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Abstract

Uncertainty approximation in text classifica-
tion is an important area with applications in
domain adaptation and interpretability. The
most widely used uncertainty approximation
method is Monte Carlo Dropout, which is com-
putationally expensive as it requires multiple
forward passes through the model. A cheaper
alternative is to simply use a softmax to esti-
mate model uncertainty. However, prior work
has indicated that the softmax can generate
overconfident uncertainty estimates and can
thus be tricked into producing incorrect predic-
tions. In this paper, we perform a thorough
empirical analysis of both methods on three
datasets with two base neural architectures in
order to reveal insight into the trade-offs be-
tween the two. We compare the methods’
uncertainty approximations and downstream
text classification performance, while weigh-
ing their performance against their computa-
tional complexity as a cost-benefit analysis.
We find that, while Monte Carlo produces the
best uncertainty approximations, using a sim-
ple softmax leads to competitive F1 results for
text classification at a much lower computa-
tional cost, suggesting that softmax can in fact
be a sufficient uncertainty estimate when com-
putational resources are a concern.

1 Introduction

The pursuit of pushing state-of-the-art performance
on machine learning benchmark datasets often
comes with an added cost of computational com-
plexity. On top of already complex base models,
such as Transformer models (Vaswani et al., 2017;
Lin et al., 2021), successful methods often employ
additional techniques such as ensembling and un-
certainty estimation in order to push performance.
Though these techniques can be effective, the over-
all benefit in relation to the added computational
cost is under-studied.

More complexity does not always imply better
performance. For example, Transformers can be

outperformed by much simpler convolutional neu-
ral nets (CNNs) when the latter are pre-trained as
well (Tay et al., 2021). Here, we turn our atten-
tion to predictive uncertainty estimation methods
in text classification, which have applications in
domain adaptation and can help make models more
transparent and explainable, with a focus on Monte
Carlo Dropout.

Quantifying predictive uncertainty has been ex-
plored using various techniques (Gawlikowski
et al., 2021), with the methods being divided into
three main categories: Bayesian methods, sin-
gle deterministic networks, and ensemble meth-
ods. Bayesian methods include Monte Carlo (MC)
dropout (Gal and Ghahramani, 2016b) and Bayes
by back-prop (Blundell et al., 2015). Single deter-
ministic networks can approximate the predictive
uncertainty by a single forward pass in the model,
with softmax being the prototypical method. Lastly,
ensemble methods utilise a collection of models to
calculate the predictive uncertainty.

In this paper, we investigate the cost vs. benefit
of choosing simple vs. expensive uncertainty ap-
proximation methods for text classification, with
the goal of highlighting when and if more com-
plex uncertainty methods should be employed by
NLP researchers and practitioners who could bene-
fit from their use. We focus on single deterministic
and Bayesian methods. For the single deterministic
methods, we study the softmax, which is calculated
from a single forward pass and is computation-
ally very efficient. While softmax is a widely used
method, prior work posits that the softmax output is
not the most dependable uncertainty approximation
method (Gal and Ghahramani, 2016b; Hendrycks
and Gimpel), and as such it has been superseded by
newer methods such as MC dropout. MC dropout
is favoured due to its close approximation of un-
certainty, and because it can be used without any
modification to the applied model. It has also been
widely applied in text classification tasks (Zhang



et al., 2019; He et al., 2020).

To understand the cost vs. benefit of softmax
vs. MC dropout, we perform experiments on three
datasets using two different neural network archi-
tectures, applying them to three different down-
stream text classification tasks. We measure both
the added computational complexity in the form
of runtime (cost) and the downstream performance
on multiple uncertainty metrics (benefit). We show
that by using a single deterministic method like
softmax instead of MC dropout, we can improve
the runtime by 10 times while still being competi-
tive in performance to MC dropout. As such, given
the already high computational cost of deep neural
network based methods and recent pushes for more
green ML (Strubell et al., 2019; Patterson et al.,
2021), we recommend not discarding simple uncer-
tainty approximation methods such as softmax just
yet, as they are often surprisingly effective, while
being more efficient.

