
Community Detection Guarantees using Embeddings
Learned by Node2Vec

Andrew Davison
Department of Statistics

Columbia University
New York, NY 10027

ad3395@columbia.edu

S. Carlyle Morgan
Department of Statistics
University of Michigan
Ann Arbor, MA 48109
scmorgan@umich.edu

Owen G. Ward
Department of Statistics and Actuarial Science

Simon Fraser University
Burnaby, British Columbia

owen_ward@sfu.ca

Abstract

Embedding the nodes of a large network into an Euclidean space is a common
objective in modern machine learning, with a variety of tools available. These em-
beddings can then be used as features for tasks such as community detection/node
clustering or link prediction, where they achieve state of the art performance. With
the exception of spectral clustering methods, there is little theoretical understanding
for commonly used approaches to learning embeddings. In this work we examine
the theoretical properties of the embeddings learned by node2vec. Our main result
shows that the use of k-means clustering on the embedding vectors produced by
node2vec gives weakly consistent community recovery for the nodes in (degree
corrected) stochastic block models. We demonstrate this result empirically for both
real and simulated networks, and examine how this relates to other embedding
tools and machine learning procedures for network data.

1 Introduction

Within network science, a widely applicable and important inference task is to understand how the
behavior of interactions between different units (nodes) within the network depend on their latent
characteristics. This occurs within a wide array of disciplines, from sociological [14] to biological
[33] networks.

One simple and interpretable model for such a task is the stochastic block model (SBM) [20],
which assumes that nodes within the network are assigned a discrete community label. Edges
between nodes in the network are then formed independently across all pairs of edges, conditional
on these community assignments. While such a model is simplistic, various extensions have been
proposed. These include the degree corrected SBM (DCSBM), used to handle degree heterogenity
[23], and mixed-membership SBMs, used to allow for more complex community structures [4].
These extensions have seen a wide degree of empirical success [26, 28, 3].

A restriction of the stochastic block model and its generalizations is the requirement for a discrete
community assignment as a latent representation of the units within the network. While the statistical
community has previously considered more flexible latent representations [19], over the past decade,
there have been significant advancements in general embedding methods for networks. These produce

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

general vector representations of units within a network, and can achieve start-of-the-art performance
in downstream tasks for node classification and link prediction.

An early example of such a method is spectral clustering [37], which constructs an embedding of the
nodes in the network from an eigendecomposition of the graph Laplacian. The k smallest non zero
eigenvectors provides a k dimensional representation of each of the nodes in the network. This has
been shown to allow consistent community recovery [30], however it may not be computationally
feasible on the large networks which are now common. More recently, machine learning methods
for producing vector representations have sought inspiration from NLP methods and the broader
machine learning literature, such as the node2vec algorithm [16], graph convolutional networks [51],
graph attention networks [46] and others. There are now a wide class of embedding methods which
are available to practitioners which can be applied across a mixture of unsupervised and supervised
settings. [8] provides a survey of relatively recent developments and [49] reviews the connection
between the embedding procedure and the potential downstream task.

Embedding methods such as Deepwalk [38] and node2vec [16] consider random walks on the graph,
where the probability of such a walk is a function of the embedding of the associated nodes. Given
embedding vectors ω̂u, ωv ∈ Rd of nodes u and v respectively, from graph G with vertex set V , the
probability of a random walk from node u to node v is modeled as

P (v|u) = exp(⟨ωv, ω̂u⟩)∑
l∈V exp(⟨ωl, ω̂u⟩)

, (1)

where ⟨x, y⟩ is the inner product of x and y. This leads to a representation of each of the nodes in
the network as a vector in d dimensional Euclidean space. This representation is then amenable
to potential downstream tasks about the network. For example, if we wish to cluster the nodes in
the network we can simply cluster their embedding vectors. Or, if we wish to classify the nodes in
the network, we can use these embeddings to construct a multinomial classifier. We note that the
sampling schemes introduced by DeepWalk and node2vec motivate more complex models such as
GraphSAGE [17] and Deep Graph Infomax [47], which utilise similar node sampling schemes for
learning embeddings of networks.

As such, one of the key goals of learning vector representations of the units within networks is to allow
for easy use for a multitude of downstream tasks. However, there is little theoretical understanding to
what information is carried within these representations, and whether they can be applied successfully
and efficiently to downstream tasks. This paper aims to address this gap by examining whether
learned embeddings can facilitate community detection tasks in an unsupervised setting.

1.1 Summary of main results

Our main contribution is to describe the asymptotic distribution of the embeddings learned by the
node2vec procedure, and to then use this to give consistency guarantees when these embeddings
are used for community detection. A simple and informal form of our results, in the scenario of a
balanced two block stochastic block model (SBM), is given below:

Theorem 1. (Informal) Suppose we observe a sequence of graphs Gn on n vertices arising from
a two-dimensional stochastic block model: for each vertex u ∈ [n] we assign a community label
c(u) ∈ {0, 1} with equal probability, and then we form edges in the graph independently with
probability

P
(
u and v are connected

)
=

{
p̃ if c(u) = c(v)

q̃ otherwise
(2)

where p̃ ̸= q̃. Suppose that (ω̂u) are two-dimensional embeddings learned by node2vec on the above
graph (where we hide the dependence on n). Then there exists some distinct vectors ηc(u) ∈ R2 such
that

1

n

∑
u

∥ω̂u − ηc(u)∥22 → 0 in probability as n→ ∞. (3)

Consequently, if we apply a k-means algorithm to the embeddings learned via node2vec, as n→ ∞
we will classify at least 100(1− ϵ)% of vertices to the correct community (up to permutation) with
asymptotic probability 1, for any ϵ > 0.

2

We give formal theorem statements, complete with full conditions, in Section 3; we note that our
results extend to graph models beyond SBMs and are not limited to the dense regime. To give some
brief intuition for the method of proof, we show that the probability that a pair (u, v) is positively
or negatively sampled within node2vec concentrates around a function which depends only on the
underlying communities c(u) and c(v) of u and v. With this, we are able to argue that the node2vec
loss concentrates uniformly (in a neighborhood of their minima) around a function whose minimaM∗

is such thatM∗
u,v = M̃c(u),c(v) for some matrix M̃ . This allows us to show that any set of embeddings

which minimize the node2vec loss will converge (up to rotation) to vectors which depend only on
the community label, which consequently allows us to give consistency guarantees for clustering
algorithms such as k-means.

We highlight that while the theoretical properties of spectral clustering are well studied in the literature,
there are relatively few theoretical guarantees provided for more modern embedding procedures such
as node2vec. Our work provides some of the first theoretical results for models of this form. Our
main contributions are the following:

i) We give convergence guarantees for embeddings learned via node2vec, under various
sparsity regimes of (degree corrected) stochastic block models. We then use this to give
weak consistency guarantees for community detection, when using the embeddings as
features within a k-means clustering algorithm.

ii) We verify the theoretical guarantees for simulated networks and examine the the performance
of this procedure on real networks. We also empirically investigate important extensions
of these theoretical results, relating to rates of recovery for community detection between
node2vec and spectral clustering methods. We identify that as these networks grow the
sampling parameters in node2vec have little impact on the performance of the proposed
procedure.

The layout of the paper is as follows. In Section 2 we formulate the problem of constructing an
embedding of the nodes in a network and state the criterion under which we consider community
detection. In Section 3 we give the main result of this paper, the conditions under which k-means
clustering of the node2vec embedding of a network gives consistent community recovery. In Section 4
we verify these theoretical results empirically and investigate potential further results. In Section 5
we summarize our contributions and consider potential extensions.

1.2 Related Works

Community detection for networks is a widely studied area with a large literature of existing work.
Several notions of theoretical guarantees for community recovery are provided in [1], along with a
survey of many existing approaches. There are many existing works which consider the embeddings
obtained from the eigenvectors of the adjacency matrix of Laplacian of a network. For example,
[30] considers spectral clustering using the eigenvectors of the adjacency matrix for a stochastic
block model. Spectral clustering has provided such guarantees for a wide variety of network models,
including [35, 12, 42, 32, 29].

With the more recent development of random walk based embeddings, several recent works have
begun to examine the theoretical properties of such embeddings, however the treatment is limited
compared to spectral embeddings. [40] study the global minimizers of the node2vec loss in the setting
where d = n, viewing the problem as a matrix factorization problem. If M∗ is the global minimizing
matrix, we highlight that their results apply for any d ≥ rank(M∗). That said, this minimizer equals
the entrywise logarithm of functions of the adjacency matrix A; we note that entrywise logarithms of
matrices typically blow up their rank, and that even when "in expectation" the adjacency matrix is
of low rank, the actual adjacency matrix is of full rank with high probability [7]. This means that
it is unlikely when d ≪ n that the global minimizer is the actual minimizer, which is the regime
where embedding dimensions are considered in practice. We contrast that with our results, where we
can take d = Ω(κ) where κ is the number of communities, and obtain rigorous guarantees for the
embeddings.

[52] then studies the concentration of the best rank d approximation (with respect to the Frobenius
norm) of the matrix M∗ about it’s expected value under SBM and DCSBM models for node2vec
with p = q = 1 only, to argue that the best rank d approximation can be used for strongly consistent
community detection. We note that our results can be applied to node2vec without this restriction on

3

the hyperparameters. Otherwise, they give similar types of guarantees as our paper in similar sparsity
regimes and with similar rates, but in stronger norms. The key difference between our work and that
of [52] is that we are able to give guarantees for the the actual minimizers of the node2vec loss as
soon as d = Ω(κ), whereas [52] use an approximation to the global minimizer, without studying the
gap between this matrix and any minimizer of the node2vec loss (which is a cross-entropy loss, and
therefore difficult to relate to a Frobenius norm approximation). [10] and [11] study node2vec with
in the constrained setting (where U = V), and focus on giving more abstract guarantees for the gram
matrix in the setting of graphons. In [11] the norm guarantees extend only to the L1 norm between
the gram matrix of the embeddings and the minimizer, which is not sufficient to give guarantees on
the individual embeddings. In [10] the norm guarantees are upgraded to the L2 norm, albeit with less
optimal rates of convergence than what we show here. Our results also give guarantees for node2vec
in full generality (no restriction on p and q) and give the calculation details for SBMs and DCSBMs
to explicitly describe the asymptotic distribution in certain regimes.

2 Framework

We consider a network G consisting of a vertex set V of size n and edge set E . We can express this
also using an n× n symmetric adjacency matrix A, where Auv = 1 indicates there is an undirected
edge between node u and node v, with Auv = 0 otherwise, where u, v ∈ V . Given a realisation of
such a network, we wish to examine models for community structure of the nodes in the network. We
then examine the embeddings which can be obtained from node2vec and examine how they can be
used for community detection.

2.1 Probabilistic models for community detection

The most widely studied statistical model for community detection is the Stochastic Block Model
(SBM) [20]. The SBM specifies a distribution for the communities, placing each of the n nodes
into one of κ communities, where these community assignments are drawn from some categorical
distribution Categorical(π). Writing c(u) ∈ [κ] for the community of u, the connection probabilities
between edges are independent, conditional on these community assignments, with probability

P(Auv = 1|c(u), c(v)) = ρnPc(u),c(v), (4)

where P is a κ× κ matrix of probabilities, and ρn is the overall network sparsity (so that the network
has O(ρnn

2) edges on average). As a special case, the planted-partition model considers P as being
a matrix with p̃ along its diagonal and the value q̃ elsewhere, with κ equally balanced communities,
so π = (κ−1, . . . , κ−1). We will denote such a model by SBM(n, κ, p̃, q̃, ρn).

The most widely studied extension of the SBM is to incorporate a degree correction, equipping each
node with a non negative degree parameter θu drawn from some distribution independently of the
community assignments [4]. This alters the previous model, instead giving

P(Auv = 1|c(u), c(v), θu, θv) = ρnθuθvPc(u),c(v). (5)

Degree corrected SBM models can be more appropriate for modeling the degree heterogeneity seen
within communities in real world network data [23].

Performance of stochastic block models is assessed in terms of their ability to recover the true
community assignments of the nodes in a network, from the observed adjacency matrix A. Given an
estimated community assignment vector ĉ ∈ [κ]n and the true communities z then we can compute
the agreement between these two assignment vectors, up to a relabeling of c, as

L(ĉ, c) = min
σ∈Sκ

1

n

n∑
i=1

1
[
ĉ(i) ̸= σ(c(i))

]
(6)

where Sκ denotes the symmetric group of permutations σ : [κ] → [κ]. We can also control the
worst-case misclassification rate across all the different communities. If Ck is the set of nodes
belonging to community k, then this is defined as

L̃(ĉ, c) := max
k∈[κ]

min
σ∈Sκ

1

|Ck|
∑
i∈Ck

1
[
ĉ(i) ̸= σ(k)

]
. (7)

4

Guarantees of the form L(ĉ, c) = op(1) as n→ ∞ are known as weak consistency guarantees in the
community detection literature. Strong consistency considers the stronger setting where L(ĉ, c) = 0
with asymptotic probability 1. [1] provides a review of results for guarantees of these forms. In
this work we consider only the weak consistency setting; we highlight that stricter assumptions are
necessary in order to give these type of guarantees.

2.2 Obtaining embeddings from node2vec

Machine learning methods such as node2vec aim to obtain an embedding of each node in a network. In
general, for each node u two d-dimensional embedding vectors are learned, a centered representation
ωi ∈ Rd and a context representation ω̂i ∈ Rd. node2vec modifies the simple random walk
considered in DeepWalk [38], incorporating tuning parameters p, q which encourage the walk to
return to previously sampled nodes or transition to new nodes. Formally, this is defined by sampling
concurrent pairs of vertices in the second-order random walk (Xn)n≥1 defined via

P
(
Xn = u |Xn−1 = s,Xn−2 = v

)
∝

0 if (u, s) ̸∈ E ,
1/p if du,v = 0 and (u, s) ∈ E ,
1 if du,v = 1 and (u, s) ∈ E ,
1/q if du,v = 2 and (u, s) ∈ E .

(8)

where du,s denotes the length of the shortest path between u and s, after selecting some initial two
vertices. Here we consider the case where (X0, X1) is drawn uniformly from the set of edges in
order to initialize the walk. We note that when p = q = 1, corresponding to DeepWalk, this reduces
down to a simple random walk, in which case the initial distribution samples a vertex proportionally
to their degree.

A negative sampling approach is also used to approximate the computationally intractable loss
function, replacing − log(P (v|u)) in (1) with

− log σ(⟨ωu, ω̂v⟩)−
L∑

l=1

log σ(−⟨ωu, ω̂nl
⟩), (9)

where σ(x) = (1 + e−x)−1, the sigmoid function. The vertices n1, . . . , nL are sampled according to
a negative sampling distribution, which we denote as Pns(·|u). This is usually chosen as the unigram
distribution,

P (v|u) = deg(v)α∑
v′∈V deg(v′)α

, (10)

which does not depend on the current location of the random walk, u. This unigram distribution has
parameter α, which is commonly chosen as α = 3/4, as was used by word2vec [36]. Given this, and
using (9), the loss considered by node2vec for a random walk of length k can be written as

=

k+1∑
j=1

∑
i:0<|j−i|<W

[
− log σ(⟨ωvj , ω̂vi⟩)−

L∑
l=1

Enl∼Pns(·|vi) log σ(−⟨ωvj , ω̂nl
⟩)
]
. (11)

Here we use Enl∼Pns(·|vi) to denote the procedure to sample a draw from the negative sampling
distribution, with W = 1 commonly chosen. Given this loss function, stochastic gradient updates are
used to estimate the embedding vector for each node. This amounts to minimizing an empirical risk
function (e.g [41, 45]), which we can write as

Ln(U, V) :=
∑
i ̸=j

{
−Pn((i, j) ∈ P) log(σ(⟨ui, vj⟩))−Pn((i, j) ∈ N) log(1−σ(⟨ui, vj⟩))

}
. (12)

where Pn(·) := P(· | Gn), and P = P(Gn) and N = N (Gn) are sets of positive and negative samples
respectively. We consider a sequence of graphs Gn with |V| = n and study the behavior of this loss
function when n is large. To be explicit, Pn((i, j) ∈ P) denotes the probability (conditional on a
realization of the graph) that the vertices (i, j) appear concurrently within a random walk of length
k, and Pn((i, j) ∈ N) denotes the probability that (i, j) is selected as a pair of edges through the
negative sampling scheme (conditional on the random walk process in the first stage).

