
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADVERSARIAL ROBUSTNESS OF IN-CONTEXT LEARN-
ING IN TRANSFORMERS FOR LINEAR REGRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers have demonstrated remarkable in-context learning capabilities
across various domains, including statistical learning tasks. While previous work
has shown that transformers can implement common learning algorithms, the ad-
versarial robustness of these learned algorithms remains unexplored. This work
investigates the vulnerability of in-context learning in transformers to hijacking
attacks focusing on the setting of linear regression tasks. Hijacking attacks are
prompt-manipulation attacks in which the adversary’s goal is to manipulate the
prompt to force the transformer to generate a specific output. We first prove that
single-layer linear transformers, known to implement gradient descent in-context,
are non-robust and can be manipulated to output arbitrary predictions by perturb-
ing a single example in the in-context training set. While our experiments show
these attacks succeed on linear transformers, we find they do not transfer to more
complex transformers with GPT-2 architectures. Nonetheless, we show that these
transformers can be hijacked using gradient-based adversarial attacks. We then
demonstrate that adversarial training enhances transformers’ robustness against
hijacking attacks, even when just applied during finetuning. Additionally, we find
that in some settings, adversarial training against a weaker attack model can lead
to robustness to a stronger attack model. Lastly, we investigate the transferability
of hijacking attacks across transformers of varying scales and initialization seeds,
as well as between transformers and ordinary least squares (OLS). We find that
while attacks transfer effectively between small-scale transformers, they show
poor transferability in other scenarios (small-to-large scale, large-to-large scale,
and between transformers and OLS).

1 INTRODUCTION

Transformers exhibit sophisticated in-context learning capabilities across a variety of settings such as
language (Brown et al., 2020), vision (Kirsch et al., 2022; Bar et al., 2022; Zhang et al., 2023), tabu-
lar data (Hollmann et al., 2022; Requeima et al., 2024; Ashman et al., 2024), reinforcement learning
and robotics (Chen et al., 2021; Raparthy et al., 2023; Team et al., 2023; Elawady et al., 2024).
The mechanisms underlying this behavior, however, remain poorly understood. While recent works
have made progress by studying transformer behavior on supervised learning tasks, fundamental
questions about how these models learn and implement algorithms in-context remain open (Anwar
et al., 2024, Section 2.1).

In this work, we investigate the mechanisms of in-context learning through the lens of adversar-
ial robustness to hijacking attacks – a threat model where an adversary manipulates examples in
the in-context set to force the model to output specific target values (Qiang et al., 2023; Bailey
et al., 2023). Beyond its direct practical relevance for deployed language models and emerging
applications of in-context learning across various domains for sensitive applications like clinical
decision-making (Nori et al., 2023) or robot control (Elawady et al., 2024), studying hijacking at-
tacks provides a powerful tool for probing and understanding the algorithms that transformers learn
to implement in-context.

Our investigation focuses on the setting of linear regression tasks, where we analyze two architecture
classes: single-layer linear attention models and GPT2-style transformers. Through a combination
of theoretical analysis and extensive experiments, our investigation produces four key results that

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

challenge current theories about in-context learning and give insights about the adversarial robust-
ness of in-context learning in transformers:

1. We prove that single-layer linear transformers, which prior work showed implement gradient de-
scent on in-context data (von Oswald et al., 2022; Ahn et al., 2023; Zhang et al., 2024), are funda-
mentally vulnerable to hijacking through perturbation of just a single token (Theorem 4.1). This
vulnerability emerges precisely because these models implement gradient descent, highlighting
how seemingly desirable algorithmic properties can lead to exploitable weaknesses.

2. While GPT2-style transformers are also vulnerable to hijacking attacks, we find that successful
attacks against linear transformers fail to transfer to GPT2 architectures. Through careful analy-
sis of attack transferability between different architectures and classical learning algorithms like
ordinary least squares, we show that the out-of-distribution behavior of transformers is mecha-
nistically distinct from both gradient descent and OLS – calling into question prior explanations
about what algorithms these models implement to learn in-context (Garg et al., 2022; Akyürek
et al., 2022).

3. We find that hijacking attacks transfer readily between smaller transformers but show poor trans-
ferability between larger transformers of identical architecture but different random seeds, pro-
viding the first evidence that architecturally identical transformers trained on the same task may
learn distinct in-context learning algorithms.

4. Despite the fundamental nature of these vulnerabilities, we show that adversarial training can ef-
fectively improve robustness, with impressive generalization: training on perturbations of K ex-
amples yields robustness against manipulation of K ′ > K tokens. This is particularly surprising
given the historical difficulty of achieving robustness against adaptive adversaries in regression
tasks (Diakonikolas & Kane, 2019).

Our findings have important implications for multiple research communities. For those studying
in-context learning, we provide evidence that existing explanations based purely on in-distribution
behavior or expressivity arguments are incomplete. For the robust statistics community, we demon-
strate that transformers can learn surprisingly robust algorithms through a simple training procedure.
And for the security community, we highlight fundamental vulnerabilities in in-context learning that
merit attention as these capabilities are deployed across an expanding range of applications. By re-
vealing these new insights about the mechanisms and fragilities of in-context learning, our work
takes an important step toward better understanding how transformers process and learn from exam-
ples. The non-universality and mechanistic distinctness we demonstrate suggests that fully charac-
terizing these processes – even in the highly structured setting of linear regression – may be more
challenging than previously appreciated.

2 RELATED WORKS

In-Context Learning of Supervised Learning Tasks: Our work is most closely related to prior
works that have attempted to understand in-context learning of linear functions in transformers (Garg
et al., 2022; Akyürek et al., 2022; von Oswald et al., 2022; Zhang et al., 2024; Fu et al., 2023; Ahn
et al., 2023; Vladymyrov et al., 2024). von Oswald et al. (2022) provided a construction of weights
of linear self-attention layers (Schmidhuber, 1992; Katharopoulos et al., 2020; Schlag et al., 2021)
that allow the transformer to implement gradient descent over the in-context examples. They show
that when optimized, the weights of the linear self-attention layer closely match their construction,
indicating that linear transformers implicitly perform mesa-optimization. This finding is corrobo-
rated by the works of Zhang et al. (2024) and Ahn et al. (2023). A number of works have argued
that when GPT2 transformers are trained on linear regression, they learn to implement ordinary least
squares (OLS) (Garg et al., 2022; Akyürek et al., 2022; Fu et al., 2023). More recently, Vladymyrov
et al. (2024) show that linear transformers also implement other iterative algorithms on noisy linear
regression tasks with possibly different levels of noise. Bai et al. (2024) show that transformers
can perform in-context algorithm selection: choosing different learning algorithms to solve different
in-context learning tasks. Other neural architectures such as recurrent neural networks have also
been shown to implement in-context learning algorithms (Hochreiter et al., 2001) such as bandit
algorithms (Wang et al., 2016) or gradient descent (Kirsch & Schmidhuber, 2021).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Hijacking Attacks: While a considerable amount of research has been conducted on the security
aspects of LLMs, most of the prior research has focused on jailbreaking attacks. To the best of
our knowledge, Qiang et al. (2023) is the only prior that considers hijacking attack on LLMs or
transformers during in-context learning. They show that it is possible to hijack LLMs to generate
unwanted target outputs during in-context learning by including adversarial tokens in the demos. He
et al. (2024) also consider adversarial perturbations to in-context data, however, their goal is to sim-
ply reduce the in-context learning performance of the model in general, and not in a targeted way.
Bailey et al. (2023) demonstrate that vision-language models can be hijacked through adversarial
perturbations to the vision modality alone. Similar to our work, both Qiang et al. (2023) and Bai-
ley et al. (2023) assume a white-box setup and use gradient-based methods for finding adversarial
perturbations to hijack the models.