Contribution In summary, our contributions are
as follows: 1) An empirical study of MC dropout
and softmax for text classification tasks, using two
different neural architectures and three datasets; 2)
An analysis of the underlying performance of MC
dropout and softmax using expected calibration
error; 3) A comparison of MC dropout and softmax,
using the two methods’ measured accuracy/F1 and
runtime.

2 Related Work

2.1 Uncertainty Quantification

Quantifying the uncertainty of a prediction can be
done using various techniques (Ovadia et al., 2019;
Gawlikowski et al., 2021; Henne et al., 2020) such
as single deterministic methods (Mozejko et al.,
2019; van Amersfoort et al., 2020) which calcu-
late the uncertainty on a single forward pass of
the model. They can further be classified as in-
ternal or external methods, which describe if the
uncertainty is calculated internally in the model or
post-processing the output. Another family of tech-
niques are Bayesian methods, which combine NNs
and Bayesian learning. Bayesian Neural Networks
(BNNs) can also be split into subcategories, namely
Variational Inference (Hinton and van Camp, 1993),
Sampling (Neal, 1993), and Laplace Approxima-
tion (MacKay, 1992). Some of the more notable
methods are Bayes by backprop (Blundell et al.,
2015) and Monte Carlo Dropout (Gal and Ghahra-
mani, 2016b). One can also approximate uncer-

tainty using ensemble methods, which use multiple
models to better measure predictive uncertainty,
compared to using the predictive uncertainty given
by a single model (Lakshminarayanan et al., 2017;
He et al., 2020; Durasov et al., 2021). Recently,
we have seen uncertainty methods being used to
develop methods for new tasks (Zhang et al., 2019;
He et al., 2020), where mainly Bayesian methods
have been used. We present a thorough empirical
study of how uncertainty quantification behaves
for text classification tasks. Unlike prior work, we
do not only evaluate based on the performance of
the methods, but perform an in-depth comparison
to much simpler deterministic methods based on
multiple metrics.

2.2 Uncertainty Metrics

Measuring the performance of uncertainty approxi-
mation methods can be done in multiple ways, each
offering benefits and downsides. Niculescu-Mizil
and Caruana (2015) explore the use of obtaining
confidence values from model predictions to use for
supervised learning. One of the more widespread
and accepted methods is using expected calibra-
tion error (ECE, Guo et al., 2017). While ECE
measures the underlying confidence of the uncer-
tainty approximation, we have also seen the use of
human intervention for text classification (Zhang
et al., 2019; He et al., 2020). There, the uncertainty
estimates are used to identify uncertain predictions
from the model and ask humans to classify these
predictions. The human classified data is assumed
to have 100% accuracy and to be suitable for mea-
suring how well the model scores after removing a
proportion of the most uncertain data points. Using
metrics such as ECE, the calibration of models is
shown, and this calibration can be improved using
scaling techniques (Guo et al., 2017; Naeini et al.,
2015). We use uncertainty approximation metrics
like expected calibration error, and human interven-
tion (which we refer to as holdout experiments) to
measure the difference in the performance of MC
dropout and softmax compared against each other
on text classification tasks.

3 Uncertainty Approximation for Text
Classification

We focus on one deterministic method and one
Bayesian method of uncertainty approximation. In
the following sections, we formally introduce the
two methods we study, namely MC dropout and



softmax. MC dropout is a Bayesian method which
utilises the dropout layers of the model to measure
the predictive uncertainty, while softmax is a deter-
ministic method that uses the classification output.
In Figure 1, we visualise the differences between
the two methods and how they are connected to
base text classification models.