5

The loss depends on two matrices U, V ∈ Rn×d, with ui, vj ∈ Rd denoting the i-th and j-th rows
of U and V respectively. The rows of U correspond to the "centered representations" of each node,
while the rows of V correspond to the "context representation" (borrowing the terminology used by
e.g Word2Vec). In practice we can constrain the embedding vectors ui and vi to be equal if we wish;
we will consider both approaches in this paper. (If these are not constrained to be equal, the centered
representation is commonly used for downstream tasks.) We highlight Equation (12) is defined only
as a function of UV T . There are two potential approaches to deal with this. We can regularize
the objective function to enforce UTU = V TV , which does not change the matrix UV T that we
recover [53]. Alternatively, if these matrices are initialized to be balanced then they will remain
balanced during the gradient descent procedure [34]. Either procedure can be used to implicitly
enforce UTU = V TV , which reduces the symmetry group of (U, V) → UV T to the orthogonal
group. Similarly, if we constrain U = V then we obtain the same reduction.

2.3 Using embeddings for community detection

Having learned embedding vectors ωi for each node, we seek to use them for a further task, such as
node clustering or classification. For community detection a natural procedure is to perform k-means
clustering on the embedding vectors, using the estimated cluster assignments as inferred communities.
k-means clustering [18] aims to find k vectors x1, . . . , xk ∈ Rd which minimize the within cluster
sum of squares. This can be formulated in terms of a matrix X ∈ Rk×d and a membership matrix
Θ ∈ {0, 1}n×k where each row of Θ has exactly k − 1 zero entries. Then the k-means clustering
objective can be written as

Lk-means(Θ, X) =
1

n
∥Ω̂−ΘX∥2F (13)

where Ω̂ ∈ Rn×d is the matrix whose rows are the ω̂i. The non-zero entries in each row of Θ gives the
estimated community assignments. Finding exact minima to this minimization problem is NP-hard in
general [5]. For theoretical purposes, we will give guarantees for any (1 + ϵ)-minimizer to the above
problem, which returns any pair (Θ̂, X̂) for which Lk-means(Θ̂, X̂) ≤ (1+ ϵ)minΘ,X Lk-means(Θ, X),
and can be solved efficiently [25].

3 Results

Within this section, we give theoretical results which allow us to describe what happens when we use
node2vec to learn embedding vectors for each node in the network, and then use these as features
for a k-means clustering algorithm to perform community detection. Throughout, we assume that
we observe a sequence of graphs (Gn)n≥1 on n vertices drawn from a probabilistic model and fit a
node2vec model, according to one of the three scenarios below:

(i) We use DeepWalk (p = q = 1 in node2vec), and the graph is drawn according to a SBM
with ρn ≫ log(n)/n;

(ii) We use node2vec, and the graph is drawn according to a SBM with ρn = n−α for some
α < α′, where α′ depends on node2vec’s hyperparameters;

(iii) We use DeepWalk and a unigram parameter of α = 1, and the graph is drawn according to a
DCSBM with ρn ≫ log(n)/n where the degree heterogeneity parameters θu ∈ [C−1, C]
for some C <∞.

All probabilistic statements below are with respect to the joint law of Gn and the sampling which
occurs to form the node2vec loss. All proofs are deferred to the Appendix. There we also provide
extensions for the tasks of node classification and link prediction.

3.1 Asymptotic distribution of the embeddings

We begin with a result which describes the asymptotic distribution of the gram matrices formed by
the embeddings which minimize the loss Ln(U, V) over matrices U, V ∈ Rn×d.

Theorem 2. There exist constants Ã∞ and Ã2,∞ (depending on π, P and the sampling scheme) and a
matrix M∗ ∈ Rκ×κ (also depending on π, P and the sampling scheme) such that when d ≥ rk(M∗),

6

for any minimizer (U∗, V ∗) of L(U, V) over X ×X where

X = {U ∈ Rn×d : ∥U∥∞ ≤ Ã∞, ∥U∥2,∞ ≤ Ã2,∞},

we have that

1

n2

∑
i,j∈[n]

(
⟨u∗i , v∗j ⟩ −M∗

c(i),c(j)

)2
= C ·

{
Op((

max{logn,d}
nρn

)1/2) under scenarios (i) and (iii);
op(1) under scenario (ii);

where C is a constant depending on the (DC)SBM parameters, the node2vec hyperparameters, Ã∞
and Ã2,∞. In the case where we constrain U = V within node2vec, the same result holds under
scenarios i) and ii). Moreover, under all scenarios we can allow the number of communities κ to
grow with n - provided κ = o(nρn) - and still maintain consistency as n→ ∞.

To give some intuition, we describe the form of M∗ when the graph arises from a SBM(n, κ, p̃, q̃, ρn)
model when using DeepWalk. In this case, we show in the Appendix that

M∗
lm = α∗δlm + β∗(1− δlm) for l,m ∈ [κ]

for some constants α and β and δlm is the Kronecker delta. In the unconstrained case we have that

α∗ = log
(1

1 + k−1
· κp̃

p̃+ (κ− 1)q̃

)
, β∗ = log

(1

1 + k−1
· κq̃

p̃+ (κ− 1)q̃

)
. (14)

In the constrained case we instead have that β∗ = −α∗/(κ − 1), and that α∗ is a function of p/q
which is non-negative iff p > q, and equals zero when p ≤ q. With regards to the constants Ã∞ and
Ã2,∞, we have that ∥M∗∥∞ ≤ O(| log(p/q)|). Additionally, it is possible to writeM∗ = U∗

M (V ∗
M)T

where ∥U∗
M∥2,∞ and ∥V ∗

M∥2,∞ are upper bounded by O(| log(p/q)|1/2). In particular, this means
that Ã∞ and Ã2,∞ do not have any implicit dependence on n or κ, and so the constant in Theorem 2
is not affecting the rate here.

While Theorem 2 gives guarantees from the gram matrices formed by the embeddings, in practice
we want guarantees for the actual embedding vectors themselves. For convenience we suppose
that the embedding dimension d is chosen exactly to be the rank of M∗; upon doing so, we can
then obtain guarantees for the embedding vectors themselves. We recall that in the unconstrained
case, we implicitly suppose that we find embedding matrices U∗ and V ∗ which are balanced in that
(U∗)TU∗ = (V ∗)TV ∗.

Theorem 3. Suppose that the conclusion of Theorem 2 holds, and further suppose that d equals the
rank of the matrix M∗. Then there exists a matrix Ũ∗ ∈ Rκ×d such that

min
Q∈O(d)

1

n

n∑
i=1

∥u∗i − ũ∗c(i)Q∥22 = C ·

{
Op((

max{logn,d}
nρn

)1/2) under scenarios (i) and (iii);
op(1) under scenario (ii);

(15)

3.2 Guarantees for community detection

With Theorem 3, we are now in a position to give guarantees for machine learning methods which
use the embeddings as features for a downstream task. We only discuss using the embeddings for
clustering; in Appendix D.2 we discuss what can be said for other downstream tasks.

Theorem 4. Suppose that we have embedding vectors u∗i ∈ Rd for i ∈ [n] such that

min
Q∈O(d)

1

n

n∑
i=1

∥u∗i − ũ∗c(i)Q∥22 = Op(rn) (16)

for some rate function rn → 0 as n → ∞ and vectors ηl ∈ Rd for l ∈ [κ]. Moreover suppose that
δ := minl ̸=k ∥ũ∗l − ũ∗k∥2 > 0. Then if ĉ(i) is the community assignment of node i produced by
applying a (1 + ϵ)-approximate k-means clustering with k = κ to the matrix whose columns are the
u∗i , we have that L(c, ĉ) = Op(δ

−2rn) and L̃(c, ĉ) = Op(δ
−2rn). In the case where the RHS of

(16) is only op(1) instead, then instead L(c, ĉ) and L̃(c, ĉ) are δ−2op(1).

7

Within the SBM(n, κ, p̃, q̃, ρn) model, we can show in the unconstrained case that δ2 =
Θ(| log(p̃/q̃)|), and in the constrained case that δ2 = Θ((p̃/q̃)). As a result, this suggests that
as p̃/q̃ approaches 1, the task of distinguishing the communities becomes more difficult. This is
inline with basic intuition, along with our experimental results in Section 4. We note that, due to the
nature of the embedding vectors, for any proportion of vertices arbitrarily close to 1, the nodes will,
with high probability for sufficiently large n, be separated in the embedding space according to their
community assignments. This separation allows clustering methods, such as DBSCAN, to accurately
recover the communities of these nodes also.

Recall that from the discussion before, we know that M∗ equals the zero matrix in the constrained
regime when p̃ ≤ q̃ (and therefore the embeddings asymptotically contain no information about the
network). As in the case where p̃ > q̃ we can show that δ > 0, we get the immediate corollary.
Corollary 5. Under scenario (i), suppose the embedding vectors learned through the node2vec loss
are obtained by constraining the embedding matrices U = V . Then the embeddings can be used for
weakly consistent recovery of the communities if and only if p̃ > q̃.

As a result, the constrained model can be disadvantageous if used without a-priori knowledge of
the network beforehand (in that within-community connections outnumber between-community
connections), even though it avoids interpretability issues about which embedding vector should be
used as single representation for the node.

4 Experiments

In this section we provide simulation and real data experiments to empirically validate the previous
theoretical results. We demonstrate the performance, in terms of community detection, of k-means
clustering of the embedding vectors learned by node2vec, for both the regular and degree corrected
stochastic block model. We also investigate the role of the negative sampling parameter α and the
node2vec tuning parameters p and q, before examining performance on a real network with known
community structure.

We first simulate data from the planted partition stochastic block model, SBM(n/κ, κ, p̃, q̃, ρn). We
consider q̃ = p̃β for a range of values of β ≪ 1, giving varying strengths of associative community
structure. In each setting we vary both the number of true communities present and the number of
nodes in each community, considering n = 200 to n = 5000 and K = 2, 3, 4, 5. We use node2vec to
construct an embedding of the nodes in the network. 1 We use an embedding dimension of 64 and do
not modify other default tuning parameters for the embedding procedure unless specified, so that
p = q = 1. We investigate the role of these tuning parameters below, allowing them to vary as is
considered in node2vec. We pass these embedding vectors into k-means clustering, where k = κ, the
true number of communities present in the network. This estimates a community assignment for each
of the nodes in the network.

To evaluate the performance of our procedure, we compute the proportion of nodes correctly classified,
up to permutation of the community assignments. For each simulation setting we perform 10
replications. We show the resulting estimates in Figure 1(a), for the relatively sparse setting where
ρn = log(n)/n. For all settings, the proportion of nodes assigned to the correct community by
k-means clustering of the node2vec embeddings is high, particularly when the ratio of the between to
within community edge probabilities, β, is small. As expected, as we increase the number of nodes
in the network, a larger proportion of nodes are correctly recovered. We examine the empirical rate
of convergence of this procedure in the Appendix. This appears to be approximately super-linear
for dense networks and sub-linear for relatively sparse networks. Compared to the results of [50],
this indicates that node2vec may be supoptimal. In the Appendix we also show community recovery
using normalized mutual information (NMI) [9]. We also see good performance.

We can similarly evaluate the performance of node2vec for data generated from a degree corrected
SBM (DC-SBM). To generate such networks we modify the simulation setting used by [15]. We
generate the degree correction parameters θu = |Zu|+ 1− (2π)−1/2 where Zu ∼ N(0, σ = 0.25)
and incorporate these into the SBM(n/κ, κ, p̃, q̃, ρn) considered previously. Two nodes u and v in the
same community will have connection probability θuθvρnp̃ while for nodes in different communities

1We use the implementation of node2vec available at https://github.com/eliorc/node2vec without
any modifications.

8

https://github.com/eliorc/node2vec

(a) A relatively sparse SBM. (b) A degree corrected relatively sparse SBM.

Figure 1: Proportion of nodes correctly recovered for both the regular and degree corrected relatively
sparse SBM.

it will be θuθvρnq̃. We again learn an embedding of the nodes using a default implementation of
node2vec and cluster these embedding vectors using k-means clustering. We show the corresponding
results, in terms of the proportion of the nodes assigned to their correct communities under this
setting in Figure 1(b). As expected, the degree corrections make community recovery somewhat more
challenging however as we increase the number of nodes in the network, we are able to correctly
recover a high proportion of nodes.

We next wish to examine empirically the role of the unigram parameter α of Equation (10), and how
this affects community detection. While the previous theoretical results require α = 1 for weak
consistency of community recovery in the DC-SBM, we investigate if good empirical performance
is possible with other choices of this parameter. We consider the DC-SBM simulation described
previously, where we now vary α ∈ {−1, 0, 0.25, 0.5, 0.75, 1} when learning the node embeddings.
For each of these settings (with all other parameters as before) we consider the proportion of nodes
correctly recovered. We show this result for networks with κ = 2 communities in Figure 2. These
experiments indicate similar performance for a range of values of α. Further work is needed to
confirm the guarantees do indeed extend to these alternative choices of α, and we investigate this for
real networks in Section A of the appendix.

We also investigate the role of the node2vec tuning parameters p and q on performance. For κ = 2
we consider β = 0.01 and β = 0.2, giving networks with strong and weak associative community
structure respectively. We simulate from the previous relatively sparse DC-SBM with varying
numbers of nodes and fit node2vec, using p, q ∈ {0.5, 1, 2}. As the number of nodes in the network
increases all choices of p and q give similar good performance for both choices of β. This indicates
that the impact of these sampling parameters becomes limited as the networks become sufficiently
large. We provide further discussion and a visualization of this result in Appendix A.

Finally, we briefly examine the performance of our community detection procedure on the political
blog data collected by [2]. As highlighted by [23], degree heterogeneity makes community recovery
challenging for methods which do not account for this. We see similar performance if we cluster
using a Gaussian mixture model rather than k-means clustering. In particular, spectral clustering
struggles regardless of the graph Laplacian used. Our procedure shows excellent community recovery
(average NMI of 0.75) for a range of embedding dimensions and unigram parameter settings as shown
in Figure 3, with further details and an additional real network example in Appendix A.

9

Figure 2: Proportion of nodes correctly recovered as we vary
the negative sampling parameter in node2vec with mean and
one standard error for each setting. We see similar performance
for each choice of α.

Figure 3: Node2vec with k-
means clustering can recover
the communities in the political
blog data while spectral cluster-
ing fails.

5 Conclusion and Future Work

In this work we consider the theoretical properties of node embeddings learned from node2vec. We
show, when the network is generated from a (degree corrected) stochastic block model, that the
embeddings learned from DeepWalk and node2vec converge asymptotically to vectors depending
only on their community assignment. As a result, we show that K-means clustering of the node2vec
embedding vectors can provide weakly consistent estimates of the true community assignments of
the nodes in the network. We verify these results empirically using simulated networks.

There are several important future directions which can extend this work. One direction is in
extending the recovery results within the degree corrected SBM to the full range of hyperparmaeters
for node2vec, as our simulation studies indicate that a more general result may hold. There is also the
matter of increasing the strength of our results to give better rates and strongly consistent community
detection; one possible avenue of exploration would be to see whether our results and the results of
[52] could be combined to achieve this. Another improvement would be to study the behavior of the
random walk on the graph in the sparse regime, although this would require a generalization of e.g the
result of [13]. We have also not considered the task of estimating κ, the number of communities in a
SBM model, using the embeddings obtained by node2vec. This has been considered for alternative
approaches to community detection, ([22, 27] are some recent results) but not in the context of a
general embedding of the nodes. Finally, there is a desire to obtain consistency results for more recent
and complex network embedding methods, such as [17] and [47].

References
[1] Emmanuel Abbe. Community detection and stochastic block models: recent developments. The Journal of

Machine Learning Research, 18(1):6446–6531, 2017.

[2] Lada A. Adamic and Natalie Glance. The political blogosphere and the 2004 u.s. election: divided
they blog. In Proceedings of the 3rd International Workshop on Link Discovery, LinkKDD ’05, page
36–43, New York, NY, USA, 2005. Association for Computing Machinery. ISBN 1595932151. doi:
10.1145/1134271.1134277. URL https://doi.org/10.1145/1134271.1134277.

[3] Edoardo M Airoldi, David M. Blei, Stephen E. Fienberg, Eric P. Xing, and Tommi Jaakkola. Mixed
membership stochastic block models for relational data with application to protein-protein interactions. In
Proceedings of the international biometrics society annual meeting, volume 15, page 1, 2006.

10

https://doi.org/10.1145/1134271.1134277

[4] Edoardo M Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing. Mixed membership stochastic
blockmodels. Advances in neural information processing systems, 21, 2008.

[5] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of Euclidean sum-of-
squares clustering. Machine Learning, 75(2):245–248, May 2009. ISSN 1573-0565. doi: 10.1007/
s10994-009-5103-0. URL https://doi.org/10.1007/s10994-009-5103-0.

[6] Béla Bollobás. Threshold functions for small subgraphs. In Mathematical Proceedings of the Cambridge
Philosophical Society, volume 90, pages 197–206. Cambridge University Press, 1981.

[7] Kevin P. Costello and Van H. Vu. The rank of random graphs. Random Structures & Algorithms, 33(3):
269–285, 2008. doi: https://doi.org/10.1002/rsa.20219. URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/rsa.20219.

