
ColorSwap: A Color and Word Order Dataset for Multimodal Evaluation

Anonymous ACL submission

Abstract
This paper introduces the ColorSwap dataset,001
designed to assess and improve the proficiency002
of multimodal models in matching objects with003
their colors. The dataset is comprised of 2,000004
unique image-caption pairs, grouped into 1,000005
examples. Each example includes a caption-006
image pair, along with a “color-swapped” pair.007
We follow the Winoground schema: the two008
captions in an example have the same words,009
but the color words have been rearranged to010
modify different objects. The dataset was cre-011
ated through a novel blend of automated cap-012
tion and image generation with humans in the013
loop. We evaluate image-text matching (ITM)014
and visual language models (VLMs) and find015
that even the latest ones are still not robust016
at this task. GPT-4V and LLaVA score 72%017
and 42% on our main VLM metric, although018
they may improve with more advanced prompt-019
ing techniques. On the main ITM metric, con-020
trastive models such as CLIP and SigLIP per-021
form close to chance (at 12% and 30%, respec-022
tively), although the non-contrastive BLIP ITM023
model is stronger (87%). We also find that024
finetuning on fewer than 2,000 examples yields025
significant performance gains on this out-of-026
distribution word-order understanding task.027

1 Introduction028

Recent years have seen remarkable developments029

in pretrained vision and language models (Radford030

et al., 2021; Li et al., 2022; Singh et al., 2022; Li031

et al., 2023, 2019; Rombach et al., 2021; Betker032

et al., 2023; Liu et al., 2023b). Their performance033

is exceptional in tasks such as visual question-034

answering (Liu et al., 2023b), text-to-image gener-035

ation and manipulation (Minderer et al., 2022), and036

image captioning (Li et al., 2022, 2023).037

Despite the success, recent work reveals that038

vision and language models often struggle to com-039

prehend fine grained distinctions in images (Kro-040

jer et al., 2022) compositional relationships, par-041

ticularly in differentiating captions with the same042

Figure 1: An overview of the ColorSwap dataset cre-
ation methodology. The human emoji marks compo-
nents that require human annotator input.

words but different word orders. The Winoground 043

dataset (Thrush et al., 2022) demonstrates that, 044

given two captions composed of the same words 045

in a different order, the performance of many well- 046

known models in correctly matching these cap- 047

tions to their respective images is close to ran- 048

dom chance. It is not well understood whether 049

known multimodal architectures are even capable, 050

in practice, of learning how to perform well at a bal- 051

anced word-order-understanding task with small- 052

scale finetuning data. Finetuning has been done 053

on some balanced word-order datasets, but only in 054

settings where half of the images are lacking, as far 055

as we are aware (Yuksekgonul et al., 2023). 056

To address such questions, we introduce the Col- 057

orSwap dataset, along with a data generation pro- 058

cess that enables the quick creation of a larger 059

dataset fitting the same schema as Winoground, as 060

shown in Figure 1. Our dataset specifically focuses 061

on a subset of Winoground-style examples, em- 062

phasizing the swapping of color words in captions 063
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for two main reasons: 1) accurately associating064

colors with objects is of practical importance in065

AI-generated art, and 2) it is a conceptually sim-066

ple and targeted word order understanding task - it067

is very clear what the human judgements are and068

why. One of the simplifying features of this task is069

that color words are often directly adjacent to the070

objects they modify. For example, “someone hold-071

ing a [yellow umbrella] wearing a [white dress]”,072

although it is important to note that it isn’t always073

this simple: see Figure 2.074

Figure 2: An image from DALL·E 3 (Betker et al., 2023)
when given the caption “The key to the shed is blue” (we
ensured that the caption was not rewritten by ChatGPT
(OpenAI, 2022)). DALL·E 3 does not always make this
mistake, but it is unreliable. Even though “the shed is
blue” is a substring, the full sentence is saying that the
key is blue. Our dataset does not target difficult cases
where colors modify far objects in the string.