3.1 Bayesian Neural Networks

Before introducing the MC dropout method, we
quickly introduce the concept of Bayesian Neural
Networks (BNN)s. We start by comparing a BNN
to a traditional NN. A traditional NN is of frequen-
tist mindset. Therefore, it assumes that the network
weights are real but of an unknown value and can
be found through maximum-likelihood estimation,
and the input data are treated as random variables.
The BNN instead views the weights as random
variables and infers a posterior distribution p(w|D)
over w after observing D, where D = (z,y) and w
are the weights of the model. The posterior distri-
bution is defined as follows:
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Using the posterior distribution, we can find the
prediction of an input of unseen data x* and y* as
follows

p(y*|x*, D) :/p(y*\x*,w)p(wﬂ))dw. (2)

However, the posterior distribution is infeasible
to compute due to the marginal likelihood in the
denominator, and we cannot find a solution an-
alytically. We therefore resort to approximating
the posterior distribution. For this approximation
we rely on methods such as Bayes by Backprop-
agation (Blundell et al., 2015) and Monte Carlo
Dropout (Gal and Ghahramani, 2016b).

3.2 Monte Carlo Dropout

We provide a high-level introduction to the method
but refer the reader to the literature for the in-depth
theory and proofs (Gal and Ghahramani, 2016b,a).
MC dropout approximates the posterior p(w|D) by
leveraging the dropout layers in a model. In partic-
ular, it simply allows the dropout layers to remain
active during testing and obtains multiple samples
by passing an input through the model multiple
times with different nodes dropped on each pass
(see Figure 1). Mathematically, we introduce g(w),

a(y*|=", D)

Figure 1: In this figure (left), we show how the MC
dropout method functions in a NN and how we can use
the representation calculated by the model before the
last dropout layer as a reference point, and how we can
reuse it to avoid the high costs of recalculating the en-
tire model multiple times. We further show the simplic-
ity of the softmax next to it (right).

a distribution of weight matrices whose columns
are randomly set to 0, to approximate the posterior
distribution p(w|D), which results in the following:

a(y" | 2°,D) = / (" | 2 Wg(w)do. ()

For the proof of how to get from Eq. (2) to Eq.
(3), we refer the reader to (Gal and Ghahramani,
2016b).

As this requires multiple forward passes, this
introduces added computational costs. To help al-
leviate this and provide a fair comparison with the
more lightweight softmax, we obtain a representa-
tion Z by passing an input through the first several
layers of the model and pass only this representa-
tion through the latter part of the model multiple
times, reducing the computational cost.

3.2.1 Combining Sample Predictions

With multiple samples of the same data point, we
have to determine how to combine them to quantify
the predictive uncertainty. We test two methods
that can be calculated using the logits of the model,
requiring no model changes. The first approach,
which we refer to as Mean MC, is averaging the



output of the softmax layer from all forward passes:
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where 2F is the logits of the 7’th data point of the
k’th forward pass. The second method we use
to quantify the predictive uncertainty is Dropout
Entropy (DE) (Zhang et al., 2019) which uses a
combination of binning and entropy:
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c
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BinCount is the number of predictions of each class
and b is a vector the probabilities of a class’s oc-
currence based on the bin count. We show the
performance of the two methods in Section 4.3.2.

3.3 Softmax

Softmax is one of the most common objectives
used in classification tasks for processing the logits
of NNs. Softmax is defined as follows:
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where y; is the ’th data point and the logits of a
NN. The softmax yields a probability distribution
over the predicted classes. However, the predicted
probability distribution is often overconfident to-
ward the predicted class (Gal and Ghahramani,
2016b; Hendrycks and Gimpel). The issue of soft-
max’s overconfidence can also be exploited (Gal
and Ghahramani, 2016b; Joo et al., 2020) — in the
worst case, this leads to the softmax producing im-
precise uncertainties. However, model calibration
methods like temperature scaling have been found
to lessen the overconfidence to some extent (Guo
etal., 2017). In Section 4.6 we measure the model’s
confidence level and further inspect the distribution
of the model’s predictions as a part of our model
calibration analysis.
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4 Experiments and Results

We consider three different datasets and two differ-
ent models in our experiments. Additionally, we
conduct experiments to determine the optimal hy-
perparameters for the MC dropout method, particu-
larly the optimal amount of samples which affects

the efficiency and performance of MC dropout. We
further find the optimal dropout percentage in Ap-
pendix A.3.

