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Abstract

Large language models (LMs) are able to in-001
context learn—perform a new task via infer-002
ence alone by conditioning on a few input-label003
pairs (demonstrations) and making predictions004
for new inputs. However, there has been lit-005
tle understanding of how the model learns and006
which aspects of the demonstrations contribute007
to end task performance. In this paper, we008
show that ground truth demonstrations are in009
fact not required—randomly replacing labels in010
the demonstrations barely hurts performance,011
consistently over 12 different models including012
GPT-3. Instead, we find that other aspects of013
the demonstrations are the key drivers of end014
task performance, including the fact that they015
provide a few examples of (1) the label space,016
(2) the distribution of the input text, and (3) the017
overall format of the sequence. Together, our018
analysis provides a new way of understanding019
how and why in-context learning works, while020
opening up new questions about how much can021
be learned from large language models through022
inference alone.023

1 Introduction024

Large language models (LMs) have shown impres-025

sive performance on downstream tasks by simply026

conditioning on a few input-label pairs (demonstra-027

tions); this type of inference has been referred to as028

in-context learning (Brown et al., 2020). Despite in-029

context learning consistently outperforming zero-030

shot inference on a wide range of tasks (Zhao et al.,031

2021; Liu et al., 2021), there is little understanding032

of how it works and which aspects of the demon-033

strations contribute to end task performance.034

In this paper, we show that ground truth demon-035

strations are in fact not required for effective in-036

context learning (Section 4). Specifically, replac-037

ing the labels in demonstrations with random labels038

barely hurts performance (Figure 1). The result is039

consistent over 12 different models including the040

GPT-3 family (Radford et al., 2019; Min et al.,041
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Figure 1: Results in classification (top) and multi-choice
tasks (bottom), using three LMs with varying size. Re-
ported on six datasets on which GPT-3 is evaluated; the
channel method is used. See Section 4 for the full results.
In-context learning performance drops only marginally
when labels in the demonstrations are replaced by ran-
dom labels.

2021b; Wang and Komatsuzaki, 2021; Artetxe 042

et al., 2021; Brown et al., 2020). This strongly 043

suggests, counter-intuitively, that the model does 044

not rely on the input-label mapping in the demon- 045

strations to perform the task. 046

Further analysis investigates which parts of 047

demonstrations actually do contribute to the perfor- 048

mance. We identify possible aspects of demonstra- 049

tions (e.g., the label space and the distribution of 050

the input text) and evaluate a series of variants of 051

the demonstrations to quantify the impact of each 052

(Section 5). We find that: (1) the label space and 053

the distribution of the input text specified by the 054

demonstrations are both key to in-context learn- 055

ing (regardless of whether the labels are correct 056

for individual inputs); (2) specifying the overall 057

format is also crucial, e.g., when the label space 058

is unknown, using random English words as la- 059

bels is significantly better than using no labels; and 060

(3) meta-training with an in-context learning objec- 061

tive (Min et al., 2021b) magnifies these effects—the 062
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models almost exclusively exploit simpler aspects063

of the demonstrations like the format rather than064

the input-label mapping.065

In summary, our analysis provides a new way066

of understanding the role of the demonstrations in067

in-context learning. We empirically show that the068

model (1) counter-intuitively does not rely on the069

ground truth input-label mapping provided in the070

demonstrations as much as we thought (Section 4),071

and (2) nonetheless still benefits from knowing the072

label space and the distribution of inputs specified073

by the demonstrations (Section 5). We also include074

a discussion of broader implications, e.g., what we075

can say about the model learning at test time, and076

avenues for future work (Section 6).077

2 Related Work078

Large language models have been key to strong per-079

formance in a wide range of downstream tasks (De-080

vlin et al., 2019; Radford et al., 2019; Liu et al.,081

2019; Raffel et al., 2020; Lewis et al., 2020). While082

finetuning has been a popular approach to transfer083

to new tasks (Devlin et al., 2019), it is often imprac-084

tical to finetune a very large model (e.g. ≥10B pa-085

rameters). Brown et al. (2020) propose in-context086

learning as an alternative way to learn a new task.087

As depicted in Figure 2, the LM learns a new task088

via inference alone by conditioning on a concatena-089

tion of the training data as demonstrations, without090

any gradient updates.091

In-context learning has been the focus of sig-092

nificant study since its introduction. Prior work093

proposes better ways of formulating the prob-094

lem (Zhao et al., 2021; Holtzman et al., 2021;095

Min et al., 2021a), better ways of choosing la-096

beled examples for the demonstrations (Liu et al.,097

2021; Lu et al., 2021; Rubin et al., 2021), meta-098

training with an explicit in-context learning objec-099

tive (Chen et al., 2021; Min et al., 2021b), and100

learning to follow instructions as a variant of in-101

context learning (Mishra et al., 2021b; Efrat and102

Levy, 2020; Wei et al., 2022; Sanh et al., 2022). At103

the same time, some work reports brittleness and104

over-sensitivity for in-context learning (Lu et al.,105

2021; Zhao et al., 2021; Mishra et al., 2021a).106

Relatively less work has been done to understand107

why in-context learning works. Xie et al. (2022)108

provide theoretical analysis that in-context learn-109

ing can be formalized as Bayesian inference that110

uses the demonstrations to recover latent concepts.111

Razeghi et al. (2022) show that in-context learn-112

Circulation revenue has increased by 5% in Finland.         \n    Positive 
Panostaja did not disclose the purchase price.                  \n    Neutral 
Paying off the national debt will be extremely painful.      \n    Negative 
The acquisition will have an immediate positive impact.  \n    ________