Finally, we conduct evaluations of several vision075

and language models using this dataset. We find076

that all models, even GPT-4V (OpenAI, 2023a),077

make a significant number of mistakes. Although,078

contrastive models such as CLIP and SigLIP strug-079

gle drastically. The dataset could be a useful bench-080

mark for contrastive models in particular, but also081

for visual language models and even industry dif-082

fusion models such as Midjourney (Midjourney,083

2023).1 Further, we found no model which lacks084

the capability, in practice, to learn some level of085

generalizable word-order judgements from a fairly086

small set of naturalistic finetuning data.087

2 ColorSwap088

In this section, we introduce the ColorSwap dataset,089

comprised of 1,000 unique examples created by090

four expert annotators (each with two or more years091

1As with other targeted evaluations, there is an implicit
confounder: the data is from a different distribution than the
training data. ColorSwap is a test of word order understanding
on out of distribution data, not just word order understanding.

or NLP experience and living in the United States) 092

with the aid of generative models. Each example 093

includes a caption paired with an image, along with 094

a color-swapped version of the caption and image. 095

We randomly select 700 examples for training and 096

300 for evaluation. 097

Our data collection methodology uses three key 098

steps: 1) Caption Generation, where we generate 099

a variety of initial captions using three different 100

methods; 2) Image Generation, which involves em- 101

ploying various text-to-image models to create im- 102

ages corresponding to these captions; and 3) Post- 103

Processing, which includes human review to en- 104

sure accuracy, maintain quality, and re-caption im- 105

ages. Post-processing is essential as current text-to- 106

image models often mix up the colors. See Figure 1 107

for an illustration of our data collection process and 108

Table 1 for a summary of the dataset’s composition. 109

Caption Image # Pairs

Handmade Midjourney 39
Handmade DALL·E 3 167

Rule-based Stable Diffusion 782
Rule-based DALL·E 3 394

Generated Stable Diffusion 212
Generated DALL·E 3 406

Table 1: Number of pairs per method. Rule-based cap-
tions are rewritten by humans during post-processing.
Generated captions come from Large Language Models.

2.1 Caption Generation Methods 110

Handmade. In this method, annotators manually 111

create captions by creatively brainstorming scenar- 112

ios and contexts that involve at least two objects. 113

This process ensures a high degree of originality 114

and diversity in the captions, but is time-consuming. 115

Once we have some captions, we can use them to 116

bootstrap the following two approaches. 117

Rule-based. The second method employs a sys- 118

tematic color swapping technique in predefined 119

caption templates, using sets of objects and colors. 120

It generates a broad range of color-object scenar- 121

ios, though the captions lack creative variability. 122

To tackle this, the post-processing stage involves 123

human review and caption rewriting. 124

Generative model. This method leverages gener- 125

ative models, particularly GPT-4 (OpenAI, 2023a) 126

and Claude-2 (Anthropic, 2023). We prompt 127

these models with examples from our first method 128
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and some examples from the Winoground dataset.129

These models then generate additional caption pairs130

based on these inputs.131

2.2 Image Generation132

We utilize diffusion models for image generation, a133

method increasingly used in multimodal dataset134

creation (Bitton-Guetta et al., 2023; Wu et al.,135

2023a; Lee et al., 2023). For diversity and cost-136

efficiency, various diffusion models are employed.137

Despite their limitations in accurately handling the138

color composition task, we sample multiple images139

for a given caption and later select the most suitable140

image. This approach enables us to create Color-141

Swap even with generative models that would find142

the task challenging. We use the open-source Sta-143

ble Diffusion model (Podell et al., 2023), as well144

as stronger commercial models such as Midjour-145

ney (Midjourney, 2023) and OpenAI’s DALL·E 3146

(Betker et al., 2023). Details are in Appendix A.147

2.3 Post-Processing148

Filtering. During post-processing, annotators sift149

through images produced by diffusion models to150

ensure quality. Their task is to identify the image151

that most accurately aligns with its caption. If no152

image meets the criteria, the entire set is discarded.153

This step is crucial as it ensures that the final dataset154

is accurate and sensible to human evaluators.155

Re-captioning. To ensure naturalistic and diverse156

captions, we do a manual re-captioning of image157

pairs if they were generated with rule-based cap-158

tions. See Figure 3 for an example. See Appendix159

B for snapshots of post-processing interfaces.160

Figure 3: Illustration of re-captioning process.