[8] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. A survey on network embedding. IEEE transactions on
knowledge and data engineering, 31(5):833–852, 2018.

[9] Leon Danon, Albert Diaz-Guilera, Jordi Duch, and Alex Arenas. Comparing community structure
identification. Journal of statistical mechanics: Theory and experiment, 2005(09):P09008, 2005.

[10] Andrew Davison. Asymptotics of ℓ_2 regularized network embeddings. Advances in Neural Information
Processing Systems, 35:24960–24974, 2022.

[11] Andrew Davison and Morgane Austern. Asymptotics of network embeddings learned via subsampling.
Journal of Machine Learning Research, 24(138):1–120, 2023.

[12] Shaofeng Deng, Shuyang Ling, and Thomas Strohmer. Strong consistency, graph laplacians, and the
stochastic block model. The Journal of Machine Learning Research, 22(1):5210–5253, 2021.

[13] Jian Ding, Eyal Lubetzky, and Yuval Peres. Anatomy of the giant component: The strictly supercritical
regime. Eur. J. Comb., 35:155–168, January 2014. ISSN 0195-6698. doi: 10.1016/j.ejc.2013.06.004. URL
https://doi.org/10.1016/j.ejc.2013.06.004.

[14] Linton Freeman. The development of social network analysis. A Study in the Sociology of Science, 1(687):
159–167, 2004.

[15] Chao Gao, Zongming Ma, Anderson Y. Zhang, and Harrison H. Zhou. Community detection in degree-
corrected block models. The Annals of Statistics, 46(5):2153 – 2185, 2018. doi: 10.1214/17-AOS1615.
URL https://doi.org/10.1214/17-AOS1615.

[16] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the
22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pages 855–864,
2016.

[17] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

[18] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algorithm. Journal of
the royal statistical society. series c (applied statistics), 28(1):100–108, 1979.

[19] Peter D Hoff, Adrian E Raftery, and Mark S Handcock. Latent space approaches to social network analysis.
Journal of the american Statistical association, 97(460):1090–1098, 2002.

[20] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First steps.
Social networks, 5(2):109–137, 1983.

[21] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, New York, NY,
USA, 2nd edition, 2012. ISBN 978-0-521-54823-6.

[22] Jiashun Jin, Zheng Tracy Ke, Shengming Luo, and Minzhe Wang. Optimal estimation of the number of
network communities. Journal of the American Statistical Association, pages 1–16, 2022.

[23] Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community structure in networks.
Physical review E, 83(1):016107, 2011.

[24] Vladimir Koltchinskii and Evarist Giné. Random Matrix Approximation of Spectra of Integral Operators.
Bernoulli, 6(1):113–167, 2000. ISSN 1350-7265. doi: 10.2307/3318636. URL http://www.jstor.org/
stable/3318636. Number: 1 Publisher: International Statistical Institute (ISI) and Bernoulli Society for
Mathematical Statistics and Probability.

11

https://doi.org/10.1007/s10994-009-5103-0
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20219
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20219
https://doi.org/10.1016/j.ejc.2013.06.004
https://doi.org/10.1214/17-AOS1615
http://www.jstor.org/stable/3318636
http://www.jstor.org/stable/3318636

[25] Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear Time Algorithms for Clustering Problems in Any
Dimensions. In Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia Palamidessi, and Moti Yung,
editors, Automata, Languages and Programming, Lecture Notes in Computer Science, pages 1374–1385,
Berlin, Heidelberg, 2005. Springer. ISBN 978-3-540-31691-6. doi: 10.1007/11523468_111.

[26] Pierre Latouche, Etienne Birmelé, and Christophe Ambroise. Overlapping stochastic block models with
application to the French political blogosphere. The Annals of Applied Statistics, 5(1):309 – 336, 2011.
doi: 10.1214/10-AOAS382. URL https://doi.org/10.1214/10-AOAS382.

[27] Can M Le and Elizaveta Levina. Estimating the number of communities by spectral methods. Electronic
Journal of Statistics, 16(1):3315–3342, 2022.

[28] Sirio Legramanti, Tommaso Rigon, Daniele Durante, and David B Dunson. Extended stochastic block
models with application to criminal networks. The Annals of Applied Statistics, 16(4):2369, 2022.

[29] Jing Lei. Network representation using graph root distributions. The Annals of Statistics, 49(2):745 – 768,
2021.

[30] Jing Lei and Alessandro Rinaldo. Consistency of spectral clustering in stochastic block models. The
Annals of Statistics, 43(1):215 – 237, 2015. doi: 10.1214/14-AOS1274. URL https://doi.org/10.
1214/14-AOS1274.

[31] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data, June 2014.

[32] Keith D Levin, Fred Roosta, Minh Tang, Michael W Mahoney, and Carey E Priebe. Limit theorems for
out-of-sample extensions of the adjacency and laplacian spectral embeddings. The Journal of Machine
Learning Research, 22(1):8707–8765, 2021.

[33] Feng Luo, Yunfeng Yang, Chin-Fu Chen, Roger Chang, Jizhong Zhou, and Richard H Scheuermann.
Modular organization of protein interaction networks. Bioinformatics, 23(2):207–214, 2007.

[34] Cong Ma, Yuanxin Li, and Yuejie Chi. Beyond procrustes: Balancing-free gradient descent for asymmetric
low-rank matrix sensing. IEEE Transactions on Signal Processing, 69:867–877, 2021.

[35] Shujie Ma, Liangjun Su, and Yichong Zhang. Determining the number of communities in degree-corrected
stochastic block models. The Journal of Machine Learning Research, 22(1):3217–3279, 2021.

[36] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. Advances in neural information processing systems, 26,
2013.

[37] Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. Advances
in neural information processing systems, 14, 2001.

[38] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 701–710, 2014.

[39] Yannik Pitcan. A note on concentration inequalities for u-statistics, 2019.

[40] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding as
matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of the eleventh ACM
international conference on web search and data mining, pages 459–467, 2018.

[41] Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of Mathematical
Statistics, 22(3):400–407, September 1951. ISSN 0003-4851, 2168-8990. doi: 10.1214/aoms/1177729586.
URL https://projecteuclid.org/journals/annals-of-mathematical-statistics/
volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.
full. Number: 3 Publisher: Institute of Mathematical Statistics.

[42] P Rubin-Delanchy, CE Priebe, M Tang, and J Cape. A statistical interpretation of spectral embedding: the
generalised random dot product graph. arxiv e-prints. arXiv preprint arXiv:1709.05506, 2017.

[43] Michel Talagrand. Upper and Lower Bounds for Stochastic Processes: Modern Methods and Classical
Problems. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys
in Mathematics. Springer-Verlag, Berlin Heidelberg, 2014. ISBN 978-3-642-54074-5. doi: 10.1007/
978-3-642-54075-2. URL https://www.springer.com/gp/book/9783642540745.

12

https://doi.org/10.1214/10-AOAS382
https://doi.org/10.1214/14-AOS1274
https://doi.org/10.1214/14-AOS1274
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://www.springer.com/gp/book/9783642540745

[44] Stephen Tu, Ross Boczar, Max Simchowitz, Mahdi Soltanolkotabi, and Ben Recht. Low-rank Solutions of
Linear Matrix Equations via Procrustes Flow. In Proceedings of The 33rd International Conference on
Machine Learning, pages 964–973. PMLR, June 2016. URL https://proceedings.mlr.press/v48/
tu16.html. ISSN: 1938-7228.

[45] Victor Veitch, Morgane Austern, Wenda Zhou, David M Blei, and Peter Orbanz. Empirical risk minimiza-
tion and stochastic gradient descent for relational data. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1733–1742. PMLR, 2019.

[46] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[47] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon Hjelm.
Deep Graph Infomax. arXiv:1809.10341 [cs, math, stat], December 2018. URL http://arxiv.org/
abs/1809.10341. arXiv: 1809.10341.

[48] V. H. Vu. Concentration of non-lipschitz functions and applications. Random Structures & Algorithms,
20(3):262–316, 2002. doi: https://doi.org/10.1002/rsa.10032. URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/rsa.10032.

[49] Owen G Ward, Zhen Huang, Andrew Davison, and Tian Zheng. Next waves in veridical network embedding.
Statistical Analysis and Data Mining: The ASA Data Science Journal, 14(1):5–17, 2021.

[50] Anderson Ye Zhang. Fundamental limits of spectral clustering in stochastic block models. arXiv preprint
arXiv:2301.09289, 2023.

[51] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph convolutional networks: a compre-
hensive review. Computational Social Networks, 6(1):1–23, 2019.

[52] Yichi Zhang and Minh Tang. A theoretical analysis of deepwalk and node2vec for exact recovery of
community structures in stochastic blockmodels. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 46(2):1065–1078, 2024. doi: 10.1109/TPAMI.2023.3327631.

[53] Zhihui Zhu, Qiuwei Li, Gongguo Tang, and Michael B Wakin. The global optimization geometry of
low-rank matrix optimization. IEEE Transactions on Information Theory, 67(2):1308–1331, 2021.

13

https://proceedings.mlr.press/v48/tu16.html
https://proceedings.mlr.press/v48/tu16.html
http://arxiv.org/abs/1809.10341
http://arxiv.org/abs/1809.10341
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.10032
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.10032

Appendix - Community Detection Guarantees using Embeddings Learned by
Node2Vec

The Appendix consists of the proofs of the results stated within the paper, along with some extra
discussions which would detract from the flow of the main paper. We also provide some additional
simulation results relating to node classification, and further simulated and real data experiments
examining community detection.

A Additional Experimental Results

Here we provide additional details describing the experimental results presented in the main paper.
We also describe additional experiments. All experiments were run on a computing cluster utilising
4 cores of an Intel E5-2683 v4 Broadwell 2.1GHz CPU or similar with 2 GB of memory per core.
Each individual experimental run required at most 2 hours of computing time. All experiments,
including initial preliminary experiments, required approximately 25k CPU hours. All code required
to reproduce all results is included in the code repository in the supplemental files.

Additional Simulation, Node Classification We provide a simple experiment to support the
theoretical results on node classification demonstrated in Section D of the appendix. We simulate
data from a SBM(n/κ, κ, p̃, q̃, ρn) as before with q̃ = p̃β as in the main text. We learn an embedding
of each node using node2vec with embedding dimension of 64 and all other parameters set at their
default values. We then use the true community labels of 10% of these nodes to train a (multinomial)
logistic regression classifier, and predict the class label for the remaining 90% of nodes in the network.
We examine the performance of this classification tool using the node2vec embeddings in terms of
classification accuracy. We show these results in Figure S1 for ρn = log(n)/n, with 10 simulations
for each setting, with the mean across these simulations and error bars indicating one standard error.
This classifier has excellent accuracy at predicting the labels of other nodes.

Figure S1: Classification accuracy using 10% of the node embeddings to learn a multinomial logistic
regression classifier. Mean and one standard error shown.

Additional Results, Community Detection Here we include additional simulation results which
were omitted from the main text. In particular, for the simulations considered in the main manuscript
we now examine the community recovery performance in terms of the normalized mutual information
[9]. We show the average NMI score across these simulations, along with error bars corresponding
to one standard error. In each case, the NMI metric is similar to the proportion of nodes correctly
recovered. As we increase the number of nodes this performance improves.

14

Figure S2: NMI for relatively sparse SBM. Mean and one standard error shown.

Figure S3: NMI for relatively sparse DC-SBM. Mean and one standard error shown.

Rates of Convergence We can also investigate the empirical convergence of these methods. Here,
we consider the same simulated SBM data as above, and examine the convergence in the proportion
of nodes correctly recovered, as we increase the number of nodes in the network, for κ = 2, 3, 4, 5.
We empirically investigate this convergence using a log-log plot, which is shown in Figure S5 for
a relatively sparse SBM. Our node2vec procedures demonstrates empirical convergence which is
super-linear for dense networks while being sub-linear for relatively sparse networks.

Varying the node2vec walk parameters We also wish to examine the performance of our proposed
clustering procedure when the parameters of the random walk are varied. While p and q are both
commonly chosen to be 1, resulting in a simple random walk, other values are possible. We consider
data simulated from the relatively sparse DC-SBM considered previously with κ = 2 communities and
consider the within between community probability ratio β = .01 and β = 0.2, corresponding to an
easier and harder setting to recover the communities respectively. We then consider p, q ∈ {0.5, 1, 2},
the common possible values and vary the number of nodes in each community as before. For each

15

Figure S4: NMI varying α for relatively sparse DC-SBM. Mean and one standard error shown.

Figure S5: Log-Log plot showing the rate of convergence as we increase the number of nodes in the
network. We show a fitted regression for each of the values of β, showing better convergence when
the difference between the within and between community edge probabilities is higher.

of these settings we perform community detection using node2vec and spectral clustering. When
β = 0.01 weobtain excellent community recovery for all values of p and q, as shown in Figure S6(a).
When β = 0.2 community recovery is more challenging for small networks for all values of p and
q. As the number of nodes increases, Figure S6(b) shows that all choices of p and q result in good
performance.

A.1 Performance on Real Networks

We wish to further examine the performance of this community detection procedure for real networks,
with known community structure. We also wish to compare this procedure to spectral clustering,
which is widely used in practice for community detection. We use two publicly available networks
containing known community structure. We first consider a network of emails between 1005 members

16

(a) β = 0.01 (b) β = 0.2

Figure S6: Varying the node2vec sampling parameters for DC-SBMs with β = 0.01 (left) and
β = 0.2 (right). Community recovery is harder when β is larger and this is seen for all values of p
and q for small networks. As the number of nodes increases we get good community recovery for all
choices of p and q.

of a large research institution, available as part of the Stanford Network Analysis Project [31]. There
are 25571 directed edges between the nodes in this network, with known ground truth communities
consisting of 42 departments present in this institution. We also consider a widely used dataset of
directed edges between 1490 U.S political blogs, collected before the 2004 elections [2]. Here the
directed edges correspond to hyperlinks, with ground truth communities corresponding to whether
the blogs has been identified as liberal or conservative.

For each of these datasets we compare the community recovery of Node2Vec and traditional spectral
clustering, using the normalized graph Laplacian. As is common in the literature, we remove the
direction from these edges and take the largest connected component, forming symmetric adjacency
matrices with 986 and 1222 nodes respectively. We then use the previously described procedure
to perform community detection using Node2Vec. We consider a range of embedding dimensions
(d = 16, 32, 64, 128, 256) and unigram sampling parameter (α = −1, 0.0, 0.25, 0.5, 0.75, 1.0), while
keeping all other parameters fixed at the defaults considered before. With the true number of
communities known, we then compare the estimated communities from 10 simulations for each of
these parameter settings, along with performing 10 simulations of spectral clustering for each of these
settings.

In Figure S7 we compare the performance of Node2Vec and spectral clustering for the Email network
and in Figure S8 we use the Political Blogs network. We measure community recovery in terms
of the normalized mutual information (NMI) between the estimated and true communities. Other
metrics such as the adjusted rand index (ARI) showing similar results. In each case the communities
estimated by Node2Vec are substantially closer to the true communities than those estimated by
spectral clustering. As highlighted by Karrer and Newman [23] for the political blog data, models
which do not account for degree heterogeneity can struggle to recover the underlying community
structure. As shown in Figure S8, spectral clustering is unable to recover the communities due to
this heterogeneity, while clustering using the Node2Vec embedding shows strong performance at
community recovery.

We also further expand on the role of the embedding parameters in the performance of Node2Vec on
these real networks. In Figure S9 we examine community recovery for the Email data as we vary the
embedding dimension d and the unigram sampling parameter α. As we vary each of these parameters
we see good community recovery in all settings. For this dataset all choices of embedding dimension
and unigram parameter give good NMI scores.

B Additional Notation

We give a brief recap of some of the notation introduced in the main paper, along with some more
notation which is used purely within the Supplemntary Material. Throughout, we will suppose that

17

Figure S7: Community recovery for the Email data, using both Node2Vec and Spectral Clustering.
Node2Vec can better recover the true communities.

Figure S8: Community recovery for the Political Blog data, using both Node2Vec and Spectral
Clustering. Node2Vec can better recover the true communities.

the graph G = (V, E) is drawn according to the following generative model: each vertex u ∈ V
have latent variables λu = (c(u), θu) where c(u) ∈ [κ] is a community assignment, and θu is a
degree-heterogenity correction factor. We then suppose that the edges auv ∈ {0, 1} in the graph Gn

on n vertices arise independently with probability

P(auv = 1 |λu, λv) = ρnθuθvPc(u),c(v) (S1)

for u < v, with auv = avu by symmetry for u > v2. The factor ρn accounts for sparsity in the
network. The above model corresponds to a degree corrected stochastic block model [23]; we

2To prevent notation overloading when A is used to indicate constants, we use auv to describe the presence
or absence of an edge between nodes u and v in the supplement, rather than Auv which was used in the main
text.