 =

Demonstrations

LM

Positive

Test input

Prediction

Figure 2: An overview of in-context learning. The
demonstrations consist of k input-label pairs from the
training data (k = 3 in the figure).

Model # Params Public Meta-trained

GPT-2 Large 774M ✓ ✗
MetaICL 774M ✓ ✓
GPT-J 6B ✓ ✗

fairseq 6.7B† 6.7B ✓ ✗

fairseq 13B† 13B ✓ ✗

GPT-3 175B‡ ✗ ✗

Table 1: A list of LMs used in the experiments:
GPT-2 (Radford et al., 2019), MetaICL (Min et al.,
2021b), GPT-J (Wang and Komatsuzaki, 2021), fairseq
LMs (Artetxe et al., 2021) and GPT-3 (Brown et al.,
2020). ‘Public’ indicates whether the model weights are
public; ‘Meta-trained’ indicates whether the model is
meta-trained with an in-context learning objective. †We
use dense models in Artetxe et al. (2021) and refer them
as fairseq LMs for convenience. ‡We use the Davinci
API (the base version, not the instruct version) and as-
sume it to be 175B, following Gao et al. (2021) and
Artetxe et al. (2021).

ing performance is highly correlated with term fre- 113

quencies in the pretraining data. To the best of our 114

knowledge, this paper is the first that provides an 115

empirical analysis that investigates why in-context 116

learning achieves performance gains over zero-shot 117

inference. We find that the ground truth input-label 118

mapping in the demonstrations has only a marginal 119

effect, and measure the impact of finer-grained as- 120

pects of the demonstrations. 121

3 Experimental Setup 122

We describe the experimental setup used in our 123

analysis (Section 4 and 5). 124

Models. We experiment with 12 models in to- 125

tal. We include 6 language models (Table 1), all 126

of which are decoder-only, dense LMs. We use 127

each LM with two inference methods, direct and 128

channel, following Min et al. (2021a). The sizes 129

of LMs vary from 774M to 175B. We include the 130

largest dense LM (GPT-3) and the largest publicly 131

released dense LM (fairseq 13B) at the time of con- 132
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Figure 3: Results when using no-demonstrations, demonstrations with gold labels, and demonstrations with random
labels in classification (top) and multi-choice tasks (bottom). Note that the first eight models are evaluated on
16 classification and 10 multi-choice datasets, and the last four models are evaluated on 3 classification and 3
multi-choice datasets. See Figure 11 for numbers comparable across all models. Model performance with random
labels is very close to performance with gold labels (more discussion in Section 4.1).

ducting experiments. We also include MetaICL,133

which is initialized from GPT-2 Large and then134

meta-trained on a collection of supervised datasets135

with an in-context learning objective, and ensure136

that our evaluation datasets do not overlap with137

those used at meta-training time.138

Evaluation Data. We evaluate on 26 datasets, in-139

cluding sentiment analysis, paraphrase detection,140

natural language inference, hate speech detection,141

question answering, and sentence completion (full142

list and references provided in Appendix A).1 We143

use these datasets because they (1) are true low-144

resource datasets with less than 10K training ex-145

amples, (2) include well-studied benchmarks from146

GLUE (Wang et al., 2018) and SuperGLUE (Wang147

et al., 2019a), and (3) cover diverse domains in-148

cluding science, social media, finance, and more.149

The 26 datasets can be further broken down into 16150

classification tasks and 10 multi-choice tasks.151

Other Details. We use k = 16 examples as152

demonstrations by default for all experiments in153

the paper, unless otherwise specified. Examples154

are sampled at uniform from the training data. We155

choose a set of k training examples using 5 differ-156

ent random seeds and run experiments 5 times. For157

fairseq 13B and GPT-3, due to limited resources,158

we experiment with a subset of 6 datasets2 and 3159

1For convenience, we use ‘labels’ to refer to the output for
the task, though our datasets include non-classification tasks.

