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Abstract

Uncertainty approximation in text classifica-001
tion is an important area with applications in002
domain adaptation and interpretability. The003
most widely used uncertainty approximation004
method is Monte Carlo Dropout, which is com-005
putationally expensive as it requires multiple006
forward passes through the model. A cheaper007
alternative is to simply use a softmax to esti-008
mate model uncertainty. However, prior work009
has indicated that the softmax can generate010
overconfident uncertainty estimates and can011
thus be tricked into producing incorrect predic-012
tions. In this paper, we perform a thorough013
empirical analysis of both methods on three014
datasets with two base neural architectures in015
order to reveal insight into the trade-offs be-016
tween the two. We compare the methods’017
uncertainty approximations and downstream018
text classification performance, while weigh-019
ing their performance against their computa-020
tional complexity as a cost-benefit analysis.021
We find that, while Monte Carlo produces the022
best uncertainty approximations, using a sim-023
ple softmax leads to competitive F1 results for024
text classification at a much lower computa-025
tional cost, suggesting that softmax can in fact026
be a sufficient uncertainty estimate when com-027
putational resources are a concern.028

1 Introduction029

The pursuit of pushing state-of-the-art performance030

on machine learning benchmark datasets often031

comes with an added cost of computational com-032

plexity. On top of already complex base models,033

such as Transformer models (Vaswani et al., 2017;034

Lin et al., 2021), successful methods often employ035

additional techniques such as ensembling and un-036

certainty estimation in order to push performance.037

Though these techniques can be effective, the over-038

all benefit in relation to the added computational039

cost is under-studied.040

More complexity does not always imply better041

performance. For example, Transformers can be042

outperformed by much simpler convolutional neu- 043

ral nets (CNNs) when the latter are pre-trained as 044

well (Tay et al., 2021). Here, we turn our atten- 045

tion to predictive uncertainty estimation methods 046

in text classification, which have applications in 047

domain adaptation and can help make models more 048

transparent and explainable, with a focus on Monte 049

Carlo Dropout. 050

Quantifying predictive uncertainty has been ex- 051

plored using various techniques (Gawlikowski 052

et al., 2021), with the methods being divided into 053

three main categories: Bayesian methods, sin- 054

gle deterministic networks, and ensemble meth- 055

ods. Bayesian methods include Monte Carlo (MC) 056

dropout (Gal and Ghahramani, 2016b) and Bayes 057

by back-prop (Blundell et al., 2015). Single deter- 058

ministic networks can approximate the predictive 059

uncertainty by a single forward pass in the model, 060

with softmax being the prototypical method. Lastly, 061

ensemble methods utilise a collection of models to 062

calculate the predictive uncertainty. 063

In this paper, we investigate the cost vs. benefit 064

of choosing simple vs. expensive uncertainty ap- 065

proximation methods for text classification, with 066

the goal of highlighting when and if more com- 067

plex uncertainty methods should be employed by 068

NLP researchers and practitioners who could bene- 069

fit from their use. We focus on single deterministic 070

and Bayesian methods. For the single deterministic 071

methods, we study the softmax, which is calculated 072

from a single forward pass and is computation- 073

ally very efficient. While softmax is a widely used 074

method, prior work posits that the softmax output is 075

not the most dependable uncertainty approximation 076

method (Gal and Ghahramani, 2016b; Hendrycks 077

and Gimpel), and as such it has been superseded by 078

newer methods such as MC dropout. MC dropout 079

is favoured due to its close approximation of un- 080

certainty, and because it can be used without any 081

modification to the applied model. It has also been 082

widely applied in text classification tasks (Zhang 083
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et al., 2019; He et al., 2020).084