Robust Supervised Learning Algorithms: There are a number of frameworks for robustness in
machine learning. The framework we focus on in this work is data contamination/poisoning, where
an adversary can manipulate the data in order to force predictions. Surprisingly, designing efficient
robust learning algorithms, even for the relatively simple setting of linear regression, has proved
quite challenging, with significant progress only being made in the last decade (Diakonikolas &
Kane, 2023). Different algorithms have been devised which work under a contamination model
where only labels y can be corrupted (Bhatia et al., 2015; 2017; Suggala et al., 2019) or when both
features x and labels y can be corrupted (Klivans et al., 2018; Diakonikolas et al., 2019; Cher-
apanamjeri et al., 2020). Note that all the aforementioned work focus on hand-designing robust
learning algorithms for each problem setting. In contrast, we are concerned with understanding the
propensity of the transformers to learn to implement robust learning algorithms.

There are a number of other related frameworks for robustness in machine learning, e.g., robust-
ness with respect to imperceptible (adversarial) perturbations of the input (Goodfellow et al., 2015;
Madry et al., 2018). We do not focus on these attack models in this work.

3 PRELIMINARIES

In this work, we investigate whether the learning algorithms that transformers learn to implement
in-context are adversarially robust. We focus on the setting of in-context learning of linear mod-
els, a setting studied significantly in recent years (Garg et al., 2022; Akyürek et al., 2022; von
Oswald et al., 2022; Zhang et al., 2024; Ahn et al., 2023). We assume pre-training data that are
sampled as follows. Each linear regression task is indexed by τ ∈ [B], with each task consisting of
N labeled examples (xτ,i, yτ,i)

N
i=1, query example xτ,query, parameters wτ

i.i.d.∼ N(0, Id), features

xτ,i, xτ,query
i.i.d.∼ N(0, Id) (independent of wτ ), and labels yτ,i = w⊤

τ xτ,i, yτ,query = w⊤
τ xτ,query.

The goal is to train a transformer on this data (by a method to be described shortly) and examine
if, after pre-training, when we sample a new linear regression task (by sampling a new, independent
w ∼ N(0, Id) and features xi, i = 1, . . . ,M ), the transformer can formulate accurate predictions
for new, independent query examples. Note that the number of examples M in a task at test time
may differ from the number of examples N per task observed during training.

To feed data into the transformer, we need to decide on a tokenization mechanism, which requires
some care since transformers map sequences of vectors of a fixed dimension into a sequence of
vectors of the same length and dimension, while the features xi are d-dimensional and outputs yi
are scalars. That is, from a prompt of N input-output pairs (xi, yi) and a test example xquery for
which we want to make predictions, the question is how to embed

P = (x1, y1, . . . , xN , yN , xquery),

into a matrix. We will consider two variants of tokenization: concatenation (denoted Concat), which
concatenates xi and yi and stacks each sample into a column of an embedding matrix, and then
appends (xquery, 0)

⊤ ∈ Rd+1 as the last column:

E(P ) =

(
x1 x2 · · · xN xquery

y1 y2 · · · yN 0

)
∈ R(d+1)×(N+1). (Concat) (1)

The notation E(P ) emphasizes that the embedding matrix is a function of the prompt P , and we
shall sometimes denote this as E for ease of notation. This tokenization has been used in a number

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

of prior works on in-context learning of function classes (von Oswald et al., 2022; Zhang et al., 2024;
Wu et al., 2023). Since transformers output a sequence of tokens of the same length and dimension
as their input, with the Concat tokenization the natural predicted value for xM+1 appears in the
(d+ 1,M + 1) entry of the transformer output. This allows for a last-token prediction formulation
of the squared-loss objective function: if f(E; θ) is a transformer, the objective function for B
batches of data consisting of N+1 samples (xτ,i, yτ,i)

N
i=1, (xτ,query, yτ,query), each batch embedded

into Eτ , is

L̂(θ) =
1

2B

∑B
τ=1

(
[f(Eτ ; θ)]d+1,N+1 − yτ,query

)2
. (2)

We will also consider an alternative tokenization method, Interleave, where features x and y are
interleaved into separate tokens,

E(P ) =

(
x1 0 x2 · · · xN 0 xquery

0 y1 0 · · · 0 yN 0

)
∈ R(d+1)×(2N+1). (Interleave) (3)

By using causal masking, i.e. forcing the prediction for the i-th column of Eτ to depend only on
columns ≤ i, this tokenization allows for the formulation of a next-token prediction averaged across
all N pairs of examples,

L̂(θ) =
1

2B

∑B
τ=1

1
N

(∑N
i=1[f

Mask(Eτ ; θ)]d+1,2i+1 − yτ,i+1

)2
, (4)

where we treat yτ,N+1 := yτ,query. This formulation was used in the original work by Garg et al.
(2022)

We consider in-context learning in two types of transformer models: single-layer linear transform-
ers, where we can theoretically analyze the behavior of the transformer, and standard GPT-2 style
transformers, where we use experiments to probe their behavior. In all experiments, we focus on the
setting where d = 20 and the number of examples per pre-training task is N = 40.

3.1 SINGLE-LAYER LINEAR TRANSFORMER SETUP

Linear transformers are a simplified transformer model in which the standard self-attention layers
are replaced by linear self-attention layers (Katharopoulos et al., 2020; von Oswald et al., 2022; Ahn
et al., 2023; Zhang et al., 2024; Vladymyrov et al., 2024). In this work, we specifically consider a
single-layer linear self-attention (LSA) model,

fLSA(E; θ) = fLSA(E;WPV ,WKQ) := E +WPV E · E
⊤WKQE

N
. (5)

This is a modified version of attention where we remove the softmax nonlinearity, merge the pro-
jection and value matrices into a single matrix WPV ∈ Rd+1×d+1, and merge the query and key
matrices into a single matrix WKQ ∈ Rd+1×d+1. For the linear transformer, we will assume the
Concat tokenization.

Prior work by Zhang et al. (2024) developed an explicit formula for the predictions fLSA when it
is pre-trained on noiseless linear regression tasks (under the Concat tokenization) by gradient flow
with a particular initialization scheme. This corresponds to gradient descent with an infinitesimal
learning rate d

dtθ = −∇L(θ) in the infinite task limit B → ∞ of the objective (11),

L(θ) = lim
B→∞

L̂(θ) =
1

2
E
wτ∼N(0,I), xτ,i,xτ,query

i.i.d.∼ N(0,I)

[
([f(Eτ ; θ)]d+1,N+1 − x⊤

τ,queryw)
2
]
. (6)

3.2 STANDARD TRANSFORMER SETUP

For studying the adversarial robustness of the in-context learning in standard transformers, we use
the same setup as described in Garg et al. (2022). Namely, we use a standard GPT2 architecture
with the Interleave tokenization. We provide details on the architecture and the training setup in
Appendix C.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 HIJACKING ATTACKS

We focus on a particular adversarial attack where the adversary’s goal is to hijack the transformer.
Specifically, the aim of the adversary is to force the transformer to predict a specific output ybad for
xquery when given a prompt P = (x1, y1, . . . , xM , yM , xquery). The adversary can choose one or
more pairs (xi, yi) to replace with an adversarial example (x

(i)
adv, y

(i)
adv).

We characterize hijacking attacks in this work along two axes: (i) the type of data being at-
tacked (ii) number of data-points or tokens being attacked. The adversary may perturb ei-
ther the x feature (xi, yi) 7→ (xadv, yi), which we call feature-attack, or a label y,
(xi, yi) 7→ (xi, yadv), which we refer to as label-attack, or simultaneously perturb the pair
(xi, yi) 7→ (xadv, yadv), which we refer to as joint-attack. We will primarily focus on
feature-attack and label-attack as the behavior of joint-attack is qualitatively
quite similar to feature-attack (see Figures 3 and 4). Furthermore, we allow for the adversary
to perturb multiple tokens in the prompt P . A k-token attack means that the adversary can perturb
at most k pairs (xi, yi) in the prompt.1

We note that hijacking attacks are different from jailbreaks. In jailbreaking, the adversary’s goal
is to bypass safety filters instilled within the LLM (Willison, 2023; Kim et al., 2024). A jailbreak
may be considered successful if it can elicit any unsafe response from the LLM. While on the other
hand, the goal of a hijacking attack is to force the model to generate specific outputs desired by the
adversary (Bailey et al., 2023), which could potentially be unsafe outputs, in which case the hijack-
ing attack would be considered a jailbreak as well. A good analogy for jailbreaks and hijack attacks
is untargeted and targeted adversarial attacks as studied in the context of image classification (Liu
et al., 2016).