2Three classification and three multi-choice: MRPC, RTE,
Tweet_eval-hate, OpenbookQA, CommonsenseQA, COPA.

random seeds. We report Macro-F1 for classifica- 160

tion tasks and Accuracy for multi-choice tasks. We 161

compute per-dataset average over seeds, and then 162

report macro-average over datasets. We use the 163

minimal templates in forming an input sequence 164

from an example. We refer to Appendix B for more 165

details. 166

4 Ground Truth Matters Little 167

4.1 Gold labels vs. random labels 168

To see the impact of correctly-paired inputs and 169

labels in the demonstrations—which we call the 170

ground truth input-label mapping—we compare the 171

following three methods.3 172

No demonstrations is a typical zero-shot method 173

that does not use any labeled data. A prediction 174

is made via argmaxy∈CP (y|x), where x is the test 175

input and C is a small discrete set of possible labels. 176

Demonstrations w/ gold labels are used in a typi- 177

cal in-context learning method with k labeled ex- 178

amples (x1, y1)...(xk, yk). A concatenation of k 179

input-label pairs is used to make a prediction via 180

argmaxy∈CP (y|x1, y1...xk, yk, x). 181

Demonstrations w/ random labels are formed 182

with random labels, instead of gold labels from 183

the labeled data. Each xi (1 ≤ i ≤ 184

k) is paired with ỹi that is randomly sam- 185

pled at uniform from C. A concatenation of 186

3Without loss of generality, all methods in Section 4 and 5
are described based on the direct method, but can be trivially
converted to the channel method by flipping x and y.
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Figure 4: Results with varying number of correct labels in the demonstrations. Channel and Direct used for
classification and multi-choice, respectively. Performance with no demonstrations (blue) is reported as a reference.

(x1, ỹ1)...(xk, ỹk) is then used to make a predic-187

tion via argmaxy∈CP (y|x1, ỹ1...xk, ỹk, x).188

Results are reported in Figure 3. First, using189

the demonstrations with gold labels significantly190

improves the performance over no demonstrations,191

as it has been consistently found in much of prior192

work (Brown et al., 2020; Zhao et al., 2021; Liu193

et al., 2021). We then find that replacing gold la-194

bels with random labels only marginally hurts195

performance. The trend is consistent over nearly196

all models: models see performance drop in the197

range of 0–5% absolute. There is less impact in198

replacing labels in multi-choice tasks (1.7% on av-199

erage) than in classification tasks (2.6% absolute).200

This result indicates that the ground truth input-201

label pairs are not necessary to achieve perfor-202

mance gains. This is counter-intuitive, given that203

correctly paired training data is critical in typical204

supervised training—it informs the model of the ex-205

pected input-label correspondence required to per-206

form the downstream task. Nonetheless, the mod-207

els do achieve non-trivial performance on the down-208

stream tasks. This strongly suggests that the mod-209

els are capable of recovering the expected input-210

label correspondence for the task; however, it is not211

directly from the pairings in the demonstrations.212

It is also worth noting that there is particularly213

little performance drop in MetaICL: 0.1–0.9% ab-214

solute. This suggests that meta-training with an215

explicit in-context learning objective actually en-216

courages the model to essentially ignore the input-217

label mapping and exploit other components of the218

demonstrations (more discussion in Section 5.4).219

4.2 Ablations220

For additional ablations, we experiment with 5 clas-221

sification and 4 multi-choice datasets.4222

4Classification includes: MRPC, RTE, Tweet_eval-hate,
SICK, poem-sentiment; Multi-choice includes OpenbookQA,
CommonsenseQA, COPA and ARC.
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Figure 5: Ablations on varying numbers of examples in
the demonstrations (k). Models that are the best under
13B in each task category (Channel MetaICL and Direct
GPT-J, respectively) are used.

Does the number of correct labels matter? To 223

further examine the impact of correctness of la- 224

bels in the demonstrations, we conduct an ablation 225

study by varying the number of correct labels in the 226

demonstrations. We evaluate “Demonstrations w/ 227

a% correct labels” (0 ≤ a ≤ 100) which consist 228

of k × a/100 correct pairs and k × (1 − a/100) 229

incorrect pairs (see Algorithm 1 in Appendix B). 230

Here, a = 100 is the same as typical in-context 231

learning, i.e., demonstrations w/ gold labels. 232

Results are reported in Figure 4. Model perfor- 233

mance is fairly insensitive to the number of correct 234

labels in the demonstrations. In fact, always us- 235

ing incorrect labels significantly outperforms no- 236

demonstrations, e.g., preserving 92%, 100% and 237

97% of improvements from using the demonstra- 238

tions with MetaICL in classification, MetaICL in 239

multi-choice, and GPT-J in multi-choice, respec- 240

tively. GPT-J in classification is an outlier where 241

performance depends relatively more on the num- 242

ber of correct labels of the demonstrations—it 243

achieves higher performance with a larger number 244

of correct labels. Still, always using incorrect la- 245

bels is significantly better than no demonstrations. 246

Is the result consistent with varying k? We 247

study the impact of the number of input-label pairs 248

(k) in the demonstrations. Results are reported in 249

Figure 5. First, using the demonstrations signifi- 250

cantly outperforms the no demonstrations method 251
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Figure 6: Results with minimal templates and manual templates. ‘+T’ indicates that manual templates are used.
Channel and Direct used for classification and multi-choice, respectively.