To understand the cost vs. benefit of softmax085

vs. MC dropout, we perform experiments on three086

datasets using two different neural network archi-087

tectures, applying them to three different down-088

stream text classification tasks. We measure both089

the added computational complexity in the form090

of runtime (cost) and the downstream performance091

on multiple uncertainty metrics (benefit). We show092

that by using a single deterministic method like093

softmax instead of MC dropout, we can improve094

the runtime by 10 times while still being competi-095

tive in performance to MC dropout. As such, given096

the already high computational cost of deep neural097

network based methods and recent pushes for more098

green ML (Strubell et al., 2019; Patterson et al.,099

2021), we recommend not discarding simple uncer-100

tainty approximation methods such as softmax just101

yet, as they are often surprisingly effective, while102

being more efficient.103

Contribution In summary, our contributions are104

as follows: 1) An empirical study of MC dropout105

and softmax for text classification tasks, using two106

different neural architectures and three datasets; 2)107

An analysis of the underlying performance of MC108

dropout and softmax using expected calibration109

error; 3) A comparison of MC dropout and softmax,110

using the two methods’ measured accuracy/F1 and111

runtime.112

2 Related Work113

2.1 Uncertainty Quantification114

Quantifying the uncertainty of a prediction can be115

done using various techniques (Ovadia et al., 2019;116

Gawlikowski et al., 2021; Henne et al., 2020) such117

as single deterministic methods (Możejko et al.,118

2019; van Amersfoort et al., 2020) which calcu-119

late the uncertainty on a single forward pass of120

the model. They can further be classified as in-121

ternal or external methods, which describe if the122

uncertainty is calculated internally in the model or123

post-processing the output. Another family of tech-124

niques are Bayesian methods, which combine NNs125

and Bayesian learning. Bayesian Neural Networks126

(BNNs) can also be split into subcategories, namely127

Variational Inference (Hinton and van Camp, 1993),128

Sampling (Neal, 1993), and Laplace Approxima-129

tion (MacKay, 1992). Some of the more notable130

methods are Bayes by backprop (Blundell et al.,131

2015) and Monte Carlo Dropout (Gal and Ghahra-132

mani, 2016b). One can also approximate uncer-133

tainty using ensemble methods, which use multiple 134

models to better measure predictive uncertainty, 135

compared to using the predictive uncertainty given 136

by a single model (Lakshminarayanan et al., 2017; 137

He et al., 2020; Durasov et al., 2021). Recently, 138

we have seen uncertainty methods being used to 139

develop methods for new tasks (Zhang et al., 2019; 140

He et al., 2020), where mainly Bayesian methods 141

have been used. We present a thorough empirical 142

study of how uncertainty quantification behaves 143

for text classification tasks. Unlike prior work, we 144

do not only evaluate based on the performance of 145

the methods, but perform an in-depth comparison 146

to much simpler deterministic methods based on 147

multiple metrics. 148

2.2 Uncertainty Metrics 149

Measuring the performance of uncertainty approxi- 150

mation methods can be done in multiple ways, each 151

offering benefits and downsides. Niculescu-Mizil 152

and Caruana (2015) explore the use of obtaining 153

confidence values from model predictions to use for 154

supervised learning. One of the more widespread 155

and accepted methods is using expected calibra- 156

tion error (ECE, Guo et al., 2017). While ECE 157

measures the underlying confidence of the uncer- 158

tainty approximation, we have also seen the use of 159

human intervention for text classification (Zhang 160

et al., 2019; He et al., 2020). There, the uncertainty 161

estimates are used to identify uncertain predictions 162

from the model and ask humans to classify these 163

predictions. The human classified data is assumed 164

to have 100% accuracy and to be suitable for mea- 165

suring how well the model scores after removing a 166

proportion of the most uncertain data points. Using 167

metrics such as ECE, the calibration of models is 168

shown, and this calibration can be improved using 169

scaling techniques (Guo et al., 2017; Naeini et al., 170

2015). We use uncertainty approximation metrics 171

like expected calibration error, and human interven- 172

tion (which we refer to as holdout experiments) to 173

measure the difference in the performance of MC 174

dropout and softmax compared against each other 175

on text classification tasks. 176

3 Uncertainty Approximation for Text 177

Classification 178

We focus on one deterministic method and one 179

Bayesian method of uncertainty approximation. In 180

the following sections, we formally introduce the 181

two methods we study, namely MC dropout and 182
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softmax. MC dropout is a Bayesian method which183

utilises the dropout layers of the model to measure184

the predictive uncertainty, while softmax is a deter-185

ministic method that uses the classification output.186

In Figure 1, we visualise the differences between187

the two methods and how they are connected to188

base text classification models.189

3.1 Bayesian Neural Networks190

Before introducing the MC dropout method, we191

quickly introduce the concept of Bayesian Neural192

Networks (BNN)s. We start by comparing a BNN193

to a traditional NN. A traditional NN is of frequen-194

tist mindset. Therefore, it assumes that the network195

weights are real but of an unknown value and can196

be found through maximum-likelihood estimation,197

and the input data are treated as random variables.198

The BNN instead views the weights as random199

variables and infers a posterior distribution p(ω|D)200

over ω after observing D, where D = (x, y) and ω201

are the weights of the model. The posterior distri-202

bution is defined as follows:203

p(ω|D) = p(ω)p(D|ω)∫
p(ω)p(D|ω)dω

=
p(ω)p(D|ω)

p(D)
.