18

(a) Varying the embedding dimension used. (b) Varying the Unigram Parameter α.

Figure S9: The effect of different Node2Vec parameters on community recovery, measure in terms of
Normalized Mutual Information (NMI), for the Email Data.

highlight that the case where θu is constant across all u ∈ V corresponds to the original stochastic
block model [20]. For convenience, we will write

W (λu, λv) = θuθvPc(u),c(v) so P(Auv = 1 |λu, λv) = ρnW (λu, λv). (S2)

We then introduce the notation

W (λi, ·) := E[W (λi, λj) |λi], EW (α) := E[W (λi, ·)α] for α > 0. (S3)

Note that under the assumptions that the community assignments are drawn i.i.d from a
Categorical(π) random variable, and the degree correction factors are drawn i.i.d from a distri-
bution ϑ independently of the community assignments, we have

W (λi, ·) = θi · E[θ] · Ej∼Cat(π)[Pc(i),j | c(i)] = θi · E[θ] ·
κ∑

j=1

πjPc(i),j , (S4)

EW (α) = E[θα] · E[θ]α ·
κ∑

i=1

πi

(κ∑
j=1

πjPi,j

)α

(S5)

For convenience, we will write P̃c(i) =
∑κ

j=1 πjPc(i),j .

Recall that node2vec attempts to minimize the objective

Ln(U, V) :=
∑
i ̸=j

{
−P

(
(i, j) ∈ P(Gn) | Gn

)
log(σ(⟨ui, vj⟩))

− P
(
(i, j) ∈ N (Gn) | Gn

)
log(1− σ(⟨ui, vj⟩))

}
where U, V ∈ Rn×d, with ui, vj ∈ Rd denoting the i-th and j-th rows of U and V respectively, and
σ(x) := (1 + e−x)−1 denoting the sigmoid function. Here P and N correspond to the positive and
negative sampling schemes induced by the random walk and unigram mechanisms respectively.

C Proof of Theorems 2 and 3

C.1 Proof overview

To give an overview of the proof approach, we work by forming successive approximations to the
function Ln(U, V) where we have uniform convergence of the approximation error as n→ ∞ over
either level sets of the function considered, or the overall domain of optimization of the embedding
matrices U and V . We break these approximations up into multiple steps:

1. Theorems S1, S2, S3 and Proposition S4 - We begin by working with an approximation
L̂n(U, V) of Ln(U, V), where the sampling weights P

(
(i, j) ∈ P(Gn) | Gn

)
and P

(
(i, j) ∈

N (Gn) | Gn

)
are replaced by functions of the latent variables (λi, λj) of the vertices i and j,

along with aij in the case of fP(λi, λj).

19

2. The resulting approximation L̂n(U, V) has a dependence on the adjacency matrix of the
network. We argue that this loss function converges uniformly to its average over the
adjacency matrix when the vertex latent variables remain fixed; this is the contents of
Theorem S5.

3. So far, the loss function only looks between interactions of ui and vj for i ̸= j. For
theoretical purposes, it is more convenient to work with a loss function where the term with
i = j is included. This is handled within Lemma S6.

4. Now that we have an averaged version of the loss function to work with, we are able to
examine the minima of this loss function, and find that there is a unique minima (in the sense
that for any pair of optima matrices U∗ and V ∗, the matrix U∗(V ∗)T is unique). Moreover,
in certain circumstances we can give closed forms for these minima. This is the contents of
Section C.6.

5. This is then all combined together in order to give Theorems S13 and S14, which correspond
to Theorems 1 and 2 of the main text.

We recap that we consider three scenarios - referred to as Scenario (i), (ii) and (iii) throughout - when
proving the following result:

(i) We use DeepWalk (p = q = 1 in node2vec), and the graph is drawn according to a SBM
with ρn ≫ log(n)/n;

(ii) We use node2vec, and the graph is drawn according to a SBM with ρn = n−α for some
α < α′, where α′ depends on node2vec’s hyperparameters;

(iii) We use DeepWalk and a unigram parameter of α = 1, and the graph is drawn according to a
DCSBM with ρn ≫ log(n)/n where the degree heterogeneity parameters θu ∈ [C−1, C]
for some C >∞.

Generally speaking, the approach is the exact same for all three scenarios. As we have a closed formula
in the case where we examine DeepWalk, we will consistently provide the details for the DeepWalk
case first, and then discuss afterwards how the results and proofs change (if at all) when considering
node2vec in generality. Throughout, we also contextualize the proof by examining what it says for a
SBM(n, κ, p̃, q̃, ρn) model. This corresponds to a balanced network with π = (κ−1, . . . , κ−1).

C.2 Replacing the sampling weights

Before giving an approximation to Ln(U, V), we need to first come up with approximate forms
of P

(
(i, j) ∈ P(Gn) | Gn

)
and P

(
(i, j) ∈ N (Gn) | Gn

)
. The next three results give examples of

this. In this section we prove three main results. The first two give us guarantees for the sampling
probabilities of vertex pairs (u, v) for node2vec for any choice of the hyperparameters (p, q). In
particular they will allow us to argue that when the underlying graph arises from a SBM, the sampling
probabilities asymptotically depend only on the underlying communities. The last specializes this
to the case of DeepWalk (where p = q = 1), which has enough structure to allow us to get some
additional information, such as closed formula for these sampling probabilities, which can be used in
the case where the graph arises through a DCSBM.

Theorem S1. There exists α sufficiently small, depending on the walk length k, such that if ρn = n−α

then there exists a symmetric measurable (with respect to the sigma field generated by W) function
fP(λ, λ

′) which is bounded below away from zero, and bounded above by Cρ−1
n for some constant

C <∞, such that

max
i ̸=j

∣∣∣∣∣n2P
(
(i, j) ∈ P(Gn) | Gn

)
aijfP(λi, λj)

− 1

∣∣∣∣∣ = op(1). (S6)

Theorem S2. There exists α sufficiently small, depending on the walk length k, such that if ρn = n−α

then there exists a symmetric measurable (with respect to the sigma field generated by W) function
fP(λ, λ

′) which is bounded below away from zero, and bounded above by some constant C < ∞,
such that

max
i ̸=j

∣∣∣∣∣n2P
(
(i, j) ∈ P(Gn) | Gn

)
fN (λi, λj)

− 1

∣∣∣∣∣ = op(1). (S7)

20

The proof of these two results are given in Appendix E.1.1 and E.1.2 respectively. We note that
while in principle we could give a closed formula for fP and fN in this scenario, they are sufficiently
intractable to inspection that doing so would not provide any benefit.

In the case of DeepWalk where p = q = 1, the calculations involved are tractable enough such that
we can improve the sparsity constraints, give closed forms for the measurable functions discussed
above, and also provide rates of convergence.

Theorem S3. Denote

fP(λi, λj) :=
2k

ρnEW (1)
, (S8)

fN (λi, λj) :=
l(k + 1)

EW (1)EW (α)

(
W (λi, ·)W (λj , ·)α +W (λi, ·)αW (λj , ·)

)
. (S9)

Then we have that

max
i ̸=j

∣∣∣∣∣n2P
(
(i, j) ∈ P(Gn) | Gn

)
aijfP(λi, λj)

− 1

∣∣∣∣∣ = Op

((log n
nρn

)1/2)
, (S10)

max
i̸=j

∣∣∣∣∣n2P
(
(i, j) ∈ N (Gn) | Gn

)
fN (λi, λj)

− 1

∣∣∣∣∣ = Op

((log n
nρn

)1/2)
. (S11)

Proof. This is a consequence of [11, Proposition 26]. We highlight the referenced result supposes
that for the negative sampling scheme, vertices for which aij = 0 are rejected, whereas this does
not happen here. Other than for the factor of (1− aij) in the quoted result, the proof is otherwise
unchanged, which gives the statement above for P

(
(i, j) ∈ N (Gn) | Gn

)
.

With this, we then get the following result:

Proposition S4. Denote

L̂n(U, V) :=
1

n2

∑
i ̸=j

{
−fP(λi, λj)aij log(σ(⟨ui, vj⟩))−fN (λi, λj) log(1−σ(⟨ui, vj⟩))

}
(S12)

and define the set

ΨÃ :=
{
U, V ∈ Rn×d | Ln(U, V) ≤ ÃLn(0n×d, 0n×d)

}
⊆ Rn×d × Rn×d (S13)

for any constant Ã > 1, where 0n×d denotes the zero matrix in Rn×d. Then for any set X ⊆
Rn×d × Rn×d containing the pair of zero matrices On×d, we have under Scenario i) and iii) that

sup
(U,V)∈ΨA∩X

∣∣Ln(U, V)− L̂n(U, V)
∣∣ = Op

(
Ã ·

(log n
nρn

)1/2)
, (S14)

P
(
argmin
(U,V)∈X

Ln(U, V) ∪ argmin
(U,V)∈X

L̂n(U, V) ⊆ ΨÃ ∩X
)
= 1− o(1). (S15)

In Scenario (ii), the Op(·) bound is replaced by an op(1) bound.

Proof. The proof is essentially equivalent to Lemma 32 of [11] up to changes in notation, and so we
do not repeat the details.

Note that in practice we can choose A to be any constant greater than 1 but fixed with n - e.g A = 10,
and have the result hold. We will do so going forward.

C.3 Averaging over the adjacency matrix of the graph

Following the proof outline, the next step is to argue that Ln(U, V) is close to its expectation when
we average over the adjacency matrix of the graph Gn. We begin with showing what occurs in the

21

DeepWalk case (Scenarios (i) and (iii)), and at the end of the section we discuss how the proof
changes for the more general node2vec case. Note that we have

E[L̂n(U, V) |λ] = 1

n2

∑
i̸=j

{
−fP(λi, λj)ρnW (λu, λv) log(σ(⟨ui, vj⟩))−fN (λi, λj) log(1−σ(⟨ui, vj⟩))

}
(S16)

and so

En(U, V) :=
EW (1)

2k

(
L̂n(U, V)− E[L̂n(U, V) |λ]

)
(S17)

=
1

n2

∑
i̸=j

(
ρ−1
n aij −W (λi, λj)

)
· (− log σ(⟨ui, vj⟩)). (S18)

Note that E[En(U, V) |λ] = 0, and so it therefore suffices to control En(U, V)− E[En(U, V) |λ]
uniformly over embedding matrices U, V ∈ Rn×d. This is the contents of the next theorem.

Theorem S5. Begin by defining the set

B2,∞(Ã2,∞) :=
{
U ∈ Rn×d : ∥U∥2,∞ ≤ Ã2,∞

}
. (S19)

Then we have the bound

sup
U,V ∈B2,∞(Ã2,∞)

∣∣En(U, V)
∣∣ = Op

(
Ã2

2,∞

(d

nρn

)1/2)
. (S20)

In particular, we also have that

sup
U,V ∈B2,∞(Ã2,∞)

∣∣L̂n(U, V)− E[L̂n(U, V) |λ]
∣∣ = Op

(Ã2
2,∞k

EW (1)

(d

nρn

)1/2)
. (S21)

Proof. Begin by noting that for any set C ⊆ Rn×d × Rn×d for which 0n×d × 0n×d ∈ C, we have
that

sup
(U,V)∈C

|En(U, V)| ≤ sup
(U,V)∈C

∣∣En(U, V)− En(0n×d, 0n×d)
∣∣+ |En(0n×d, 0n×d)| (S22)

≤ sup
(U,V),(Ũ,Ṽ)∈C

∣∣En(U, V)− En(Ũ , Ṽ)
∣∣+ |En(0n×d, 0n×d)|. (S23)

We therefore need to control these two terms. We begin with the second; note that as

En(0n×d, 0n×d) =
1

n2

∑
i̸=j

(
ρ−1
n aij −W (λi, λj)

)
· 1

n2
(S24)

it follows by Lemma S30 that this term is Op((n
2ρn)

−1/2). For the first term, we make use of
a chaining bound. Note that if we write Tij = − log σ(⟨ui, vj⟩) and Sij = − log σ(⟨ũi, ṽj⟩) for
i, j ∈ [n], then we have that

En(U, V)− En(Ũ , Ṽ) =
1

n2

∑
i ̸=j

(
ρ−1
n aij −W (λi, λj)

)
· (Tij − Sij). (S25)

Because the function x 7→ − log σ(x) is 1-Lipschitz, it follows that

∥T − S∥2F ≤ ∥UV T − Ũ Ṽ T ∥2F , ∥T − S∥∞ ≤ ∥UV T − Ũ Ṽ T ∥∞ (S26)

and consequently we have that

P
(
|En(U, V)− En(Ũ , Ṽ)| ≥ u

)
(S27)

≤ 2 exp
(
−min

{ u2

128ρ−1
n n−4∥UV T − Ũ Ṽ T ∥2F

,
u

16ρ−1
n n−2∥UV T − Ũ Ṽ T ∥∞

})
(S28)

22

as a result of Lemma S30. Now, as U, V ∈ BF (AF)∩B2,∞(Ã2,∞), by Lemma S19 if we define the
metrics

dF ((U1, V1), (U2, V2)) := ∥U1 − U2∥F + ∥V1 − V2∥F , (S29)
d2,∞((U1, V1), (U2, V2)) := ∥U1 − U2∥2,∞ + ∥V1 − V2∥2,∞, (S30)

then we have that

P
(
|En(U, V)− En(Ũ , Ṽ)| ≥ u

)
(S31)

≤ 2 exp
(
−min

{ u2

128ρ−1
n n−4A2

F dF ((U, V), (Ũ , Ṽ))2
,

u

16ρ−1
n n−2Ã2,∞d2,∞((U, V), (Ũ , Ṽ))

})
.

(S32)

As a result of Corollary S22, it therefore follows that

sup
(U,V),(Ũ,Ṽ)∈T×T

∣∣En(U, V)− En(Ũ , Ṽ)
∣∣ = Op

(
Ã2

2,∞

(d

nρn

)1/2

+ Ã2
2,∞

d

nρn

)
(S33)

The desired conclusion follows by combining the bounds (S24) and (S33).

For the more abstract node2vec case under Scenario (ii), we highlight that we can take

En(U, V) =
1

n2

∑
i ̸=j

ρnfP(λi, λj)
(
ρ−1
n aij −W (λi, λj)

)
· (− log σ(⟨ui, vj⟩)). (S34)

Now, as fP(λu, λv) is a function of the community assignments only within the SBM case, we
can replace this by a matrix of constants fP,c,c′ for c, c′ ∈ [κ], and therefore the error term can be
decomposed into a sum∑

c1,c2

(ρnfP,c1,c2)
∑
i ̸=j

i:c(u)=c1
j:c(u)=c2

(
ρ−1
n aij −W (λi, λj)

)
· (− log σ(⟨ui, vj⟩)), (S35)

where we recall that maxc1,c2(ρnfP,c1,c2) <∞ as guaranteed by Theorem S1. Each of these terms
(of which there are finitely many) can be controlled using the exact same argument as in Theorem S5,
and so the conclusion of the Theorem also holds with the same overall rate of convergence in Scenario
(ii).

C.4 Adding in a diagonal term

Currently the sum in E[L̂n(U, V) |λ] is defined only terms i, j with i ̸= j - it is more convenient to
work with the version where the diagonal term is added in:

Rn(U, V) :=
1

n2

∑
i,j∈[n]

{
− fP(λi, λj)ρnW (λu, λv) log(σ(⟨ui, vj⟩)) (S36)

− fN (λi, λj) log(1− σ(⟨ui, vj⟩))
}
. (S37)

We show that this does not significantly change the size of the loss function.
Lemma S6. With the same notation as in Theorem S5, we have that

sup
U,V ∈B2,∞(Ã2,∞)

∣∣Rn(U, V)− E[L̂n(U, V) |λ]
∣∣

= Op

(1

n
Ã2

2,∞

(
∥ρnfP(λ, λ′)W (λ, λ′)∥∞ + ∥fN (λ, λ′)∥∞

))
.

In particular, in the case of DeepWalk we have that

sup
U,V ∈B2,∞(Ã2,∞)

∣∣Rn(U, V)− E[L̂n(U, V) |λ]
∣∣ = Op

(1

n
Ã2

2,∞

(2k∥W∥∞
EW (1)

+
2l(k + 1)∥W∥2∞
EW (1)EW (α)

))
.

23

Proof. Begin by noting that

0 ≤ Rn(U, V)− E[L̂n(U, V) |λ]

=
1

n2

n∑
i=1

{
− fP(λi, λj)ρnW (λu, λv) log(σ(⟨ui, vi⟩))− fN (λi, λj) log(1− σ(⟨ui, vi⟩))

}
.