even with small k (k = 4), and performance drop252

from using gold labels to using random labels is253

consistently small across varying k, in the range of254

0.8–1.6%.5 Interestingly, model performance does255

not increase much as k increases when k ≥ 8, both256

with gold labels and with random labels. This is257

in contrast with typical supervised training where258

model performance rapidly increases as k increases,259

especially when k is small. We hypothesize that260

larger labeled data is beneficial mainly for super-261

vising the input-label correspondence, and other262

components of the data like the example inputs,263

example labels and the data format are easier to264

recover from the small data, which is potentially a265

reason for minimal performance gains from larger266

k (more discussion in Section 5).267

Is the result consistent with better templates?268

While we use minimal templates by default, we269

also explore manual templates, i.e., templates that270

are manually written in a dataset-specific manner,271

taken from prior work (details in Appendix B). Fig-272

ure 6 shows that the trend—replacing gold labels273

with random labels barely hurting performance—274

holds with manual templates. It is worth noting275

that using manual templates does not always out-276

perform using minimal templates.277

5 Why does In-Context Learning work?278

Section 4 shows that the ground truth input-label279

mapping in the demonstrations has little impact to280

performance gains from in-context learning. This281

section further examines what other aspects of the282

demonstrations lead to good performance of in-283

context learning.284

We identify four aspects of the demonstrations285

(x1, y1)...(xk, yk) that potentially provide learning286

signal (depicted in Figure 7).287

1. The input-label mapping, i.e., whether each288

input xi is paired with a correct label yi.289

5With an exception of 4.4% in classification with k = 4,
likely due to a high variance with a very small value of k.

Circulation revenue has increased by 5% in Finland.         \n         Positive
Format 
(The use 
of pairs)

 =

Distribution of inputs Label spaceDemonstrations

Test example Input-label mapping

Panostaja did not disclose the purchase price.                  \n         Neutral

Paying off the national debt will be extremely painful.      \n         Negative

The acquisition will have an immediate positive impact.  \n         ?

Figure 7: Four different aspects in the demonstrations:
the input-label mapping, the distribution of the input
text, the label space, and the use of input-label pairing
as the format of the demonstrations.

2. The distribution of the input text, i.e., the 290

underlying distribution that x1...xk are from. 291

3. The label space, i.e., the space covered by 292

y1...yk. 293

4. The format—specifically, the use of input- 294

label pairing as the format. 295

As Section 4 does for the input-label mapping, 296

we design a series of variants of the demonstrations 297

that quantify the impact of each aspect in isolation 298

(Section 5.1–5.3). We then additionally discuss the 299

trend of the models meta-trained with an in-context 300

learning objective (Section 5.4). For all experi- 301

ments, models are evaluated on five classification 302

and four multi-choice datasets as in Section 4.2. 303

See Appendix B and Table 4 for implementation 304

details and example demonstrations, respectively. 305

5.1 Impact of the distribution of the input text 306

We experiment with OOD demonstrations which 307

include out-of-distribution (OOD) text instead of 308

the inputs from unlabeled training data. Specif- 309

ically, a set of k sentences {xi,rand}ki=1 are ran- 310

domly sampled from an external corpus, and re- 311

place x1...xk in the demonstrations. This variant 312

assesses the impact of the distribution of the input 313

text, while keeping the label space and the format 314

of the demonstrations. 315

Results. Figure 8 shows that using out-of- 316

distribution inputs instead of the inputs from the 317
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Figure 8: Impact of the distribution of the inputs. Evaluated in classification (top) and multi-choice (bottom). The
impact of the distribution of the input text can be measured by comparing ■ and ■. The gap is substantial, with an
exception in Direct MetaICL (discussion in Section 5.1).
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Figure 9: Impact of the label space. Evaluated in classification (top) and multi-choice (bottom). The impact of
the label space can be measured by comparing ■ and ■. The gap is significant in the direct models but not in the
channel models (discussion in Section 5.2).