(1)

204

Using the posterior distribution, we can find the205

prediction of an input of unseen data x∗ and y∗ as206

follows207

p(y∗|x∗,D) =
∫

p(y∗|x∗, ω)p(ω|D)dω. (2)208

However, the posterior distribution is infeasible209

to compute due to the marginal likelihood in the210

denominator, and we cannot find a solution an-211

alytically. We therefore resort to approximating212

the posterior distribution. For this approximation213

we rely on methods such as Bayes by Backprop-214

agation (Blundell et al., 2015) and Monte Carlo215

Dropout (Gal and Ghahramani, 2016b).216

3.2 Monte Carlo Dropout217

We provide a high-level introduction to the method218

but refer the reader to the literature for the in-depth219

theory and proofs (Gal and Ghahramani, 2016b,a).220

MC dropout approximates the posterior p(ω|D) by221

leveraging the dropout layers in a model. In partic-222

ular, it simply allows the dropout layers to remain223

active during testing and obtains multiple samples224

by passing an input through the model multiple225

times with different nodes dropped on each pass226

(see Figure 1). Mathematically, we introduce q(ω),227

Figure 1: In this figure (left), we show how the MC
dropout method functions in a NN and how we can use
the representation calculated by the model before the
last dropout layer as a reference point, and how we can
reuse it to avoid the high costs of recalculating the en-
tire model multiple times. We further show the simplic-
ity of the softmax next to it (right).

a distribution of weight matrices whose columns 228

are randomly set to 0, to approximate the posterior 229

distribution p(ω|D), which results in the following: 230

q(y∗ | x∗, D) =

∫
p(y∗ | x∗,W )q(ω)dω. (3) 231

For the proof of how to get from Eq. (2) to Eq. 232

(3), we refer the reader to (Gal and Ghahramani, 233

2016b). 234

As this requires multiple forward passes, this 235

introduces added computational costs. To help al- 236

leviate this and provide a fair comparison with the 237

more lightweight softmax, we obtain a representa- 238

tion Z by passing an input through the first several 239

layers of the model and pass only this representa- 240

tion through the latter part of the model multiple 241

times, reducing the computational cost. 242

3.2.1 Combining Sample Predictions 243

With multiple samples of the same data point, we 244

have to determine how to combine them to quantify 245

the predictive uncertainty. We test two methods 246

that can be calculated using the logits of the model, 247

requiring no model changes. The first approach, 248

which we refer to as Mean MC, is averaging the 249
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output of the softmax layer from all forward passes:250

ui =
1

K

K∑
k=1

Softmax
(
zki

)
, (4)251

where zki is the logits of the i’th data point of the252

k’th forward pass. The second method we use253

to quantify the predictive uncertainty is Dropout254

Entropy (DE) (Zhang et al., 2019) which uses a255

combination of binning and entropy:256

bi =
1

K
BinCount(argmax(zi)) (5)257

ui = −
C∑

j=1

bi(j) log bi(j) (6)258

BinCount is the number of predictions of each class259

and b is a vector the probabilities of a class’s oc-260

currence based on the bin count. We show the261

performance of the two methods in Section 4.3.2.262

3.3 Softmax263

Softmax is one of the most common objectives264

used in classification tasks for processing the logits265

of NNs. Softmax is defined as follows:266

ui =
ezi∑C

j=1 e
zi(j)