4.1 Data

To test the predictive uncertainty of the two
methods, we use three text classification datasets.
We use the following three datasets: 20
Newsgroups dataset (Lang, 1995), the Amazon
dataset (McAuley and Leskovec, 2013) and the
IMDb dataset (Maas et al., 2011). The 20 News-
group dataset is a collection of 20,000 news ar-
ticles consisting of 20 different classes. We use
the ‘sports and outdoors’ category for the Amazon
dataset, which consists of 272,630 reviews with
ratings from 1 to 5. We also use the IMDb dataset,
which is a binary classification task consisting of
50,000 samples. We create the following splits
for the datasets: 60%, 20% and 20% for training,
validation and testing, respectively, with each set
having been selected randomly.

4.2 Experimental Setup

We use two different base neural architectures with
two different embeddings in our experiments. To
recreate baseline results, the first model is the same
model as proposed in (Zhang et al., 2019), which is
a CNN using pre-trained GloVe embeddings with
a dimension of 200 (Pennington et al., 2014). The
second model uses a pre-trained BERT model (De-
vlin et al., 2019) fine-tuned as masked language
model on the dataset under evaluation to obtain
contextualized embeddings, which are then input
to a CNN with 4 layers. For both models we use the
final dropout layer for MC dropout. Both models
are optimised using Adam (Kingma and Ba, 2015)
and are trained for 1000 epochs with early stopping
after 10 iterations if there have been no improve-
ments, and we set the learning rate to 0.001.

MC Dropout Sampling To make full use of MC
dropout, we first determine the optimal number of
forward passes through the model needed to ob-
tain the best performance while maintaining high
efficiency. This hyper-parameter search is imper-
ative because the MC dropout performance and
efficiency are correlated with the number of sam-
ples generated. To make a fair comparison against
the already cheap softmax method, we want to find
the minimum number of samples needed to approx-
imate a good uncertainty. In Table 1, we show
the performance of the MC dropout method with



0% 10% 20% 30% 40%
1 0.8212 0.8721 0.8997 0.9167 0.9367
10 0.8623 0.9008 0.9228 0.9416 0.9495
25 0.8540 0.8978 0.9223 0.9405 0.9507
50 0.8591 0.8985 0.9225 0.9406 0.9487
100 0.8559 0.8966 0.9238 0.9385 0.9485
1000 0.8573 0.9007 0.9253 0.9406 0.9492

Table 1: This table shows how the number of samples
affect the performance of the MC dropout method, us-
ing the CNN model with BERT embeddings. The re-
sults are reported using macro F1.

the CNN model using BERT embeddings on the
20 Newsgroups dataset for the following number
of samples: [1,5,10,25,50,100,1000]. The ta-
ble shows how the performance of the uncertainty
approximation increases, given the number of sam-
ples. However, the performance gained by the num-
ber of samples falls off at 50. Given this, we use 50
MC samples in our experiments in order to balance
good performance and efficiency.

4.3 Evaluation Metrics

We use complementary evaluation metrics to bench-
mark the performance of MC dropout and softmax.
Namely, we measure how well each of the meth-
ods identify uncertain predictions as well as the
runtime of the methods.

4.3.1 Efficiency

To quantify efficiency, we measure the runtime
of each of the methods during inference and the
calculation of the uncertainties. Since we do not
calculate uncertainties during training this is only
done on the test sets. The training of the model is
independent of the two methods, since we only use
the methods to quantify the uncertainty of the pre-
dictions of the model. We therefore only calculate
the runtime of each of the methods based on the
test data.

4.3.2 Uncertainty Estimation Performance

We use two main methods to measure uncertainty
estimation performance: test data holdout and ex-
pected calibration error (ECE). For base model per-
formance, we record the macro F1 score on the 20
Newsgroups and IMDb datasets, and the accuracy
on the Amazon dataset.