(S38)
Note that we can bound

− log(σ(⟨ui, vj)) ≤ |⟨ui, vi⟩ ≤ ∥ui∥2∥vi∥2 (S39)
and similarly − log(1− σ(⟨ui, vi⟩)) ≤ |⟨ui, vi⟩| ≤ ∥ui∥2∥vi∥2. Moreover, we have the bounds
fP(λi, λj)ρnW (λi, λj) ≤ ∥ρnfP(λ, λ′)W (λ, λ′)∥∞ <∞, fN (λi, λj) ≤ ∥fN (λ, λ′)∥∞ <∞

(S40)
under our assumptions. As a result, because U, V ∈ B2,∞(Ã2,∞), we end up with the final bound∣∣Rn(U, V)− E[L̂n(U, V) |λ]

∣∣ ≤ 1

n
Ã2

2,∞

(
∥ρnfP(λ, λ′)W (λ, λ′)∥∞ + ∥fN (λ, λ′)∥∞

)
(S41)

which gives the stated result as the RHS is free of U and V .

C.5 Chaining up the loss function approximations

By chaining up the prior results, we end up with the following result:
Proposition S7. There exists a non-empty set Ψn for each n such that, for any setX ⊆ Rn×d×Rn×d

containing 0n×d × 0n×d, we have for DeepWalk that

sup
(U,V)∈Ψn∩B2,∞(Ã2,∞)

∣∣Ln(U, V)−Rn(U, V)
∣∣ = Op

((log n
nρn

)1/2

+ Ã2
2,∞

(d

nρn

)1/2)
(S42)

and

P
(

argmin
(U,V)∈B2,∞(Ã2,∞)∩X

Ln(U, V) ∪ argmin
(U,V)∈B2,∞(Ã2,∞)∩X

Rn(U, V) ⊆ ΨA ∩B2,∞(Ã2,∞) ∩X
)

= 1− o(1).
(S43)

For node2vec, the same result holds when we replace the (log n/nρn)
1/2 term with an op(1) term

and add the constraint that d ≪ nρn. The same result also holds when we constrain U = V , but
otherwise keep everything else unchanged.

C.6 Minimizers of Rn(U, V)

Recall that we have earlier defined

Rn(U, V) :=
1

n2

∑
i,j∈[n]

{
− fP(λi, λj)ρnW (λu, λv) log(σ(⟨ui, vj⟩))

− fN (λi, λj) log(1− σ(⟨ui, vj⟩))
}
.

(S44)

We now want to reason about the minima of these functions. To do so, note that the optimization
domain is non-convex - firstly due to the rank constraints on the matrix UV T , and secondly due to
the fact that the loss function is invariant to any mapping (U, V) → (UM,VM−1) for any invertible
d× d matrix M . To handle the second part, we consider the global minima of this function when
parameterized only in term of the matrix UV T . We will then see that the minima matrix is already
low rank.

We first begin by giving some basic facts about the function Rn(U, V) when parameterized as a
function of UV T .
Lemma S8. Define the modified function

Rn(M) :=
1

n2

∑
i,j∈[n]

{
− fP(λi, λj)ρnW (λu, λv) log(σ(Mij))− fN (λi, λj) log(1− σ(Mij))

}
.

(S45)
over all matrices M ∈ Rn×n. Then we have the following:

24

a) The function Rn(M) is strictly convex in M .

b) The global minimizer of Rn(M) is given by

M∗
ij = log

(fP(λi, λj)ρnW (λi, λj)

fN (λi, λj)

)
(S46)

and satisfies ∇MRn(M) = 0.

c) When restricted to a cone of semi-positive definite matricesM ∈ M⋟0
n , there exists a unique

minimizer to Rn(M) over this set, which we call M⋟0. Moreover, M⋟0 has the property
that ⟨∇MRn(M

⋟0),M⋟0 −M⟩ ≤ 0 for all M ∈ M⋟0
n .

Proof. For part a), this follows by the fact that the functions − log(σ(x)) and − log(1− σ(x)) are
positive and strictly convex functions of x ∈ R, the fact that fP(λi, λj)ρnW (λi, λj) and fN (λi, λj)
are positive quantities which are bounded above (see e.g Lemma S6), and the fact that the sum of
strictly convex functions is strictly convex. For part b), this follows by noting that each of the M∗

ij
are pointwise minima of the functions

rij(x) = −fP(λi, λj)ρnW (λu, λv) log(σ(x)))− fN (λi, λj) log(1− σ(x)) (S47)

defined over x ∈ R. Indeed, note that

drij
dx

= (−1 + σ(x))fP(λi, λj)ρnW (λu, λv) + σ(x)fN (λi, λj), (S48)

so setting this equal to zero, rearranging and making use of the equality σ−1(a/(a+ b)) = log(a/b)
gives the stated result. Part c) is a consequence of strong convexity, the optimization domain being
convex and self dual, and the KKT conditions.

To understand the form of the the global minimizer of Rn(M) in the DeepWalk case, by substituting
in the values for fP(λi, λj) and fN (λi, λj) we end up with

M∗
ij = log

(2Pc(i),c(j)EW (α)

(1 + k−1)E[θ]E[θ]α
(
θα−1
j P̃c(i)P̃

α
c(j) + θα−1

i P̃α
c(i)P̃c(j)

)) (S49)

= log
(2EW (α)

(1 + k−1)E[θ]E[θ]α
·

Pc(i),c(j)

P̃c(i)P̃c(j) ·
(
θα−1
i P̃α−1

c(i) + θα−1
j P̃α−1

c(j)

)) (S50)

In particular, from the above formula we get the following lemma as a consequence:

Lemma S9. Suppose that Scenarios (i) or (iii) holds, so that either a) θi is constant for all i, or
b) α = 1. Then if we write ΠC ∈ Rn×κ for the matrix where (ΠC)il = 1[c(i) = l], and define the
matrix

(M̃∗
α)lm = log

(2EW (α)

(1 + k−1)E[θ]E[θ]α
· Plm

P̃mP̃α
l + P̃α

mP̃l

)
for l,m ∈ [κ], (S51)

then we have that M∗ = ΠCM̃
∗
αΠ

T
C . In particular, as soon as the matrix ΠC is of full rank (which

occurs with asymptotic probability 1), then the rank of M∗ equals the rank of M̃∗
α. Moreover, as

soon as d is greater than or equal to the rank of M̃∗
α, (U, V) is a minimizer of Rn(U, V) if and only

if UV T =M∗.

Under Scenario (ii), the same result applies noting that fP and fN are functions only of the underling
communities, and so if we abuse notation and write e.g fP(l,m) to indicate the value of fP(λi, λj)
when c(i) = l and c(j) = m, one can take

(M̃∗)lm = log
(fP(l,m)ρnPl,m

fN (l,m)

)
(S52)

and have the above result hold.

25

We discuss in Appendix F what happens when we apply DeepWalk in the DCSBM regime when α ̸= 1.
To give an example of what M∗ looks like, we write it down in the case of a SBM(n, κ, p̃, q̃, ρn)
model, which is frequently used to illustrate the behavior of various community detection algorithms.
Such a model assumes that the community assignments πl = 1/κ for all l ∈ [κ], and that

Pkl =

{
p̃ if k = l,

q̃ if k ̸= l.
(S53)

In this case, we have that

P̃l =
p̃+ κ(q̃ − 1)

κ
for l ∈ [κ], EW (α) = E[θ]αE[θα] ·

(p̃+ (κ− 1)q̃

κ

)α

. (S54)

Substituting these values into the matrix M̃∗
α gives

(M̃∗
α)lm = log

(E[θα]
E[θ](1 + k−1)

· κp̃

p̃+ (κ− 1)q̃

)
δlm+log

(E[θα]
E[θ](1 + k−1)

· κq̃

p̃+ (κ− 1)q̃

)
(1−δlm).

(S55)
We highlight this is a matrix of the form αδlm + β(1− δlm), and so it is straightforward to describe
the spectral behavior of the matrix (see Lemma S31).

C.6.1 Minimizers in the constrained regime U = V

In the case where we have constrained U = V , it is not possible in general to write down the closed
form of the minimizer of Rn(M) over M⋟0

n . However, it is still possible to draw enough conclusions
about the form of the minimizer in order to give guarantees for community detection. We begin
with the proposition below. We state the next two results for DeepWalk only, but note that the first
generalizes to the node2vec case immediately.

Proposition S10. Suppose that θi is constant across all i. Supposing that M̃ ∈ Rκ×κ is of the form
M̃ = Ũ ŨT for matrices Ũ ∈ Rκ×d, define the function

R̃n(M̃) =
∑

l,m∈[κ]

p̂n(l)p̂n(m)
{
−2kPlm log σ(⟨ul, um⟩)−{P̃lP̃

α
m+P̃mP̃

α
l } log(1−σ(⟨ul, um⟩))

}
(S56)

where we define p̂n(l) := n−1|{i : c(i) = l}| for l ∈ [κ]. Then R̃n(M̃) is strongly convex, and
moreover has a unique minimizer as soon as d ≥ κ.

Moreover, any minimizer of Rn(M) over matrices M of the form M = UUT where U ∈ Rn×d must
take the form M = ΠCM

∗ΠT
C where (ΠC)il = 1[c(i) = l] where M∗ is a minimizer of R̃n(M̃). In

particular, once d ≥ κ, there is a unique minimizer to Rn(M).

Proof. The properties of R̃n(M̃) are immediate by similar arguments to Lemma S8 and standard
facts in convex analysis. We begin by noting that if we substitute in the values

ρnW (λi, λj)fP(λi, λj) =
2kPc(i),c(j)

EW (1)
, (S57)

fN (λi, λj) =
l(k + 1)

EW (1)EW (α)

(
P̃c(i)P̃

α
c(j) + P̃c(j)P̃

α
c(i)

)
, (S58)

for fP(λi, λj) and fN (λi, λj), then we can write that (recalling that Mij = ⟨ui, uj⟩)

Rn(M) :=
1

n2

∑
i,j∈[n]

{
− 2kPc(i),c(j) log σ(⟨ui, uj⟩) (S59)

− l(k + 1)

EW (1)EW (α)

(
P̃c(i)P̃

α
c(j) + P̃c(j)P̃

α
c(i)

)
log(1− σ(⟨ui, uj⟩))

}
(S60)

:=
∑

l,m∈[κ]

p̂n(l)p̂n(m)
{
− 2kPlm

1

|Cl||Cm|
∑

i∈Cl,j∈Cm

log σ(⟨ui, uj⟩) (S61)

− {P̃c(i)P̃
α
c(j) + P̃c(j)P̃

α
c(i)}

1

|Cl||Cm|
∑

i∈Cl,j∈Cm

log(1− σ(⟨ui, uj⟩))
}
(S62)

26

where for l ∈ [κ] we define p̂n(l) := n−1|{i : c(i) = l}|, along with the sets Cl = {i : c(i) = l}.
Now, note that as the functions − log(σ(x)) and − log(1 − σ(x)) are strictly convex, by Jensen’s
inequality we have that e.g

1

|Cl||Cm|
∑

i∈Cl,j∈Cm

− log σ(⟨ui, uj⟩) ≥ − log σ
(〈 1

|Cl|
∑
i∈Cl

ui,
1

|Cm|
∑
j∈Cm

uj

〉)
(S63)

(where we also used bilinearity of the inner product) where equality holds above if and only if the
ui are constant are across all indices i. In particular, any minimizer of Rn(M) must have the ui
constant across i ∈ Cl for each l ∈ [κ], which defines the function R̃n(M̃). This gives the claimed
statement.

In certain cases, we are able to give a closed form to the minimizer. We illustrate this for the case of
the SBM(n, κ, p̃, q̃, ρn) model.

Proposition S11. Let M̃∗ be the unique minimizer of R̃n(M̃) as introduced in Proposition S10.
In the case of a SBM(n, κ, p̃, q̃, ρn) model, we have that κ−2∥M̃∗ −M∗∥1 = Op((κ log κ/n)

1/4),
where M∗ is of the form

(M∗)ij = α∗δij −
α∗

κ− 1
(1− δij) (S64)

for some α∗ = α∗(p̃, q̃) ≥ 0. Moreover, α∗ > 0 iff p̃ > q̃.

Proof. We begin by arguing that the objective function R̃n(M̃) converges uniformly to the objective

R̄n(M̃) :=
1

κ2

∑
l,m∈[κ]

{
−2kPlm log σ(⟨ul, um⟩)−{P̃mP̃

α
l +P̃lP̃

α
m} log(1−σ(⟨ul, um⟩))

}
(S65)

over a set containing the minimizers of both functions. Note that this function is also strictly convex,
and has a unique minimizer as soon as d ≥ κ. To do so, we highlight that as we have that

max
k ̸=l

∣∣∣ p̂n(l)p̂n(k)− κ−2

κ−2

∣∣∣ = Op

((κ log κ
n

)1/2)
(S66)

by standard concentration results for Binomial random variables (e.g Proposition 47 of [11]), it
follows that ∣∣R̄n(M̃)− R̃n(M̃)

∣∣ ≤ R̄n(M̃) ·Op

((κ log κ
n

)1/2)
. (S67)

Consequently, R̃n(M̃) converges to R̄n(M̃) uniformly over any level set of R̄n(M̃), which neces-
sarily contains the minima of R̄n(M̃). If one does so over the set (for example)

A = {M̃ : R̄n(M̃) ≤ 10R̄n(0)} (S68)

(for example), then as R̄n(0) is constant across n, we have uniform convergence of (S67) over the set
A at a rate of Op

(
(log κ/np)1/2

)
. This argument can be reversed, which therefore ensures uniform

convergence (over the same set) which contains the minimizers (with the minimizer of R̃n(M) being
contained within this set with asymptotic probability 1) at a rate of Op

(
(κ log κ/n)1/2

)
.

With this, we note that an application of Lemma S33 gives that for any matrices M̃1 and M̃2 we have
that

R̄n(M̃1) ≥ R̄n(M̃2) + ⟨∆R̄n(M̃2), M̃1 − M̃2⟩ (S69)

+
C

κ2

∑
i,j∈[κ]

min{|(M̃2)ij − (M̃1)ij |2, 2|(M̃2)ij − (M̃1)ij |}. (S70)

where to save on notation, we define

C :=
1

4
e−∥M̃2∥∞ min

l,m
{2kPlm, P̃mP̃

α
l }. (S71)

27

In particular, if M̃2 = M̄∗ is an optimum of R̄n(M̃), then by the KKT conditions (similarly as in
Lemma S8) we have that

R̄n(M̃1)− R̄n(M̄
∗) ≥ C

κ2

∑
i,j∈[κ]

min{|(M̄∗)ij − (M̃1)ij |2, 2|(M̄∗)ij − (M̃1)ij |}. (S72)

In particular, if we then let M̃∗ be any minimizer of R̃n(M̃), then we have that

C

κ2

∑
i,j∈[κ]

min{|(M̄∗)ij − (M̃1)ij |2, 2|(M̄∗)ij − (M̃1)ij |} (S73)

≤ R̄n(M̃1)− R̄n(M̄
∗) ≤ R̄n(M̃1)− R̃n(M̄

∗) + R̃n(M̃
∗)− R̄n(M̄

∗) (S74)

≤ 2 sup
M∈A

∣∣R̃n(M)− R̄n(M)
∣∣ (S75)

on an event of asymptotic probability 1. Consequently, it follows by Lemma S34 that

1

κ2
∥M̄∗ − M̃∗∥1 = Op

(
(κ log κ/n)1/4

)
. (S76)

We now need to find the minimizing positive semi-definite matrix which optimizes R̄n(M̃). To do
so, we will argue that one can find α for which

M̂ij = αδij −
α

κ− 1
(1− δij), ∇R̄n(M̂) = C1κ1

T
κ , 1κ = (1, · · · , 1)T

for some positive constant C, as then the KKT conditions for the constrained optimization prob-
lem will hold. Indeed, for any positive definite matrix M , as by definition of M̂ we have
that ⟨∇R̄n(M̂), M̂⟩ = 0 as all of the eigenvectors of M̂ are orthogonal to the unit vector 1κ
(Lemma S31). It consequently follows that as ∇R̄n(M̂) is itself positive definite, we get that
⟨−∇R̄n(M̂), M̂ −M⟩ = ⟨∇R̄n(M̂),M⟩ ≥ 0. We now need to verify the existence of a constant α
for which this condition holds. We note that as M̂ij is constant across i = j, and also constant across
i ̸= j, to verify the condition that ∇R̄n(M̂) is proportional to 1κ1

T
κ , it suffices to check whether the

on and off diagonal terms of ∇R̄n(M̂) are equal to each other. This gives the equation

σ(α) ·
(
kp̃+ l(k + 1)

p̃+ (κ− 1)q̃

κ

)
= k(p̃− q̃) + σ(−α/(κ− 1))

(
kq̃ + l(k + 1)

p̃+ (κ− 1)q̃

κ

)
By applying Lemma S32, this has a singular positive solution in α if and only if k(p̃−q̃) ≥ k(p̃−q̃)/2,
which holds iff p̃ ≥ q̃. In the case where p̃ < q̃, it follows that the solution has α = 0.