, (7)267

where yi is the i’th data point and the logits of a268

NN. The softmax yields a probability distribution269

over the predicted classes. However, the predicted270

probability distribution is often overconfident to-271

ward the predicted class (Gal and Ghahramani,272

2016b; Hendrycks and Gimpel). The issue of soft-273

max’s overconfidence can also be exploited (Gal274

and Ghahramani, 2016b; Joo et al., 2020) – in the275

worst case, this leads to the softmax producing im-276

precise uncertainties. However, model calibration277

methods like temperature scaling have been found278

to lessen the overconfidence to some extent (Guo279

et al., 2017). In Section 4.6 we measure the model’s280

confidence level and further inspect the distribution281

of the model’s predictions as a part of our model282

calibration analysis.283

4 Experiments and Results284

We consider three different datasets and two differ-285

ent models in our experiments. Additionally, we286

conduct experiments to determine the optimal hy-287

perparameters for the MC dropout method, particu-288

larly the optimal amount of samples which affects289

the efficiency and performance of MC dropout. We 290

further find the optimal dropout percentage in Ap- 291

pendix A.3. 292

4.1 Data 293

To test the predictive uncertainty of the two 294

methods, we use three text classification datasets. 295

We use the following three datasets: 20 296

Newsgroups dataset (Lang, 1995), the Amazon 297

dataset (McAuley and Leskovec, 2013) and the 298

IMDb dataset (Maas et al., 2011). The 20 News- 299

group dataset is a collection of 20, 000 news ar- 300

ticles consisting of 20 different classes. We use 301

the ‘sports and outdoors’ category for the Amazon 302

dataset, which consists of 272, 630 reviews with 303

ratings from 1 to 5. We also use the IMDb dataset, 304

which is a binary classification task consisting of 305

50, 000 samples. We create the following splits 306

for the datasets: 60%, 20% and 20% for training, 307

validation and testing, respectively, with each set 308

having been selected randomly. 309

4.2 Experimental Setup 310

We use two different base neural architectures with 311

two different embeddings in our experiments. To 312

recreate baseline results, the first model is the same 313

model as proposed in (Zhang et al., 2019), which is 314

a CNN using pre-trained GloVe embeddings with 315

a dimension of 200 (Pennington et al., 2014). The 316

second model uses a pre-trained BERT model (De- 317

vlin et al., 2019) fine-tuned as masked language 318

model on the dataset under evaluation to obtain 319

contextualized embeddings, which are then input 320

to a CNN with 4 layers. For both models we use the 321

final dropout layer for MC dropout. Both models 322

are optimised using Adam (Kingma and Ba, 2015) 323

and are trained for 1000 epochs with early stopping 324

after 10 iterations if there have been no improve- 325

ments, and we set the learning rate to 0.001. 326

MC Dropout Sampling To make full use of MC 327

dropout, we first determine the optimal number of 328

forward passes through the model needed to ob- 329

tain the best performance while maintaining high 330

efficiency. This hyper-parameter search is imper- 331

ative because the MC dropout performance and 332

efficiency are correlated with the number of sam- 333

ples generated. To make a fair comparison against 334

the already cheap softmax method, we want to find 335

the minimum number of samples needed to approx- 336

imate a good uncertainty. In Table 1, we show 337

the performance of the MC dropout method with 338
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0% 10% 20% 30% 40%

1 0.8212 0.8721 0.8997 0.9167 0.9367
10 0.8623 0.9008 0.9228 0.9416 0.9495
25 0.8540 0.8978 0.9223 0.9405 0.9507
50 0.8591 0.8985 0.9225 0.9406 0.9487
100 0.8559 0.8966 0.9238 0.9385 0.9485
1000 0.8573 0.9007 0.9253 0.9406 0.9492

Table 1: This table shows how the number of samples
affect the performance of the MC dropout method, us-
ing the CNN model with BERT embeddings. The re-
sults are reported using macro F1.