3 Experiments161

Here, we outline our experiments on the Color-162

Swap dataset. We evaluate both image-text match-163

ing (ITM) models and visual language models. All 164

of these models make a significant number of er- 165

rors in our color composition task, although con- 166

trastive ITM models in particular struggle substan- 167

tially. Subsequently, we fine-tune these models 168

using the training split of the dataset, aiming to un- 169

derstand whether minimal tuning can significantly 170

improve their ability to understand word order. 171

3.1 Evaluation Metrics 172

To assess model performance, we adopt the three 173

metrics introduced in Thrush et al. (2022), for 174

Winoground, as our dataset has the same schema. 175

The text score measures whether a model can select 176

a correct caption given an image, while the image 177

score is about selecting the correct image, given a 178

caption. The group score combines both aspects. 179

3.2 Off-the-shelf Models 180

Image-text matching models. For ITM mod- 181

els, we evaluate CLIP (Radford et al., 2021), 182

FLAVA (Singh et al., 2022), BLIP (Li et al., 2022), 183

and SigLIP (Zhai et al., 2023). FLAVA and BLIP 184

offer two matching methods: 1) a contrastive 185

method, and 2) using cross-modal parameters with 186

an ITM head. CLIP and SigLIP only match text to 187

images in the contrastive way. With these models, 188

we gauage the competnence of these two alterna- 189

tive architectures on the task. Generally, we use 190

the standard base versions of models. More details 191

on model selection are included in Appendix C. 192

Visual language models. We assess 193

LLaVAR (Zhang et al., 2023), LLaVA-1.5 (Liu 194

et al., 2023a), and GPT-4V (OpenAI, 2023b). We 195

follow the VLM Winoground evaluation method- 196

ology in (Wu et al., 2023b) where we obtain the 197

text score by prompting them to select the correct 198

caption from two options when provided with an 199

image. Similarly, for the image score, we present 200

them with a caption and two images, from which 201

they must select the one that best corresponds to 202

the caption. To avoid positional bias (Zheng et al., 203

2023), we further randomize the order in which 204

captions or images are presented to these models. 205

The scores here are not strictly comparable to 206

those for the ITM models, which consider one 207

image and one caption at a time and output floating 208

point scores. More details on model selection and 209

prompts are included in Appendix C. 210

Results. Table 2 outlines the performance of the 211

models without finetuning. BLIP and SigLIP ex- 212
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hibit superior performance compared to CLIP and213

FLAVA, both of which are around the levels of214

random chance. Matching with an ITM head also215

improves the image-text matching performance, es-216

pecially for BLIP. Also, GPT-4V, despite its status217

as a leading closed-source model, still exhibits gen-218

uine errors on the simple task posed by this dataset.219

A selection of examples and model responses is220

included in Appendix E.221

Model & Method Text ↑ Image ↑ Group ↑

Image-text matching models

Random chance 25.00 25.00 16.67
Contrastive matching
CLIP 35.67 14.67 11.67
FLAVA 35.33 25.00 15.67
BLIP 75.67 56.00 51.00
SigLIP 61.67 37.00 30.33
ITM matching
FLAVA 36.33 18.67 10.33
BLIP 94.67 89.00 87.33

Visual Language Models

Random chance 25.00 25.00 6.25
LLaVAR 27.67 25.67 8.33
LLaVA-1.5 69.67 54.33 42.00
GPT-4V 91.33 76.33 72.00

Table 2: Performance of models on ColorSwap. Results
above chance are bold. Note that random chance is dif-
ferent in the ITM versus visual language model (VLM)
cases because VLMs output a binary value and ITM
models output a float (an effectively continuous value).