C.7 Strong convexity properties of the minima matrix

Proposition S12. Define the modified function

Rn(M) :=
1

n2

∑
i,j∈[n]

{
− fP(λi, λj)ρnW (λu, λv) log(σ(Mij))− fN (λi, λj) log(1− σ(Mij))

}
.

(S77)
over all matrices M ∈ Rn×n. Then we have for any matrices M1,M2 ∈ Rn×n with
∥M1∥∞, ∥M2∥∞ ≤ Ã∞ that

Rn(M1) ≥ Rn(M2) + ⟨∇Rn(M2),M1 −M2⟩+
C̃e−Ã∞

2
· 1

n2
∥M1 −M2∥2F (S78)

where C̃ = minl,m{2kPl,m, P̃
α
l P̃m} for Scenarios (i) and (iii), and C̃ =

min{∥ρnfP(λ, λ′)∥−∞, ∥fN (λ, λ′)∥−∞} > 0 for Scenario (ii). Moreover,

28

i) If Rn(M) is constrained over a set X = {M = UV T : U, V ∈ Rn×d, ∥M∥∞ ≤ Ã∞},
and there exists M∗ in X such that ∇Rn(M

∗) = 0, then we have that

1

n2
∥M∗ −M∥2F ≤ 2C̃−1eÃ∞ ·

(
Rn(M)−Rn(M

∗)
)

for all M ∈ X . (S79)

ii) If Rn(M) is constrained over a set X≥0 = {M = UUT : U ∈ Rn×d, ∥M∥∞ ≤ Ã∞ },
and there exists M∗ in X≥0 such that ⟨∇Rn(M

∗),M −M∗⟩ ≥ 0 for all M ∈ X≥0, then
we get the same inequality as in part i) above.

Proof. The first inequality follows by an application of Lemma S33, with the second and third parts
following by applying the conditions stated and rearranging.

C.8 Convergence of the gram matrices of the embeddings

By combining together Proposition S12 and Proposition S7 we end up with the following result:
Theorem S13. Suppose that the conditions of Lemma S9 hold. (In particular, recall that d ≥ κ.)
Then there exist constants Ã∞ and Ã2,∞ (depending on the parameters of the model and sampling
scheme) and a matrix M∗ ∈ Rκ×κ (also depending on the parameters of the model and the sampling
scheme) such that for any minimizer (U∗, V ∗) of L(U, V) over the set

X = {(U, V) : ∥U∥∞, ∥V ∥∞ ≤ Ã∞, ∥U∥2,∞, ∥V ∥2,∞ ≤ Ã2,∞}, (S80)

we have that

1

n2

∑
i,j∈[n]

(
⟨u∗i , v∗j ⟩ −M∗

c(i),c(j)

)2
= C ·

{
Op((

max{logn,d}
nρn

)1/2) under Scenarios (i) and (iii);
op(1) under Scenario (ii);

(S81)
for some constant C depending on the model, the node2vec hyperparameters, Ã∞ and Ã2,∞. In the
case where we constrain U = V , the same result holds provided the conditions of Proposition S10
hold.

Proof. We note that by Lemma S9, there exists a minimizer M̃∗ for Rn(M) of the form M̃∗ =

ΠM∗ΠT for a matrix M∗ ∈ Rκ×κ. We can then take Ã∞ and Ã2,∞ as 2∥M∗∥∞ and 2∥M∗∥2,∞.
We highlight that we can do this even when d > κ, as we can embed M∗ into the block diagonal
matrix diag(M∗, Od−κ,d−κ), which preserves both the norms above. Lemma S8 and Proposition S12
then guarantee that

1

n2
∥U∗(V ∗)T − M̃∗∥2F ≤ C̃ ·

(
Rn(UV

T)−Rn(M̃
∗)
)

(S82)

for some constant C̃ depending only on the quantities mentioned in the theorem statement. As X is a
subset of B2,∞(Ã2,∞), and (U∗, V ∗) is a minimizer of L(U, V), we end up getting that(

Rn(UV
T)−Rn(M̃

∗)
)

(S83)

≤ Rn(UV
T)− Ln(U

∗, V ∗) + Ln(M
∗)−Rn(M̃

∗) (S84)

≤ 2 sup
(U,V)∈X

∣∣Rn(U, V)− Ln(U, V)
∣∣ (S85)

from which we can apply Proposition S7 to then give the claimed result.

We give some brief intuition as to the size of the constants involved here, to understand any potential
hidden dependencies involved in them. Of greatest concern are the constants Ã∞ and Ã2,∞ (as the
remaining constants are explicit throughout the proof, and depend only on the hyperparameters of the
sampling schema and the model in a polynomial fashion). Note that in the case where k is large and
we have a SBM(n, κ, p̃, q̃, ρn) model and we apply the DeepWalk scheme, from the discussion after
Lemma S9, the minimizing matrix M∗ takes the form

(M∗)lm ≈ log
(κp̃

p̃+ (κ− 1)q̃

)
δlm + log

(κq̃

p̃+ (κ− 1)q̃

)
(1− δlm). (S86)

29

Supposing for simplicity that p̃ > q̃, it follows that we can take can take Ã∞ to be of the order
O(log(p̃/q̃)) when κ is large. In the rate from Proposition S12, this gives a rate of O(p̃/q̃) from the
eÃ∞ factor; note that the dependence on the parameters of the models here are not unreasonable. As
for Ã2,∞, we first highlight the fact that

(κ− 1) log
(κq̃

p̃+ (κ− 1)q̃

)
→ p̃− q̃

q̃
as κ→ ∞. (S87)

By Lemma S31 we can therefore take Ã2,∞ to be a scalar multiple of | log(p̃/q̃)|1/2, avoiding any
implicit dependence on κ or the embedding dimension d.

C.9 Convergence of the embedding vectors

We can then get results guaranteeing the convergence of the individual embedding vectors (rather
than their gram matrix) up to rotations, as stated by the following theorem.

Theorem S14. Suppose that the conclusion of Theorem S13 holds, and further suppose that d equals
the rank of the matrix M∗. Then there exists a matrix Ũ∗ ∈ Rκ×d such that

min
Q∈O(d)

1

n

n∑
i=1

∥u∗i −ũ∗c(i)Q∥22 = C ·

{
Op((

max{logn,d}
nρn

)1/2) under Scenarios (i) and (iii);
op(1) under Scenario (ii);

(S88)

Proof. We handle the cases where U ̸= V and U = V separately. For the case where U ̸= V , we
note that without loss of generality we can suppose that UUT = V V T , in which case we can apply
Lemma S23 and Theorem S13 to give the stated result. To do so, we note that by Lemma S25 we have
that n−1σd(ΠM

∗ΠT) ≥ cσd(M
∗) for some constant c with asymptotic probability 1, as a result

of the fact that nk(Π) ≥ 1/2nπk with asymptotic probability 1 uniformly across all communities
k ∈ [κ]. As moreover we have that n−1∥UV T −ΠM∗ΠT ∥op ≤ n−1∥UV T −ΠM∗ΠT ∥F = op(1),
the condition that ∥UV T − ΠM∗ΠT ∥op ≤ 1/2σd(ΠM

∗ΠT) holds with asymptotic probability 1,
we have verified the conditions in Lemma S23, giving the desired result. In the case where we
constrain U = V , the same argument holds, except we no longer need to verify the condition that
∥UU∗ −M∗∥op is sufficiently small, and so we have concluded in this case also.

In the case of a SBM(n, κ, p̃, q̃, ρn) model it is actually able to give closed form expressions for the
embedding vectors which are converged to by factorizing the minima matrix M∗ in the way described
by the above proof. These details are given in Lemma S31.

D Proof of Theorem 4 and Corollary 5

D.1 Guarantees for community detection

We begin with a discussion of how we can get guarantees for community detection via approximate
k-means clustering method, using the convergence criteria for embeddings we have derived already.
To do so, suppose we have a matrix U ∈ Rn×d corresponding of n columns of d-dimensional vectors.
Defining the set

Mn,K := {Π ∈ {0, 1}n×K : each row of Π has exactly K − 1 zero entries}, (S89)

we seek to find a factorization U ≈ ΠX for matrices Π ∈ Mn,K and X ∈ RK×d. To do so, we
minimize the objective

Lk(Π, X) =
1

n
∥U −ΠX∥2F (S90)

In practice, this minimization problem is NP-hard [5], but we can find (1 + ϵ)-approximate solutions
in polynomial time [25]. As a result, we consider any minimizers Π̂ and X̂ such that

Lk(Π̂, X̂) ≤ (1 + ϵ)min
Π,X

Lk(Π, X). (S91)

30

We want to examine the behavior of k-means clustering on the matrix U , when it is close to a matrix
U∗ which has an exact factorization U∗ = Π∗X∗ for some matrices Π∗ ∈Mn,K and X∗ ∈ RK×d.
We introduce the notation

Gk(Π) := {i ∈ [n] : Πik = 1}, nk(Π) := |Gk(π)| (S92)

for the columns of U which are assigned as closest to the k-th column of X as according to the matrix
Π.

We make use of the following theorem from Lei and Rinaldo [30], which we restate for ease of use.

Proposition S15 (Lemma 5.3 of Lei and Rinaldo [30]). Let (Π̂, X̂) be any (1 + ϵ)-approximate
minimizer to the k-means problem given a matrix U ∈ Rn×d. Suppose that U∗ = Π∗X∗ for some
matrices Π∗ ∈ Mn,κ and X∗ ∈ Rκ×d. Fix any δk ≤ minl ̸=k ∥X∗

l· −X∗
k·∥2, and suppose that the

condition
(16 + 8ϵ)∥U − U∗∥2F /δ2k < nk(Π

∗) for all k ∈ [κ] (S93)
holds. Then there exist subsets Sk ⊆ Gk(Π

∗) and a permutation matrix σ ∈ Rκ×κ such that the
following holds:

i) For G =
⋃

k(Gk(Π
∗) \ Sk), we have that (Π∗)G· = σΠG·. In words, outside of the sets Sk

we recover the assignments given by Π∗ up to a re-labelling of the clusters.

ii) The inequality
∑κ

k=1 |Sk|δ2k ≤ (16 + 8ϵ)∥U − U∗∥2F holds.

In particular, we can then apply this to our consistency results with the embeddings learned by
node2vec. Recall that we are interested in the following metrics measuring recovery of communities
by any given procedure:

L(c, ĉ) := min
σ∈Sym(κ)

1

n

n∑
i=1

1[ĉ(i) ̸= σ(c(i))], (S94)

L̃(c, ĉ) := max
k∈[κ]

min
σ∈Sym(κ)

1

|Ck|
∑
i∈Ck

1[ĉ(i) ̸= σ(k)]. (S95)

These measure the overall misclassification rate and worst-case class misclassification rate respec-
tively.
Corollary S16. Suppose that we have embedding vectors ωi ∈ Rd for i ∈ [n] such that

min
Q∈O(d)

1

n

n∑
i=1

∥ωi − ηC(i)Q∥22 = Op(rn) (S96)

for some rate function rn → 0 as n → ∞ and vectors ηl ∈ Rd for l ∈ [κ]. Moreover suppose that
δ := minl ̸=k ∥ηl − ηk∥2 > 0. Then if ĉ(i) are the community assignments produced by applying
a (1 + ϵ)-approximate k-means clustering to the matrix whose columns are the ωi, we have that
L(c, ĉ) = Op(δ

−2rn) and L̃(c, ĉ) = Op(δ
−2rn). If the RHS of (S96) is instead op(1), then we

replace Op(rn) by op(1) in the statements for L(c, ĉ) and L̃(c, ĉ).

Proof. We apply Proposition S15 with Π∗ corresponding to the matrix of community assignments
according to c(·), and X∗ the matrix whose columns are the Qηl for l ∈ [κ] where Q ∈ O(d) attains
the minimizer in (S96). Letting U be the matrix whose columns are the ωi and taking δk = δ, the
condition (S93) to verify becomes

16 + 8ϵ

δ2
1

n

n∑
i=1

∥ωi −Qηc(i)∥22 <
|Ck|
n

for all k ∈ [κ]. (S97)

As rn → 0 and |Cl|/n > c > 0 for some constant c uniformly across vertices l ∈ [κ] with asymptotic
probability 1 (as a result of the community generation mechanism, the communities are balanced),
the above event will be satisfied with asymptotic probability 1. The desired conclusion follows by
making use of the inequalities

L(c, ĉ) ≤ 1

n

∑
k∈[κ]

|Sk|, L̃(c, ĉ) ≤ max
k∈[κ]

1

|Ck|
|Sk| ≤

(
max
k∈[κ]

n

|Ck|

)
· 1
n

∑
l∈[κ]

|Sl| (S98)

31

which hold by the first consequence in Proposition S15, and then applying the bound

1

n

∑
k∈[κ]

|Sk| ≤
16 + 8ϵ

δ2
· 1
n

n∑
i=1

∥ωi −Qηc(i)∥22. (S99)

We note that in order to apply this theorem, we require the further separation criterion of δ > 0.
As a result of Lemma S31, we can guarantee this for the SBM(n, κ, p̃, q̃, ρn) model when either a)
DeepWalk is trained in the unconstrained setting, or b) we are in the constrained setting with p̃ > q̃.
As we know that the embedding vectors converge to the zero vector on average when we are in the
constrained setting with p̃ ≤ q̃, as a result we know that community detection is possible in the
constrained setting iff p̃ > q̃, which gives Corollary 5 of the main paper.

D.2 Guarantees for node classification and link prediction

We now discuss what guarantees we can make when using the embedding vectors for classification.
In this section, we suppose that we have a guarantee

1

n
min

Q∈O(d)

n∑
i=1

∥ui − ηC(i)Q∥22 ≤ C(τ)rn holds with probability ≥ 1− τ (S100)

for some constant C(τ) and rate function rn → 0 as n → ∞. This is the same as saying that the
LHS is Op(rn) - it will happen to be more convenient to use this formulation. We also suppose that
there exists a positive constant δ > 0 for which

δ ≤ min
k ̸=l

∥ηk − ηl∥2. (S101)

We begin with a lemma which discusses the underlying geometry when we take a small sample of the
embedding vectors.
Lemma S17. Suppose we sample K embeddings from the set (ui)i∈[n], which we denote as
ui1 , . . . , uiK . Define the sets

Sl = {i ∈ Cl : ∥ui − ηC(i)∥2 < δ/4}. (S102)

Then there exists n0(K, δ, τ ′) such that if n ≥ n0, with probability 1− τ ′ we have that uij ∈ Sc(ij)

for all j ∈ [K].

Proof. Without loss of generality, we will suppose that Q = I . For each l ∈ [κ], define the sets
Sl = {i ∈ Cl : ∥ui − ηl∥2 ≤ δ/4}. Then by the condition (S100), by Markov’s inequality we know
that with probability 1− τ we have that

1

n

∑
l∈[κ]

|Cl \ Sl| ≤ 4δ−2C(τ/2)rn. (S103)

We now suppose that we sample K embeddings uniformly at random; for convenience, we suppose
that they are done so with replacement. Then the probability that all of the embeddings are outside
the set

⋃
l(Cl \ Sl) is given by (1− 1

n

∑
l |Cl \ Sl|)K ≥ 1− K

n

∑
l |Cl \ Sl|. In particular, this means

with probability no less than 1 − τ − 4Kδ−1C(τ)rn, if we sample K embeddings with indices
i1, . . . , iK at random from the set of n embeddings, they lie within the sets SC(i1), . . . , SC(iK)

respectively. The desired result then follows by noting that we take τ = τ ′/2, and choose n such that
4δ−2C(τ/2)rn < τ ′/2.

To understand how this lemma can give insights into the downstream use of embeddings, suppose that
we have access to an oracle which provides the community assignments of a vertex when requested,
but otherwise the community assignments are unseen.

We note that in practice, only a small number of labels are needed to be provided to embedding
vectors in order to achieve good classification results (see e.g the experiments in Hamilton et al.
[17], Veličković et al. [47]). As a result, we can imagine keeping K fixed in the regime where n is
large. Moreover, the constant δ simply reflects the underlying geometry of the learned embeddings,
and τ ′ is a tolerance we can choose such that the stated result is very likely to hold (by e.g choosing
τ ′ = 10−2 or 10−3). As a consequence, the above lemma tells us with high probability, we can

32

i) learn a classifier which is able to distinguish between the sets Sl given use of the sampled
embeddings ui1 , . . . , uiK and the labels c(i1), . . . , c(iK), provided the classifier is flexible
enough to separate κ disjoint convex sets; and

ii) as a consequence of (S103), this classifier will correctly classify a large proportion of
vertices within the correct sets Sl.