4 ROBUSTNESS OF SINGLE-LAYER LINEAR TRANSFORMERS

We first consider robustness of a linear transformer trained to solve linear regression in-context. As
reviewed previously in the Section 3.1, this setup has been considered in several prior works (von
Oswald et al., 2022; Zhang et al., 2024; Ahn et al., 2023), who all show that linear transformers learn
to solve linear regression problems in-context by implementing a (preconditioned) step of a gradient
descent. We build on this prior work to show that the solution learned by linear transformers is highly
non-robust and that an adversary can hijack a linear transformer with very minimal perturbations to
the in-context training set. Specifically, we show that throughout the training trajectory, an adversary
can force the linear transformer to make any prediction it would like by simply adding a single
(xadv, yadv) pair to the input sequence. We provide a constructive proof of this theorem in Appendix
A.

Theorem 4.1. Let t ≥ 0 and let fLSA(· ; θ(t)) be the linear transformer trained by gradient
flow on the population loss using the initialization of Zhang et al. (2024), and denote θ(∞)
as the infinite-time limit of gradient flow. For any time t ∈ R+ ∪ {∞} and prompt P =
(x1, y1, . . . , xM , yM , xquery) with xquery ∼ N(0, I), for any ybad ∈ R, the following holds.

1. If xadv ∼ N(0, Id), there exists yadv = yadv(t) ∈ R s.t. with probability 1 over the draws of
xadv, xquery, by replacing any single example (xi, yi), i ≤ M , with (xadv, yadv), the output
on the perturbed prompt Padv satisfies ŷquery(E(Padv); θ(t)) = ybad.

2. If yadv ̸= 0, there exists xadv = xadv(t) ∈ Rd s.t. with probability 1 over the draw of
xquery, by replacing any single example (xi, yi), i ≤ M , with (xadv, yadv), the output on the
perturbed prompt Padv) satisfies ŷquery(E(Padv); θ(t)) = ybad.

Theorem 4.1 demonstrates that throughout the training trajectory, by adding a single (xadv, yadv) to-
ken an adversary can force the transformer to make any prediction the adversary would like. More-
over, the (xadv, yadv) pair can be chosen so that either xadv is in-distribution (i.e., has the same
distribution as the training data and other in-context examples) or yadv is in-distribution. We provide
explicit formulas for each of these attacks in the Appendix (see (17) and (18)).

1Note that for standard transformers with the Interleave tokenization, a k-token attack corresponds to 2k
tokens being manipulated (see (3)).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) feature-attack (b) feature-attack (c) label-attack (d) label-attack

Figure 1: Robustness of different SGD-trained transformers when using attacks constructed from
the gradient flow solution via Theorem 4.1, for different target values ybad = (1 − α)w⊤xquery +
αw⊤

⊥xquery, where w⊥ ⊥ w. While these attacks reduce ground truth error across all model classes,
the targeted attack error is only small for the linear transformer. Shaded area is standard error.

At a high level, the non-robustness of the linear transformer is a consequence of the linear trans-
former implementing a learning algorithm – one step gradient step – that generalizes well but is
inherently non-robust. At a more mechanistic level, this non-robustness can be attributed to the
learned in-context algorithm’s inability to identify and remove outliers from the prompt. This prop-
erty is shared by many learning algorithms for regression problems: for instance, ordinary least
squares, as an algorithm which is linear in the labels y, can also be shown to suffer similar prob-
lems as the linear transformer outlined in Theorem 4.1. While non-robustness of the transformers
to hijacking attacks has been established in prior works (Qiang et al., 2023; Bailey et al., 2023), this
is the first result that provides a mechanistic explanation as to why transformers are vulnerable to
hijacking attacks.

5 ROBUSTNESS OF STANDARD TRANSFORMERS

In this section, we empirically investigate three questions related to the robustness of GPT2-style
standard transformers in this section. First, prior work has shown that when GPT2 architectures are
trained on linear regression tasks, they learn to implement algorithms similar to either a single step
of gradient descent (Zhang et al., 2024) or ordinary least squares (Akyürek et al., 2022; Garg et al.,
2022; Fu et al., 2023). We thus examine whether the attacks from Theorem 4.1 transfer to these more
complex transformer architectures. Second, we investigate gradient-based attacks on GPT2-style
transformers, and whether adversarial training (during pre-training or by fine-tuning) can improve
the robustness of the transformers. Third, we investigate whether gradient-based attacks transfer
between different GPT2-style transformers. Unless indicated otherwise, we will be focusing the
attention on a 8 layer transformer.

Metrics: To evaluate the impact of our adversarial attacks, we use two metrics: ground truth error
(GTE), and targeted attack error (TAE). Ground-truth error measures mean-squared error (MSE)
between the transformer’s prediction on the corrupted prompt Padv and the ground-truth prediction,
i.e., yclean = w⊤xquery. Targeted attack error similarly measures mean-squared error (MSE) between
the transformer’s prediction on the corrupted prompt and ybad. Let ŷ be the transformer’s prediction
corresponding to xquery, then:

Ground Truth Error =
1

B

∑B
i=1 (ŷi − yclean)

2
, Targeted Attack Error = 1

B

∑B
i=1 (ŷi − ybad)

2
.

(7)

5.1 DO ATTACKS FROM LINEAR TRANSFORMERS TRANSFER?

We implement separate feature-attack and label-attack based on formulas given in
equations 17 and 18. Specifically, given a prompt P = (x1, y1, . . . , xM , yM , xquery), for
feature-attack, we replace (x1, y1) with (xadv, y1), and for label-attack, we replace
(x1, y1) with (x1, yadv). We choose ybad according to the following formula,

ybad = (1− α)w⊤
τ xquery + αw⊤

⊥xquery (8)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Here wτ is the underlying weight vector corresponding to the clean prompt P and w⊥ ⊥ w, and
α ∈ [0, 1] is a parameter. When α → 0, the target label ybad is more similar to the in-distribution
ground truth, while α → 1 represents a label which is more out-of-distribution.

In Figure 1 we show the robustness of SGD-trained single-layer linear transformers and standard
transformers of different depths as a function of α. These results are averaged over 1000 different
samples and 3 random initialization seeds for every model type (see Appendix C for further details
on training). We find that the gradient flow-derived attacks transfer to the SGD-trained single-layer
linear transformers, as the targeted attack error is near zero for all values of α. Moreover, while
standard (GPT2) transformers trained to solve linear regression in-context incur significant ground-
truth error when the prompts are perturbed using the attacks from Theorem 4.1, these attacks are not
successful as targeted attacks, since the targeted error is large. This behavior persists across GPT2
architectures of different depths, and suggests that when trained on linear regression tasks, GPT2
architectures do not implement one step of gradient descent, as has been suggested in some prior
works (von Oswald et al., 2022; Ahn et al., 2023; Zhang et al., 2024).

5.2 GRADIENT-BASED ADVERSARIAL ATTACKS

Figure 2: Larger context
lengths can improve robust-
ness for a fixed number of
tokens attacked, but not for
a fixed proportion.The num-
ber of layers is kept fixed at
8 while varying the context
length.

In the previous subsection we found that hijacking attacks derived
from the linear transformer theoretical analysis do not transfer to
standard transformer architectures. In this section, we evaluate
whether gradient-based optimization can be used to find appropriate
adversarial perturbations for hijacking the transformer.