Test data holdout We provide 4 scores for each
method, where each result is based on holding out a
proportion of the test data. The uncertainty method

identifies the most uncertain predictions, which are
then left out of the F1 and accuracy calculations.
The holdout is done at 10%, 20%, 30% and 40% of
the data. This metric shows how well the two meth-
ods can identify uncertain predictions of the model,
as reflected by improvements in performance when
more uncertain predictions are removed (Zhang
et al., 2019).

Expected calibration error To measure model
calibration, we use the expected calibration error
(ECE) (Guo et al., 2017), which measures the dif-
ference between the predictive uncertainties and
the labels. This tells us how well each of the MC
dropout and softmax methods estimate the uncer-
tainties at the level of probability distributions, as
opposed to the holdout method which only looks
at downstream task performance. ECE works by
dividing the data into m bins, where each bin in
B contains data that is within a range of predictive
uncertainty. ECE is defined as:

o~ |Bul
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where M is the size of the dataset and acc and
conf is the accuracy and mean confidence of the
bin B,.

To observe the difference between the MC
dropout and softmax, we create both confidence
histograms and reliability diagrams (Guo et al.,
2017). The reliability diagrams show how close
the models are to perfect calibration, where perfect
calibration means that the models accuracy and
confidence is equal to the bins confidence range.
The reliability diagrams help us visualise the ECE,
by showing the accuracy and mean confidence of
each bin, where each bin contains consists of the
data, which have a confidence within the range of
the bin.To complement the reliability diagrams, we
also use confidence histograms, which show the
distribution of confidence.

4.4 Efficiency Results

In Table 2, we display the runtime of the different
model and method combinations. The runtime for
the forward passes is calculated as a sum of all
the forward passes on the entire dataset, and the
runtime for the uncertainty methods are calculated
for the entire dataset. Observing the results, we
see that softmax is overall faster, and is approxi-
mately 10 times faster when only looking at the



forward passes, and using more complex aggre-
gation methods in MC dropout, like DE, can be
computationally heavy.

Forward passes Mean MC DE
20 Newsgroups  1.0876 0.0003 12.3537
IMDb 1.386 0.0018 216.11
Amazon 4.9126 0.0017 194.08

Forward passes  Softmax  PL-Variance
20 Newsgroups  0.0130 0.0002 0.0001
IMDb 0.0387 0.0003 0.0003
Amazon 0.4067 0.0004 0.0002

Table 2: Runtime measured in seconds for both MC
dropout (top) and softmax (bottom). The times are on
the full datasets split into the runtime of the forward
passes and the runtime of calculating the uncertainty.

4.5 Test Data Holdout Results

Table 3, Table 4 and Table 5 show the performance
of the two uncertainty approximation methods us-
ing the different datasets and embeddings. The
tables show the macro F1 score or the accuracy
depending on the datasets, and the improvement
ratio in the parenthesis. We observe that in most
cases, either dropout-entropy (DE) or softmax has
the highest score and improvement ratio. However,
in most cases the two are not far from each other
in performance and improvement ratio. We further
observe that Mean MC also performs well and is
almost on par with DE, however, Mean MC is a
much more efficient method compared to DE, so
the slight trade-off in performance, could beneficial
on larger datasets, where the DE calculations are
too large to compute.

4.6 Model Calibration Results

To further investigate the differences between MC
dropout and softmax, we utilize the expected cal-
ibration error (ECE) to observe the differences in
the predictive uncertainties. In Table 6, we show
the accuracy and ECE on the three datasets using
the BERT embeddings.