The same argument applies if instead we have classes assigned to embedding vectors which form a
coarser partitioning of the underlying community assignments. The importance of the above result
is that in order to understand the behavior of embedding methods for classification, it suffices to
understand which geometries particular classifiers are able to separate - for example, when the number
of classes equals 2, this reduces down to the classic concept of linear separability, in which case a
logistic classifier would suffice.

We end with a discussion as to the task of link prediction, which asks to predict whether two vertices
are connected or not given a partial observation of the network. To do so, we suppose that from
the observed network, we delete half of the edges in the network, and then train node2vec on the
resulting network. Note that the node2vec mechanism only makes explicit use of known edges
within the network. This corresponds to training the node2vec model on the data with sparsity factor
ρn → ρn/2; in particular, this leaves the underlying asymptotic representations unchanged and slows
the rate of convergence by a factor of 2. With this, a link prediction classifier is formed by the
following process:

1. Take a set of edges J ⊆ {(i, j) : aij = 1} for which the node2vec algorithm was not
trained on, and a set of non-edges J̃ ⊆ {(i, j) : aij = 0}. As in practice networks are
sparse, these sets are not sampled randomly from the network, but are assumed to be sampled
in a balanced fashion so that the sets J and J̃ are roughly balanced in size. One way of
doing so is to pick a number of edges in advance, say E, and then sample E elements from
the set of edges and non-edges in order to form J and J̃ respectively.

2. Form edge embeddings eij = f(ui, uj) given some symmetric function f(x, y) and node
embeddings ui. Two popular choices of functions are the average function f(x, y) =
(x+ y)/2 and the Hadamard product f(x, y) = (xiyi)i∈[d].

3. Using the features eij and the labels provided by the sets J and J̃ , build a classifier using
your favorite ML algorithm.

By our convergence guarantees, we know that the asymptotic distribution of the edge embeddings
eij will approach some vectors ηc(i),c(j) ∈ Rd, giving at most κ2 distinct vectors overall. Note that
these embedding vectors in of themselves contain little information about whether the edges are
connected; that said, even given perfect information of the communities and the connectivity matrix
P , one can only form probabilistic guesses as to whether two vertices are connected. That said, by
clustering together the link embeddings we can identify together edges as having vertices belonging
to a particular pair of communities. With knowledge of the sampling mechanism, it is then possible
to backout estimates for p and q by counting the overlap of the sets J and J̃ in the neighbourhoods of
the clustered node embeddings.

We note that in practice, ML classification algorithms such as logistic regression are used instead. This
instead depends on the typical geometry of the sets J and J̃ . Suppose we have a SBM(n, 2, p̃, q̃, ρn)
model. In this case, the set J will approximately consist of p̃/2(p̃ + q̃) × E vectors from η11,
p̃/2(p̃ + q̃) × E vectors from η22, q̃/2(p̃ + q̃) × E vectors from η12 and q̃/2(p̃ + q̃) × E vectors
from η21. In contrast, the set J̃ will approximately have E/4 of each of η11, η12, η21 and η22. As a
result, in the case where p̃≫ q̃, a linear classifier (for example) will be biased towards classifying
more frequently vectors with c(i) = c(j), which is at least directionally correct.

So far, we have not talked about the particular mechanism used to form link embeddings from the
node embeddings. The Hadamard product is popular, but particularly difficult to analyze given
our results, as it does not remain invariant to an orthogonal rotation of the embedding vectors. In
contrast, the average link function retains this information. In the SBM(n, 2, p̃, q̃, ρn), it ends up
giving embeddings which will asymptotically depend on only whether c(i) = c(j) or not (i.e, whether
the vertices belong to the same community or not).

33

E Intermediate results

E.1 Sampling probabilities for node2vec

In this section, we derive asymptotic results for the sampling probabilities of edges within node2vec.
We begin by recapping the second-order random walk defined for node2vec. To do so, we define a
random process (Xn)n≥1 via the second-order Markov property

P
(
Xn = u |Xn−1 = s,Xn−2 = v

)
∝

0 if (u, s) ̸∈ E ,
1/p if du,v = 0 and (u, s) ∈ E ,
1 if du,v = 1 and (u, s) ∈ E ,
1/q if du,v = 2 and (u, s) ∈ E .

(S104)

where du,s denotes the length of the shortest path between u and s. Given the extra information
that (u, s) is an edge, du,v = 0 occurs iff u = v, du,v = 1 occurs iff (u, v) is an edge, and du,v = 2
occurs iff (u, v) is not an edge (as given that (v, s) is an edge, the shortest path must be v → s→ u).
With this, we select positive samples by selecting k concurrent edges within the walk (via taking a
walk of length k + 1).

To initialize the random walk, we note that for the second order walk we need to specify a distribution
on the first two vertices; for DeepWalk where this collapses down to a first order walk, we only need
to specify a distribution on ther first vertex. To do so generally, we consider an initial distribution of
selecting the first vertex via π(u) = deg(u)/

∑
v deg(v) = deg(u)/2En with En being the number

of edges in the graph (single counting (u, v) ∈ E and (v, u) ∈ E), and select the second vertex
uniformly at random from those connected to the first. (Note that this is the transition kernel used
for DeepWalk, and so we handle both cases via this argument.) One can show this is equivalent to
selecting an edge uniformly at random.

For the negative sampling mechanism, we consider the vertices which arose as part of the positive
sampling process - which we denote V (P) - and then sample l vertices independently according to
the unigram distribution

Ugα(v |u,Gn) =
deg(v)α∑

v′ ̸=u deg(v)
α

(S105)

where u ∈ V (P). We note that the case where α → 0 corresponds to the uniform distribution on
vertices not equal to u.

E.1.1 Proof of Theorem S1

In this section and the next, it will be convenient to use the notation ∼p to indicate that two
positive random variables Xn and Yn are asymptotic in the sense that |Xn/Yn − 1| = op(1) when
n → ∞. If we say such a bound happens uniformly over some free variables - say Xn,k ∼p Yn,k
uniformly over k - then this means maxk |Xn,k/Yn,k − 1| = op(1). We also make extensive
use of the result that if X(i)

n ∼p rnY
(i)
n for i ∈ {0, 1} and Y (i)

n ∈ [C−1, C] for C > 1, then
X

(0)
n +X

(1)
n ∼p rn(Y

(0)
n + Y

(1)
n). Indeed, if we write X(i)

n = Y
(i)
n rn(1 + ϵ

(i)
n where ϵ(1)n = op(1),

then

X(0)
n +X(1)

n = rn(Y
(0)
n + Y (1)

n) ·
(
1 +

Y
(0)
n

Y
(0)
n + Y

(1)
n

ϵ(0)n +
Y

(1)
n

Y
(0)
n + Y

(1)
n

ϵ(1)n

)
(S106)

from which the claimed result follows as the terms weighting the ϵ(1)n can be bounded below away
from zero, and are bounded above by 1. We also note that X(0)

n −X
(1)
n = Op(rn), meaning that the

order of magnitude of terms cannot increase (only decrease) by subtracting them.

As we are interested in the sampling probability of edges within node2vec, it will be convenient
to instead study the first order Markov process Yn = (Xn, Xn−1), as then we instead study the
sampling probability of individual states in a regular Markov chain. We note that normally we use
the notation (u, v) to refer an unordered pair belonging to an edge in a graph, but for the Markov
process (Yn)n≥1 the order matters, we will write Yn = ev→u whenever Xn = u and Xn−1 = v. In
such a scenario, the random walk is therefore defined on the state space

S =
⋃

(u,v)∈E

{
eu→v, ev→u

}
.

34

with the law of Y given by

P
(
Yn = et→u |Yn−1 = ev→s

)
= 0 if t ̸= s, (S107)

P
(
Yn = es→u |Yn−1 = ev→s

)
∝

{
0 if (s, u) ̸∈ E
1[u=v]

p + 1[u ̸= v](auv +
1−auv

q) otherwise.
(S108)

One can calculate the normalizing factor for the probability distribution as being(1
p
− 1

q

)
+

1

q
deg(s) +

(
1− 1

q

) ∑
u∈V\{v}

asuauv, (S109)

from which we observe that when p = q = 1 we recover the simple random walk defined by
DeepWalk, as then the probability an edge is selected with source node u is uniform over edges (u, v)
where v is a neighbour of u.

With this in mind, we define the transition matrix

Pv→s,s→u =
asu · {1[u = v] · 1/p+ 1[u ̸= v](auv + 1/q · (1− auv)}(

1
p − 1

q

)
+ 1

q deg(s) +
(
1− 1

q

)∑
u∈V\{v} asuauv

(S110)

governing the transition probabilities on the above chain. We note that by [11, Proposition 72] and
Theorem S26 respectively that

deg(s) ∼p nρnW (λs, ·), (S111)∑
u∈V\{v}

asuauv ∼p nρ
2
nT (λs, λv) where T (λs, λv) := Eλ∼Unif[0,1][W (λu, λ)W (λ, λv) |λu, λv]

(S112)

uniformly over all s, u, v. As a result, we define

P̃v→s,s→u =
asu · {q−1 + (1− q−1)avu + δuv(p

−1 − q−1)}(
1
p − 1

q

)
+ 1

qnρnW (λs, ·) +
(
1− 1

q

)
nρ2nT (λs, λv)

. (S113)

where δuv := 1[u = v] and the numerator is the same as in Pv→s,s→u (only written in a more
convenient to use fashion), and the denominator makes use of the asymptotic statements (S111) and
(S112). As a result, we have that Pv→s,s→u ∼p P̃v→s,s→u uniformly over v, s, u. In particular, we
have that P̃v→s,s→u = Θp(asu(nρn)

−1) uniformly over all triples of indices (v, s, u).

Let Aj(u→ v) = {Yj = eu→v}. We then note that the sampling probability of (u, v) being sampled
within the first k + 1 steps of the second order random walk is given by

P
(⋃

j≤k

Aj(u→ v) ∪Aj(v → u) | Gn

)
. (S114)

To ease on the notation going forward, we write Pn(·) := P(· | Gn). By the inclusion-exclusion
principle, we can write this probability as equalling∑

l,m≥1
l+m≤k

(−1)k+m+1
∑

1≤i1<i2<···<il≤k
1≤j1<j2<···<jm≤m

Pn

(⋂
k≤l

Aik(u→ v) ∩
⋂
k≤m

Ajk(v → u)
)
. (S115)

We note that the number of terms in this sum is bounded above by (2k)! (some terms will be zero,
as we cannot select eu→v two times in a row), and so for asymptotic purposes we can focus on the
individual terms.

We now address the individual probabilities making up this sum. Intuitively, we want to show the
following: that the terms for which (l,m) ̸= (1, 0) or (0, 1) are asymptotically negligible, and that
asymptotically these terms are functions only of (λu, λv). We fix a particular instance of the i1, . . . , il
and j1, . . . , jm, and denote β1 < β2 < · · · < βl+m for the ordering of these indices. As we use
indices ik to denote the direction u→ v and jk for the direction v → u, we write

Ai(u→ v) =: Aβ(u, v, 0), Aj(v → u) =: Aβ(u, v, 1) (S116)

35

where the third argument (which we refer to as the orientation herein) indicates which of the first
two arguments are used as the source node for the edge. For each βk for k ≤ l +m, we write ok to
denote this orientation. As a result, it suffices for us to analyze

Pn

(⋂
k≤l+m

Aβk
(u, v, ok)

)
(S117)

over all sequences 1 ≤ β1 < β2 < · · · < βl+m ≤ k and orientations (ok)l+m
k=1 . For this, we then note

that by the Markov property of the random walk, we are able to write this probability as[∏
k≤l+m−1

Pn

(
Aβk+1

(u, v, ok+1) |Aβk
(u, v, ok)

)]
· Pn

(
Aβ1

(u, v, o1)
)

(S118)

=

[∏
k≤l+m−1

Pn

(
Aβk+1−βk+1(u, v, ok+1) |A1(u, v, ok)

)]
· Pn

(
Aβ1(u, v, o1)

)
(S119)

Focusing now on the terms in the product, if βk+1 − βk = 1, then this term equals zero if ok = ok=1,
or otherwise equals e.g Pu→v,v→u which is Op((nρn)

−1) as discussed above. If the walk is longer,
then by the same argument as in [11, Proposition 73], by conditioning on the second step in the walk
one can show this probability is asymptotically of the same order of a walk of length βk+1 − βk − 1
initialized from the uniform distribution on the edges of Gn. As a result, we therefore only need to
analyze events of the form

Pn

(
Aβ(u, v, o)

)
(S120)

which will allow us to then show that the events of the form (l,m) = (1, 0) or (0, 1) are the only
ones we need to consider in the asymptotic expansion. Going forward, we assume that o = 0, as the
sum (S115) is symmetric in the orientation o and the arguments are unchanged.

To do so, we begin by writing writing π′ = (auv/|E|)u,v for the initial distribution provided to Y1. To
analyze pn(u, v, β) := Pn

(
Aβ(u, v, 0)), note that when β = 1 we trivially have that this probability

equals auv/|E| and we know that |E| ∼p n
2ρnEW (1). In the case where β ≥ 2, we consider the set

of sequences α = (α0, . . . , αβ−2) ∈ Vβ−1, where we then have that

pn(u, v, 2) =
1

|E|
∑
α0

aα0,uPα0→u,u→v (S121)

pn(u, v, β) =
1

|E|
∑
α

aα0,α1
·

β∏
j=1

Pαj−1→αj ,αj→αj+1
· Pαβ−2→αβ−1,αβ−1→uPαβ−1→u,u→v

(S122)

for β ≥ 3.

To study these sums, we begin by noting that they are asymptotic to their versions where we replace
P → P̃ . Indeed, we note that if we have positive sequences (ai) and (bi), then∣∣∣∑j aj∑

j bj
− 1

∣∣∣ = |
∑

j bj(aj/bj − 1)|∑
j bj

≤ max
j

∣∣∣aj
bj

− 1
∣∣∣, (S123)

and so the fact that we know P ∼p P̃ uniformly, means that we can apply this to obtain asymptotic
formulae for their sums also. With this, if we write N(λs, λt) for the denominator of P̃t→s,s→u,
pn(u, v, β) can be asymptotically be decomposed into a linear combination of terms (bounded in
number by a function of k independent of n) of the form

c(p, q)auv
|E|

∑
α∈Vβ−1

{(∏
2≤i≤β

N(λα̃i−1
, λα̃i

)
)−1

·
∏

i≤β−1

aα̃i−1,α̃i
·
∏
j∈J

aα̃j−1,α̃j+1
·
∏
k∈K

δα̃k−1,α̃k+1

}
(S124)

where:

36

• we write α̃ for the concatenation (α, u, v), meaning α̃ is of length β + 1, with α̃k = αk for
k ≤ β − 1, α̃β = u and α̃β+1 = v;

• c(p, q) = (q−1)β−|J|−|K|(1− q−1)|J|(p−1 − q−1)|K| is a polynomial in p−1 and q−1;
• J and K are possibly empty subsets of {1, . . . , β} which are disjoint.

The more tedious part to handle is when the set K is non-empty; as each delta function acts to
contract the sum along one variable, doing so allows us to rewrite (S124) as

auv
|E|

c(p, q)
∑

α∈Vβ−1−|K|

{(∏
2≤i≤β−|K|

N(λα̃i−1 , λα̃i)
ni

)−1

·
∏

i≤β−1−|K|

aα̃i−1,α̃i ·
∏
j∈J̃

aα̃j−1,α̃j+1

}
(S125)

after a) performing some relabeling of the indices and modification to the set J , to give a new set
J̃ which is a subset of {1, . . . , β − |K|} and b) introducing some multiplicities ni which sum to
β − 1. By Theorem S26 we uniformly have that this quantity is asymptotic, uniformly over all the
free variables in the expression, to

ρ
|J̃|
n

(nρn)|K| ·
auvc(p, q)ρ

−1
n

n2EW (1)
·E

[∏
i≤β−1−|K|W (λ′i−1, λ

′
i)
∏

j∈J̃ W (λ′j−1, λ
′
j+1)∏

2≤i≤β−|K|N
′(λ′i−1, λ

′
i)

ni
|λu, λv

]
(S126)

where we write λ′ = (λ̃0, . . . , λ̃β−2−|K|, λu, λv) and λ̃ is an independent copy of λ, and
N ′(λu, λv) := (nρn)

−1N(λu, λv). As nρn → ∞ under the prescribed conditions, we only need to
consider leading terms of the order ρ−1

n n2, which shows that the sampling probability is asymptotic
(uniformly over all vertices) to ρ−1

n n2 for some function gP(λu, λv). To argue that this function is
bounded above away from zero, we note that the terms where |J |+ |K| > 0 will be asymptotically
negligible, and the remainder of the terms give a positive weighted sum.