Specifically, we randomly select a ktest number of input examples—
where ktest is specified beforehand—and initialize their values to
zero. We then optimize these ktest tokens by minimizing the targeted
attack error, for target ybad from (8) for different values of α ∈
(0, 1]. Both during training and testing, we set the sequence length
of the transformer to be 40.

Our main results appear in Figure 3 under the label ktrain = 0, which
show the targeted attack error for an 8 layer transformer averaged
over 1000 prompts and 3 random initialization seeds when α = 1
from (8). We note that for feature-attack, an adversary can
achieve a very small targeted attack error with perturbing just a sin-
gle token. However, for label-attack, achieving low targeted
attack generally requires perturbing multiple y-tokens. Note that
this is in contrast with linear transformers, for which we have previ-
ously shown that hijacking is possible with perturbing just a single
y-token. Finally, joint-attack behave in a qualitatively similar
way to feature-attack but are slightly more effective (this is
most notable for ktest = 1). Additional experiments investigating
different choices of α appear in Appendix B.3. See Appendix C.3
for details on attack procedure.

5.3 EFFECT OF SCALING DEPTH AND SEQUENCE LENGTH

Some recent works indicate that larger neural networks are naturally more robust to adversarial
attacks (Bartoldson et al., 2024; Howe et al., 2024). Unfortunately, we did not observe any consis-
tent improvement in adversarial robustness of in-context learning in transformers in our setup with
scaling of the number of layers, as can be seen in Figure 8 in the appendix.

We also studied the effect of sequence length, which scales the size of the in-context training set.
We show in Figure 2 that for a fixed number of tokens attacked, longer context lengths can improve
the robustness to hijacking attacks. However, for a fixed proportion of the context length attacked,
the robustness to hijacking attacks is approximately the same across context lengths. We explore
this in more detail in the appendix (see Appendix B.2).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) feature-attack. (b) label-attack. (c) joint-attack.

Figure 3: For both adversarial pretraining (A-PT) and fine-tuning (A-FT) against label-attack,
robustness against label-attack improves significantly, especially when trained on a budget of
ktrain = 3 perturbed tokens. The results are shown for 8 layer transformers with GPT-2 architecture.

(a) feature-attack. (b) label-attack. (c) joint-attack.

Figure 4: For both adversarial pretraining (A-PT) and fine-tuning (A-FT) against
feature-attack, robustness against feature-attack and joint-attack improves for
7+ token attacks when trained on ktrain = 1. The results are shown for 8 layer transformers with
GPT-2 architecture.

5.4 ADVERSARIAL TRAINING

A common tactic to promote adversarial robustness of neural networks is to subject them to adver-
sarial training — i.e., train them on adversarially perturbed samples (Madry et al., 2018). In our
setup, we create adversarially perturbed samples by carrying out the gradient-based attack outlined
in Section 5.2 on the model undergoing training. Namely, for the model f t

θ at time t, for each
standard prompt P , we take a target adversarial label ybad and use the gradient-based attacks from
Section 5.2 to construct an adversarial prompt Padv.

Figure 5: While there is a moder-
ate tradeoff between robustness and
(clean) accuracy when training against
label-attack, the tradeoff is very
small for feature-attack and
joint-attack training.

We consider two types of setups for adversarial train-
ing. In the first setup, we train the transformer model
from scratch on adversarially perturbed prompts. We call
this adversarial pretraining. In the second setup, we first
train the transformer model on standard (non-adversarial)
prompts P for T1 number of steps; and then further train
the transformer model for T2 number of steps on adver-
sarial prompts. We call this setup adversarial fine-tuning.
In our experiments, unless otherwise specified, we per-
form adversarial pretraining for 5 · 105 steps. For adver-
sarial fine-tuning, we perform 5 · 105 steps of standard
training and then 105 steps of adversarial training, i.e.,
T1 = 5 · 105 and T2 = 105.

The adversarial target value ybad is constructed by sam-
pling a weight vector w ∼ N(0, I) independent of the parameters wτ which determine the labels
for the task τ and setting ybad = w⊤xquery. To keep training efficient, for each task we perform 5
gradient steps to construct the adversarial prompt. We denote the number of tokens attacked dur-
ing training with ktrain, and experiment with two values of ktrain = 1 and ktrain = 3. Unless stated
otherwise, we use an 8 layer transformer.

Adversarial training improves robustness—even with only fine-tuning. In Figures 3 and 4, we
show the robustness of transformers under k-token hijacking attacks when they are adversarially

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) 3 layers. (b) 6 layers.

(c) 12 layers. (d) 16 layers. (e) Source: L layers, Target: L′ layers.

Figure 6: Targeted attack error when transferring an attack from a source model to a target models.
Attacks transfer better between smaller-scale models, but not to larger-scale models (right)—even
across random seeds (left). Adversarial samples were generated using feature-attack with
k = 3.

trained on either feature-attack or label-attack. We see that adversarial training against
attacks of a fixed type (e.g. feature-attack or label-attack) improves robustness to hi-
jacking attacks of the same type, with robustness under feature-attack seeing a particular improve-
ment. Notably, there is little difference between adversarial fine-tuning and pretraining, showing
little benefit from the increased compute requirement of adversarial pretraining.

Adversarial training against one attack model moderately improves robustness against an-
other. Following adversarial training against label-attack, we see modest improvement in the
robustness against feature-attack and joint-attack, while adversarial training against
feature-attack results in significant improvement against joint-attack (as expected,
given that 20 of the 21 dimensions joint-attack uses is shared by feature-attack) and
modest improvement against label-attack. We show in Fig. 12 the results for adversarial train-
ing against joint-attack.

Adversarial training against k-token attacks can lead to robustness against k′ > k token at-
tacks. In both Fig. 3 and 4 (as well as Fig. 12) we see that training against k = 3 token attacks can
lead to significant robustness against k = 7 token attacks, especially in the case of models trained
against feature-attack and joint-attack.

Minimal accuracy vs. robustness tradeoff. In many supervised learning problems, there is an in-
herent tradeoff between the robustness of a model and its (non-robust) accuracy (Zhang et al., 2019).
In Fig. 5 we compare the performance of models which undergo adversarial training vs. those which
do not, and we find that while there is a moderate tradeoff when undergoing label-attack train-
ing, there is little tradeoff when undergoing feature-attack and joint-attack training.

On the whole, given the challenging nature of robust regression problem (Diakonikolas & Kane,
2019), the success of adversarial training is both surprising and remarkable, and hints at the ability
of transformers to solve highly challenging non-convex optimization problems in context.

5.5 TRANSFERABILITY OF ADVERSARIAL ATTACKS ACROSS TRANSFORMERS

In this section, we evaluate how the adversarial attacks transfer between transformers. Note that
we are specifically interested in targeted transfer; i.e., we want adversarial samples generated by
attacking a source model to predict ybad to also cause a victim model to predict ybad. Transfer of
targeted attacks on neural networks is generally much less common than the transfer of untargeted
attacks (Liu et al., 2016).

Due to space limitations we restrict our focus to feature-attack here; transferability of
label-attack follows a similar pattern and is discussed in Appendix B.4. We first consider
within-class transfer, i.e., transfer from one transformer to another transformer with identical archi-
tecture but trained from a different random initialization. In Figure 6(a-d), we see that for trans-
formers with smaller capacities (3 and 6 layers) attacks transfer quite well, but transfers become

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

progressively worse as the models become larger. This suggests that higher-capacity transformers
could implement different in-context learning algorithms when trained from different seeds.

We next consider across-class transfer, i.e. transfer between transformers with different layers.
Fig. 6(e) shows a similar trend as within-class transfer: attacks from small-to-medium capacity mod-
els transfer better to other small-to-medium capacity models, while larger capacity models transfer
poorly to all other capacity models.

5.6 TRANSFERABILITY OF ADVERSARIAL ATTACKS BETWEEN TRANSFORMERS AND LEAST
SQUARES SOLVER

(a) OLS → Transformers. (b) Transformers → OLS.

Figure 7: Mean squared error between predictions made by
OLS and transformers on adversraial samples sourced re-
spectively from OLS and transformers for different values
of α.

