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Abstract

Class distribution mismatch (CDM) refers to the
discrepancy between class distributions in training
data and target tasks. Previous methods address
this by designing classifiers to categorize classes
known during training, while grouping unknown
or new classes into an “other” category. However,
they focus on semi-supervised scenarios and heav-
ily rely on labeled data, limiting their applicability
and performance. To address this, we propose
Unsupervised Learning for Class Distribution
Mismatch (UCDM), which constructs positive-
negative pairs from unlabeled data for classifier
training. Our approach randomly samples images
and uses a diffusion model to add or erase se-
mantic classes, synthesizing diverse training pairs.
Additionally, we introduce a confidence-based la-
beling mechanism that iteratively assigns pseudo-
labels to valuable real-world data and incorporates
them into the training process. Extensive experi-
ments on three datasets demonstrate UCDM’s su-
periority over previous semi-supervised methods.
Specifically, with a 60% mismatch proportion on
Tiny-ImageNet dataset, our approach, without re-
lying on labeled data, surpasses OpenMatch (with
40 labels per class) by 35.1%, 63.7%, and 72.5%
in classifying known, unknown, and new classes.

1. Introduction
Class distribution mismatch (CDM) (Guo et al., 2020; Saito
et al., 2021; Du et al., 2022; Li et al., 2023) has garnered
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Figure 1. (a) Examples of SSL for closed-set task (SCDMCT),
open-set task (SCDM), and our proposed unsupervised learning
for class distribution mismatch (UCDM), where no labels are used
during training. (b) Accuracy of methods on closed-set and open-
set tasks. In the closed-set task, samples are classified into known
classes, while in the open-set task, they may be classified as unified
“other” class, including both unknown and new categories.

increasing attention in recent years. It tracks the practical
problem where the class distribution of the available training
dataset fails to align with the requirements of the target
task (Yang et al., 2022; Fan et al., 2023; Ma et al., 2023).

Previous researches on CDM primarily concentrate on semi-
supervised learning (SSL), which requires access to both la-
beled and unlabeled data (Berthelot et al., 2019; Sohn et al.,
2020). In this context, the categories present in the labeled
data are referred to as known classes, while the unlabeled
data contains not only the known classes but also additional
unknown classes that are absent in the labeled data. As
illustrated in Fig. 1 (a), based on differences in the target
tasks, these SSL methods fall into two groups: (i) The first
group focuses on a Closed-set Task (SCDMCT), where the
goal is to classify instances solely among the known classes
present in the labeled data (Chen et al., 2020; Guo et al.,
2020; Huang et al., 2021; Yang et al., 2022). Mainstream
approaches typically tackle SCDMCT challenge by filter-
ing out unknown categories from the unlabeled data, thus
mitigating their negative influence. (ii) The second group
extends SCDMCT to the Open-set Task (SCDM), where the
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objective extends beyond classifying known classes to also
identifying unknown classes and any new categories that are
absent from the labeled data as a unified “other” class during
testing (Saito et al., 2021; Li et al., 2023). Methods in this
category often employ one-vs-all classifiers to distinguish
whether instances belong to known classes.

However, the requirement for labeled data constrains both
the application and performance of these approaches. First,
their heavy reliance on labeled data renders them impractical
in scenarios where ground truth labels are unavailable. This
dependency necessitates significant human and financial
costs and may even require domain-specific knowledge (Gi-
daris et al., 2018; Zhang et al., 2023a). More importantly,
training with limited labeled data restricts their performance
to capture key features of known classes when extending
SCDMCT to open-set tasks, as SCDM methods (Saito et al.,
2021; Li et al., 2023). This is because they primarily train
one-vs-all classifiers by treating labeled instances from a
specific known class as positives and all other labeled in-
stances as negatives. As a result, the model struggles to dis-
tinguish samples from unknown categories outside the data
manifold, leading to unstable performance. As illustrated in
Fig. 1 (b), on the open-set task of the Tiny-ImageNet (Deng
et al., 2009) dataset, OpenMatch (Saito et al., 2021), a rep-
resentative SCDM method, effectively classifies known-
classes instances, while its performance for consolidating
unknown and new classes into a unified “other” class is
notably subpar. Hence, developing methods for open-set
tasks without relying on ground truth labels is imperative.

To alleviate this problem, we introduce Unsupervised Learn-
ing for Class Distribution Mismatch (UCDM), which op-
erates without ground truth labels in the training data and
utilizes only a predefined set of class names from known
classes. In this context, we aim to construct positive-
negative pairs for training the classifier without any hu-
man annotation, adhering to the unsupervised learning
setting (Goodfellow et al., 2016). First, we theoretically
demonstrate that diffusion models (Ho et al., 2020) can erase
semantic classes from images. Given an original image, this
capability enables us to generate negative instances by re-
moving the semantic class from the image, corresponding
to the positive instances guided by class prompts. Subse-
quently, through a confidence-based labeling mechanism,
valuable real images are paired with the generated images to
incorporate them into the training process. This approach ef-
fectively mitigates the reliance on labeled data and provides
a training framework to tackle the CDM problem.

Extensive experiments on diverse datasets, includ-
ing CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100 (Krizhevsky et al., 2009), and Tiny-ImageNet (Deng
et al., 2009), demonstrate that our method achieves superior
performance without relying on labeled data. Notably, on

Tiny-ImageNet with 60% mismatch proportion as shown in
Fig. 1 (b), our approach outperforms UASD (Chen et al.,
2020), a SCDMCT method, by 27.0% on the closed-set
task. For open-set tasks, our approach surpasses Open-
Match (Saito et al., 2021), a classic SCDM method, by 5.0%,
91.4%, and 89.5% in the classification of known, unknown,
and new classes, respectively. These results highlight the
robustness of UCDM in both closed-set and open-set tasks,
positioning it as a promising direction for advancing CDM.

2. Related Work
2.1. SSL under Class Distribution Mismatch

SSL methods for class distribution mismatch can be di-
vided into two branches: one addressing closed-set tasks
(SCDMCT) and another tackling open-set tasks (SCDM).

SCDMCT methods train classifiers to classify known-class
instances by filtering unknown-class samples from un-
labeled data. Prediction consistency is exploited by
DS3L (Guo et al., 2020), which identifies consistency loss
discrepancies between augmented views, and UASD (Chen
et al., 2020), which averages predictions from a temporally
ensembled classifier. Confidence-based methods, such as
CCSSL (Yang et al., 2022) and SSB (Fan et al., 2023), clas-
sify instances with maximum probabilities below a threshold
as unknown. T2T (Huang et al., 2021) judge whether image
embeddings align with pseudo-labels using a cross-modal
matching model, while OSP (Wang et al., 2023) extend it
by excluding unknown-class pixels from features.

SCDM methods classify known-class instances while group-
ing unknown or new-class instances into a unified “other”
class. MTCF (Yu et al., 2020) trains a detector to distinguish
known from other classes. A prototype-based approach (Ma
et al., 2023) builds prototypes for unknown-class instances
using distance functions. OpenMatch (Saito et al., 2021) and
IOMatch (Li et al., 2023) use multi-binary classifiers trained
in a one-vs-all manner, treating known-class instances as
positives and others as negatives. Combining these outputs
with a closed-set classifier generates a probability distribu-
tion over known and other classes.

However, the reliance on labeled data limits both the appli-
cability and performance of these methods, while unsuper-
vised learning settings remain unexplored.

2.2. Diffusion-Based Generation Methods

Image synthesis (Azizi et al., 2023; Dai et al., 2023; Tian
et al., 2024) has gained significant attention due to the ability
of diffusion models (Rombach et al., 2022; Ramesh et al.,
2022; Saharia et al., 2022) to generate high-quality data.

A classic strategy in image synthesis involves enriching
prompts (Dunlap et al., 2023; Sarıyıldız et al., 2023; Shipard
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et al., 2023) to guide the diffusion model, thereby expanding
datasets. Another approach modifies real image embeddings
by injecting learnable perturbations, creating variants en-
riched with novel information (Zhang et al., 2023b).

Recently, diffusion models have been integrated with SSL.
DPT (You et al., 2024) employs a text-to-image paradigm,
establishing a cyclical process where the SSL classifier is
retrained with generated samples, and the updated classifier
produces pseudo-labels to further train the diffusion model.
However, it assumes matching class distributions between
training data and the target task. Similarly, DWD (Ban et al.,
2024) enhances known-class classification by training a
diffusion model with labeled and unlabeled data to transform
irrelevant unlabeled samples into known classes.

Our approach differs fundamentally from these methods.
First, it avoids retraining the diffusion model. Second, it
generates positive and negative instances without human an-
notations, enabling classifier training in the UCDM setting.

3. Unsupervised Learning for CDM
Sec. 3.1 provides an overview of diffusion probabilistic mod-
els, followed by the UCDM problem definition in Sec. 3.2.
Sec. 3.3 and Sec. 3.4 introduce the positive and negative
instance generation pipelines using diffusion models, and
Sec. 3.5 details classifier training using generated instances.

3.1. Preliminary

Diffusion probabilistic models (DPMs) (Ho et al., 2020;
Rombach et al., 2022; Ramesh et al., 2022; Saharia et al.,
2022; Zhao et al., 2024b; 2025), involve a forward diffusion
process and a reverse denoising process. Given a sample
x, the forward process gradually adds Gaussian noise to x
to produce xt as t increases from 0 until T , which can be
formulated as:

xt =
√
αtx0 +

√
1− αtϵ, ϵ ∼ N (0, 1), (1)

where αt =
∏t

i=1(1− βi) and {βi}Ti=0 denotes a fixed or
learned variance schedule. In the reverse process, noise is
removed from xt using a learned noise estimator ϵθ(xt, t, C)
conditioned on C, yielding xt−1 as:

xt−1=

√
αt−1

αt
xt−

√
αt−1ψ(αt, αt−1, σt)ϵ̂θ(xt, t, C)+σtϵt,

(2)
where ψ(αt, αt−1, σt) denotes the constant schedule that
depends on the fixed parameters αt, αt−1, and σt, and
ϵ̂θ(xt, t, C) = ϵθ(xt, t) + γ [ϵθ(xt, t, C)− ϵθ(xt, t)]. Here,
ϵθ(xt, t) represents the DPM without condition, and γ and
σt control the strength of conditional guidance and ran-
dom noise ϵt, respectively (Ho et al., 2020; Ho & Salimans,
2022). If σt = 0 and γ = 0 for all t, yielding the Denoising
Diffusion Implicit Model (DDIM) (Song et al., 2020a).