training data significantly drops the performance318

when Channel MetaICL, Direct GPT-J or Channel319

GPT-J are used, both in classification and multi-320

choice, by 3–16% in absolute. In the case of Di-321

rect GPT-J in multi-choice, it is even significantly322

worse than no demonstrations. Direct MetaICL323

is an exception, which we think is the effect of324

meta-training (discussion in Section 5.4).325

This suggests that in-distribution inputs in the326

demonstrations substantially contribute to perfor-327

mance gains. This is likely because conditioning on328

the in-distribution text makes the task closer to lan-329

guage modeling, since the LM always conditioned330

on the in-distribution text during training.331

5.2 Impact of the label space332

We also experiment with demonstrations w/ ran-333

dom English words that use random English334

words as labels for all k pairs. Specifically, we335

sample a random subset of English words Crand336

where |Crand| = |C|, and randomly pair ỹi ∈ Crand337

with xi. This variant assesses the impact of the 338

label space, while keeping the distribution of the 339

input text and the format of the demonstrations. 340

Results. Based on Figure 9, direct models and 341

channel models exhibit different patterns. With di- 342

rect models, the performance gap between using 343

random labels within the label space and using ran- 344

dom English words is significant, ranging between 345

5–16% absolute. This indicates that conditioning 346

on the label space significantly contributes to per- 347

formance gains. This is true even for multi-choice 348

tasks where there is no fixed set of labels—we 349

hypothesize that multi-choice tasks still do have 350

a particular distribution of the choices (e.g., ob- 351

jects like “Bolts” or “Screws” in the OpenBookQA 352

dataset) that the model uses. 353

On the other hand, removing the output space 354

does not lead to significant drop in the channel 355

models: there is 0–2% drop in absolute, or some- 356

times even an increase. We hypothesize that this is 357

because the channel models only condition on the 358
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Figure 10: Impact of the format, i.e., the use of the input-label pairs. Evaluated in classification (top) and multi-
choice (bottom). Variants of demonstrations without keeping the format (■ and ■) are overall not better than no
demonstrations (■). Keeping the format is especially significant when it is possible to achieve substantial gains
with the label space but without the inputs (■ vs. ■ in Direct MetaICL), or with the input distribution but without
the labels (■ vs. ■ in Channel MetaICL and Channel GPT-J). More discussion in Section 5.3.