the CNN model using BERT embeddings on the339

20 Newsgroups dataset for the following number340

of samples: [1, 5, 10, 25, 50, 100, 1000]. The ta-341

ble shows how the performance of the uncertainty342

approximation increases, given the number of sam-343

ples. However, the performance gained by the num-344

ber of samples falls off at 50. Given this, we use 50345

MC samples in our experiments in order to balance346

good performance and efficiency.347

4.3 Evaluation Metrics348

We use complementary evaluation metrics to bench-349

mark the performance of MC dropout and softmax.350

Namely, we measure how well each of the meth-351

ods identify uncertain predictions as well as the352

runtime of the methods.353

4.3.1 Efficiency354

To quantify efficiency, we measure the runtime355

of each of the methods during inference and the356

calculation of the uncertainties. Since we do not357

calculate uncertainties during training this is only358

done on the test sets. The training of the model is359

independent of the two methods, since we only use360

the methods to quantify the uncertainty of the pre-361

dictions of the model. We therefore only calculate362

the runtime of each of the methods based on the363

test data.364

4.3.2 Uncertainty Estimation Performance365

We use two main methods to measure uncertainty366

estimation performance: test data holdout and ex-367

pected calibration error (ECE). For base model per-368

formance, we record the macro F1 score on the 20369

Newsgroups and IMDb datasets, and the accuracy370

on the Amazon dataset.371

Test data holdout We provide 4 scores for each372

method, where each result is based on holding out a373

proportion of the test data. The uncertainty method374

identifies the most uncertain predictions, which are 375

then left out of the F1 and accuracy calculations. 376

The holdout is done at 10%, 20%, 30% and 40% of 377

the data. This metric shows how well the two meth- 378

ods can identify uncertain predictions of the model, 379

as reflected by improvements in performance when 380

more uncertain predictions are removed (Zhang 381

et al., 2019). 382

Expected calibration error To measure model 383

calibration, we use the expected calibration error 384

(ECE) (Guo et al., 2017), which measures the dif- 385

ference between the predictive uncertainties and 386

the labels. This tells us how well each of the MC 387

dropout and softmax methods estimate the uncer- 388

tainties at the level of probability distributions, as 389

opposed to the holdout method which only looks 390

at downstream task performance. ECE works by 391

dividing the data into m bins, where each bin in 392

B contains data that is within a range of predictive 393

uncertainty. ECE is defined as: 394

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)|,

(8)

395

where M is the size of the dataset and acc and 396

conf is the accuracy and mean confidence of the 397

bin Bm. 398

To observe the difference between the MC 399

dropout and softmax, we create both confidence 400

histograms and reliability diagrams (Guo et al., 401

2017). The reliability diagrams show how close 402

the models are to perfect calibration, where perfect 403

calibration means that the models accuracy and 404

confidence is equal to the bins confidence range. 405

The reliability diagrams help us visualise the ECE, 406

by showing the accuracy and mean confidence of 407

each bin, where each bin contains consists of the 408

data, which have a confidence within the range of 409

the bin.To complement the reliability diagrams, we 410

also use confidence histograms, which show the 411

distribution of confidence. 412

4.4 Efficiency Results 413

In Table 2, we display the runtime of the different 414

model and method combinations. The runtime for 415

the forward passes is calculated as a sum of all 416

the forward passes on the entire dataset, and the 417

runtime for the uncertainty methods are calculated 418

for the entire dataset. Observing the results, we 419

see that softmax is overall faster, and is approxi- 420

mately 10 times faster when only looking at the 421
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forward passes, and using more complex aggre-422

gation methods in MC dropout, like DE, can be423

computationally heavy.424

Forward passes Mean MC DE

20 Newsgroups 1.0876 0.0003 12.3537
IMDb 1.386 0.0018 216.11
Amazon 4.9126 0.0017 194.08

Forward passes Softmax PL-Variance

20 Newsgroups 0.0130 0.0002 0.0001
IMDb 0.0387 0.0003 0.0003
Amazon 0.4067 0.0004 0.0002

Table 2: Runtime measured in seconds for both MC
dropout (top) and softmax (bottom). The times are on
the full datasets split into the runtime of the forward
passes and the runtime of calculating the uncertainty.