DPM’s relationship to score-based generative models has
been well established in (Song et al., 2020b; Kim et al.,
2022; Luo, 2022), which can be formulated as:

ϵθ(xt, t) = −
√
1− ᾱt∇xt

log pθ(xt), (3)

ϵθ(xt, t, C) = −
√
1− ᾱt∇xt

log pθ(xt | C), (4)

where ᾱt =
∏t

i=0 αi and pθ(·) denotes the data distribution
parameterized by θ. ∇xt log pθ(xt) and ∇xt log pθ(xt | C)
represent the gradient of the log-likelihood with respect to
xt in the unconditional and conditional settings, respectively.
These gradients indicate the direction in the data space that
maximizes the corresponding likelihood.

3.2. Problem Definition of UCDM

Overview of training and testing datasets. The training
dataset D consists of unlabeled samples, with ground truth
labels drawn from the label sets Yknown and Yunknown. In the
proposed unsupervised learning for class distribution mis-
match (UCDM), only a predefined set of class names from
Yknown is accessible, while ground truth labels for D remain
unavailable. Here, Yknown = {1, 2, . . . ,K} represents the
set of K known classes, while Yunknown denotes the set of
unknown classes, with Yknown ∩ Yunknown = ∅. Images in
the test dataset includes categories from the known classes
Yknown, unknown classes Yunknown, and new classes Ynew,
where Ynew ∩ (Yknown ∪ Yunknown) = ∅.

Classifier architecture. Our ultimate goal is to accurately
assign instances from known classes toK distinct categories
and group instances from both unknown and new classes
into a unified “other” class. To achieve this, our target
classifier comprises three components: (i) a shared feature
encoder; (ii) a fully connected layer with a shape of 2K,
serving as an open-set classifier comprising K binary classi-
fiers. The j-th binary classifier predicts the probability that
an instance belongs to known class j, denoted as p(j | x);
(iii) a fully connected layer with a shape of K, serving as a
closed-set classifier, producing the probability p̂(j | x) for
K-way classification in the closed-set task.

However, training each binary classifier requires both pos-
itive and negative instances, and the closed-set classifier
requires positive instances - both of which are not available
in our unsupervised scenario. To address this challenge, we
propose a diffusion-driven instance generation method that
effectively creates sufficient positive-negative pairs based
on seed samples randomly drawn from the training set.

3.3. Positive Instance Generation

We consider that effective positive instances for training
should meet the following criteria:

(i) The generated images should avoid domain shifts, remain-
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Figure 2. Pipelines for instance generation. (a) and (b) show that
the semantic class in the prompt can be synthesized in the positive
instance pipeline or erased in the negative instance pipeline for a
given seed sample. If the seed sample lacks the specified semantic
class, the generated image resembles the original image.

ing consistent with the characteristics of natural images.

(ii) The diversity of generated images should be sufficient
within each category.

(iii) They must belong to one of the K known classes with
clearly identified categories.

To this end, we propose a diffusion-driven positive instance
generation pipeline based on a text-to-image DPM model.

Specifically, to address property (i) and generate images as
realistic training data, we randomly drive a sample from the
training set and progressively add noise using Eq. (1) in the
forward process to obtain a noise vector rather than a random
one. This ensures that the noise vector forms a Gaussian
centered around the seed sample, thereby preserving the
information of the seed sample (Luo, 2022; He et al., 2022).
To achieve property (ii), we set σt to 1 during the reverse
process, introducing random noise in each step to enrich the
diversity of the generated instances (Ho et al., 2020; Song
et al., 2020a). Lastly, property (iii) is achieved through
conditional generation guided by class prompt. Given a
known class y ∈ Yknown, we construct the prompt Cy as “A
photo of a [CLASS].” where [CLASS] corresponds to the
name of the class y. Then the conditional reverse process for
positive instances is formulated as Eq. (2). As illustrated in
Fig. 2, this ensures that the generated instances exhibit the
target semantics without introducing domain shift.

3.4. Negative Instance Generation

To enhance the model’s ability to capture key features of
known classes and push samples from unknown classes
outside the data manifold, the positive-negative pairs should
provide effective contrast (Tack et al., 2020). Thus, negative
instances should satisfy the following properties:

(i) They should belong to distinct semantic classes, differing

significantly from their corresponding positive instances.

(ii) They should share similar visual traits—such as structure
and color—with their corresponding positives.

Erasing semantic class via conditional inversion. To
achieve property (i), we aim to erase the semantic class y,
i.e., the class of positive instance, from the seed sample. Un-
conditional DDIM inversion (Song et al., 2020a; Kim et al.,
2022) adds noise ϵθ(xt, t) predicted by an unconditional
DPM to the real image, mapping it to a latent vector from
which the image can be reconstructed via unconditional re-
verse process. Hence, by modifying this inversion process
to erase class-specific semantics, we satisfy property (i).

The essence of erasing a semantic class lies in minimiz-
ing the likelihood of instance belonging to the positive in-
stance’s class y. Inspired by Eq. (4), we propose conditional
DDIM inversion, which employs a conditional DPM (Ho
& Salimans, 2022) to map a real image to a noise vector in-
stead of a random one. As demonstrated in Theorem 3.1, this
process approximately moves x0 in the negative gradient di-
rection of

∑t−1
i=0 [∇xi

log pθ(xi)
si +∇xi

log pθ(y | xi)
si ],

with step sizes regulated by the noise schedule si. Notably,
−∇xi

log pθ(y | xi) represents the data-space gradient that
reduces the likelihood of xi belonging to y, thereby driving
the noise vector to progressively diverge from the semantics
of y. The detailed proof can be found in Appendix A.5.

Theorem 3.1. (Conditional DDIM (Song et al., 2020a)
inversion: progressive movement of the noise vector away
from semantic class): Let xt denote the noise vector at time
step t in the conditional inversion, and let Cy be the prompt
of class y. Define δt = ϵθ(xt, t, Cy)−ϵθ(xt−1, t, Cy), where
ϵθ is a conditional DPM. When inverting the real image x0

to a noise vector xt via conditional DDIM, i.e., setting
σt = 0 and γ = 1 in Eq. (2), we obtain:

xt =
√
αtx0−

t−1∑
i=0

[∇xi
log pθ(xi)

si +∇xi
log pθ(y | xi)

si ]

+

t−1∑
i=0

si
1−√

ᾱi+1
δi+1,

(5)
where si=

√
αt(1− ᾱi+1)ψ(αi+1, αi, 0) controls the mag-

nitude of each gradient step based on the noise schedule.

Hence, we adopt the conditional DDIM inversion process to
erase the given semantic class, where the formula for xt is
derived from Theorem 3.1 and Eq. (2), as in Eq. (6). Since
δt cannot be directly computed and is empirically shown
to be negligible (Song et al., 2020a; Wallace et al., 2023),
as further supported in the Appendix A.4, we approximate
ϵθ(xt, t, Cy) by ϵθ(xt−1, t, Cy). Smaller values of δi indi-
cate that xt more closely follows the idealized trajectory
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defined by the deterministic components.

xt=

√
αt

αt−1
xt−1+

√
αtψ(αt, αt−1, 0)ϵθ(xt−1, t, Cy). (6)

Preserving visual characteristics in the unconditional re-
verse process. Furthermore, the term −∇xi

log p(xi)
si

in Theorem 3.1 drives xi toward regions of lower log-
likelihood probability density, causing a distribution shift
from x0. This deviation disrupts the preservation of visual
characteristics, in contrast to the property (ii).

Inspired by Eq. (3), we reverse xt using an unconditional
DPM. As shown in Theorem 3.2, the resulting image x̃0

effectively preserves the visual features of x0 while approx-
imately removing only the class-specific semantics, since
δ̃t and δt are negligible (Song et al., 2020a; Wallace et al.,
2023), as detailed in Appendix A.4 and Appendix A.7.

Theorem 3.2. (Unconditional DDIM reverse: progres-
sive recovery of visual characteristics): Let x̃0 denote
the image generated by the unconditional DDIM reverse
process starting from the conditional inversion noise vec-
tor xt. Under the assumptions of Theorem 3.1, let δ̃t =
ϵθ(x̃t, t) − ϵθ(x̃t−1, t). Reversing xt to x̃0 via uncondi-
tional DDIM with σt = 0 and γ = 0 in Eq. (2), we have:

x̃0 =x0 −
1

√
αt

t−1∑
i=0

∇xi
log pθ(y|xi)

si

+

t−1∑
i=1

t−1∑
j=i

si√
αt(1− ᾱj+1)

[
δ̃j+1 − δj+1

]
.

(7)

Hence, supported by Theorem 3.2, we utilize unconditional
DDIM to reverse the conditional noise vector xt into a new
image x̃0. In this process, x̃t−1 is formulated as Eq. (8),
derived from Eq. (2) with γ = 0. To mitigate potential
image degradation caused by semantic removal and preserve
visual fidelity, we introduce random noise with σt = 0.2.

x̃t−1 =

√
αt−1

αt
x̃t−

√
αt−1ψ(αt, αt−1, σt)ϵθ(x̃t, t)+σtϵt.

(8)

The generation of negative instances is illustrated in Fig. 2,
with the diffusion-driven process detailed in Algorithm1 of
Appendix A.3. Theorems 3.1 and 3.2 confirm the reliability
of both positive and negative instances, further supported
by results in Sec. 4.3 and visualizations in Appendix B.13.

Consequently, with a randomly selected seed sample from
the training set and a prompt for a known class y, we can
generate a positive instance labeled y and a negative in-
stance not belonging to y, following Sec. 3.3 and Sec. 3.4,
respectively. This enables the construction of positive (DP )
and negative (DN ) instance sets for subsequent training.

update

multi-binary 
prediction

classifier

known class

closed-set prediction

...

training frozen backward
data update

...

constructing pairs

other class

confidence-based labeling 

multi-binary prediction

closed-set 
prediction

classifier

Figure 3. The framework for training an unsupervised classifier
based on generated positive and negative instances.

3.5. Unsupervised Classifier Training

To differentiate known classes from unknown and new
classes, we train the open-set classifier using both posi-
tive and negative instance sets. Specifically, we employ
the loss function L(DP ,DN )

open to maximize the probability of
positive instances being assigned to their respective classes,
i.e., p(y|x), while minimizing the probability of their corre-
sponding negative counterparts.

To ensure the categorization of know classes, we constrain
the open-set classifier with the loss function LDP

open to assign
the maximum probability to the corresponding class for each
sample in the positive instance set DP . In addition, we also
train a closed-set classifier LDP

closed on the positive instance
set DP with the loss function to tackle the closed-set task.