It has been argued that transform-
ers trained to solve linear regression
in-context implement ordinary least
squares (OLS) (Garg et al., 2022;
Akyürek et al., 2022). If so, adversar-
ial (hijacking) attacks ought to trans-
fer between transformers and OLS.
In Figure 7, we show mean squared
error (MSE) between predictions of
OLS and transformers on adversar-
ial samples created by performing
feature-attack on OLS and transform-
ers respectively. It can be clearly
observed that as the targeted pre-
diction ybad becomes more out-of-
distribution (α → 1), MSE between predictions made by OLS and transformers also increases.
Furthermore, MSE is considerably larger when adversarial samples are created by attacking trans-
formers. This collectively indicates that the alignment between OLS and transformers is weaker
out-of-distribution and that the transformers likely have additional adversarial vulnerabilities rela-
tive to OLS. We provide additional results and expanded discussion in Appendix B.5.

6 DISCUSSION & FUTURE WORK

This work has many surprising findings that provide avenues of future work. Firstly, through our
analysis of transferability of adversarial attacks between GPT-2 style transformers and traditional
solvers (ordinary least squares and gradient descent implemented by linear transformers), we have
exposed that these transformers behave differently to these solvers out-of-distribution. This calls into
question the prior explanations of in-context learning in this setting that transformers implement ‘fa-
miliar algorithms’ in-context (Akyürek et al., 2022; Garg et al., 2022; Zhang et al., 2024). Relatedly,
we have shown that hijacking attacks do not even transfer across larger identical transformers. This
is the first evidence of non-universality of in-context learning mechanisms within single architec-
tures. Collectively, this indicates that developing a thorough understanding of in-context learning
within transformers may be more challenging than previously thought, and emphasises the need of
developing mechanistic understanding of these transformers.

Our work also sheds light on the mechanistic underpinnings of the adversarial non-robustness of
transformers that has been demonstrated in prior works (Qiang et al., 2023; Bailey et al., 2023).
Within linear transformers, we have shown that this vulnerability arises because linear transformers
implement a standard non-robust learning algorithm. Prior works that have shown that gradient
descent on neural network parameters tends to have an implicit bias towards learning solutions which
generalize well but are not adversarially robust (Frei et al., 2023). Future works may investigate
whether a similar bias exists regarding in-context learning algorithms discovered by transformers as
well.

However, on the positive side, we have shown that adversarial training does improve robustness to
hijacking attacks, and generalizes in a limited way. This is an encouraging and surprising result
given that robust regression in the presence of an adaptive adversary is a highly challenging prob-
lem (Diakonikolas & Kane, 2019). Understanding and ‘reverse-engineering’ the algorithms that
transformers implement could help provide novel insights for algorithm design.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-
ment preconditioned gradient descent for in-context learning. Advances in Neural Information
Processing Systems, 36, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase,
Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, et al. Foundational
challenges in assuring alignment and safety of large language models. arXiv preprint
arXiv:2404.09932, 2024.

Matthew Ashman, Cristiana Diaconu, Adrian Weller, and Richard E Turner. In-context in-context
learning with transformer neural processes. arXiv preprint arXiv:2406.13493, 2024.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. Advances in neural information
processing systems, 36, 2024.

Luke Bailey, Euan Ong, Stuart Russell, and Scott Emmons. Image hijacks: Adversarial images can
control generative models at runtime. arXiv preprint arXiv:2309.00236, 2023.

Amir Bar, Yossi Gandelsman, Trevor Darrell, Amir Globerson, and Alexei Efros. Visual prompting
via image inpainting. Advances in Neural Information Processing Systems, 35:25005–25017,
2022.

Brian R Bartoldson, James Diffenderfer, Konstantinos Parasyris, and Bhavya Kailkhura. Adversarial
robustness limits via scaling-law and human-alignment studies. arXiv preprint arXiv:2404.09349,
2024.

K. Bhatia, P. Jain, and P. Kar. Robust regression via hard thresholding. In Advances in Neural
Information Processing Systems 28, pp. 721–729, 2015.

K. Bhatia, P. Jain, P. Kamalaruban, and P. Kar. Consistent robust regression. In Advances in Neural
Information Processing Systems 30, pp. 2110–2119, 2017.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Yeshwanth Cherapanamjeri, Efe Aras, Nilesh Tripuraneni, Michael I Jordan, Nicolas Flammar-
ion, and Peter L Bartlett. Optimal robust linear regression in nearly linear time. arXiv preprint
arXiv:2007.08137, 2020.

Ilias Diakonikolas and Daniel M Kane. Recent advances in algorithmic high-dimensional robust
statistics. arXiv preprint arXiv:1911.05911, 2019.

Ilias Diakonikolas and Daniel M. Kane. Algorithmic High-Dimensional Robust Statistics. Cam-
bridge University Press, 2023.

Ilias Diakonikolas, Weihao Kong, and Alistair Stewart. Efficient algorithms and lower bounds for ro-
bust linear regression. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 2745–2754. SIAM, 2019.

Ahmad Elawady, Gunjan Chhablani, Ram Ramrakhya, Karmesh Yadav, Dhruv Batra, Zsolt Kira,
and Andrew Szot. Relic: A recipe for 64k steps of in-context reinforcement learning for embodied
ai. arXiv preprint arXiv:2410.02751, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Spencer Frei, Gal Vardi, Peter L. Bartlett, and Nathan Srebro. The double-edged sword of im-
plicit bias: Generalization vs. robustness in relu networks. In Advances in Neural Information
Processing Systems (NeurIPS), 2023.

Deqing Fu, Tian-Qi Chen, Robin Jia, and Vatsal Sharan. Transformers learn higher-order op-
timization methods for in-context learning: A study with linear models. arXiv preprint
arXiv:2310.17086, 2023.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015.

Pengfei He, Han Xu, Yue Xing, Hui Liu, Makoto Yamada, and Jiliang Tang. Data poisoning for
in-context learning. arXiv preprint arXiv:2402.02160, 2024.

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient descent.
In Artificial Neural Networks—ICANN 2001: International Conference Vienna, Austria, August
21–25, 2001 Proceedings 11, pp. 87–94. Springer, 2001.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer
that solves small tabular classification problems in a second. arXiv preprint arXiv:2207.01848,
2022.

Nikolhaus Howe, Michal Zajac, Ian McKenzie, Oskar Hollinsworth, Tom Tseng, Pierre-Luc Bacon,
and Adam Gleave. Exploring scaling trends in llm robustness. arXiv preprint arXiv:2407.18213,
2024.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Taeyoun Kim, Suhas Kotha, and Aditi Raghunathan. Jailbreaking is best solved by definition. arXiv
preprint arXiv:2403.14725, 2024.

Louis Kirsch and Jürgen Schmidhuber. Meta learning backpropagation and improving it. Advances
in Neural Information Processing Systems, 34:14122–14134, 2021.

Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. General-purpose in-context
learning by meta-learning transformers. arXiv preprint arXiv:2212.04458, 2022.

Adam Klivans, Pravesh K Kothari, and Raghu Meka. Efficient algorithms for outlier-robust regres-
sion. In Conference On Learning Theory, pp. 1420–1430. PMLR, 2018.

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial exam-
ples and black-box attacks. arXiv preprint arXiv:1611.02770, 2016.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations), 2018.

Harsha Nori, Yin Tat Lee, Sheng Zhang, Dean Carignan, Richard Edgar, Nicolo Fusi, Nicholas King,
Jonathan Larson, Yuanzhi Li, Weishung Liu, et al. Can generalist foundation models outcompete
special-purpose tuning? case study in medicine. arXiv preprint arXiv:2311.16452, 2023.

Yao Qiang, Xiangyu Zhou, and Dongxiao Zhu. Hijacking large language models via adversarial
in-context learning. arXiv preprint arXiv:2311.09948, 2023.

