs a single head with a linear attention type and no
dropout. The feed-forward network is a Mixture-of-Experts model with 2 experts. Each expert’s
MLP is composed of 2 layers with an inner dimension of 8, and no dropout is applied. Horizontal
Fourier features were not used.

Transolver The Transolver model is a Transformer-based architecture configured with 6 layers, a
hidden dimension of 32, and 24 attention heads. The model incorporates residual connections and is
set with a slice number of 32 and a reference value of 16. It does not use time as an input feature and
is designed to produce a single scalar output.

F Ablations

In this section, we provide different ablation studies for improving the performance of Wos-NO.

F.1 Effects of Control Variates

As discussed in [24], control variates provide a principled approach to reducing the variance of
Walk-on-Spheres (WoS) estimates, leading to more consistent and accurate results. However, in our
case, we observe no significant improvements, due to the expressivity of neural operators and their
ability to learn from noisy inputs.

Table 3: Showcasing the effects of control variates on the 2D dataset.

CONTROL VARIATES TRAIN
L2 Err

TEST
L2 Err

No 4.05e−4 8.2e−4

Yes 4.33e−4 8.35e−4

F.2 Caching prior walks

Inspired by [20], we use a cache to store intermediate walks {(aj , ξi, ĜL,WoS[a
j ](ξi))}i,j . Instead of

relying on a fixed, noisy target, the cached estimate is updated each epoch with a small number of
fresh Monte Carlo walks. This process amortizes the variance reduction over the training duration.
The cache incurs an additional space complexity of O(mn), where m is the number of instances in
the training dataset and n is the number of points per instance.

Let k be the current training epoch and L be the number of new WoS trajectories generated per epoch
for each point. The cached target estimate at epoch k, which we denote as Y (k) , is the running
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Figure 4: Left: This figure showcases the overall training time as the number of trajectories changes
for each instance. The higher number of trajectories increases the training time due to a higher
likelihood of longer random walks. Right: This plot shows comparable performance for different
numbers of walks for each instance. Asymptotically, neural operators converge to a similar level of
errors regardless of the fidelity of the stochastic estimation.

average of all k · L trajectories generated up to that point. This can be expressed via the following
recursive update rule:

Y
(k)
j,i =

k − 1

k
Y

(k−1)
j,i +

1

k
Ĝ(k,new)
L,WoS [aj ](ξi) with Y

(0)
j,i = 0 (31)

where Ĝ(k,new)
L,WoS is the estimate derived from the L fresh walks generated during epoch k. As the

training progresses (k →∞), the variance of our target approaches zero, and Y
(k)
j,i converges to the

true solution G[aj ](ξi). The empirical loss at epoch k is therefore a function of this refined target:

L̂(k)
θ =

1

NM

M∑
j=1

N∑
i=1

∥Gθ[aj ](ξi)− Y
(k)
j,i ∥

2 (32)

F.3 Effects of Number of Trajectories

To evaluate the impact of the number of trajectories for WoS-NO. We train WoS-NO with L =
1, 10, 100, 1000 to evaluate the influence of the number of trajectories for WoS-No.

As shown in Figure 4 left, the number of trajectories has a direct influence on the training time.
The higher the number of trajectories, the lower the variance and the longer the simulation time
for full convergence of random walks. This results in a trade-off between fidelity and simulation
time and requires careful tuning to balance two costs. We further evaluated the validation loss for
different numbers of trajectories in Figure 4 right. We discover that asymptotically, the performance
of WoS-NO converges to a similar validation loss level, proving that neural operators are able to
smooth out noises in stochastic estimations in the long term. We choose L = 10 as we find that it has
slight improvements in the final performance while not introducing significant costs for training.
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