Thus, the loss function for the generated data is defined as:

L(DP ,DN )
generated = λ1L(DP ,DN )

open + λ2

[
LDP

open + LDP

closed

]
, (9)

where λ1 and λ2 control the trade-off for each objective. For
further details on each loss function, refer to Appendix A.1.

Confidence-based labeling. To leverage real images ef-
fectively, we propose a labeling mechanism that combines
other-probability-driven and known-probability-driven con-
fidences. Instances with high confidences are selected, as-
signed pseudo-labels, and incorporated into the training.

From the other-probability-driven perspective, an instance
not belonging to any known class is assigned to the unified
“other” class. The probability of this is computed by integrat-
ing the predictions of K binary classifiers: p(y ∈ Yother |
x) =

∏K
j=1 [1− p(j | x)], where p(j | x) is the proba-

bility that the j-th classifier predicts the sample as class j.
Accordingly, the probability of belonging to a known class
is p(y ∈ Yknown | x) = 1− p(y ∈ Yother | x).

The probability p̂(j | x) represents the likelihood of an
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Table 1. The average accuracy of methods on the closed-set task across CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets, with
mismatch proportions ranging from 20% to 75%. The best and second-best results are highlighted in bold and underlined, respectively.

method CIFAR-10 CIFAR-100 Tiny-ImageNet
20% 40% 60% 75% 20% 40% 60% 75% 20% 40% 60% 75%

DS3L 65.6 67.3 66.6 68.3 23.9 22.7 23.4 24.4 24.5 25.7 26.3 25.7
UASD 82.2 78.2 79.3 68.8 26.2 24.4 22.8 20.4 5.4 5.6 5.3 7.5
CCSSL 97.9 96.0 95.7 94.3 48.9 47.9 45.6 46.0 26.7 23.4 25.8 24.4
T2T - - - - 54.7 53.9 50.6 48.7 40.5 41.0 41.7 38.0
MCTF 62.0 64.7 61.2 71.8 56.3 55.6 56.6 56.6 29.1 29.4 23.1 26.2
IOMatch 96.6 92.9 89.8 86.1 29.4 30.3 31.1 32.4 31.4 32.9 32.8 32.8
OpenMatch 92.8 91.0 68.5 73.4 17.3 10.8 10.3 6.1 14.0 10.3 10.9 12.2
Ours 95.2 93.5 95.6 96.7 53.7 49.3 50.9 49.9 36.9 32.4 32.3 35.4

*T2T is excluded from CIFAR-10 as it is not applicable to binary classification.

instance belonging to the j-th known class in the closed-
set task. Thus, in the open-set task, the probability for the
j-th known class is p(y ∈ Yknown | x) · p̂(j | x), leading
to the K + 1-way distribution q ∈ RK+1 for an instance,
formulated as:

qj =

{
p(y ∈ Yknown | x) · p̂(j | x), if 1 ≤ j ≤ K,

p(y ∈ Yother | x), if j = K + 1.

(10)

From the known-probability-driven perspective (Li et al.,
2023), both p̂(j | x) and p(j | x) estimate the likelihood
that an instance belongs to the j-th known class. The prob-
ability of an instance belonging to the j-th known class is
p̂(j | x)× p(j | x), while the probability of it belonging to
the “other” class is 1−

∑K
j=1 p̂(j | x)×p(j | x). Thus, the

class probability distribution q̃ ∈ RK+1 in open-set task is:

q̃j =

{
p̂(j | x)× p(j | x), 1 ≤ j ≤ K,

1−
∑K

j=1 p̂(j | x)× p(j | x), j = K + 1.

(11)

If the top-confidence class in both q and q̃ is the j-th class
and their scores exceed a threshold δ, a pseudo-label j is
assigned. The labeled sample is then added to Dknown or
Dunknown, depending on whether j is a known or unknown
class, and removed from the original training set D.

Meanwhile, for the known-class set Dknown, negative in-
stances are selected from DN to form D′

N , while positive
instances are selected from DP for the unknown-class set
Dunknown, forming D′

P . These selected instances are then
removed from DP and DN . The total loss is Eq. (12).

L = L(DP ,DN )
generated + L(Dknown,D′

N )
generated + L(D′

P ,Dunknown)
generated . (12)

The classifier training pipeline is shown in Fig. 3, with the
Algorithm 2 in Appendix A.3; see Appendix A.2 for pair
construction details.

4. Experiments
4.1. Experimental Setups

Datasets. Following previous works (Chen et al., 2020;
Li et al., 2023), we employ three benchmark datasets,
including CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100 (Krizhevsky et al., 2009), and Tiny-ImageNet (Deng
et al., 2009). More details please refer to Appendix C.1.

Settings. (i) We vary the mismatch proportion—i.e., the per-
centage of unknown-class instances in training data—across
0%, 20%, 40%, 60%, and 75%. Results for 0% mismatch
are provided in Appendix B.1, with detailed class counts in
Appendix C.1. (ii) For all SSL baselines, 40 labeled samples
per known class are randomly selected, and the remaining
known-class and selected unknown-class instances form the
unlabeled set based on the mismatch proportion.

Evaluations. Our evaluation is conducted on the closed-set
task and open-set task.

For the closed-set task, we report known-class accuracy
on K-way classification, where test instances belong exclu-
sively to known classes and are classified accordingly.

For the open-set task, leveraging Eq. (10), we evaluate a
test set containing known, unknown, and new classes in a
K + 1-way classification setting, reporting: (i) known-class
accuracy, reflecting correct classification of instances into
their respective classes; (ii) unknown-class accuracy, mea-
suring the assignment of instances from unknown classes to
the unified “other” class; (iii) new-class accuracy, assessing
generalization by categorizing instances from new classes to
the unified “other” class; (iv) balance score, defined as the
mean accuracy minus its standard deviation, which captures
performance and volatility across these accuracies.

Unlike prior work (Saito et al., 2021; Li et al., 2023), which
evaluates only unknown/new classes or reports average re-
call, we individually assess and report all three metrics and
introduce the balance score to measure overall performance.
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Table 2. The balance score (bala.) and average accuracy on known (kno.), unknown (unko.), and new classes for the open-set task on the
CIFAR-10 dataset across mismatch proportions from 20% to 75%. A higher balance score indicates better and more balanced performance
across the known, unknown, and new classes. The best and second-best results are highlighted in bold and underlined, respectively.

method
20% 40% 60% 75%

accuracy bala. accuracy bala. accuracy bala. accuracy bala.
kno. unkno. new kno. unkno. new kno. unkno. new kno. unkno. new

DS3L 65.6 0.0 0.0 -16.0 67.3 0.0 0.0 -16.4 66.6 0.0 0.0 -16.3 68.3 0.0 0.0 -16.7
UASD 82.2 0.0 0.0 -20.1 78.2 0.0 0.0 -19.1 79.3 0.0 0.0 -19.4 68.8 0.0 0.0 -16.8
CCSSL 97.9 0.0 0.0 -23.9 96.0 0.0 0.0 -23.4 95.7 0.0 0.0 -23.4 94.3 0.0 0.0 -23.0
T2T - - - - - - - - - - - - - - 0.0 -
MCTF 54.7 0.0 0.0 -13.3 62.4 0.0 0.0 -15.2 83.2 0.0 0.0 -20.3 71.8 0.0 0.0 -17.5
IOMatch 96.2 1.6 6.0 -18.8 91.5 3.2 6.1 -16.6 87.5 7.7 6.3 -12.6 84.1 7.3 6.0 -12.3
OpenMatch 43.1 36.8 35.8 34.7 67.3 27.8 20.0 13.0 47.4 50.8 52.3 47.7 71.3 1.2 4.4 -14.0
Ours 92.4 100.0 97.9 92.9 90.4 100.0 99.8 91.2 94.0 100.0 100.0 94.6 95.8 100.0 99.1 96.1

*T2T is excluded as it is not applicable to binary classification.

Table 3. The balance score (bala.) and average accuracy on known (kno.), unknown (unko.), and new classes for the open-set task on the
CIFAR-100 across mismatch proportions from 20% to 75%. A higher balance score indicates better and more balanced performance
across the known, unknown, and new classes. The best and second-best results are highlighted in bold and underlined, respectively.

method
20% 40% 60% 75%

accuracy bala. accuracy bala. accuracy bala. accuracy bala.
kno. unkno. new kno. unkno. new kno. unkno. new kno. unkno. new

DS3L 23.9 0.0 0.0 -5.8 22.7 0.0 0.0 -5.5 23.4 0.0 0.0 -5.7 24.5 0.0 0.0 -6.0
UASD 26.2 0.0 0.0 -6.4 24.4 0.0 0.0 -6.0 22.8 0.0 0.0 -5.6 20.4 0.0 0.0 -5.0
CCSSL 48.9 0.0 0.0 -11.9 47.9 0.0 0.0 -11.7 45.6 0.0 0.0 -11.1 46.0 0.0 0.0 -11.2
T2T 54.7 0.0 0.0 -13.4 53.9 0.0 0.0 -13.2 50.6 0.0 0.0 -12.4 48.7 0.0 0.0 -11.9
MCTF 0.0 98.7 98.8 8.8 8.9 35.8 34.9 11.3 40.2 0.9 0.7 -8.8 56.6 0.0 0.0 -13.8
IOMatch 0.0 100.0 100.0 9.0 0.0 100.0 100.0 9.0 0.0 100.0 100.0 9.0 0.0 100.0 100.0 9.0
OpenMatch 15.6 18.5 17.8 15.8 10.4 7.8 7.6 7.1 10.0 6.7 6.6 5.9 4.4 33.5 33.5 7.0
Ours 40.0 94.8 94.6 44.8 39.3 86.0 90.1 43.6 45.1 70.4 79.1 47.2 44.5 74.6 75.9 47.2

Baseline methods. We evaluate our approach against four
SCDMCT methods: UASD (Chen et al., 2020), DS3L (Guo
et al., 2020), T2T (Huang et al., 2021), and CCSSL (Yang
et al., 2022), and three SCDM methods: MTCF (Yu et al.,
2020), OpenMatch (Saito et al., 2021), and IOMatch (Li
et al., 2023).

Implementation Details. All experiments utilize the pre-
trained Stable Diffusion 2.0 model (Rombach et al., 2022)
as the DPM generator, without further optimization. Follow-
ing (Chen et al., 2020; Guo et al., 2020; Saito et al., 2021),
the classifier adopts the WideResNet-28-2 (Zagoruyko &
Komodakis, 2016) backbone. Each method is run three
times per dataset, and the mean accuracy is reported. For
more details, please refer to Appendix C.2. The code is
available at https://github.com/RUC-DWBI-ML/
research/tree/main/UCDM-master.