Sharath Chandra Raparthy, Eric Hambro, Robert Kirk, Mikael Henaff, and Roberta Raileanu. Gen-
eralization to new sequential decision making tasks with in-context learning. arXiv preprint
arXiv:2312.03801, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

James Requeima, John Bronskill, Dami Choi, Richard E Turner, and David Duvenaud. Llm
processes: Numerical predictive distributions conditioned on natural language. arXiv preprint
arXiv:2405.12856, 2024.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning, pp. 9355–9366. PMLR, 2021.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to recurrent nets.
Neural Computation, 1992.

A. S. Suggala, K. Bhatia, P. Ravikumar, and P. Jain. Adaptive hard thresholding for near-optimal
consistent robust regression. In Proceedings of the Thirty-Second Conference on Learning Theory,
volume 99 of Proceedings of Machine Learning Research, pp. 2892–2897. PMLR, 2019.

Adaptive Agent Team, Jakob Bauer, Kate Baumli, Satinder Baveja, Feryal Behbahani, Avishkar
Bhoopchand, Nathalie Bradley-Schmieg, Michael Chang, Natalie Clay, Adrian Collister, et al.
Human-timescale adaptation in an open-ended task space. arXiv preprint arXiv:2301.07608,
2023.

Max Vladymyrov, Johannes Von Oswald, Mark Sandler, and Rong Ge. Linear transformers are
versatile in-context learners. arXiv preprint arXiv:2402.14180, 2024.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. arXiv preprint arXiv:2212.07677, 2022.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

Simon Willison. Multi-modal prompt injection, 2023. https://simonwillison.net/
2023/Oct/14/multi-modal-prompt-injection/. Accessed on: August 20, 2024.

Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter L. Bartlett.
How many pretraining tasks are needed for in-context learning of linear regression? Preprint,
arXiv:2310.08391, 2023.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I. Jordan.
Theoretically principled trade-off between robustness and accuracy. In International Conference
on Machine Learning (ICML), 2019.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
Journal of Machine Learning Research, 25(49):1–55, 2024.

Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. What makes good examples for visual in-context
learning? Advances in Neural Information Processing Systems, 36:17773–17794, 2023.

13

https://simonwillison.net/2023/Oct/14/multi-modal-prompt-injection/
https://simonwillison.net/2023/Oct/14/multi-modal-prompt-injection/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A PROOFS

Notation: We denote [n] = {1, 2, ..., n}. We write the inner product of two matrices A,B ∈
Rm×n as ⟨A,B⟩ = tr(AB⊤). We use 0n and 0m×n to denote the zero vector and zero matrix of
size n and m × n, respectively. We denote the matrix operator norm and Frobenius norm as ∥·∥2
and ∥·∥F . We use Id to denote the d-dimensional identity matrix and sometimes we also use I when
the dimension is clear from the context.

Setup: As described in the main text, we consider the setting of linear transformers trained on
in-context examples of linear models, a setting considered in a number of prior theoretical works on
transformers (von Oswald et al., 2022; Akyürek et al., 2022; Zhang et al., 2024; Ahn et al., 2023;
Wu et al., 2023). Let xi ∈ Rd and yi ∈ R. For a prompt P = (x1, y1, . . . , xN , yN , xN+1), we say
its length is N . For this prompt, we use an embedding which stacks (xi, yi)

⊤ ∈ Rd+1 into the first
N columns with (xN+1, 0)

⊤ ∈ Rd+1 as the last column:

E = E(P ) =

(
x1 x2 · · · xN xN+1

y1 y2 · · · yN 0

)
∈ R(d+1)×(N+1). (9)

We consider a single-layer linear self-attention (LSA) model, which is a modified version of at-
tention where we remove the softmax nonlinearity, merge the projection and value matrices into
a single matrix WPV ∈ Rd+1,d+1, and merge the query and key matrices into a single matrix
WKQ ∈ Rd+1,d+1. Denote the set of parameters as θ = (WKQ,WPV ) and let

fLSA(E; θ) = E +WPV E · E
⊤WKQE

N
. (10)

The network’s prediction for the query example xN+1 is the bottom-right entry of matrix output by
fLSA,

ŷquery(E; θ) = [fLSA(E; θ)](d+1),(N+1).

We may occasionally use an abuse of notation by writing ŷquery(E; θ) as ŷquery(P ) or ŷquery with
the understanding that the transformer always forms predictions by embedding the prompt into the
matrix E and always depends upon the parameters θ.

We assume training prompts are sampled as follows. Let Λ be a positive definite co-
variance matrix. Each training prompt, indexed by τ ∈ N, takes the form of Pτ =

(xτ,1, hτ (xτ1), . . . , xτ,N , hτ (xτ,N ), xτ,N+1), where task weights wτ
i.i.d.∼ N(0, Id), inputs xτ,i

i.i.d.∼
N(0,Λ), and labels yτ,i = ⟨wτ , xi⟩. The empirical risk over B independent prompts is defined as

L̂(θ) =
1

2B

B∑
τ=1

(
ŷτ,N+1(Eτ ; θ)− ⟨wτ , xτ,N+1⟩

)2

. (11)

We consider the behavior of gradient flow-trained networks over the population loss in the infinite
task limit B → ∞:

L(θ) = lim
B→∞

L̂(θ) =
1

2
E
wτ∼N(0,Id), xτ,ixτ,N+1

i.i.d.∼ N(0,Λ)

[
(ŷτ,N+1(Eτ ; θ)− ⟨wτ , xτ,N+1⟩)2

]
(12)

Note that we consider the infinite task limit, but each task has a finite set of N i.i.d. (xi, yi) pairs. We
consider the setting where fLSA is trained by gradient flow on the population loss above. Gradient
flow captures the behavior of gradient descent with infinitesimal step size and has dynamics d

dtθ =
−∇L(θ).

We repeat Theorem 4.1 from the main section for convenience.

Theorem 4.1. Let t ≥ 0 and let fLSA(· ; θ(t)) be the linear transformer trained by gradient
flow on the population loss using the initialization of Zhang et al. (2024), and denote θ(∞)
as the infinite-time limit of gradient flow. For any time t ∈ R+ ∪ {∞} and prompt P =
(x1, y1, . . . , xM , yM , xquery) with xquery ∼ N(0, I), for any ybad ∈ R, the following holds.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

1. If xadv ∼ N(0, Id), there exists yadv = yadv(t) ∈ R s.t. with probability 1 over the draws of
xadv, xquery, by replacing any single example (xi, yi), i ≤ M , with (xadv, yadv), the output
on the perturbed prompt Padv satisfies ŷquery(E(Padv); θ(t)) = ybad.

2. If yadv ̸= 0, there exists xadv = xadv(t) ∈ Rd s.t. with probability 1 over the draw of
xquery, by replacing any single example (xi, yi), i ≤ M , with (xadv, yadv), the output on the
perturbed prompt Padv) satisfies ŷquery(E(Padv); θ(t)) = ybad.

Proof. By definition, for an embedding matrix E with M + 1 columns,

ŷquery(E; θ) =
(
(wPV

21 )⊤ wPV
22

)
·
(
EE⊤

M

)(
WKQ

11

(wKQ
21 )⊤

)
xquery. (13)

Due to the linear attention structure, note that the prediction is the same when replacing (xk, yk)
with (xadv, yadv) for any k, so for notational simplicity of the proof we will consider the case
of replacing (x1, y1) with (xadv, yadv). So, let us consider the embedding corresponding to
(xadv, yadv, x2, y2, . . . , xM , yM , xquery), so that

EE⊤ =
1

M

(
xadvx

⊤
adv +

∑M
i=2 xix

⊤
i + xqueryx

⊤
query yadvxadv +

∑M
i=2 yixi

yadvx
⊤
adv +

∑M
i=2 yix

⊤
i y2adv +

∑M
i=2 y

2
i

)
.