labels, and thus are not benefiting from knowing359

the label space. This is in contrast to direct models360

which must generate the correct labels.361

5.3 Impact of input-label pairing362

Section 5.1 and 5.2 focus on variants which keep363

the format of the demonstrations as much as possi-364

ble. This section explores variants that change the365

format. While there are many aspects of the format,366

we make minimal modifications to remove the pair-367

ings of inputs to outputs. Specifically, we evaluate368

(1) demonstrations with no labels where the LM369

is conditioned on the concatenation of x1...xk, and370

(2) demonstrations with labels only where the371

LM is conditioned on the concatenation of y1...yk.372

These ablations provide the no-format counterparts373

of the ‘demonstrations with random English words’374

and ‘demonstrations with OOD inputs’, respec-375

tively.376

Results. Based on Figure 10, removing the for-377

mat is close to or worse than no demonstrations,378

indicating the importance of the format. This is379

likely because conditioning on a sequence of input-380

label pairs triggers the model to mimic the overall381

format and complete the new example as expected382

when the test input is given.383

More interestingly, keeping the format plays a384

significant role in retaining a large portion of per-385

formance gains by only using the inputs or only386

using the labels. For instance, with Direct MetaICL,387

it is possible to retain 95% and 82% of improve-388

ments from in-context learning (demonstrations389

with gold labels) by simply sampling random sen-390

tences from a corpus and randomly pairing them391

with the label set (■ in Figure 10) in classification 392

and multi-choice, respectively. Similarly, with the 393

channel models, it is possible to retain 82%, 87%, 394

86% and 75% of improvements from in-context 395

learning by simply pairing each input from the un- 396

labeled training data with a random English word 397

(■ in Figure 10) in MetaICL classification, GPT- 398

J classification, MetaICL multi-choice and GPT-J 399

multi-choice, respectively. For all of these cases, 400

removing inputs instead of using OOD inputs, or 401

removing labels instead of using random English 402

words is significantly worse, indicating that keep- 403

ing the format of the input-label pairs is key. 404

5.4 Impact of meta-training 405

Different from other models, MetaICL is trained 406

with an in-context learning objective, in line with 407

recent work that uses multi-task training on a 408

large collection of supervised datasets (called meta- 409

training) for generalization to new tasks (Agha- 410

janyan et al., 2021; Khashabi et al., 2020; Wei 411

et al., 2022; Sanh et al., 2022). We aim to better 412

understand the role of this meta-training in relation 413

with our findings by closely examining the result of 414

MetaICL. In particular, we observe that the patterns 415

we see so far are significantly more evident with 416

MetaICL than with other models. For instance, the 417

ground truth input-label mapping matters even less, 418

and keeping the format of the demonstrations mat- 419

ters even more. There is nearly zero influence of 420

the input-label mapping and the input distribution 421

in Direct MetaICL, and the input-label mapping 422

and the output space in Channel MetaICL. 423

Based on this observation, we hypothesize that 424

7



meta-training encourages the model to exclu-425

sively exploit simpler aspects of the demonstra-426

tions and to ignore others. This is based on our427

intuition that (1) the input-label mapping is likely428

harder to exploit, (2) the format is likely easier to429

exploit, and (3) the space of the text that the model430

is trained to generate is likely easier to exploit than431

the space of the text that the model conditions on.6432

6 Discussion & Conclusion433

In this paper, we study the role of the demon-434

strations with respect to the success of in-context435

learning.7 We find that the ground truth input-436

label mapping in the demonstrations matters signif-437

icantly less than one might think—replacing gold438

labels with random labels in the demonstrations439

only marginally lowers the performance. We then440

identify a series of aspects in the demonstrations441

and examine which aspect actually contributes to442

performance gains. Results reveal that (1) gains are443

mainly coming from independent specification of444

the input space and the label space, (2) the models445

can still retain up to 95% of performance gains by446

using either the inputs only or the label set only if447

the right format is used, and (3) meta-training with448

an in-context learning objective magnifies these449

trends. Together, our findings lead to a set of450

broader indications about in-context learning, as451

well as avenues for future work.452

Does the model learn at test time? If we take453

a strict definition of learning: capturing the input-454

label correspondence given in the training data,455

then our findings suggest that LMs do not learn456

new tasks at test time. Our experiments in Sec-457

tion 4.2 show that when the task is defined by the458

demonstrations to predict ‘negative’ to a positive re-459

view and ‘positive’ to a negative review, the model460

still predicts ‘positive’ and ‘negative’ to positive461

and negative reviews, respectively.462

However, learning a new task can be interpreted463

more broadly: it may include adapting to specific464

input and label distributions and the format sug-465

gested by the demonstrations, and ultimately get-466

ting to make a prediction more accurately. With467

this definition of learning, the model does learn468

6That is, the direct model exploits the label space better
than the input distribution, and the channel model exploits the
input distribution better than the label space.

7We focus on the tasks from established NLP benchmarks
that have real natural language inputs. Synthetic tasks with
more limited inputs may actually use the labels more, as ob-
served by Rong (2021).

the task from the demonstrations. Our experiments 469

indicate that the model does make use of aspects of 470

the demonstrations and achieve performance gains. 471

Capacity of LMs. The model performs a down- 472

stream task without relying on the input-label corre- 473

spondence from the demonstrations. This suggests 474

that the model has learned the (implicit notion of) 475

input-label correspondence from the language mod- 476

eling objective alone, e.g., associating a positive 477

review with the word ‘positive’. On one hand, this 478

suggests that the language modeling objective has 479

led to great zero-shot capacity, even if it is not al- 480

ways evident from the naive zero-shot accuracy. 481

On the other hand, this suggests that in-context 482

learning is unlikely to work on a task whose input- 483

label correspondence is not already captured in the 484

LM, e.g., when the task semantics are not close 485

enough to language modeling. 486

Connection to instruction-following models. 487

Prior work has found it promising to train the model 488

that reads the natural language description of the 489

task (called instructions) and performs a new task 490

at inference (Mishra et al., 2021b; Efrat and Levy, 491

2020; Wei et al., 2022; Sanh et al., 2022). We think 492

the demonstrations and instructions largely have 493

the same role to LMs, and hypothesize that our 494

findings hold for instruction-following models: the 495

instructions prompt the model to recover the capac- 496

ity it already has, but do not supervise the model to 497

learn novel task semantics. We leave analysis on 498

instruction-following models for future work. 499

Significantly improved zero-shot performance. 500

One of our key findings is that it is possible to 501

achieve nearly k-shot performance without using 502

any labeled data, by simply pairing each unlabeled 503

input with a random label and using it as the demon- 504

strations. This means our zero-shot baseline level 505

is significantly higher than previously thought.8 506

Gains from the demonstrations with random labels 507

over the previous zero-shot method (no demon- 508

strations) are up to 20% absolute in classification 509

and up to 15% absolute in multi-choice tasks. Fu- 510

ture work can further improve the zero-shot perfor- 511

mance with relaxed assumptions in access to the 512

unlabeled training data. 513

8We take the perspective that using the unlabeled training
data is permitted (Kodirov et al., 2015; Wang et al., 2019b;
Schick and Schütze, 2021).
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A Full Datasets796