4.2. Experimental Results

CIFAR-10 includes 2 known, 6 unknown, and 2 new classes.
CIFAR-100 is harder with 20 known, 60 unknown, and 20
new. Tiny-ImageNet is the most complex, with 20 known,
80 unknown, and 100 new classes. The highest and second-
highest accuracies, along with the balance score, are bolded

and underlined, respectively.

Performance on closed-set task. Tab. 1 shows the closed-
set task results on CIFAR-10, CIFAR-100, and Tiny-
ImageNet across mismatch proportions from 20% to 75%.
From the results, we have following two key observations.
(i) UCDM achieves the second-highest accuracy at least
twice on each dataset and outperforms all compared meth-
ods on CIFAR-10 at a 75% mismatch proportion, high-
lighting its ability to train an effective closed-set classifier
without relying on ground truth labels. (ii) As the mismatch
proportion increases, UCDM consistently improves, demon-
strating its robustness across varying mismatch proportions.

Performance on open-set task. Tab. 2, Tab. 3, and Tab. 4
present open-set results, including balance scores and accu-
racies for known, unknown, and new classes on CIFAR-10,
CIFAR-100, and Tiny-ImageNet. From the results, we ob-
serve that UCDM achieves the highest balance score across
all settings in the three datasets. This demonstrates its ca-
pability to maintain high mean accuracy and low standard
deviation across known, unknown, and new classes, even
on the more challenging Tiny-ImageNet benchmark.

In contrast, SCDMCT methods fail to classify unknown and
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Table 4. The balance score (bala.) and average accuracy on known (kno.), unknown (unko.), and new classes for the open-set task on the
Tiny-ImageNet across mismatch proportions from 20% to 75%. A higher balance score indicates better and more balanced performance
across the known, unknown, and new classes. The best and second-best results are highlighted in bold and underlined, respectively.

method
20% 40% 60% 75%

accuracy bala. accuracy bala. accuracy bala. accuracy bala.
kno. unkno. new kno. unkno. new kno. unkno. new kno. unkno. new

DS3L 24.5 0.0 0.0 -6.0 25.7 0.0 0.0 -6.3 26.3 0.0 0.0 -6.4 25.7 0.0 0.0 -6.3
UASD 5.3 0.0 0.0 -1.3 6.8 0.0 0.0 -1.7 5.2 0.0 0.0 -1.3 6.7 0.0 0.0 -1.6
CCSSL 26.7 0.0 0.0 -6.5 23.4 0.0 0.0 -5.7 25.8 0.0 0.0 -6.3 24.4 0.0 0.0 -6.0
T2T 40.5 0.0 0.0 -9.9 41.0 0.0 0.0 -10.0 41.7 0.0 0.0 -10.2 38.0 0.0 0.0 -9.3
MCTF 0.9 4.5 92.6 -19.3 19.1 0.9 8.1 0.2 24.2 0.1 0.1 -5.8 26.6 0.0 0.0 -6.5
IOMatch 0.0 100.0 100.0 8.9 0.0 100.0 100.0 8.9 0.0 100.0 100.0 8.9 0.0 100.0 100.0 8.9
OpenMatch 13.3 20.6 24.0 13.8 9.8 22.4 23.6 11.0 10.8 3.5 5.9 3.0 10.8 35.2 33.7 12.9
Ours 21.9 86.8 86.7 27.6 17.3 95.3 94.6 24.2 15.8 94.9 95.4 22.9 16.8 88.5 88.7 23.2

(a) (b) (c) 

Figure 4. Ablation studies: (a) shows the ablation study on learning objectives, demonstrating the effectiveness of each component. (b)
compares our method with SSL across varying label counts, highlighting its cost-saving potential. (c) analyzes the sensitivity to the
confidence threshold, suggesting a higher threshold for stable performance.

new classes into a unified “other” category, resulting in zero
accuracy for these tasks. Meanwhile, SCDM methods ex-
hibit low balance scores due to either low mean accuracy or
high standard deviation when classifying known, unknown,
and new classes. UCDM, however, demonstrates robustness
across varying mismatch proportions and datasets.

4.3. Ablation Studies

Learning objectives. Fig. 4 (a) evaluates loss components
on CIFAR-10 (60% mismatch), reporting known-class accu-
racy for the closed-set task, and balance score and accuracies
for known, unknown, and new classes in the open-set task.

The results reveal two key findings: (i) UCDM achieves the
best results across all evaluation criteria when optimized
with the full loss component L, demonstrating its effective-
ness. (ii) Realistic images play a crucial role in improv-
ing the classification performance of known classes. For
instance, when comparing the framework optimized with
L(DP ,DN )

generated + L(Dknown,D′
N )

generated to L(DP ,DN )
generated , there is a notable

improvement in performance for known classes.

Effectiveness of positive-negative instance generation.
Tab. 5 shows the comparison between instance generation
from random noise and our method.

Table 5. Compare our pipeline with random noise-based instances
on CIFAR-10 (60% mismatch), reporting known-class accuracy
(closed-set) and balance score (open-set). UCDMp\n use our
positive\negative pipeline if selected; otherwise, random noise is
applied. Best and second-best results are bolded and underlined.

variants UCDMp UCDMn known-class balance

I ✔ ✔ 95.6 94.6
II ✗ ✔ 82.9 72.8
III ✔ ✗ 90.0 79.3
IV ✗ ✗ 84.8 71.5

The results highlight two key observations: (i) Generat-
ing positive instances with our pipeline yields the best (I)
and second-best (III) performance, demonstrating its ef-
fectiveness. (ii) Randomly generating positive or negative
instances significantly reduces the balance score, as seen in
II, III, and IV, due to the lack of effective comparisons.

Comparison with SSL under varying label counts per
class. Fig. 4 (b) compares our method with SCDM methods
like IOMatch and OpenMatch using varying label counts
per class on CIFAR-10 with a 60% mismatch proportion.

The results show that UCDM, without labels, outperforms
IOMatch and OpenMatch (with 2,000 labels per class) in bal-
ance score. Additionally, it achieves superior known-class
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accuracy on the closed-set task compared to OpenMatch
with 500 labels per class. These findings highlight UCDM’s
effectiveness and its ability to reduce annotation costs.

Confidence threshold. Fig. 4 (c) analyzes the sensitivity of
the confidence threshold in confidence-based labeling. The
results show that the model remains robust with a threshold
above 0.95. However, performance, especially in the open-
set task, declines below 0.95 due to incorrect pseudo-labels.
We recommend using a higher threshold (e.g., δ = 0.98, as
in our experiments) to ensure stable performance.

5. Conclusion
Previous studies on CDM focus on SCDMCT and SCDM,
where the reliance on labeled data limits their applicabil-
ity to unsupervised scenarios and hinders performance in
open-set tasks. To overcome this, we propose Unsupervised
Learning for Class Distribution Mismatch (UCDM), which
uses a diffusion model to create or erase semantic classes
in unlabeled images, generating positive and negative pairs
for classifier training. We also provide two theorems to the-
oretically support this approach. This framework mitigates
the need for ground truth labels and extends applicability
to unsupervised settings. Extensive experiments on various
tasks and datasets show UCDM’s superior performance.

Limitations and future work Limited prompt variability
restricts positive instance diversity in UCDM. Integrating a
large language model could improve this.
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We organize our appendix as follows.

Algorithm:

• Loss function and pseudo-code

– Section A.1: Details of loss function
– Section A.2: Details on constructing pairs of real and generated images
– Section A.3: Pseudo-Code for diffusion-driven data generation and classifier training

• Proof

– Section A.4: Empirical evidence of negligible δt and δ̃t
– Section A.5: Proof of Theorem 3.1
– Section A.6: Proof of the forward process in negative instance generation
– Section A.7: Proof of Theorem 3.2

Additional experimental results:

• Mismatch settings

– Section B.1: Experimental results on 0% mismatch proportion across different datasets
– Section B.2: Experimental results on categories with varying proportions

• Sensitive and ablation analysis

– Section B.3: Experimental results on generated positive instances with varying parameter σt
– Section B.4: Experimental results on generated negative instances with varying parameter σt
– Section B.5: Analysis of the sensitivity to weights in the loss function
– Section B.6: Evaluation of the impact of the batch normalization layer on model training
– Section B.7: Evaluation of pseudo-label reliability in selected instances

• Visualization

– Section B.8: Visualization of generated positive images from random noise
– Section B.9: Visualization of generated negative images from random noise
– Section B.10: Visualization of generated positive images with varying parameter σt
– Section B.11: Visualization of generated negative images with varying parameter σt
– Section B.12: Visualization of DDIM Inversion and Negative Instances Generation in UCMD
– Section B.13: Visualization of generated positive and negative images in UCDM
– Section B.14:Visualization of generated harder training pairs

Experimental settings:

• Section C.1: Dataset details

• Section C.2: Training details
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A. Algorithm
A.1. Details of Loss Function
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Figure 5. Schematic diagram of loss functions.

To provide a clear understanding of the loss computation mechanism, we illustrates the process of deriving the loss function
from the logits in Fig. 5.

For the open-set task, we train an open-set classifier using both the positive and negative instance sets with the loss function
L(DP ,DN )

open , which aims to maximize the probability of positive instances being correctly assigned to their respective classes,
i.e., p(y|x), while minimizing the probability of assigning them to their corresponding negative counterparts, as shown
in Eq. (13).

L(DP ,DN )
open =

1

|DP |
∑

(x,y)∈DP

− log p(y|x) + 1

|DN |
∑

(x,y)∈DN

− log [1− p(y|x)] . (13)

Simultaneously, to improve the identification of known classes, we impose a constraint on the multi-binary prediction for
dimension 0, ensuring that the probability corresponding to the ground truth label is maximized, as shown in Eq. (14).

L(DP )
open = − 1

|DP |
∑

(x,y)∈DP

log p(y|x), (14)

Additionally, for the closed-set task, we train a closed-set classifier by minimizing the loss function Eq. (15).

L(DP )
closed = − 1

|DP |
∑

(x,y)∈DP

log p̂(y|x), (15)

Consequently, the loss function for the generated dataset is defined as:

L(DP ,DN )
generated = λ1L(DP ,DN )

open + λ2

[
L(DP )

open + L(DP )
closed

]
,

13
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where λ1 and λ2 control the trade-off for each objective.

A.2. Details on constructing pairs of real and generated images.

(a) generate positive and negative instances 

(d) construct pair for real image and generated image
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Figure 6. Schematic diagram for constructing positive and negative pairs.

In Fig. 6, we present a toy example to visualize the process of constructing pairs.