Expanding, we have

ŷquery(E; θ) =
(wPV

21 )⊤

M

(
xadvx

⊤
adv +

M∑
i=2

xix
⊤
i + xqueryx

⊤
query

)
WKQ

11 xquery

+
(wPV

21 )⊤

M

(
yadvxadv +

M∑
i=2

yixi

)
(wKQ

21 )⊤xquery

+
wPV

22

M

(
yadvx

⊤
adv +

M∑
i=2

yix
⊤
i

)
WKQ

11 xquery

+
wPV

22

M

(
y2adv +

M∑
i=2

y2i

)
(wKQ

21 )⊤xquery.

When training by gradient flow over the population using the initialization of (Zhang et al., 2024,
Assumption 3.3), by Lemmas C.1, C.5, and C.6 of (Zhang et al., 2024) we know that for all times
t ∈ R+∪{∞}, it holds that wPV

21 (t) = wPV
12 (t) = wKQ

21 (t) = 0 and WKQ
11 (t) ̸= 0 and wPV

22 (t) ̸= 0.
In particular, the prediction formula above simplifies to

ŷquery(E; θ(t)) =
wPV

22 (t)

M

(
yadvx

⊤
adv +

M∑
i=2

yix
⊤
i

)
WKQ

11 (t)xquery. (14)

For notational simplicity let us denote W (t) = wPV
22 (t)WKQ

11 (t), so that

ŷ(E; θ(t)) =
1

M

(
yadvx

⊤
adv +

M∑
i=2

yix
⊤
i

)
W (t)xquery.

The goal is to take ybad ∈ R and find (xadv, yadv) such that ŷ(E; θ(t)) = ybad. Rewriting the above
equation we see that this is equivalent to finding (xadv, yadv) such that

yadvx
⊤
advW (t)xquery = M

(
ybad −

1

M

M∑
i=2

yix
⊤
i W (t)xquery

)
. (15)

From here we see that if W (t)xquery ̸= 0 then by setting

xadvyadv =
MW (t)xquery

∥W (t)xquery∥2
·

(
ybad −

1

M

M∑
i=2

yix
⊤
i W (t)xquery

)
, (16)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

we guarantee that ŷ(E; θ(t)) = ybad. By Zhang et al. (2024, Lemmas A.3 and A.4), we know
W (t) ̸= 0 for all t. Since W (t) ̸= 0 and xquery ∼ N(0, I) is independent of W (t), we know
W (t)xquery ̸= 0 a.s. Therefore the identity (16) suffices for constructing adversarial tokens, and
indeed for any choice of yadv ̸= 0 this directly allows for constructing x-based adversarial tokens,

xadv =
MW (t)xquery

yadv∥W (t)xquery∥2
·

(
ybad −

1

M

M∑
i=2

yix
⊤
i W (t)xquery

)
, (17)

On the other hand, if we want to construct an adversarial token by solely changing the label y, we
can return to (15). Clearly, as long as x⊤

advW (t)xquery ̸= 0, then dividing both sides by this quantity
allows for solving yadv. If we assume xadv is another in-distribution independent N(0, I) sample,
then since W (t) ̸= 0 guarantees that x⊤

advW (t)xquery ̸= 0 and so we can construct

yadv =
M
(
ybad − 1

M

∑M
i=2 yix

⊤
i W (t)xquery

)
x⊤
advW (t)xquery

. (18)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B ADDITIONAL RESULTS

B.1 EFFECT OF SCALE

We conducted experiments with transformers with different number of layers to evaluate whether
scale has any effect on adversarial robustness of the transformer or not. We observed no meaningful
improvement in the adversarial robustness of the transformers with increase in the number of layers.
This is shown in the figure below for ybad chosen with α = 1. See Section 5.3 in the main text for
relevant discussion.

(a) feature-attack. (b) label-attack.

(c) feature-attack. (d) label-attack.

Figure 8: Increasing the scale of the transformer does not improve the adversarial robustness of
in-context learning in transformers.

B.2 EFFECT OF SEQUENCE LENGTH

We show here the complete set of results, for both feature-attack and label-attack,
on how an increase in sequence length positively impacts adversarial robustness if adversary can
manipulate the same number of tokens (for all sequence lengths), but if the adversary can manipulate
the same proportion of tokens (which would amount to different number of tokens for different
sequence lengths), increase in sequence length has a negligble effect on the adversarial robustness.
See Section 5.3 in the main text for relevant discussion.

(a) feature-attack (b) feature-attack

(c) label-attack. (d) label-attack.

Figure 9: Effect of increase in sequence length.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B.3 GRADIENT-BASED ADVERSARIAL ATTACKS & ADVERSARIAL TRAINING

In the main text (in Sections 5.2 and 5.4), we gave results for attacks performed with ybad chosen by
setting α = 1 in equation 8. Here, we present results for α = 0.5 and α = 0.1. These results are
qualitatively similar to the case of α = 1 and are presented only for completeness. Furthermore, in
the main text, we showed only target attack error for our attacks due to space constraints, while here
we present results for both ground truth error and target attack error.

B.3.1 α = 1.0

(a) feature-attack. (b) label-attack. (c) joint-attack.

(d) feature-attack. (e) label-attack. (f) joint-attack.

Figure 10: Adversarial training against label-attack. A-PT denotes adversarial pretraining and
A-FT denotes adversarial finetuning. ktrain denotes the number of tokens attacked during training and
ktrain = 0 corresponds to a model that has not undergone adversarial training at all.

(a) feature-attack. (b) label-attack. (c) joint-attack.

(d) feature-attack. (e) label-attack. (f) joint-attack.

Figure 11: Adversarial training against feature-attack.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) feature-attack. (b) label-attack. (c) joint-attack.

(d) feature-attack. (e) label-attack. (f) joint-attack.

Figure 12: Adversarial training against joint-attack.

B.3.2 α = 0.5

(a) feature-attack. (b) label-attack. (c) joint-attack.

(d) feature-attack. (e) label-attack. (f) joint-attack.

Figure 13: Adversarial training against label-attack.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) feature-attack. (b) label-attack. (c) joint-attack.

(d) feature-attack. (e) label-attack. (f) joint-attack.

Figure 14: Adversarial training against feature-attack.

(a) feature-attack. (b) label-attack. (c) joint-attack.

(d) feature-attack. (e) label-attack. (f) joint-attack.

Figure 15: Adversarial training against joint-attack.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B.3.3 α = 0.1

(a) feature-attack. (b) label-attack. (c) joint-attack.

(d) feature-attack. (e) label-attack. (f) joint-attack.

Figure 16: Adversarial training against label-attack. A-PT denotes adversarial pretraining and
A-FT denotes adversarial finetuning. ktrain denotes the number of tokens attacked during training and
ktrain = 0 corresponds to a model that has not undergone adversarial training at all.

(a) feature-attack. (b) label-attack. (c) joint-attack.

(d) feature-attack. (e) label-attack. (f) joint-attack.

Figure 17: Adversarial training against feature-attack.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) feature-attack. (b) label-attack. (c) joint-attack.

(d) feature-attack. (e) label-attack. (f) joint-attack.

Figure 18: Adversarial training against joint-attack.

B.4 TRANSFERABILITY

In Section 5.5, we briefly presented some results around transfer of adversarial examples generated
using one transformer to other transformers – either with the same architecture or different archi-
tecture. We present complete results here, for both feature-attack and label-attack. As
in the main text, we first present results for transfer across same class of transformers, i.e., trans-
formers with same number of layers and then present results for transfer across different classes of
transformers.

(a) 2 layers. (b) 3 layers. (c) 4 layers. (d) 6 layers. (e) 8 layers. (f) 12 layers. (g) 16 layers.

Figure 19: Target Attack Error for different target models on adversarial samples generated us-
ing a source model with the same number of layers. Adversarial samples were generated using
feature-attack with k = 3. Transfer of adversarial samples across transformers progressively
becomes poorer as number of layers increases.

(a) 2 layers. (b) 3 layers. (c) 4 layers. (d) 6 layers. (e) 8 layers. (f) 12 layers. (g) 16 layers.