4.5 Test Data Holdout Results425

Table 3, Table 4 and Table 5 show the performance426

of the two uncertainty approximation methods us-427

ing the different datasets and embeddings. The428

tables show the macro F1 score or the accuracy429

depending on the datasets, and the improvement430

ratio in the parenthesis. We observe that in most431

cases, either dropout-entropy (DE) or softmax has432

the highest score and improvement ratio. However,433

in most cases the two are not far from each other434

in performance and improvement ratio. We further435

observe that Mean MC also performs well and is436

almost on par with DE, however, Mean MC is a437

much more efficient method compared to DE, so438

the slight trade-off in performance, could beneficial439

on larger datasets, where the DE calculations are440

too large to compute.441

4.6 Model Calibration Results442

To further investigate the differences between MC443

dropout and softmax, we utilize the expected cal-444

ibration error (ECE) to observe the differences in445

the predictive uncertainties. In Table 6, we show446

the accuracy and ECE on the three datasets using447

the BERT embeddings.448

The results from our holdout experiments in Ta-449

ble 3, 4 and 5 combined with the results from our450

ECE calculations in Table 6, all point in the di-451

rection of MC dropout and softmax performing452

equally to some extent, with the main difference of453

the two methods being efficiency as shown in Table454

2. To get a better understanding of if and where455

the two methods diverge, we plot the reliability456

diagrams and confidence histograms as described 457

in Section 4.3.2. In Figure 2 and 3 we show the 458

reliability diagrams and the confidence histograms 459

on the 20 Newsgroups dataset using our CNN with 460

both the MC dropout method and softmax utilis- 461

ing BERT and GloVe. We create the reliability 462

diagrams using 10 bins and the confidence his- 463

tograms with 20. Where the reliability diagram’s 464

and confidence histogram’s bins are an interval of 465

confidence. We use 20 bins for the confidence his- 466

tograms to obtain a more fine-grained view of the 467

distribution. In the reliability diagram, the x-axis is 468

the confidence and the y-axis is the accuracy. For 469

the confidence histogram the x-axis is again the 470

confidence and the y-axis is the percentage of the 471

samples in the given bin. Using the reliability dia- 472

gram, we observe that the difference in confidence 473

and outputs are small. The difference between the 474

two methods is also minimal, including both BERT 475

and GloVe embeddings, suggesting minimal poten- 476

tial gains from using MC dropout. We determine 477

that there is minimal difference by visual inspect- 478

ing the plots, and by observing the ECE displayed 479

in Table 6. We further observe that in both MC 480

dropout and softmax that the model worsens when 481

we use the GloVe embeddings. As mentioned ear- 482

lier, we know that the softmax method tends to be 483

overconfident, which can be seen in the percentage 484

of samples in the last bin. The MC dropout method, 485

on the other hand, utilizes the probability space to 486

a greater extent. We include reliability diagrams 487

and confidence histograms for the 2 other datasets 488

in Appendix B. 489

Inspecting both Table 6 showing the ECE val- 490

ues and the performances in Table 3, 4 and 5, we 491

observed that using our two methods, MC dropout 492

and softmax, we achieved very high F1 scores and 493

accuracies and low ECEs. We hypothesized that 494

high performance could lead to softmax achieving 495

high ECE, due to naturally having high confidence, 496

compared to MC dropout. We added noise to the 497

20 Newsgroups test embeddings and redid our ECE 498

experiments to test our hypothesis. In Figure 4, we 499

show the reliability diagram of the experiment with 500

added noise, which shows the MC dropout outper- 501

forming softmax. To further build on the theory, 502

we also inspect the confidence histogram, showing 503

that softmax is still overconfident and the differ- 504

ence between the accuracy and mean confidence 505

is high. This suggests that MC dropout is more re- 506

silient to noise, and in cases where the performance 507
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BERT 0% 10% 20% 30% 40%

Mean MC 0.8591 0.8985 (1.0459) 0.9225 (1.0739) 0.9406 (1.0949) 0.9487 (1.1043)
DE 0.8591 0.9050 (1.0534) 0.9390 (1.0930) 0.9584 (1.1156) 0.9703 (1.1294)
Softmax 0.8576 0.9072 (1.0578) 0.9452 (1.1021) 0.9620 (1.1216) 0.9742 (1.1360)
PL-Variance 0.8576 0.9006 (1.0501) 0.9246 (1.0781) 0.9403 (1.0964) 0.9484 (1.1058)

GloVe

Mean MC 0.7966 0.8450 (1.0608) 0.8674 (1.0888) 0.8846 (0.1104) 0.8960 (1.1248)
DE 0.7966 0.8469 (1.0631) 0.8855 (1.1116) 0.9155 (1.1492) 0.9416 (1.1820)
Softmax 0.7959 0.8465 (1.0636) 0.8846 (1.1115) 0.9149 (1.1496) 0.9402 (1.1813)
PL-Variance 0.7959 0.8436 (1.0599) 0.8667 (1.0891) 0.8848 (1.1118) 0.8966 (1.1266)

Table 3: Macro F1 score and improvement rate for the 20 Newsgroups dataset.