In the first step, as shown in Fig. 6 (a), we generate K positive and negative instances for each seed sample from the training
set, where K denotes the number of known classes. Each positive and negative instance derived from the same seed sample
forms a pair.

In the second step, as shown in Fig. 6 (b), we adopt a confidence-based labeling mechanism to assign pseudo-labels to
high-confidence samples. These samples are then removed from the training set, as depicted in Fig. 6 (c). Instances with
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pseudo-labels corresponding to known classes form the set Dknown, while those with the pseudo-label K + 1 are placed in
Dunknown.

Finally, we aim to construct pairs for real images from Dknown and Dunknown, as shown in Fig. 6 (d). For an instance x from
Dknown, we select a generated negative instance based on the seed sample x that has the same pseudo-label as x to serve as
its negative counterpart. For an instance x from Dunknown, we randomly sample a generated positive instance corresponding
to x to serve as its positive counterpart. Meanwhile, the remaining generated instances based on x do not participate in
training.

A.3. Pseudo-Code for Diffusion-Driven Data Generation and Classifier Training

To facilitate a better understanding of our problem setup and proposed method UCDM, we provide the pseudo code below.

Algorithm 1 Diffusion-based data generation
# Sample generation stage
Input: training set D, the prompt set of known classes C, diffusion model, positive instance set DP , negative instance set
DN

Initialize DP = ∅, DN = ∅
for x in D do

for Cy in C do
Forward x to noise vectors x̂T and xT using Eq. (1) and Eq. (6), respectively.
Forward x̂T and Cy to the diffusion model to obtain x̂0 using Eq. (2), and add x̂0 to DP .
Forward xT to the diffusion model to obtain x̃0 using Eq. (8), and add x̃0 to DN .

end for
end for
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Algorithm 2 UCDM: Unsupervised Learning for Class Distribution Mismatch
# Training classifier stage
Input: Training set D, positive instance set DP , negative instance set DN , set of real instances with pseudo-labels from
known classes Dknown, set of real instances with pseudo-labels from unknown classes Dunknown, known-class set Yknown,
negative instances of Dknown: D′

N , positive instances of Dunknown: D′
P , confidence-based labeling epoch et, classifier

Initialize Dknown = ∅, Dunknown = ∅, D′
P = ∅, D′

N = ∅
for epoch = 1, 2, . . . do

for S in {D,Dknown,Dunknown} do
if S ≠ ∅ then

Sample x from S.
if S = D then

Sample Bp and Bn from DP and DN , where Bp and Bn indicate the generated positive and negative instance
set based on x and prompt set C.

else if S = Dknown then
Sample x̃ from D′

N as a negative instance, where x̃ is generated based on x and Cy, with y being the pseudo-
label of x.

else if S = Dunknown then
Sample x̂ from D′

P as a positive instance, where x̂ is generated based on x and Cy, with y being randomly
sampled from {1, 2, . . . ,K}.

end if
Train classifier with sampled data using Eq. (12).

end if
end for
# Confidence-based labeling
if epoch = ec then

for x in D do
Forward x to the classifier to obtain q and q̃ using Eq. (10) and Eq. (11).
if argmax q = argmax q̃ and max q ≥ δ and max q̃ ≥ δ then

Assign pseudo-label argmax q to x.
if argmax q ∈ Yknown then

Add (x, argmax q) to Dknown, and select negatives from DN to add to D′
N .

else
Add (x, argmax q) to Dunknown, and select positives from DP to add to D′

P .
end if
Remove x from D and corresponding instances from DP and DN .

end if
end for

end if
end for
Return: classifier
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A.4. Empirical evidence of negligible δt and δ̃t

To assess the negligibility of δt and δ̃t, we compute the 1-cosine similarity between ϵ(xt, t, Cy) and ϵ(xt−1, t, Cy), as well
as between ϵ(xt, t) and ϵ(xt−1, t), over 20 DDIM steps. As shown in Tab. 6, the results indicate near-perfect alignment,
validating that both δt and δ̃t are negligible in practice.

Table 6. Values of δt and δ̃t across diffusion steps for condition and uncondition settings.
Step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
δt 4e-2 3e-2 2e-2 2e-2 1e-2 8e-3 5e-3 3e-3 3e-3 2e-3 2e-3 2e-3 2e-3 2e-3 1e-3 1e-3 1e-3 1e-3 1e-3 4e-4
δ̃t 4e-2 3e-2 2e-2 2e-2 1e-2 8e-3 5e-3 3e-3 3e-3 3e-3 2e-3 2e-3 2e-3 2e-3 1e-3 1e-3 1e-3 1e-3 1e-3 4e-4

A.5. Proof of Theorem 3.1

Proof. According to Eq. (2), when γ = 1 and σt = 0, we have the following formula:

xt−1 =

√
αt−1

αt
xt −

√
αt−1ψ(αt, αt−1, 0)ϵθ(xt, t, Cy)

We can then represent xt as:

xt =

√
αt

αt−1
xt−1 +

√
αt

(√
1

αt
− 1−

√
1

αt−1
− 1

)
ϵθ(xt, t, Cy)

=

√
αt

αt−1

(√
αt−1

αt−2
xt−2 +

√
αt−1

(√
1

αt−1
− 1−

√
1

αt−2
− 1

)
ϵθ(xt−1, t− 1, Cy)

)

+
√
αt

(√
1

αt
− 1−

√
1

αt−1
− 1

)
ϵθ(xt, t, Cy)

=

√
αt

αt−1

(√
αt−1

αt−2

[√
αt−2

αt−3
xt−3 +

√
αt−2

(√
1

αt−2
− 1−

√
1

αt−3
− 1

)
ϵθ(xt−2, t− 2, Cy)

]

+
√
αt−1

(√
1

αt−1
− 1−

√
1

αt−2
− 1

))
ϵθ(xt−1, t− 1, Cy)

+
√
αt

(√
1

αt
− 1−

√
1

αt−1
− 1

)
ϵθ(xt, t, Cy)

=

√
αtαt−1 . . . α1

αt−1αt−2 . . . α0
x0 +

t∑
i=1

√
αt

(√
1

αi
− 1−

√
1

αi−1
− 1

)
ϵθ(xi, i, Cy).

(16)

Let ϵθ(xi, i, Cy)− ϵθ(xi−1, i, Cy) = δi. Then, we have

ϵθ(xt, t, Cy) = −
√
1− ᾱt∇ log pθ(xt−1 | y) + δt,

which leads to:

xt =

√
αtαt−1 . . . α1

αt−1αt−2 . . . α0
x0 −

t−1∑
i=0

√
αt(1− ᾱi+1)

(√
1

αi+1
− 1−

√
1

αi
− 1

)
∇xi

log pθ(xi | y)

+

t−1∑
i=0

√
αt

(√
1

αi+1
− 1−

√
1

αi
− 1

)
δi+1.

(17)
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Let si =
√
αt(1− ᾱi+1)

(√
1

αi+1
− 1−

√
1
αi

− 1
)

, for 0 ≤ i ≤ t− 1. Then the above expression simplifies to:

xt =
√
αtx0 −

t−1∑
i=0

si∇xi log pθ(xi | y) +
t−1∑
i=0

si
1−√

ᾱi+1
δi+1. (18)

Applying Bayes’ theorem, the conditional term can be rewritten as:

xt =
√
αtx0 −

t−1∑
i=0

∇xi log

(
pθ(xi)pθ(y | xi)

pθ(y)

)si

+

t−1∑
i=0

si
1−√

ᾱi+1
δi+1. (19)

Since the gradient of log pθ(y) with respect to xi is zero, we obtain:

xt =
√
αtx0 −

t−1∑
i=0

[∇xi
log pθ(xi)

si +∇xi
log pθ(y | xi)

si ] +

t−1∑
i=0

si
1−√

ᾱi+1
δi+1. (20)

The proof is complete.

A.6. Proof of the Forward Process in Negative Instance Generation

Proof. From Eq. (2), when γ = 1 and σt = 0, the following equation holds:

xt−1 =

√
αt−1

αt
xt −

√
αt−1ψ(αt, αt−1, 0)ϵθ(xt, t, Cy).

Thus, we can represent xt as:

xt =

√
αt

αt−1
xt−1 +

√
αtψ(αt, αt−1, 0)ϵθ(xt, t, Cy).

Since ϵθ(xt, t, Cy) is not directly accessible, we adopt a forward Euler approximation, replacing ϵθ(xt, t, Cy) with
ϵθ(xt−1, t, Cy) following DDIM (Song et al., 2020a). As a result, we obtain:

xt =

√
αt

αt− 1
xt−1 +

√
αtψ(αt, αt−1, 0), ϵθ(xt−1, t, Cy).

The proof is complete.

A.7. Proof of Theorem 3.2

Proof. We begin with the following equation:

x̃t−1 =

√
αt−1

αt
x̃t −

√
αt−1

(√
1

αt
− 1−

√
1

αt−1
− 1

)
ϵθ(x̃t, t) (21)

Rearranging, we obtain:

x̃t =

√
αt

αt−1
x̃t−1 +

√
αt

(√
1

αt
− 1−

√
1

αt−1
− 1

)
ϵθ(x̃t, t)

Following a similar derivation process as in Eq. (16), we obtain Eq. (22):

x̃t =

√
αtαt−1 . . . α1

αt−1αt−2 . . . α0
x̃0 +

t∑
i=1

√
αt

(√
1

αi
− 1−

√
1

αi−1
− 1

)
ϵθ(x̃i, i). (22)
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Let ϵθ(x̃i, i)− ϵθ(x̃i−1, t) = δ̃i. Based on Eq. (3), we have:

ϵθ(x̃t, t) = −
√
1− ᾱt∇x̃t−1 log pθ(x̃t−1) + δ̃t.

Therefore, we obtain the following equation for x̃t:

x̃t =
√
αtx̃0 −

t−1∑
i=0

∇x̃i
log pθ(x̃i)

si +

t−1∑
i=0

si√
1− ᾱi+1

δ̃i+1. (23)

In the initial reversion step, where x̃t = xt, we have:

∇ log pθ(x̃t) = ∇ log pθ(xt).

Since

∇ log pθ(x̃t) = ∇ log pθ(x̃t−1)−
1√

1− ᾱt
δ̃t, and ∇ log pθ(xt) = ∇ log pθ(xt−1)−

1√
1− ᾱt

δt,

we obtain:
∇ log pθ(x̃t−1) = ∇ log pθ(xt−1)−

1√
1− ᾱt

δt +
1√

1− ᾱt
δ̃t.