3.3 Fine-tuning on ColorSwap222

Winoground remains a challenging task, with even223

advanced models like GPT-4V, using chain-of-224

thought prompting, struggling to solve it effec-225

tively (Wu et al., 2023b). We are not aware of any226

demonstrations in other papers that provide an an-227

swer to whether multimodal models in practice can228

even be finetuned from a fairly small set of training229

data to understand any aspects of word order. So,230

we fine-tune the best performing off-the-shelf BLIP231

model on our dataset. Due to the continued popu-232

larity of CLIP, we also fine-tune the CLIP model.233

Training details are given in Appendix D.234

Performance improvements post-finetuning.235

For the ColorSwap dataset, CLIP and BLIP sig-236

nificantly improve on the test set after finetuning237

on the train set. They are able to learn generalizable238

knowledge about word order from 1,400 training239

pairs. In the case of CLIP, performance increases240

by several times across all metrics. See Table 3.241

Additionally, we extend our evaluation to the242

Winoground dataset (Thrush et al., 2022) and show243

Model & Method Text ↑ Image ↑ Group ↑

Contrastive matching

CLIP fine-tuned 72.00 69.33 63.00
BLIP fine-tuned 86.33 82.67 79.67

ITM matching

BLIP fine-tuned 96.00 96.67 95.33

Table 3: Performance improvements on the ColorSwap
test set post-finetuning on the ColorSwap train set. Re-
sults above chance are bold.

the results in Table 4. Even though the finetuned 244

models are able to learn a sensitivity to word or- 245

der in our minimal color composition task, perfor- 246

mance on more complicated compositional tasks 247

remains largely unaffected. Given that there is 248

no practical issue stopping our models from learn- 249

ing sensitivity to word order in the simpler case, 250

compositional understanding for Winoground may 251

simply be a matter of pretraining data or scale. 252

Model & Method Text ↑ Image ↑ Group ↑

Contrastive matching

CLIP 31.25 11.25 9.00
CLIP fine-tuned 23.00 9.75 6.25
BLIP 37.75 15.75 12.75
BLIP fine-tuned 33.25 17.50 13.25

ITM matching

BLIP 48.50 24.50 20.25
BLIP fine-tuned 46.25 26.75 26.75

Table 4: Performance on Winoground before and after
finetuning on the ColorSwap dataset. Results above
chance are bold. There is no major difference.

4 Conclusion 253

We introduce the ColorSwap dataset, a collection 254

of 2,000 unique image-caption pairs and 2,000 255

hard negative pairings. It is specifically designed 256

to evaluate and improve minimal compositional 257

color comprehension abilities of vision and lan- 258

guage models. Our methodology for assembling 259

this dataset involved the use of diffusion models for 260

image generation and the incorporation of human 261

input to ensure naturalness and accuracy. We show 262

that popular off-the-shelf vision and language mod- 263

els exhibit extreme limitations in comprehending 264

even this basic color composition task. However, 265

minimal fine-tuning of these models on the Col- 266

orSwap dataset significantly improves their basic 267

understanding of word order. 268
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5 Limitations269

All of the images in ColorSwap come from diffu-270

sion models. The poor performance of models on271

the dataset could come from the fact that the dif-272

fusion images are simply out of distribution, not273

because these models have issues with color-word274

compositionality. Similarly, the captions may not275

be “in-distribution” for a variety of reasons. There276

is a risk of misattributing failure reasons. How-277

ever, if a model scores well, then we can be assured278

that the model is able to correctly differentiate be-279

tween color-swapped images in this particular set-280

ting. ColorSwap is additionally a static dataset,281

meaning that models evaluated on it must be vetted282

for training data contamination.283

6 Ethical Considerations284

For all diffusion models and datasets that we used,285

we believe that our use is consistent with their in-286

tended use and licenses. However, the diffusion287

models that we used are trained on a variety of288

opaque sources from the internet, and may make289

use of data without creators’ consent.290
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A Diffusion Model Usage Details400