BERT 0% 10% 20% 30% 40%

Mean MC 0.9354 0.9668 (1.0335) 0.9829 (1.0508) 0.9901 (1.0585) 0.9930 (1.0616)
DE 0.9354 0.9679 (1.0347) 0.9789 (1.0465) 0.9787 (1.0463) 0.9798 (1.0475)
Softmax 0.9364 0.9691 (1.0349) 0.9847 (1.0516) 0.9913 (1.0586) 0.9940 (1.0615)
PL-Variance 0.9364 0.9678 (1.0335) 0.9837 (1.0506) 0.9901 (1.0574) 0.9933 (1.0608)

GloVe

Mean MC 0.8825 0.9170 (1.0391) 0.9416 (1.0670) 0.9614 (1.0894) 0.9730 (1.1025)
DE 0.8825 0.9183 (1.0406) 0.9430 (1.0686) 0.9449 (1.0707) 0.9455 (1.0714)
Softmax 0.8824 0.9154 (1.0374) 0.9406 (1.0660) 0.9598 (1.0878) 0.9724 (1.1020)
PL-Variance 0.8824 0.9162 (1.0383) 0.9415 (1.0670) 0.9611 (1.0892) 0.9736 (1.1034)

Table 4: Macro F1 score and improvement rate for the IMDb dataset.

BERT 0% 10% 20% 30% 40%

Mean MC 0.7466 0.7853 (1.0518) 0.8137 (1.0898) 0.8392 (1.1240) 0.8605 (1.1526)
DE 0.7466 0.7850 (1.0513) 0.8191 (1.0871) 0.8492 (1.1374) 0.8684 (1.1631)
Softmax 0.7474 0.7875 (1.0537) 0.8225 (1.1005) 0.8562 (1.1456) 0.8845 (1.1834)
PL-Variance 0.7474 0.7856 (1.0510) 0.8144 (1.0896) 0.8404 (1.1244) 0.8610 (1.1520)

GloVe

Mean MC 0.6979 0.7369 (1.0559) 0.7675 (1.0998) 0.7962 (1.1408) 0.8214 (1.1770)
DE 0.6979 0.7366 (1.0555) 0.7716 (1.1056) 0.8019 (1.1490) 0.8102 (1.1610)
Softmax 0.6984 0.7374 (1.0559) 0.7730 (1.1068) 0.8067 (1.1550) 0.8359 (1.1969)
PL-Variance 0.6984 0.7358 (1.0536) 0.7676 (1.0990) 0.7961 (1.1398) 0.8209 (1.1753)

Table 5: Accuracy score and improvement rate for the Amazon (Sports and Outdoors) dataset.

Accuracy ECE

20 Newsgroups - Mean MC 0.8655 0.0275
20 Newsgroups - Softmax 0.8642 0.0253

IMDb - Mean MC 0.9354 0.0061
IMDb - Softmax 0.9364 0.0043

Amazon - Mean MC 0.7466 0.0083
Amazon - Softmax 0.7474 0.0097

Table 6: Accuracy and ECE of the two uncertainty ap-
proximation approaches on the three selected datasets.

of a model is low, MC dropout could potentially508

obtain more precise predictive uncertainties.509

5 Discussion and Conclusion 510

In this paper, we perform an in-depth empirical 511

comparison of using the MC dropout method and 512

the more straightforward softmax method. By do- 513

ing a thorough empirical analysis of the two meth- 514

ods, shown in Section 4.3.2, using various metrics 515

to measure their performance on both efficiency 516

and performance levels, we see that in our hold- 517

out experiments, where we select a percentage of 518

the dataset to exclude from the test, that the two 519

methods perform equally or that softmax slightly 520

outperforms MC dropout in some cases. Looking 521

at the ECE experiments, the results again show 522

that the MC dropout and softmax method perform 523

somewhat equally, which we have shown in Section 524
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Figure 2: Reliability diagram (left) and confidence histogram (right) of 20 Newsgroups using BERT embeddings.
In the reliability diagram, we can observe the difference between the confidence and the output of the model, and
the better model has a low gap between confidence and output, which shows the model is better calibrated.