By induction, we get:

∇ log pθ(x̃t−k) = ∇ log pθ(xt−k) +

t−1∑
j=t−k

1√
1− ᾱj+1

[
δ̃j+1 − δj+1

]
,

or more generally:

∇ log pθ(x̃i) = ∇ log pθ(xi) +

t−1∑
j=i

1√
1− ᾱj+1

[
δ̃j+1 − δj+1

]
.

Substituting into Eq. (23), we get:

x̃t =
√
αtx̃0 −

t−1∑
i=0

∇xi
log pθ(xi)

si −
t−1∑
i=0

t−1∑
j=i

si√
1− ᾱj+1

[
δ̃j+1 − δj+1

]
+

t−1∑
i=0

si√
1− ᾱi+1

δ̃i+1. (24)

Meanwhile, the corresponding equation from Theorem 3.1 is:

xt =
√
αtx0 −

t−1∑
i=0

[∇xi log pθ(xi)
si +∇xi log pθ(y|xi)

si ] +

t−1∑
i=0

si√
1− ᾱi+1

δi+1. (25)

Equating both sides, we obtain:

√
αtx0 −

t−1∑
i=0

[∇xi log pθ(xi)
si +∇xi log pθ(y|xi)

si ] +

t−1∑
i=0

si√
1− ᾱi+1

δi+1

=
√
αtx̃0 −

t−1∑
i=0

∇xi
log pθ(xi)

si −
t−1∑
i=0

t−1∑
j=i

si√
1− ᾱj+1

[
δ̃j+1 − δj+1

]
+

t−1∑
i=0

si√
1− ᾱi+1

δ̃i+1.

(26)

Solving for x̃0, we arrive at:

x̃0 = x0 −
1

√
αt

t−1∑
i=0

∇xi log pθ(y|xi)
si +

t−1∑
i=1

t−1∑
j=i

si√
αt(1− ᾱj+1)

[
δ̃j+1 − δj+1

]
. (27)

The proof is complete.

19



Unsupervised Learning for Class Distribution Mismatch

B. Additional Experimental Results
B.1. Experimental Results on 0% Mismatch Proportion across Different Datasets

Tab. 7 presents the results of our proposed method and the compared methods with a 0% mismatch proportion on CIFAR-10,
CIFAR-100, and Tiny-ImageNet.

For the open-set task, we observe that UCMD achieves the highest balance score, demonstrating excellent performance
even with a 0% mismatch proportion, where no instances from unknown categories are present. This further highlights
the effectiveness of the techniques used for generating negative instances. Additionally, we find that MCTF and IOMatch
exhibit the same balance score on CIFAR-10, but the high standard deviation in IOMatch results in its lower performance,
while MCTF’s low mean accuracy contributes to the balance score.

For the closed-set task, we find that UCMD performs slightly below the best accuracy under 0% mismatch proportion.
This is because, compared to other mismatch proportions, the number of training instances is smallest in the 0% mismatch
scenario, leading to a reduced count of generated positive instances (one realistic instance generates one positive instance
for each class). Performance could be further improved by generating more positive instances.

Table 7. The average accuracy of methods on the known class (kno.) for the closed-set task, and the balance score (bala.), as well as the
accuracy of known (kno.), unknown (unko.), and new classes for the open-set task across the CIFAR-10, CIFAR-100, and Tiny-ImageNet
datasets, with a 0% mismatch proportion. The best and second-best results are highlighted in bold and underlined, respectively.

method
CIFAR10 CIFAR100 Tiny-ImageNet

closed-set open-set closed-set open-set closed-set open-set
kno. kno. unkno. new bala. kno. kno. unkno. new bala. kno. kno. unkno. new bala.

DS3L 70.3 70.3 0.0 0.0 -17.2 21.1 21.1 0.0 0.0 -5.2 25.4 25.4 0.0 0.0 -6.0
UASD 78.0 78.0 0.0 0.0 -19.0 26.8 26.8 0.0 0.0 -6.6 5.1 5.4 0.0 0.0 -1.3
CCSSL 98.1 98.1 0.0 0.0 -24.0 50.4 50.4 0.0 0.0 -12.3 24.3 24.3 0.0 0.0 -5.9
T2T - - - - - 54.0 54.0 0.0 0.0 -13.2 40.6 40.6 0.0 0.0 -9.9
MCTF 51.9 51.3 0.0 0.0 -12.5 60.1 0.0 100.0 100.0 8.9 31.7 0.0 0.0 100.0 -24.4
IOMatch 96.7 96.0 12.7 5.1 -12.5 30.7 0.0 100.0 100.0 8.9 32.4 0.0 100.0 100.0 8.9
OpenMatch 96.3 95.5 7.5 3.6 -16.4 7.1 6.8 14.5 12.4 7.3 25.6 24.9 20.0 19.5 18.4
Ours 94.2 91.0 100.0 96.7 91.3 46.7 33.3 92.6 92.2 38.5 32.2 16.3 91.4 89.9 22.9

B.2. Experimental Results on Categories with Varying Proportions

To assess the impact of the proportions of known, unknown, and new classes, we conduct experiments by varying the
number of these categories while keeping the total instance count fixed. The results are presented in Tab. 8, Tab. 9, and
Tab. 10, respectively.

Impact of known classes. We investigate the influence of the number of known classes by setting it to 2, 4, and 6,
respectively, as presented in Tab. 8.

The experimental results lead to three key observations: (i) As the number of known classes increases, the performance
of all methods declines, primarily due to the increased complexity of the classification task. (ii) For the closed-set task,
our method shows competitive performance, achieving results comparable to the best-performing methods across various
numbers of known classes. (iii) For the open-set task, UCDM achieves the highest balance score across all settings and
outperforms all other methods in terms of accuracy for classifying both known and new classes.

These findings underscore the robustness and adaptability of the proposed method in handling varying numbers of known
classes across both closed-set and open-set tasks.

Impact of unknown classes. We investigate the effect of varying the number of unknown classes by setting it to 2, 4, and 6,
as detailed in Tab. 9.

The experimental results lead to two important observations: (i) UCDM demonstrates robustness to varying numbers of
unknown categories, primarily due to its negative instance generation pipeline. By erasing semantic class information from
images and generating instances that closely resemble the original ones, this approach ensures effective handling of the
challenges posed by different proportions of unknown categories. (ii) UCMD achieves the second-highest accuracy for the
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Table 8. The average accuracy of methods on the known class (kno.) for the closed-set task, the balance score (bala.), and the accuracy
of known (kno.), unknown (unko.), and new classes for the open-set task on the CIFAR-10 dataset, with varying proportions of known
classes. The item “4/2/2” denotes four known classes, two unknown classes, and two new classes. The best and second-best results are
highlighted in bold and underlined, respectively.

method
2/2/2 4/2/2 6/2/2

closed-set open-set closed-set open-set closed-set open-set
kno. kno. unkno. new bala. kno. kno. unkno. new bala. kno. kno. unkno. new bala.

DS3L 72.7 72.7 0.0 0.0 -17.7 51.4 51.4 0.0 0.0 -12.5 42.1 42.1 0.0 0.0 -10.3
UASD 79.2 79.2 0.0 0.0 -19.3 56.4 56.4 0.0 0.0 -13.8 42.8 42.8 0.0 0.0 -10.5
CCSSL 96.4 96.4 0.0 0.0 -23.5 79.1 79.1 0.0 0.0 -19.3 65.5 65.5 0.0 0.0 -16.0
T2T - - - - - 81.4 81.4 0.0 0.0 -19.9 69.6 69.6 0.0 0.0 -17.0
MCTF 62.7 62.7 0.0 0.0 -15.3 61.8 61.9 0.0 0.0 -15.1 52.1 51.9 0.0 0.0 -12.7
OpenMatch 70.2 61.1 49.8 37.9 38.0 68.8 60.1 15.6 34.0 14.2 35.9 24.9 76.7 55.4 26.3
IOMatch 90.0 87.8 7.1 6.1 -13.2 72.0 66.4 12.6 17.4 2.3 56.4 26.7 65.4 54.4 28.9
Ours 93.2 91.9 100.0 98.1 92.5 75.9 69.1 95.2 98.9 71.5 64.3 56.7 96.5 94.4 60.2

Table 9. The average accuracy of methods on the known class (kno.) for the closed-set task, the balance score (bala.), and the accuracy of
known (kno.), unknown (unko.), and new classes for the open-set task on the CIFAR-10 dataset, with varying proportions of unknown
classes. The item “2/4/2” indicates two known, four unknown, and two new classes. The best and second-best results are highlighted in
bold and underlined, respectively.

method
2/2/2 2/4/2 2/6/2

closed-set open-set closed-set open-set closed-set open-set
kno. kno. unkno. new bala. kno. kno. unkno. new bala. kno. kno. unkno. new bala.

DS3L 72.7 72.7 0.0 0.0 -17.7 67.1 67.1 0.0 0.0 -16.4 71.8 71.8 0.0 0.0 -17.5
UASD 79.2 79.2 0.0 0.0 -19.3 79.0 79.0 0.0 0.0 -19.3 74.0 74.0 0.0 0.0 -18.1
CCSSL 96.4 96.4 0.0 0.0 -23.5 97.2 97.2 0.0 0.0 -23.7 97.0 97.0 0.0 0.0 -23.7
T2T - - - - - - - - - - - - - - -
MCTF 62.7 62.7 0.0 0.0 -15.3 65.8 65.8 0.0 0.0 -16.0 54.3 54.3 0.0 0.0 -13.3
OpenMatch 70.2 61.1 49.8 37.9 38.0 76.8 75.9 2.6 3.1 -15.1 75.7 73.5 15.0 11.9 -1.3
IOMatch 90.0 87.8 7.1 6.1 -13.2 89.4 87.1 5.1 6.3 -14.2 89.2 87.3 6.2 5.8 -13.8
Ours 93.2 91.9 100.0 98.1 92.5 94.5 89.1 100.0 97.5 89.8 95.9 94.9 100.0 99.2 95.3

Table 10. The average accuracy of methods on the known class (kno.) for the closed-set task, the balance score (bala.), and the accuracy
of known (kno.), unknown (unko.), and new classes for the open-set task on the CIFAR-10 dataset, with varying proportions of new
classes. The item “2/2/4” denotes two known, two unknown, and four new classes. The best and second-best results are highlighted in
bold and underlined, respectively.

method
2/2/2 2/2/4 2/2/6

closed-set open-set closed-set open-set closed-set open-set
kno. kno. unkno. new bala. kno. kno. unkno. new bala. kno. kno. unkno. new bala.