Stable Diffusion (Rombach et al., 2022). We401

use Stability AI’s Stable Diffusion XL Base 1.0402

model for generating images for 994 captions from403

the rule-based approach. Each caption is suffixed404

with ", 4k" to optimize the image quality, signal-405

ing the model to generate high-resolution images.406

Additionally, we incorporate "ugly" as a negative407

prompt, which guides the model to avoid outputting408

deformed images. We set the generation guidance409

scale to 7.5, the number of denoising steps to 50,410

the dimension of the generated images to 1,024 ×411

1,024 pixels, and the number of images per caption412

to 8. Although this method is cost-effective, allow-413

ing for local running of the model, it sometimes414

struggles to generate at least one correct image,415

resulting in a number of failures.416

Midjourney (Midjourney, 2023). To tackle417

harder handmade captions, we explore Midjourney,418

known for its detailed and artistic image-generation419

capabilities. We access this model through its Dis-420

cord server, which offers a straightforward and in-421

teractive platform. To ensure the accuracy of the422

generated images, we often revise and refine the423

captions. However, this iterative approach resulted424

in extended processing times, leading to the inclu-425

sion of only 39 images from Midjourney in our426

final dataset. The image dimensions are 512 × 512427

or 1,024 × 1,024 pixels.428

DALL·E 3 (Betker et al., 2023). Finally, we uti-429

lize OpenAI’s DALL·E 3 for its advanced capa-430

bilities in generating highly realistic and detailed431

images. This model is particularly adept at han-432

dling complex and nuanced captions, making it433

an ideal choice for our more challenging captions434

from the handmade and generative model approach.435

While DALL·E 3 is preferred for its high perfor-436

mance and scalability through its API, it comes437

with a high cost of $0.04 per image. Additionally,438

DALL·E 3 still makes mistakes, which adds to the439

expense. Our dataset includes a total of 955 images440

generated using this model. The image dimensions441

are 1,024 × 1,024 or 1,024 × 1,792 pixels.442

B Annotator Interfaces443

In this section, we provide snapshots of the annota-444

tor interfaces. See Figure 6 and Figure 7 below.445

C Experiment Configurations 446

Models selection. For CLIP, we select the base 447

model that utilizes a ViT-B/32 Transformer archi- 448

tecture as an image encoder. For FLAVA, we select 449

the full model that also has a ViT-B/32 as its en- 450

coders. For BLIP, we choose their base model 451

trained on COCO dataset. For SigLIP, we select 452

the base model pre-trained on WebLi at resolution 453

224x224. The Hugging Face model names for each 454

of the models are listed in Table 5. 455

Model Hugging Face Model

CLIP openai/clip-vit-base-patch32
FLAVA facebook/flava-full
BLIP Salesforce/blip-itm-base-coco
SigLIP google/siglip-base-patch16-224

LLaVAR truehealth/LLaVar
LLaVA-1.5 liuhaotian/llava-v1.5-13b

Table 5: Selected models and Hugging Face model
names

Visual language model evaluation prompts. 456

We obtain the text score by prompting visual lan- 457

guage models to select the correct caption from 458

two options (Text prompt) and the image score by 459

prompting them to select the correct image from 460

two images (Image prompt). Figure 4 shows these 461

evaluation prompts. For LLaVAR and LLaVA-1.5 462

where their model interfaces do not directly sup- 463

port multiple images in the input, we horizontally 464

concatenate the images instead. 465

Text prompt

{image} Does this image present (A) 
{caption_1}, or (B) {caption_2}? 
Note, you must choose one of the two 
options.

Image prompt

{image_1}, {image_2} Which image better 
aligns with the description {caption}? 
The first image or the second image? 
Note you must choose one of two 
options.

Figure 4: Visual language model evaluation prompts.
We replace {image} with an image and {caption} with
an appropriate caption.

D Finetuning Details 466

We train CLIP on the training split of the Color- 467

Swap dataset for 100 epochs. The initial learning 468
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rate is 2 · 10−5 with a linear decay schedule. We469

employ the Adam optimizer with a weight decay470

of 0.1 during training, and the batch size is config-471

ured to 64. We also fine-tune the BLIP image-text472

matching model for 100 epochs. The initial learn-473

ing rate is 1 · 10−5 with a linear decay schedule,474

the weight decay is 0.05, and the batch size is 32.475

E Qualitative GPT-4V Evaluation476

In Figure 5, we include three examples from our477

visual language model evaluation on GPT-4V.478
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Does this image present (A) a red cat 
with a grey jacket holding food, or 
(B) a grey cat with a red jacket 
holding food? Note, you must choose 
one of the two options.