The results from our holdout experiments in Ta-
ble 3, 4 and 5 combined with the results from our
ECE calculations in Table 6, all point in the di-
rection of MC dropout and softmax performing
equally to some extent, with the main difference of
the two methods being efficiency as shown in Table
2. To get a better understanding of if and where
the two methods diverge, we plot the reliability

diagrams and confidence histograms as described
in Section 4.3.2. In Figure 2 and 3 we show the
reliability diagrams and the confidence histograms
on the 20 Newsgroups dataset using our CNN with
both the MC dropout method and softmax utilis-
ing BERT and GloVe. We create the reliability
diagrams using 10 bins and the confidence his-
tograms with 20. Where the reliability diagram’s
and confidence histogram’s bins are an interval of
confidence. We use 20 bins for the confidence his-
tograms to obtain a more fine-grained view of the
distribution. In the reliability diagram, the x-axis is
the confidence and the y-axis is the accuracy. For
the confidence histogram the z-axis is again the
confidence and the y-axis is the percentage of the
samples in the given bin. Using the reliability dia-
gram, we observe that the difference in confidence
and outputs are small. The difference between the
two methods is also minimal, including both BERT
and GloVe embeddings, suggesting minimal poten-
tial gains from using MC dropout. We determine
that there is minimal difference by visual inspect-
ing the plots, and by observing the ECE displayed
in Table 6. We further observe that in both MC
dropout and softmax that the model worsens when
we use the GloVe embeddings. As mentioned ear-
lier, we know that the softmax method tends to be
overconfident, which can be seen in the percentage
of samples in the last bin. The MC dropout method,
on the other hand, utilizes the probability space to
a greater extent. We include reliability diagrams
and confidence histograms for the 2 other datasets
in Appendix B.

Inspecting both Table 6 showing the ECE val-
ues and the performances in Table 3, 4 and 5, we
observed that using our two methods, MC dropout
and softmax, we achieved very high F1 scores and
accuracies and low ECEs. We hypothesized that
high performance could lead to softmax achieving
high ECE, due to naturally having high confidence,
compared to MC dropout. We added noise to the
20 Newsgroups test embeddings and redid our ECE
experiments to test our hypothesis. In Figure 4, we
show the reliability diagram of the experiment with
added noise, which shows the MC dropout outper-
forming softmax. To further build on the theory,
we also inspect the confidence histogram, showing
that softmax is still overconfident and the differ-
ence between the accuracy and mean confidence
is high. This suggests that MC dropout is more re-
silient to noise, and in cases where the performance



BERT 0% 10% 20% 30% 40%
Mean MC 0.8591 0.8985(1.0459) 0.9225(1.0739) 0.9406 (1.0949) 0.9487 (1.1043)
DE 0.8591 0.9050 (1.0534) 0.9390 (1.0930) 0.9584 (1.1156) 0.9703 (1.1294)
Softmax 0.8576  0.9072 (1.0578) 0.9452 (1.1021) 0.9620 (1.1216) 0.9742 (1.1360)
PL-Variance 0.8576 0.9006 (1.0501) 0.9246 (1.0781) 0.9403 (1.0964) 0.9484 (1.1058)
GloVe
Mean MC 0.7966 0.8450 (1.0608) 0.8674 (1.0888) 0.8846 (0.1104) 0.8960 (1.1248)
DE 0.7966 0.8469 (1.0631) 0.8855 (1.1116) 0.9155 (1.1492) 0.9416 (1.1820)
Softmax 0.7959 0.8465 (1.0636) 0.8846 (1.1115) 0.9149 (1.1496) 0.9402 (1.1813)
PL-Variance 0.7959 0.8436 (1.0599) 0.8667 (1.0891) 0.8848 (1.1118) 0.8966 (1.1266)
Table 3: Macro F1 score and improvement rate for the 20 Newsgroups dataset.
BERT 0% 10% 20% 30% 40%
Mean MC 0.9354 0.9668 (1.0335) 0.9829 (1.0508) 0.9901 (1.0585) 0.9930 (1.0616)
DE 0.9354  0.9679 (1.0347) 0.9789 (1.0465) 0.9787 (1.0463)  0.9798 (1.0475)
Softmax 0.9364 0.9691 (1.0349) 0.9847 (1.0516) 0.9913 (1.0586) 0.9940 (1.0615)
PL-Variance 0.9364 0.9678 (1.0335) 0.9837 (1.0506) 0.9901 (1.0574) 0.9933 (1.0608)
GloVe
Mean MC 0.8825 0.9170(1.0391) 0.9416 (1.0670) 0.9614 (1.0894) 0.9730 (1.1025)
DE 0.8825 0.9183 (1.0406) 0.9430 (1.0686) 0.9449 (1.0707) 0.9455 (1.0714)
Softmax 0.8824 0.9154 (1.0374)  0.9406 (1.0660) 0.9598 (1.0878) 0.9724 (1.1020)
PL-Variance 0.8824 0.9162 (1.0383) 0.9415 (1.0670) 0.9611 (1.0892) 0.9736 (1.1034)