DS3L 72.7 72.7 0.0 0.0 -17.7 72.7 72.7 0.0 0.0 -17.7 72.7 72.7 0.0 0.0 -17.7
UASD 79.2 79.2 0.0 0.0 -19.3 79.2 79.2 0.0 0.0 -19.3 79.2 79.2 0.0 0.0 -19.3
CCSSL 96.4 96.4 0.0 0.0 -23.5 96.4 96.4 0.0 0.0 -23.5 96.4 96.4 0.0 0.0 -23.5
T2T - - - - - - - - - - - - - - -
MCTF 62.7 62.7 0.0 0.0 -15.3 62.7 62.7 0.0 0.0 -15.3 62.7 62.7 0.0 0.0 -15.3
OpenMatch 70.2 61.1 49.8 37.9 38.0 70.2 61.1 49.8 42.2 41.5 70.2 61.1 49.8 43.1 42.2
IOMatch 90.0 87.8 7.1 6.1 -13.2 90.0 87.8 7.1 7.9 -12.1 90.0 87.8 7.1 7.8 -12.1
Ours 93.2 91.9 100.0 98.1 92.5 93.2 91.9 100.0 100.0 92.6 93.2 91.9 100.0 100.0 92.6
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closed-set task and the highest balance score for the open-set task across all settings. This suggests that UCMD remains
unaffected by variations in the count of unknown categories.

Impact of new classes. We explore the impact of varying the number of new classes by setting it to 2, 4, and 6, as shown in
Tab. 10.

From the results, we observe that UCMD demonstrates strong generalization performance, remaining insensitive to the
count of new classes, and achieves the best balance score. This indicates that the proposed method is robust to changes in
the number of new classes and can effectively handle open-set classification tasks.

B.3. Experimental Results on Generated Positive Instances with Varying Parameter σt

We evaluate the impact of random noise strength σt in the positive instance generation pipeline by setting it to 0 and 1 (our
setting), as shown in Fig. 7.

The results show that setting σt = 1 yields the best performance in both known-class accuracy on the closed-set task and
balance score on the open-set task. This indicates that increasing the strength of random noise in the positive instance
generation pipeline introduces more diversity into the training process.
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Figure 7. Experimental results comparing the generated positive instances with random noise strengths σt = 0 and σt = 1 (our setting),
respectively, on CIFAR-10 with a 60% mismatch proportion.

B.4. Experimental Results on Generated Negative Instances with Varying Parameter σt

We evaluate the impact of random noise strength σt in the negative instance generation pipeline by setting it to 1 and 0.2
(our setting), as shown in Fig. 8.

The results show that setting σt = 0.2 yields the best performance, especially in terms of the balance score. This suggests
that using a smaller σt in the negative instance generation pipeline helps achieve a more effective contrast with positive
instances.

B.5. Analysis of the Sensitivity to Weights in the Loss Function

We investigate the impact of the parameters λ1 and λ2, which balance the weights of detection and classification tasks, on
CIFAR-10 with a 60% mismatch proportion, as illustrated in Fig. 9. To reflect overall performance in the open-set task, we
report the balance score.

The results reveal the following findings: (i) The solid-line trend remains stable across all tasks with varying λ1, indicating
that performance is largely insensitive to this parameter. However, values between 1 and 3 tend to yield better results. (ii)
When λ2 is set between 2 and 5, the results consistently surpass those achieved with λ2 = 1, particularly in the closed-set
task. This suggests that tuning λ2 based on the classification task’s complexity can improve performance. (iii) The trends
observed in the closed-set task align closely with those in the open task, highlighting the interdependence between detection
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Figure 8. Experimental results comparing the generated negative instances with random noise strengths σt = 1 and σt = 0.2 (our setting),
respectively, on CIFAR-10 with a 60% mismatch proportion.

1 2 3 4 5
60

70

80

90

100

kn
ow

n-
cl

as
s 

ac
cu

ra
cy

(%
) closed-set task

weight of open task 1( 2 = 2)
weight of closed task 2( 1 = 1)

1 2 3 4 5
60

70

80

90

100
ba

la
nc

e 
sc

or
e(

%
)

open-set task

weight of open task 1( 2 = 2)
weight of closed task 2( 1 = 1)

Figure 9. Loss weight configurations.

and classification tasks.

B.6. Evaluation of the Impact of the Batch Normalization Layer on Model Training

Several studies (Oliver et al., 2018; Zhao et al., 2020; 2021; 2022b;a; 2024c;a) demonstrate the significant impact of noisy
data on models with batch normalization (BN). Noisy data affects the estimation of the mean and variance during the BN
process, leading to poor BN representations and preventing the model from learning optimal BN parameters (γbn and βbn).
Therefore, we suggest updating the parameters γbn and βbn when training solely with generated positive and negative
instances. This approach helps mitigate the negative impact of instances with incorrect pseudo-labels and enables the model
to learn better BN parameters.

Tab. 10 compares our method with a variant approach of updating BN during training for the closed-set and open-set tasks
on CIFAR-10 with a 60% mismatch proportion. Clearly, our method outperforms the latter on both tasks. This demonstrates
that training with generated positive and negative instances contributes to learning better BN representations and facilitates
more effective model training.

B.7. Evaluation of Pseudo-Label Reliability in Selected Instances

To evaluate the reliability of pseudo-labels assigned to the selected instances in the confidence-based labeling mechanism,
we present the count of instances with accurate pseudo-labels and the count of selected instances on CIFAR-10 under 0%
and 75% mismatch proportions in Fig. 11

From the results, we have the following two findings.

(i) The proportion of instances with accurate pseudo-labels relative to the selected instances is consistently high under both
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Figure 10. Ablation study of batch normalization layer.
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(a) 0% mismatch proportion.
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(b) 75% mismatch proportion.

Figure 11. Counts of selected samples and correctly pseudo-labeled samples across categories for each selection round, with class 2
representing the unified other category in testing, including both unknown classes from the training data and new classes introduced
during testing.
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0% and 75% mismatch proportions, highlighting the effectiveness of the confidence-based labeling. Notably, under a 0%
mismatch proportion, no instances in class 2 have accurate pseudo-labels, as all instances belong to the known classes.

(ii) As the selection rounds progress, the number of selected instances decreases, while the proportion of instances with
accurate pseudo-labels among the selected instances increases. This indicates that the model becomes more stable over
successive rounds.

B.8. Visualization of Generated Positive Images from Random Noise

We compare the positive instances generated by UCDM, starting from the seed sample, with those produced using conditional
guidance starting from random noise, as shown in Fig. 12.

Notably, the positive instances generated by UCDM not only exhibit the semantic class specified in the prompt but also
preserve the style of the seed sample, effectively mitigating the potential negative impact of domain shift.

Meanwhile, the “papillon” images correspond to a dog in the original image, while the randomly generated images depict a
butterfly. This discrepancy arises from polysemy—multiple semantic meanings or physical instantiations of class names
used as prompts. However, our method starts from the latent of the original image, exhibiting the expected semantics.

original UCDM random original UCDM random

* [CLASS] is unrelated to the semantic of 
original picture

* [CLASS] is related to the semantic of 
original image

[CLASS]:“duck”

[CLASS]:“cat”

[CLASS]:“dog”

[CLASS]:“sky”

[CLASS]:“papillon”

[CLASS]:“crown”

Figure 12. Visualization of positive instances generated by UCDM and random noise, with the prompt “A photo of a [CLASS]”. The
specific “[CLASS]” is indicated below each image.

B.9. Visualization of Generated Negative Images from Random Noise

We compare the negative instances generated by UCDM with those produced using unconditional guidance starting from
random noise, as shown in Fig. 13.

It is evident that when the semantic class in the images is unrelated to the prompt, UCDM tends to preserve the semantics of
the original image. In contrast, when the semantic class in the image matches the prompt, UCDM effectively erases the
semantic class. However, the randomly generated images fail to achieve this behavior.
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original randomUCDM original randomUCDM

*  [CLASS] is unrelated to the semantic class 
of original image

* [CLASS] is related to the semantic of original 
image

[CLASS]: “cat”

[CLASS]: “cat”

[CLASS]: “cat”

[CLASS]: “dog”

[CLASS]: “apple”

[CLASS]: “violin”

[CLASS]: “ ”

[CLASS]: “ ”

[CLASS]: “ ” [CLASS]: “ ”

[CLASS]: “ ”

[CLASS]: “ ”

Figure 13. Visualization of negative instances generated by UCDM, with the prompt “A photo of a [CLASS]”, and random noise. The
specific “[CLASS]” is indicated below each image.
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B.10. Visualization of Generated Positive Images with Varying Parameter σt

We present visualizations of positive instances generated by UCDM under varying levels of random noise strength (σt),
with the prompt set to “A photo of a [CLASS]”, as shown in Fig. 14.

From the results, we observe that as the random noise strength σt increases, the generated images exhibit greater diversity
while preserving the style and key visual characteristics, such as structure and color, of the original ones.

�� = 0.0 �� = 0.2original �� = 0.4 �� = 0.6 �� = 0.8 �� = 1.0

 creating semantic class “automobile”

 creating semantic class “dog”

 creating semantic class “man”

 creating semantic class “cat”

Figure 14. Visualization of positive instances generated by UCDM under varying random noise strengths (σt), with the prompt “A photo
of a [CLASS]”. Here, “[CLASS]” is specified as “automobile”, “dog”, “man”, and “cat”.

B.11. Visualization of Generated Negative Images with Varying Parameter σt

We visualize the negative instances generated by UCDM under varying levels of random noise strength (σt), with the prompt
set to “A photo of a dog”, in Fig. 15.

The results indicate that as the random noise strength σt increases, the discrepancy between the generated image and the
original one also grows. For images that do not match the semantic class, the original image may become distorted when
σt ≥ 0.4. Conversely, for images that do match the semantic class, the visual fidelity of the generated images improves.
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Figure 15. Visualization of negative instances generated by UCDM under varying random noise strengths (σt), with the prompt set to “A
photo of a dog”.
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B.12. Visualization of DDIM Inversion and Negative Instances Generation in UCMD

We compare our generated negative instance with instances generated using DDIM inversion and unconditional reverse, as
shown in Fig. 16.

As illustrated in Fig. 16, the difference between DDIM inversion and conditional inversion creates a distinct gap between
the two generated images. Our negative generation pipeline effectively erases the semantic class, while DDIM inversion
preserves the original image. This demonstrates that the semantic class is erased in conditional inversion, as formally stated
in Theorem 3.1.