We include 26 datasets as follows: fi-797

nancial_phrasebank (Malo et al., 2014),798

poem_sentiment (Sheng and Uthus, 2020),799

medical_questions_pairs (McCreery et al., 2020),800

glue-mrpc (Dolan and Brockett, 2005), glue-801

wnli (Levesque et al., 2012), climate_fever (Diggel-802

mann et al., 2020), glue-rte (Dagan et al., 2005;803

Bar-Haim et al., 2006; Giampiccolo et al.,804

2007; Bentivogli et al., 2009), superglue-805

cb (de Marneffe et al., 2019), sick (Marelli et al.,806

2014) , hate_speech18 (de Gibert et al., 2018),807

ethos-national_origin (Mollas et al., 2020), ethos-808

race (Mollas et al., 2020), ethos-religion (Mollas809

et al., 2020), tweet_eval-hate (Barbieri et al., 2020),810

tweet_eval-stance_atheism (Barbieri et al., 2020),811

tweet_eval-stance_feminist (Barbieri et al., 2020),812

quarel (Tafjord et al., 2019a), openbookqa (Mi-813

haylov et al., 2018), qasc (Khot et al., 2020), com-814

monsense_qa (Talmor et al., 2019), ai2_arc (Clark815

et al., 2018), codah (Chen et al., 2019), superglue-816

copa (Gordon et al., 2012), dream (Sun et al.,817

2019), quartz-with_knowledge (Tafjord et al.,818

2019b), quartz-no_knowledge (Tafjord et al.,819

2019b). The choice of datasets is made following820

low-resource datasets in Min et al. (2021b), with821

the exact same set of k-shot train data using 5822

random seeds. We use the HuggingFace version823

of the data (Lhoest et al., 2021) and use the824

development data for evaluation, following Ye825

et al. (2021). See Table 2 for statistics.826

B Experimental Details827

Example template We follow Ye et al. (2021);828

Min et al. (2021b); Logan IV et al. (2021) in us-829

ing the minimal format to transform the input to a830

sequence (e.g. a concatenation of multiple inputs)831

and using the label words from each dataset as it is.832

We also explore manual templates taken from prior833

work (Holtzman et al., 2021; Zhao et al., 2021) as834

reported in Section 4.2, although we find that using835

these templates is not consistently better than using836

minimal templates. We thus run main experiments837

with minimal templates. Example templates are838

provided in Table 3.839

Format of the demonstrations We follow the840

standard of each model for formatting the demon-841

strations, either from exploration in prior work or842

the example code provided in the official tutorial.843

For GPT-2, we separate the input and the label,844

Dataset # Train # Eval

Task category: Sentiment analysis
financial_phrasebank 1,811 453
poem_sentiment 892 105

Task category: Paraphrase detection
medical_questions_pairs 2,438 610
glue-mrpc 3,668 408

Task category: Natural language inference
glue-wnli 635 71
climate_fever 1,228 307
glue-rte 2,490 277
superglue-cb 250 56
sick 4,439 495

Task category: Hate speech detection
hate_speech18 8,562 2,141
ethos-national_origin 346 87
ethos-race 346 87
ethos-religion 346 87
tweet_eval-hate 8,993 999
tweet_eval-stance_atheism 461 52
tweet_eval-stance_feminist 597 67

Task category: Question answering
quarel 1,941 278
openbookqa 4,957 500
qasc 8,134 926
commonsense_qa 9,741 1,221
ai2_arc 1,119 299

Task category: Sentence completion
codah 1665 556
superglue-copa 400 100
dream 6116 2040
quartz-with_knowledge 2696 384
quartz-no_knowledge 2696 384

Table 2: 26 datasets used for experiments, classified into
6 task categories. # Train and # Test indicate the number
of training and test examples of the dataset. Note that #
train is based on the original training dataset but we use
k random samples for k-shot evaluation.

and each demonstration example with a space. For 845

MetaICL, GPT-J and GPT-3, we separate the input 846

and the label with a newline (\n), and each demon- 847

stration example with three newlines. For fairseq 848

models, we use a newline to separate the input and 849

the label as well as each demonstration example. 850

Details in variants of the demonstrations For 851

“demonstrations w/ a% accurate labels” (0 ≤ 852

a ≤ 100), we use k × a/100 correct pairs and 853

k × (1− a/100) incorrect pairs in a random order, 854

as described in Algorithm 1. For “OOD demon- 855

strations”, we use CC-News (Nagel, 2016) as an 856

external corpus. We consider the length of the text 857

during sampling, so that sampled sentences have 858

similar length to the test input. For “demonstrations 859

with random English words”, we use pypi.org/ 860

project/english-words for the set of En- 861
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Figure 11: Results of No-demonstration, Gold demonstration and Random demonstration on 3 classification datasets
(top) and 3 multi-choice datasets (bottom). Details in Section 4.1. This figure is for providing numbers that are
comparable across models—full results with more datasets are reported in Figure 3.

Algorithm 1 Forming the demonstrations with an
accuracy of a%.

1: procedure FORMDEMONS({(xi, yi)}ki=1, a)
2: D ← [] // demonstration to be formed
3: n← k × a/100 // number of correct pairs
4: G ← Sample(Range(1, k), n)
5: for i ∈ Range(1, k) do
6: if i ∈ G then // add correct pair
7: D.append((xi, yi))
8: else // add incorrect pair
9: D.append((xi, Sample(C − yi)))