Table 4: Macro F1 score and improvement rate for the IMDDb dataset.

BERT 0% 10% 20% 30% 40%
Mean MC 0.7466 0.7853 (1.0518) 0.8137 (1.0898) 0.8392 (1.1240) 0.8605 (1.1526)
DE 0.7466 0.7850 (1.0513) 0.8191 (1.0871) 0.8492 (1.1374) 0.8684 (1.1631)
Softmax 0.7474 0.7875 (1.0537) 0.8225 (1.1005) 0.8562 (1.1456) 0.8845 (1.1834)
PL-Variance 0.7474 0.7856 (1.0510) 0.8144 (1.0896) 0.8404 (1.1244) 0.8610 (1.1520)
GloVe

Mean MC 0.6979 0.7369 (1.0559) 0.7675 (1.0998) 0.7962 (1.1408) 0.8214 (1.1770)
DE 0.6979 0.7366 (1.0555) 0.7716 (1.1056) 0.8019 (1.1490) 0.8102 (1.1610)
Softmax 0.6984 0.7374 (1.0559) 0.7730 (1.1068) 0.8067 (1.1550) 0.8359 (1.1969)
PL-Variance 0.6984 0.7358 (1.0536) 0.7676 (1.0990) 0.7961 (1.1398) 0.8209 (1.1753)

Table 5: Accuracy score and improvement rate for the Amazon (Sports and Outdoors) dataset.

Accuracy ECE 5 Discussion and Conclusion

20 Newsgroups - Mean MC ~ 0.8655  0.0275 In thi f in-deoth irical
20 Newsgroups - Softmax ~ 0.8642  0.0253 n this paper, we periorm an in-cepth empirica

comparison of using the MC dropout method and
IMDb - Mean MC 0.9354  0.0061 the more straightforward softmax method. By do-
IMDD - Softmax 0.9364  0.0043 . g .. . - By

ing a thorough empirical analysis of the two meth-
Amazon - Mean MC 07466 0.0083 ods, shown in Section 4.3.2, using various metrics
Amazon - Softmax 0.7474  0.0097

to measure their performance on both efficiency
and performance levels, we see that in our hold-
out experiments, where we select a percentage of
the dataset to exclude from the test, that the two
methods perform equally or that softmax slightly
outperforms MC dropout in some cases. Looking
at the ECE experiments, the results again show
that the MC dropout and softmax method perform
somewhat equally, which we have shown in Section

Table 6: Accuracy and ECE of the two uncertainty ap-
proximation approaches on the three selected datasets.

of a model is low, MC dropout could potentially
obtain more precise predictive uncertainties.
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Figure 2: Reliability diagram (left) and confidence histogram (right) of 20 Newsgroups using BERT embeddings.
In the reliability diagram, we can observe the difference between the confidence and the output of the model, and
the better model has a low gap between confidence and output, which shows the model is better calibrated.
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Figure 3: Reliability diagram (left) and confidence histogram (right) of 20 Newsgroups using GloVe embeddings.
Comparing the plots of the figure to Figure 2, we see slight differences in both the reliability diagram and the
confidence histogram. Most noticeable, we see slight differences in the reliability diagram, where we see more
significant gaps between the confidence and the outputs, which indicates a less calibrated model due to the GloVe
embeddings.
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Figure 4: Reliability diagram of 20 Newsgroups dataset using BERT embeddings, with added noise to the BERT
embeddings. By adding noise to the test embeddings, we observe how the MC dropout keeps the mean confidence
grounded in the confidence histogram, compared to the softmax, which keeps being confident, which can be

observed by the distance between the accuracy and mean confidence in the confidence histogram.