DDIM unconditional 

inversion reverse

conditional

inversion

unconditional 

reverse

DDIM unconditional 

inversion reverse

conditional

inversion

unconditional 

reverse

DDIM unconditional 

inversion reverse

conditional

inversion

unconditional 

reverse

Figure 16. Visualization of negative instances generated by UCDM and DDIM inversion, using the prompt “A photo of a [CLASS].” Here,
[CLASS] is set to “A photo of a [CLASS]”. Here, [CLASS] is set to “dog”, “hot air balloon”, and “tree”, respectively.
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B.13. Visualization of Generated Positive and Negative Images in UCMD

We present visualizations of the positive and negative instances generated by UCDM in Fig. 17, Fig. 18, Fig. 19, and Fig. 20,
using seed samples from the ImageNet (Deng et al., 2009) dataset.

The results demonstrate that our negative instance generation pipeline effectively removes the semantic class from the
images while preserving the original image characteristics if they do not match the semantic class.

In addition, our positive instance generation pipeline produces instances that retain the style of the original image and
accurately reflect the semantic class specified in the prompt. Furthermore, the generated positive instances exhibit diversity.

positive generation pipeline: creating semantic class

negative generation pipeline: erasing semantic class
original dog deer horse bird cat

negative generation pipeline: erasing semantic class
original dog deer horse bird cat

positive generation pipeline: creating semantic class

Figure 17. Visualization of positive and negative instances generated by UCDM, where the seed sample is a bird, and semantic classes
such as “dog”, “deer”, “horse”, “bird”, and “cat” are created or erased using the prompt “A photo of a [CLASS]”.

30



Unsupervised Learning for Class Distribution Mismatch

negative generation pipeline: erasing semantic class
original dog deer horse bird cat

positive generation pipeline: creating semantic class

negative generation pipeline: erasing semantic class
original dog deer horse bird cat

positive generation pipeline: creating semantic class

Figure 18. Visualization of positive and negative instances generated by UCDM, where the seed sample is an airplane, and semantic
classes such as “dog”, “deer”, “horse”, “bird”, and “cat” are created or erased using the prompt “A photo of a [CLASS]”.
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negative generation pipeline: erasing semantic class
original dog deer horse bird cat

positive generation pipeline: creating semantic class

negative generation pipeline: erasing semantic class
original dog deer horse bird cat

positive generation pipeline: creating semantic class

Figure 19. Visualization of positive and negative instances generated by UCDM, where the seed sample is a car, and semantic classes such
as “dog”, “deer”, “horse”, “bird”, and “cat” are created or erased using the prompt “A photo of a [CLASS]”.
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negative generation pipeline: erasing semantic class
original dog deer horse bird cat

positive generation pipeline: creating semantic class

negative generation pipeline: erasing semantic class
original dog deer horse bird cat

positive generation pipeline: creating semantic class

Figure 20. Visualization of positive and negative instances generated by UCDM, where the seed sample is a hot air balloon, and semantic
classes such as “dog”, “deer”, “horse”, “bird”, and “cat” are created or erased using the prompt “A photo of a [CLASS]”.
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B.14. Visualization of generated harder training pairs

By designing more specific prompts to erase critical features, we generate harder training pairs with high visual similarity
and improved contrast. As shown in Fig. 21, this highlights the effectiveness of UCDM in producing challenging examples
for training.

seedpositive negative

positive negative seed

seed

seed

erase
hole

erase
keyboard
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 pointer
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finger

buttons

laptop

alarm 
clock

gloves

positive negative

positive negative

highly similar positive 
and negative samples

highly similar positive 
and negative samples

Figure 21. Generated hard training pairs where positive and negative instances are highly similar. Negative instances are created by
guiding the generation process with a carefully designed prompt, such as “erase hole from button.” This approach removes crucial features
from seed samples and shifts the original semantics.
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C. Experimental Settings
The section provides a detailed overview of the datasets and training procedures.

C.1. Dataset Details

This section provides detailed information about the datasets, including CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100 (Krizhevsky et al., 2009), and Tiny-ImageNet (Deng et al., 2009). The CIFAR-10 and CIFAR-100 dataset comprises
50,000 training and 10,000 testing images of 10 and 100 categories, respectively. Tiny-ImageNet is the subset of ImageNet
that contains 100,000 training and 10,000 testing images across 200 categories.

The known, unknown, and new classes in CIFAR-10, CIFAR-100, and Tiny-ImageNet are detailed in Tab. 11, Tab. 12, and
Tab. 13, respectively. Additionally, Tab. 14 and Tab. 15 present the instance counts for known, unknown, and new classes
across the training and testing sets of CIFAR-10, CIFAR-100, and Tiny-ImageNet, respectively.

Table 11. The class names of known, unknown, and new classes in CIFAR-10.
type class name
known class airplane, automobile
unknown class bird, cat, deer, dog, frog,
new class horse, ship, truck

Table 12. The class names of known, unknown, and new classes in CIFAR-100.
type class name

known class bear, camel, cattle, chimpanzee, flatfish, girl, house, keyboard, leopard, lion,
mouse, porcupine, possum, rabbit, raccoon, shrew, skunk, squirrel, tiger, wolf,

unknown class

apple, aquarium fish, baby, beaver, bed, bee, beetle, bicycle, bottle, bowl,
boy, bridge, bus, butterfly, can, castle, caterpillar, chair, clock, cloud,
cockroach, couch, crab, crocodile, cup, dinosaur, dolphin, elephant, forest, fox,
hamster, kangaroo, lamp, lawn mower, lizard, lobster, man, maple tree, motorcycle,
mountain, mushroom, oak tree, orange, orchid, otter, palm tree, pear, pickup truck,
pine tree, plain, plate, poppy, ray, road, rocket, rose, sea, seal, shark, skyscraper,

new class snail, snake, spider, streetcar, sunflower, sweet pepper, table, tank, telephone,
television, tractor, train, trout, tulip, turtle, wardrobe, whale, willow tree, woman, worm
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Table 13. The class names of known, unknown, and new classes in Tiny-ImageNet.

type class name

known class
goldfish, fire salamander, American bullfrog, tailed frog, American alligator, boa constrictor,
trilobite, scorpion, southern black widow, tarantula, centipede, goose, koala, jellyfish, brain coral,
snail, slug, sea slug, American lobster, spiny lobster

unknown class

black stork, king penguin, albatross, dugong, Chihuahua, Yorkshire Terrier, Golden Retriever,
Labrador Retriever, German Shepherd Dog, Standard Poodle, tabby cat, Persian cat,
Egyptian Mau, cougar, lion, brown bear, ladybug, fly, bee, grasshopper, stick insect, cockroach,
praying mantis, dragonfly, monarch butterfly, sulphur butterfly, sea cucumber, guinea pig,
pig, ox, bison, bighorn sheep, gazelle, arabian camel, orangutan, chimpanzee, baboon,
African bush elephant, red panda, abacus, academic gown, altar, apron, backpack,
baluster / handrail, barbershop, barn, barrel, basketball, bathtub, station wagon, lighthouse, beaker,
beer bottle, bikini, binoculars, birdhouse, bow tie, brass memorial plaque, broom, bucket,
high-speed train, butcher shop, candle, cannon, cardigan, automated teller machine,
CD player, chain, storage chest, Christmas stocking, cliff dwelling, computer keyboard,
candy store, convertible, construction crane, dam, desk, dining table, drumstick

new class

dumbbell, flagpole, fountain, freight car, frying pan, fur coat, gas mask or respirator,
go-kart, gondola, hourglass, iPod, rickshaw, kimono, lampshade, lawn mower, lifeboat, limousine,
magnetic, compass, maypole, military uniform, miniskirt, moving van, metal nail, neck brace, obelisk,
oboe, pipe organ, parking meter, payphone, picket fence, pill bottle, plunger, pole,
police van, poncho, soda bottle, potter’s wheel, missile, punching bag, fishing casting reel,
refrigerator, remote control, rocking chair, rugby ball, sandal, school bus, scoreboard,
sewing machine, snorkel, sock, sombrero, space heater, spider web, sports car,
through arch bridge, stopwatch, sunglasses, suspension bridge, swim trunks / shorts, syringe,
teapot, teddy bear, thatched roof, torch, tractor, triumphal arch, trolleybus, turnstile,
umbrella, vestment, viaduct, volleyball, water jug, water tower, wok, wooden spoon,
comic book, plate, guacamole, ice cream, popsicle, pretzel, mashed potatoes, cauliflower,
bell pepper, mushroom, orange, lemon, banana, pomegranate, meatloaf, pizza, pot pie, espresso,
mountain, cliff, coral reef, lakeshore, beach, acorn

Table 14. The counts of instances for known (kno.) and unknown (unkno.) classes in the training sets of CIFAR-10, CIFAR-100, and
Tiny-ImageNet datasets, with mismatch proportions ranging from 0% to 75%.

dataset category 0% 20% 40% 60% 75%
kno. unkno. kno. unkno. kno. unkno. kno. unkno. kno. unkno. kno. unkno.

CIFAR-10 2 5 10,000 0 10,000 2,500 10,000 6,667 10,000 15,000 10,000 3,0000
CIFAR-100 20 60 10,000 0 10,000 2,500 10,000 6,667 10,000 15,000 10,000 3,0000
Tiny-ImageNet 20 80 10,000 0 10,000 2,500 10,000 6,667 10,000 15,000 10,000 3,0000

Table 15. The counts of instances for known (kno.), unknown (unkno.), and new classes in the testing sets of CIFAR-10, CIFAR-100, and
Tiny-ImageNet datasets.

dataset category count
kno. unkno. new kno. unkno. new

CIFAR-10 2 5 3 2,000 2,000 2,000
CIFAR-100 20 60 20 2,000 2,000 2,000
Tiny-ImageNet 20 80 100 1,000 1,000 1,000
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C.2. Training Details

The details of generation pipelines and classifier training are shown in Tab. 16 and Tab. 17, respectively.

Table 16. Details of generation pipelines.
config value
model stable diffusion 2.0 model (Rombach et al., 2022)
prompt Cy A photo of a [CLASS]
inference steps 20
text guidance strength 7.5
random noise strength (positive pipeline) (σt) 1.0
random noise strength (negative pipeline) (σt) 0.2

Table 17. Details of classifier training.
config value
model WideResNet-28-2 (Zagoruyko & Komodakis, 2016)
data augmentation random horizontal flipping and normalization
batch normalization optimized over the initial 100 iterations
optimizer Adam
epoch 400
input size 32 × 32
batch size 32
learning rate 5× 10−3

loss weight λ1 1
loss weight λ2(CIFAR-10) 2
loss weight λ2(CIFAR-100) 5
loss weight λ2(Tiny-ImageNet) 20
interval for confidence-based labeling (in epochs) every 40 epochs
confidence-based labeling round 10

37