GPT-4V Response:

B) a grey cat with a red jacket 
holding food.

Text prompt:

✅

Does this image present (A) a red cat 
with a grey jacket holding food, or 
(B) a grey cat with a red jacket 
holding food? Note, you must choose 
one of the two options.

GPT-4V Response:

The image presents (A) a red 
cat with a grey jacket holding 
food.

Text prompt:

✅

Which image better aligns with the 
description a grey cat with a red 
jacket holding food? The first image 
or the second image? Note you must 
choose one of two options.

GPT-4V Response:

The first image better aligns 
with the description of a grey 
cat with a red jacket holding 
food.

Image prompt:

✅

Which image better aligns with the 
description a red cat with a grey 
jacket holding food? The first image 
or the second image? Note you must 
choose one of two options.

GPT-4V Response:

The second image better 
aligns with the description of a 
red cat with a grey jacket 
holding food.

Image prompt:

❌

Sample #19

Does this image present (A) purple 
skis rest on white snow, or (B) white 
skis rest on purple snow? Note, you 
must choose one of the two options.

GPT-4V Response:

(A) purple skis rest on white 
snow

Text prompt:

✅

Does this image present (A) purple 
skis rest on white snow, or (B) white 
skis rest on purple snow? Note, you 
must choose one of the two options.

GPT-4V Response:

B) White skis rest on purple 
snow

Text prompt:

✅

Which image better aligns with the 
description purple skis rest on white 
snow? The first image or the second 
image? Note you must choose one of 
two options.

GPT-4V Response:

The second image better 
aligns with the description 
"purple skis rest on white 
snow."

Image prompt:

✅

Which image better aligns with the 
description white skis rest on purple 
snow? The first image or the second 
image? Note you must choose one of 
two options.

GPT-4V Response:

The first image better aligns 
with the description of white 
skis resting on purple snow.

Image prompt:

✅

Sample #28

Does this image present (A) a black 
bear wears a brown jacket during 
the winter season, or (B) a brown 
bear wears a black jacket during the 
winter season? Note, you must 
choose one of the two options.

GPT-4V Response:

The image presents (B) a 
brown bear wearing a brown 
jacket during the winter 
season.

Text prompt:

❌

Does this image present (A) a brown 
bear wears a black jacket during the 
winter season, or (B) a black bear 
wears a brown jacket during the 
winter season? Note, you must 
choose one of the two options

GPT-4V Response:

The image presents (A) a 
brown bear wearing a black 
jacket during the winter 
season. However, it is 
important to note that this is a 
digitally manipulated or 
conceptual image, as bears 
do not wear clothing.

Text prompt:

✅

Which image better aligns with the 
description a black bear wears a 
brown jacket during the winter 
season? The first image or the second 
image? Note you must choose one of 
two options.

GPT-4V Response:

The second image better 
aligns with the description of a 
black bear wearing a jacket 
during the winter season.

Image prompt:

❌

Which image better aligns with the 
description a brown bear wears a 
black jacket during the winter 
season? The first image or the second 
image? Note you must choose one of 
two options.

GPT-4V Response:

The first image better aligns 
with the description of a 
brown bear wearing a black 
jacket during the winter 
season.

Image prompt:

✅

Sample #244

Figure 5: Example 19, 28, and 244 of the ColorSwap dataset. The responses are generated by GPT-4V given
different captions and images.
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Figure 6: The interface for the selection and filtering process. It allows annotators to choose the image they believe
best matches a given caption, with the option to skip if no image seems appropriate. The images presented to the
annotators include those generated from the correct and incorrect captions within the same example. This approach
is based on the understanding that diffusion models can produce accurate images even from the wrong caption (e.g.
a diffusion model could generate an image of a green vase with purple grapes from the caption “purple vase, green
grapes”, which would be correct for the other caption in the pair).

Figure 7: The re-captioning interface. The annotators are provided with two selected images to rewrite the captions.
Both images are shown simultaneously so the annotators can infer common things in both pictures and add them to
the captions for more nuanced examples.
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