4.6. We observe differences in the results as we
observe a lower accuracy score, which we show in
our noise experiment, which is also shown in Sec-
tion 4.6. While the two methods perform equally,
the cost of using MC dropout is at a minimum 10
times that of running softmax, depending on the
post-processing of the uncertainties, as we show
in Section 4.4. The post-processing cost of MC
dropout can quickly explode when used on larger
datasets or if a more expensive method like dropout-
entropy is used instead of simpler approaches. Our
empirical findings suggest that MC dropout suffers

from diminishing returns — the better the model per-
forms, the less can be gained by using MC dropout.
By testing the hypothesis by introducing noise in
the dataset, we showed that the MC dropout did
outperform softmax when the accuracy was lower.

To summarize our findings, we observe that the
difference between MC dropout and softmax nar-
rows as the accuracy score increases. Therefore,
using MC dropout on a high accuracy dataset pro-
vides close to no benefit and using softmax would
instead provide a good predictive uncertainty while
also being computationally efficient.
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A Reproducibility

A.1 Computing Infrastructure

All Experiments were run on a Microsoft Azure
NC6-series server. With the following specifica-
tions: 6 Inter Xeon-E5-2690 v3, NVIDIA Tesla
K80 with 12GB RAM and 56GB of RAM.

A.2 Hyperparameters

We used the following hyperparameters for training
our CNN model and CNN GloVe model: Epochs:
1000; batch size: 256 for 20 Newsgroups and IMDb
and 128 for Amazon; early stopping: 10; learn-
ing rate: 0.001. For fine-tuning BERT we used
the following set of hyperparamaters: epochs: 3;
warm-up steps 500; weight decay 0.01; batch size
8; masked language model probability: 0.15. All
hyperparameters are set without performing cross-
validation.

A.3 Dropout - Hyperparameter

The performance of the MC dropout method is
correlated with the dropout probability. We there-
fore run our CNN model using BERT embeddings
on the 20 Newsgroups dataset with the following
dropout probabilities [0.1, 0.2, 0.3, 0.4, 0.5]. In Ta-
ble 7, we show the results using the 5 different
dropout probabilities, where we see that it stops
improving at 0.4 and 0.5 percentage dropout. As
such, we use a dropout of 0.5 for our experiments.

0% 10% 20% 30% 40%

0.1 0.8598 0.9010 0.9255 0.9408 0.9483
0.2 0.8599 0.9005 0.9256 0.9408 0.9502
0.3 0.8596 0.9007 0.9245 09412 0.9491
0.4 0.8601 0.8996 0.9253 0.9425 0.9502
0.5 0.8591 0.8985 0.9225 0.9406 0.9487

Table 7: We test how the dropout probabilities cor-
relate with the performance of MC dropout, using a
CNN model with BERT embeddings. The results are
reported in terms of macro F1.

B Model Calibration Plots
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Figure 5: Reliability diagram (left) and confidence histogram (right) of IMDb using BERT embeddings.
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Figure 6: Reliability diagram (left) and confidence histogram (right) of IMDb using GloVe embeddings.

Monte Carlo Softmax Monte Carlo Softmax
1.0 1.0 1.0 10
Confidence Confidence —— Accuracy —— Accuracy
0.8 | EEM Accuracy B Accuracy 0.8 { — Confidence 0.84 — Confidence
n n
> > = =
g o061 g 2 0.6 2061
3 3 3 @
2044 2 %5 0.4 %5 0.4
R ES
0.24 0.2 4 0.2
0.0 . 0.0 - :
0.0 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 1.0
Confidence Confidence Confidence Confidence
Figure 7: Reliability diagram (left) and confidence histogram (right) of Amazon using GloVe embeddings.
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Figure 8: Reliability diagram (left) and confidence histogram (right) of Amazon using GloVe embeddings.
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