Figure 20: Same as above figure (19) but adversarial samples were generated using
label-attack with k = 7. As with feature-attack, transfer of adversarial samples sam-
ples across transformers progressively becomes poorer as number of layers increases.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 21: Target Attack Error for different target models on adversarial samples possibly gen-
erated using a source model with a different number of layers. In (a) adversarial samples were
generated using feature-attack with k = 3. In (b) adversarial samples were generated using
label-attack with k = 7. Transfer is generally worse when

B.5 HIJACKING ATTACKS ON ORDINARY LEAST SQUARE

Linear regression can be solved using ordinary least square. This solution can be written in closed-
form as follow:

ŷ = f(X,Y, xquery) =
(
X⊤X

)−1
X⊤Y xquery (19)

where X = [x⊤
1 ;x

⊤
2 ; · · · ;x⊤

N ] and Y = [y1, ..., yN ]. We implement a gradient-based adversar-
ial attack on this solver by using Jax autograd to calculate the gradients ∇Xf(X,Y, xquery) and
∇Y f(X,Y, xquery). Similar to our gradient-based attack on the transformer, we only update a
randomly chosen subset of entries withing X and Y . In OLS, X and Y are not tokenized, how-
ever, for consistency of language, we will continue to refer to the individual entries of these ma-
trices, i.e., xi, yi as tokens. We perform 1000 iterations and use a learning rate of 0.01 for both
feature-attack and label-attack.

Figure 22 shows results for feature-attack and y-attack respectively on OLS for ybad cho-
sen by using α = 1.0. The adversarial robustness of OLS is qualitatively similar to that of the
transformer; for a fixed compute budget, single-token label-attack are much less successful
compared to single-token feature-attack, and target attack error is lower when greater number
of tokens are attacked.

(a) feature-attack. (b) label-attack.

Figure 22: The adversarial robustness of ordinary least squares to gradient-based hijacking attacks
is qualitatively similar to that of the transformers.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(a) feature-attack: OLS → Transformers. (b) feature-attack: Transformers → OLS.

(c) label-attack: OLS → Transformers. (d) label-attack: Transformers → OLS.

Figure 23: The mean squared error between the predictions being made by the transformer and
OLS on adversarial samples tends to increase as the ‘OOD-ness’ of the ybad increases. Furthermore,
the difference in prediction is generally higher when the hijacking attacks are derived using the
transformer (notice the differences in scale). For feature-attack, we attack 3 tokens and for
y-attack we attack 7 tokens when creating adversarial samples.

We further look at the transfer of adversarial attacks between transformers and OLS. Specifically,
by attacking OLS we create a set of adversarial samples and then measure the mean squared error
(MSE) between the predictions of OLS and different transformers on these adversarial samples, and
vice versa. Figure 23 shows the transfer for adversarial samples for different values of α for sam-
pling ybad. For feature-attack, we attack 3 indices and for y-attack, we attack 7 indices. We
can make following observations from this figure: (i) the predictions made by OLS and transform-
ers tend to diverge as α increases. This indicates lack of alignment between the predictions made
by OLS and transformers OOD. (ii) For feature-attack, MSE between predictions is signif-
icantly lower when adversarial samples are sourced by attacking OLS relative to when adversarial
samples are sourced by attacking the transformers. In other words, adversarial samples transfer bet-
ter from OLS to transformers but not vice versa. This hints at the fact that adversarial robustness
of the transformers is worse than that of OLS. (iii) For y-attack, the aforementioned asymmetry in
transfer above does not exist except for transformers with layers 16 and 12. (iv) Finally, we note
that transformer with 16 layers clearly always behaves in an anomalous fashion, with transformers
with layers 12 and 2 also sometimes behaving anomalously, which is in line with the discussion in
previous section on intra-transformer transfer of adversarial samples.

In Figure 24, we present complementary results showing MSE between predictions of OLS and
transformers on adversarial samples when different number of tokens are attacked for α = 1.0.
These results further support the observations made in the previous paragraph.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(a) feature-attack: OLS → Transformers. (b) feature-attack: Transformers → OLS.

(c) label-attack: OLS → Transformers. (d) label-attack: Transformers → OLS.

Figure 24: The mean squared error between the predictions being made by the transformer and OLS
on adversarial samples tends to be higher when the adversarial samples are sourced by attacking
transformers. In the above plot, we use α = 1.0 for sampling ybad.

C TRAINING DETAILS AND HYPERPARAMETERS

C.1 LINEAR TRANSFORMER

To match the setup considered in Theorem 4.1, we implement linear transformer as a single-layer
attention-only linear transformer as described in equation 10. We train the linear transformer for
2M steps with a batchsize of 1024 and learning rate of 10−6.

C.2 STANDARD TRANSFORMER

Our training setup closely mirrors that of Garg et al. (2022). Similar to their setup, we use a cur-
riculum where Details of our architecture are given in Table 1. We guve the number of parameters
present in various transformer models with different number of layers in Table 2. Important training
hyperparameters are mentioned in Table 3.

Parameter Value
Embedding Size 256
Number of heads 8
Positional Embedding Learned
Number of Layers 8 (unless mentioned otherwise)
Causal Masking Yes

Table 1: Architecture for the transformer model.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Number of Layers Parameter Count
2 1, 673, 601
3 2, 463, 553
4 3, 253, 505
6 4, 833, 409
8 6, 413, 313
12 9, 573, 121
16 12, 732, 929

Table 2: Hyperparameters used for training transformer models with GPT-2 architecture.

Hyperparameter Value

Learning Rate 5× 10−4

Warmup Steps 20,000
Total Training Steps 500,000
Batch Size 64
Optimizer Adam

Table 3: Hyperparameters used for training transformer models with GPT-2 architecture.

C.3 ADVERSARIAL ATTACK AND ADVERSARIAL TRAINING DETAILS

We implement our adversarial attacks as simple gradient descent on the (selected) inputs with the
target attack error as the optimization objective. We briefly experimented with variations of gradi-
ent descent, e.g., gradient descent with momentum but found those to perform at par with simple
gradient descent.

When performing feature-attack, we used a learning rate of 1 and when performing
label-attack, we used a learning rate of 100. When performing joint-attack, we used
a learning rate of 1 when perturbing x-tokens and a learning rate of 100 when perturbing y-tokens.
We chose the learning rates based on best performance within 100 gradient steps. Using lower values
of learning rates resulted in proportionally slower convergence, and hence were avoided.

In all our plots, we show results across three different models and use 1000 samples for each model.

Differences Between Adversarial Attacks and Adversarial Training: The two major differences
in our adversarial traning setup, compared with adversarial attacks setup are:

• During adversarial attacks (done on trained models at test time), we sample ybad according
to the expression 8, but during adversarial training we sample ybad by sampling a weight
vector w ∼ N(0, Id) independent of the task parameters wτ and setting ybad = w⊤ybad.

• During adversarial attacks, we perform 100 steps of gradient descent, but in adversarial
training, we only perform 5 steps of gradient descent.

Both the above changes were done to help improve the efficiency of adversarial training.

26


	Introduction
	Related Works
	Preliminaries
	Single-Layer Linear Transformer Setup
	Standard Transformer Setup
	Hijacking Attacks

	Robustness of Single-Layer Linear Transformers
	Robustness of Standard Transformers
	Do Attacks From Linear Transformers Transfer?
	Gradient-Based Adversarial Attacks
	Effect of Scaling Depth and Sequence Length
	Adversarial Training
	Transferability of Adversarial Attacks Across Transformers
	Transferability of Adversarial Attacks Between Transformers and Least Squares Solver

	Discussion & Future Work
	Proofs
	Additional Results
	Effect of Scale
	Effect of Sequence Length
	Gradient-Based Adversarial Attacks & Adversarial Training
	=1.0
	=0.5
	=0.1

	Transferability
	Hijacking Attacks on Ordinary Least Square

	Training Details and Hyperparameters
	Linear Transformer
	Standard Transformer
	Adversarial Attack and Adversarial Training Details