10: return D

glish words, which consists of 61,569 words.862

Table 4 provides a list of example demonstra-863

tions for each method used in Section 5.864

C More Experimental Results865

C.1 Gold labels vs. random labels866

Figure 11 shares the same interface as Figure 3, but867

all models are evaluated on 3 classification and 3868

multi-choice datasets and are thus comparable to869

each other.870

C.2 More variants of the demonstrations871

We explored demonstrations with a con-872

stant label where all labels in the demon-873

strations are replaced with a constant text,874

“answer”. Specifically, a prediction is made via875

argmaxy∈CP (y|x1,answer...xk,answer, x).876

This can be viewed as another way to remove the877

impact of the label space while keeping the impact878

of the distribution of the input text. However,879

results are consistently worse than the results880

of demonstrations with random English labels.881

We think this is because constant labels actually 882

change the format of the demonstrations, since 883

they can be viewed as part of a separator between 884

different demonstration examples. 885

We also explored demonstrations with the test 886

input where all inputs in the demonstrations are 887

replaced with the test input, each paired with a ran- 888

dom label. Specifically, a prediction is made via 889

argmaxy∈CP (y|x, ỹ1...x, ỹk, x), where ỹi (1 ≤ 890

i ≤ k) is randomly sampled at uniform from C. 891

This variant is seemingly a reasonable choice given 892

that it satisfies the condition that the inputs in the 893

demonstrations come from the same distribution 894

as the test input (since they are identical), and us- 895

ing random labels is as good as using gold labels. 896

Nonetheless, we find that this variant is signifi- 897

cantly worse than most other methods with demon- 898

strations. We think this is because using the con- 899

stant input for all demonstration example signifi- 900

cantly changes the format of the sequence, since the 901

input can be viewed as part of a separator between 902

different demonstration examples. 903
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Dataset Type Example

MRPC Minimal sentence 1: Cisco pared spending to compensate for sluggish sales . [SEP] sentence 2: In
response to sluggish sales , Cisco pared spending . \n {equivalent|not_equivalent}

Manual Cisco pared spending to compensate for sluggish sales . \n The question is: In response to
sluggish sales , Cisco pared spending . True or False? \n The answer is:{True|False}

RTE Minimal sentence 1: The girl was found in Drummondville. [SEP] sentence 2: Drummondville
contains the girl. \n {entailment|not_entailment}

Manual The girl was found in Drummondville. \n The question is: Drummondville contains the
girl. True or False? \n The answer is:{True|False}

Tweet_eval-hate Minimal The Truth about #Immigration \n {hate|non-hate}

Manual Tweet: The Truth about #Immigration \n Sentiment: {against|favor}

SICK Minimal sentence 1: A man is screaming. [SEP] sentence 2: A man is scared. \n
{contradiction|entailment|neutral}

Manual A man is screaming. \n The question is: A man is scared. True or False? \n The answer is:
{False|True|Not sure}

poem-sentiment Minimal willis sneered: \n {negative|no_impact|positive}

Manual willis sneered: \n The sentiment is: {negative|no_impact|positive}

OpenbookQA Minimal What creates a valley? \n {feet|rock|water|sand}

Manual The question is: What creates a valley? \n The answer is: {feet|rock|water|sand}

CommonsenseQA Minimal What blocks sunshine? \n {summer|park|desktop|sea|moon}

Manual The question is: What blocks sunshine? \n The answer is: {summer|park|desktop|sea|moon}

COPA Minimal Effect: I coughed. \n {Cause: I inhaled smoke.|Cause: I lowered my voice.}

Manual I coughed because {I inhaled smoke.|I lowered my voice.}

ARC Minimal Which biome has the most vegetation? \n {desert|forest|grassland|tundra}

Manual The question is: Which biome has the most vegetation? \n The answer is: {desert|forest|
grassland|tundra}

Table 3: A list of minimal templates taken from Ye et al. (2021); Min et al. (2021b) and manual templates taken
from Holtzman et al. (2021); Zhao et al. (2021). Details provided in Appendix B. See Figure 6 for discussion in
empirical results. The input and the label are in the red text and in the blue text, respectively. Note that | is used to
separate different options for the labels.

Demos
w/ gold labels

(Format ✓ Input distribution ✓ Label space ✓ Input-label mapping ✓)
Circulation revenue has increased by 5% in Finland and 4% in Sweden in 2008. \n positive
Panostaja did not disclose the purchase price. \n neutral

Demos
w/ random labels

(Format ✓ Input distribution ✓ Label space ✓ Input-label mapping ✗)
Circulation revenue has increased by 5% in Finland and 4% in Sweden in 2008. \n neutral
Panostaja did not disclose the purchase price. \n negative

OOD Demos
w/ random labels

(Format ✓ Input distribution ✗ Label space ✓ Input-label mapping ✗)
Colour-printed lithograph. Very good condition. Image size: 15 x 23 1/2 inches. \n neutral
Many accompanying marketing claims of cannabis products are often well-meaning. \n negative

Demos
w/ random English words

(Format ✓ Input distribution ✓ Label space ✗ Input-label mapping ✗)
Circulation revenue has increased by 5% in Finland and 4% in Sweden in 2008. \n unanimity
Panostaja did not disclose the purchase price. \n wave

Demos
w/o labels

(Format ✗ Input distribution ✓ Label space ✗ Input-label mapping ✗)
Circulation revenue has increased by 5% in Finland and 4% in Sweden in 2008.
Panostaja did not disclose the purchase price.

Demos
labels only

(Format ✗ Input distribution ✗ Label space ✓ Input-label mapping ✗)
positive
neutral

Table 4: Example demonstrations when using methods in Section 5. The financial_phrasebank dataset with
C = {“positive”, “neutral”, “negative”} is used. Red text indicates the text is sampled from an external corpus; blue
text indicates the labels are randomly sampled from the label set; purple text indicates a random English word.
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