Figure 3: Reliability diagram (left) and confidence histogram (right) of 20 Newsgroups using GloVe embeddings.
Comparing the plots of the figure to Figure 2, we see slight differences in both the reliability diagram and the
confidence histogram. Most noticeable, we see slight differences in the reliability diagram, where we see more
significant gaps between the confidence and the outputs, which indicates a less calibrated model due to the GloVe
embeddings.

Figure 4: Reliability diagram of 20 Newsgroups dataset using BERT embeddings, with added noise to the BERT
embeddings. By adding noise to the test embeddings, we observe how the MC dropout keeps the mean confidence
grounded in the confidence histogram, compared to the softmax, which keeps being confident, which can be
observed by the distance between the accuracy and mean confidence in the confidence histogram.

4.6. We observe differences in the results as we525

observe a lower accuracy score, which we show in526

our noise experiment, which is also shown in Sec-527

tion 4.6. While the two methods perform equally,528

the cost of using MC dropout is at a minimum 10529

times that of running softmax, depending on the530

post-processing of the uncertainties, as we show531

in Section 4.4. The post-processing cost of MC532

dropout can quickly explode when used on larger533

datasets or if a more expensive method like dropout-534

entropy is used instead of simpler approaches. Our535

empirical findings suggest that MC dropout suffers536

from diminishing returns – the better the model per- 537

forms, the less can be gained by using MC dropout. 538

By testing the hypothesis by introducing noise in 539

the dataset, we showed that the MC dropout did 540

outperform softmax when the accuracy was lower. 541

To summarize our findings, we observe that the 542

difference between MC dropout and softmax nar- 543

rows as the accuracy score increases. Therefore, 544

using MC dropout on a high accuracy dataset pro- 545

vides close to no benefit and using softmax would 546

instead provide a good predictive uncertainty while 547

also being computationally efficient. 548
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A Reproducibility719

A.1 Computing Infrastructure720

All Experiments were run on a Microsoft Azure721

NC6-series server. With the following specifica-722

tions: 6 Inter Xeon-E5-2690 v3, NVIDIA Tesla723

K80 with 12GB RAM and 56GB of RAM.724

A.2 Hyperparameters725

We used the following hyperparameters for training726

our CNN model and CNN GloVe model: Epochs:727

1000; batch size: 256 for 20 Newsgroups and IMDb728

and 128 for Amazon; early stopping: 10; learn-729

ing rate: 0.001. For fine-tuning BERT we used730

the following set of hyperparamaters: epochs: 3;731

warm-up steps 500; weight decay 0.01; batch size732

8; masked language model probability: 0.15. All733

hyperparameters are set without performing cross-734

validation.735

A.3 Dropout - Hyperparameter736

The performance of the MC dropout method is737

correlated with the dropout probability. We there-738

fore run our CNN model using BERT embeddings739

on the 20 Newsgroups dataset with the following740

dropout probabilities [0.1, 0.2, 0.3, 0.4, 0.5]. In Ta-741

ble 7, we show the results using the 5 different742

dropout probabilities, where we see that it stops743

improving at 0.4 and 0.5 percentage dropout. As744

such, we use a dropout of 0.5 for our experiments.

0% 10% 20% 30% 40%

0.1 0.8598 0.9010 0.9255 0.9408 0.9483
0.2 0.8599 0.9005 0.9256 0.9408 0.9502
0.3 0.8596 0.9007 0.9245 0.9412 0.9491
0.4 0.8601 0.8996 0.9253 0.9425 0.9502
0.5 0.8591 0.8985 0.9225 0.9406 0.9487

Table 7: We test how the dropout probabilities cor-
relate with the performance of MC dropout, using a
CNN model with BERT embeddings. The results are
reported in terms of macro F1.

745

B Model Calibration Plots746
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Figure 5: Reliability diagram (left) and confidence histogram (right) of IMDb using BERT embeddings.

Figure 6: Reliability diagram (left) and confidence histogram (right) of IMDb using GloVe embeddings.

Figure 7: Reliability diagram (left) and confidence histogram (right) of Amazon using GloVe embeddings.

Figure 8: Reliability diagram (left) and confidence histogram (right) of Amazon using GloVe embeddings.
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