E.1.2 Proof of Theorem S2

To understand the selection probability for the vertex pair (u, v) to be selected via negative sampling,
define the events

Ai(u) = {Xi = u}, Bi(v|u) = {v selected via negative sampling from u} (S127)

so then

P((u, v) ∈ N (Gn) | Gn) = P
(k⋃

i=0

(Ai(u) ∩Bi(v|u)) ∪ (Ai(v) ∩Bi(u|v)) | Gn

)
. (S128)

We note that

P(Ai(u) ∩Bi(v|u) | Gn) = P(Ai(u) | Gn) · P(Binomial(l,Ugα(v|u)) ≥ 1 | Gn). (S129)

As a result, we need to begin by understanding the asymptotic probabilities of P(Ai(v) | Gn) and the
unigram sampling probability. We begin with understanding the first probability. If i ∈ {0, 1}, then we
have that P(Ai(v) | Gn) = deg(v)/2En ∼p W (λv, ·)/nEW (1) uniformly in v [11, Proposition 72].
For i ≥ 2, we have that

P(Ai(v) | Gn) =
∑
u

P(Ai(u→ v) | Gn) (S130)

using the same notation as in Appendix E.1.1. Consequently, via the same arguments as in Ap-
pendix E.1.1, it will be asymptotic to a positive linear combination of statistics of the form

c(p, q)

|E|
∑
α∈Vβ

{(∏
2≤i≤β−|K|

N(λα̃i−1
, λα̃i

)ni

)−1

·
∏

i≤β−|K|

aα̃i−1,α̃i
·
∏
j∈J̃

aα̃j−1,α̃j+1

}
(S131)

where we write α̃ = (α, v) for α ∈ Vβ . Using the same relabeling and arguments as given in
Appendix E.1.1 will be asymptotic to

ρ
|J̃|
n

(nρn)|K| ·
c(p, q)

nEW (1)
· E

[∏
i≤β−|K|W (λ′i−1, λ

′
i)
∏

j∈J̃ W (λ′j−1, λ
′
j+1)∏

2≤i≤β−|K|N
′(λ′i−1, λ

′
i)

ni
|λv

]
(S132)

37

uniformly in all the free variables involved, where λ′ = (λ̃0, . . . , λ̃β−1−|K|, λv) and λ̃ is an indepen-
dent copy of λ. (We note that while Theorem S26 is expressed in terms of concentration of quantities
around functions which depend on both λu and λv , the exact same reasoning will apply for statistics
which only end up depending on λv .) In particular by taking the highest order terms of this expansion,
we have that there exists some measurable function gi(·) which is bounded below and above, for each
i, such that P(Ai(u) | Gn) ∼p n

−1gi(λu) uniformly in u.

As for the unigram sampling term, we note that by [11, Proposition 77] we have that

P(Binomial(l,Ugα(v|u)) ∼p
lW (λu, ·)α

nEW (α)
(S133)

uniformly in the vertices v, u. With this, we note that the same arguments via self-intersection allow
us to argue that

P((u, v) ∈ N (Gn) | Gn) ∼p
l

n2

k∑
i=0

l

EW (α)
(gi(λu)W (λv, ·)α + gi(λv)W (λu, ·)α) (S134)

which gives the claimed result.

E.2 Chaining and bounds on Talagrand functionals

In this section, let L > 0 denote a universal constant (which may differ across occurrences) and K(α)
a universal constant which depends on a variable α (but for fixed α also differs across occurrences).
For a metric space (T, d), we define the diameter of T as

∆(T) := sup
t1,t2∈T

d(t1, t2). (S135)

We also define the entropy and covering numbers respectively by

N(T, d, ϵ) := min
{
n ∈ N |F ⊆ T, |F | ≤ n, d(t, F) ≤ ϵ for all t ∈ T

}
, (S136)

en(T) := inf
{
sup
t∈T

d(t, Tn) |Tn ⊆ T, |Tn| ≤ 22
n}

= inf
{
ϵ > 0 |N(t, d, ϵ) ≤ 22

n}
. (S137)

We then define the Talagrand γα functional [43] of the metric space (T, d) by

γα(T, d) = inf sup
t∈T

∑
n≥0

2n/α∆
(
An(t)

)
(S138)

where the infimum is taking over all admissable sequences; these are increasing sequences (An)n≥0

of T such that |A0| = 1 and |An| ≤ 22
n

for all n, with An(t) being the unique element of An which
contains t. We will shortly see that this quantity helps to control the supremum of empirical processes
on the metric space (T, d). We first give some generic properties for the above functional.

Lemma S18. a) Suppose that d is a metric on T , and M > 0 is a constant. Then
γα(T,Md) =Mγα(T, d). If U ⊆ T , then γα(U, d) ≤ γα(T, d).

b) Suppose that (T1, d1) and (T2, d2) are metric spaces, so d = d1 + d2 is a metric on the
product space T = T1 × T2. Then γα(T, d) ≤ K(α)(γα(T1, d1) + γα(T2, d2)).

c) We have the upper bounds

γα(T, d) ≤ K(α)
∑
n≥0

2n/αen(T) ≤ K(α)

∫ ∞

0

(
logN(T, d, ϵ)

)1/α
dϵ. (S139)

d) Suppose that ∥ · ∥ is a norm on Rm, d is the metric induced by ∥ · ∥, and BA = {x :
∥x∥ ≤ A}. Then one has the bound N(BA, d, ϵ) ≤ max{(3A/ϵ)m, 1}, and consequently
γα(BA, d) ≤ K(α)Am1/α.

Proof. The first statement in a) is immediate, and the second part is Theorem 2.7.5 a) of Talagrand
[43].

38

For part b), suppose that Ai
n are admissable sequences for (Ti, di) such that

sup
ti∈Ti

∑
n≥0

2n/α∆(Ai
n(t)) ≤ 2γα(Ti, di) for i = 1, 2. (S140)

If we then form the sequence of sets Bn := {A1 ×A2 : Ai ∈ Ai
n−1} for n ≥ 1 and B0 = T1 × T2,

we have that Bn is a partition of T for each n, |B0| = 1 and |Bn| = |A1
n−1| · |A2

n−1| ≤ 22
n

for each
n, meaning that Bn is an admissable sequence for the metric space (T, d). Moreover, note that we
have

∆((A1 ×A2)(t1, t2)) = ∆(A1(t1)) + ∆(A2(t2)) (S141)

for all sets A1 ⊆ T1, A2 ⊆ T2 and t1 ∈ T1, t2 ∈ T2. As a result, if write Bn(t1, t2) = A1
n−1(t1)×

A2
n−1(t2) for the unique set in Bn for which the point (t1, t2) lies within it, then we have that∑
n≥0

2n/α∆(Bn(t1, t2)) ≤ 2α
(∑

n≥1

2(n−1)/α∆(Ai
n−1(t1))+

∑
n≥1

2(n−1)/α∆(Ai
n−1(t2))

)
. (S142)

In particular, taking supremum over all t ∈ T then gives the result, as the resuling LHS is lower
bounded by γα(T, d), and the resulting RHS is upper bounded by 2(γα(T1, d1) + γα(T2, d2)).

For part c), the first inequality is Corollary 2.3.2 in Talagrand [43]. As for the second inequality, note
that if ϵ ≤ en(T), then N(T, d, ϵ) > 22

n

and consequently N(T, d, ϵ) ≥ 22
n

+ 1 (recall that both
quantities are integers). Writing Nn = 22

n

, this implies that

(
log(1 +Nn)

)1/α
(en(T)− en+1(T)) ≤

∫ en(T)

en+1(T)

(
logN(T, d, ϵ)

)α
dϵ. (S143)

As log(1 +Nn) ≤ 2n log(2) for all n ≥ 0, summation over all n ≥ 0 implies that

(log 2)1/α
∑
n≥0

2n/α(en(T)− en+1(T)) ≤
∫ e0(T)

0

(
logN(T, d, ϵ)

)α
dϵ. (S144)

As we have that ∑
n≥0

2n/α
(
en(T)− en+1(T)) ≥ (1− 21/α)

∑
n≥0

2n/αen(T), (S145)

combining this and the prior inequality gives the stated result.

For part d), we can calculate that∫ ∞

0

(
logN(BA, d, ϵ)

)1/α
dϵ ≤

∫ 3A

0

m1/α
(
log(3A/ϵ)

)1α
dϵ ≤ 3Am1/α

∫ 1

0

(log(1/y))1/α dy.

(S146)

For the remaining integral, note that if we make the substitution y = exp(−tα), then the integral
equals ∫ 1

0

(log(1/y))1/α dy = α

∫ ∞

0

tαe−tα dt, (S147)

which we recognize as the mean of an Exp(1) random variabe in the case where α = 1, and the
variance of an unnormalized N(0, 2) density in the case where α = 2, and so in both cases the integral
is finite. The desired conclusion follows.

Before stating a corollary of this result involving bounds on the γ-functional of some of the sets
introduced in Theorem S5, we discuss some of the properties of these sets.

Lemma S19. Define the sets

BF (A) :=
{
U ∈ Rn×d | ∥U∥F ≤ A

}
, (S148)

B2,∞(A) :=
{
U ∈ Rn×d | ∥U∥2,∞ ≤ A

}
. (S149)

39

Moreover, define the metrics

dF ((U1, V1), (U2, V2)) := ∥U1 − U2∥F + ∥V1 − V2∥F (S150)
d2,∞((U1, V1), (U2, V2)) := ∥U1 − U2∥2,∞ + ∥V1 − V2∥2,∞ (S151)

defined on the space Rn×d×Rn×d of pairs of n×d matrices. Then we have that for U1, U2, V1, V2 ∈
BF (AF) ∩ B2,∞(Ã2,∞) that

∥U1V
T
1 −U2V

T
2 ∥F ≤ AF dF ((U1, V1), (U2, V2)), ∥U1V

T
1 −U2V

T
2 ∥∞ ≤ Ã2,∞d2,∞((U1, V1), (U2, V2)).

(S152)
Moreover, if U ∈ B2,∞(A), then U ∈ BF (

√
nA) also, and consequently if U ∈ B2,∞(Ã2,∞) then

we have that U ∈ B2,∞(Ã2,∞) ∩ BF (
√
nÃ2,∞).

Proof. Begin by noting that, if U1, V1, U2, V2 ∈ Rn×d are matrices, then we have that

∥U1V
T
1 − U2V

T
2 ∥F = ∥U1(V1 − V2)

T + (U1 − U2)V
T
2 ∥F ≤ ∥U1∥F ∥V1 − V2∥F + ∥U1 − U2∥F ∥V2∥F

and similarly

∥U1V
T
1 − U2V

T
2 ∥∞ = ∥U1(V1 − V2)

T + (U1 − U2)V
T
2 ∥∞ ≤ ∥U1∥2,∞∥V1 − V2∥2,∞ + ∥U1 − U2∥2,∞∥V2∥2,∞.

As a result, we therefore have that in the case where U1, V1, U2, V2 all have ∥ · ∥F ≤ AF , then

∥U1V
T
1 − U2V

T
2 ∥F ≤ AF

(
∥U1 − U2∥F + ∥V1 − V2∥F

)
(S153)

and similarly if each of U1, V1, U2, V2 have ∥ · ∥2,∞ ≤ Ã2,∞ then

∥U1V
T
1 − U2V

T
2 ∥ ≤ Ã2,∞

(
∥U1 − U2∥2,∞ + ∥V1 − V2∥2,∞

)
, (S154)

giving the first result of the lemma. The second part follows by noting that

n∑
i=1

d∑
j=1

|uij |2 ≤ nmax
i∈[n]

d∑
j=1

|uij |2 (S155)

and taking square roots.

Corollary S20. With the same notation as in Lemma S19, and writing T = BF (AF) ∩ B2,∞(Ã2,∞),
we have that for any constant C > 0 that

γα(T × T,CdF) ≤ γα(BF (AF), CdF) ≤ K(α) · CAF (nd)
1/α ≤ K(α) · CÃ2,∞n

1/2+1/αd1/α,
(S156)

γα(T × T,Cd2,∞) ≤ γα(B2,∞(Ã2,∞), CdF) ≤ K(α) · CÃ2,∞(nd)1/α. (S157)

Proof. This is a combination of Lemma S18 and Lemma S19

We now state a result which illustrates the usefulness of the above quantity when trying to control the
supremum of empirical processes on a metric space (T, d).

Theorem S21. Suppose (Xt)t ∈ T is a mean-zero stochastic process, where d1 and d2 are two
metrics on T . Suppose for all s, t ∈ T we have the inequality

P
(
|Xs −Xt| ≥ u

)
≤ 2 exp

(
−min

{ u2

d2(s, t)2
,

u

d1(s, t)

})
. (S158)

Then we have that

P
(
sup
s,t∈T

|Xs −Xt| ≥ Lu
(
γ2(T, d2) + γ1(T, d1)

))
≤ L exp(−u). (S159)

Proof. This can be found within the proof of Theorem 2.2.23 in Talagrand [43].

40

Corollary S22. With the notation of Theorem S5, Lemma S19 and Corollary S20, if we have the
bound
P
(
|En(U, V)− En(Ũ , Ṽ)| ≥ u

)
(S160)

≤ 2 exp
(
−min

{ u2

128ρ−1
n n−4A2

F dF ((U, V), (Ũ , Ṽ))2
,

u

16ρ−1
n n−2Ã2,∞d2,∞((U, V), (Ũ , Ṽ))

})
(S161)

then as a consequence we can deduce that

sup
(U,V),(Ũ,Ṽ)∈T×T

∣∣En(U, V)− En(Ũ , Ṽ)
∣∣ = Op

(
Ã2

2,∞

(d

nρn

)1/2

+ Ã2
2,∞

d

nρn

)
(S162)

Proof. This is a consequence of Corollary S20 and Theorem S21.

E.3 Matrix Algebra

Proposition S23. Suppose that we have matrices U,X ∈ Rn×d with n ≥ d, and suppose that X is a
full rank matrix so σd(XXT) > 0. Then we have that

min
Q∈O(d)

1

n
∥U −XQ∥2F ≤ n−2∥UUT −XXT ∥2F√

2(
√
2− 1)n−1σd(XXT)

. (S163)

Now instead suppose we have matrices U, V ∈ Rn×d and a matrix M ∈ Rn×d of rank d. Let M =
UMΣV T

M be a SVD of M . Moreover suppose that UTU = V TV , and ∥UV T −M∥op ≤ σd(M)/2.
Then we have that

min
Q∈O(d)

1

n
∥U − UMΣ1/2Q∥2F ≤ 2n−2∥UV T −M∥2F

(
√
2− 1)n−1σd(M)

. (S164)

Proof. The first part of the theorem statement is Lemma 5.4 of Tu et al. [44]. For the second part, we
note that by Proposition S24, we can let U = UMΣ1/2Q and V = VMΣ1/2Q for some orthonormal
matrix Q, where Ũ Σ̃Ṽ T is the SVD of UV T . As a result, we can therefore apply without loss of
generality Lemma 5.14 of Tu et al. [44], which then gives the desired statement.

Proposition S24. Suppose that U, V ∈ Rn×d are matrices such that UV T = M for some rank d
matrix M ∈ Rn×n. Moreover suppose that UTU = V TV . Let M = UMΣV T

M be the SVD of M .
Then there exists an orthonormal matrix Q ∈ O(d) such that V = VMΣ1/2Q. In particular, the
symmetry group of the mapping (U, V) → UV T under the constraint UTU = V TV is exactly the
orthogonal group O(d).

Proof. Begin by noting that the condition UTU = V TV forces there to exist an orthonormal matrix
R ∈ O(n) such that RU = V (e.g by Theorem 7.3.11 of Horn and Johnson [21]). As a consequence,
we therefore have that M = R−1V V T . This is a polar decomposition of M , and therefore as
the semi-positive definite factor is unique, we have that V V T = (VMΣ1/2)(VMΣ1/2)T , where
M = UMΣV T

M is the SVD of M , and we highlight that the polar decomposition of M is usually
represented by M = (UMV

−1
M) · (VMΣV T

M). As V V T = (VMΣ1/2)(VMΣ1/2)T , again by e.g
Theorem 7.3.11 of Horn and Johnson [21] we have that there exists an orthonormal matrix Q ∈ O(d)
such that V = VMΣ1/2Q, giving the desired result.

Lemma S25. Suppose X ∈ Rn×n is a symmetric matrix such that X = ΠAΠT where A ∈ Rd×d

is of full rank, and Π ∈ Rn×d is the assignment matrix for a partition of [n]; that is, there exists a
partition of [n] into d sets B(1), . . . , B(d) such that Πil = 1[i ∈ B(l)]. Suppose further that Π is of
full rank. Then we have that σd(X) ≥ σd(A)×minl |B(l)|.

Proof. Let ∆ = diag(|B(1)|1/2, . . . , |B(d)|1/2). Then note that we can write

X = (Π∆−1) ·∆A∆ · (Π∆)−1 (S165)
where (Π∆−1) is an orthonormal matrix. As a result, we can simply concentrate on the spectrum of
the matrix ∆A∆. As the smallest singular value of a matrix product is less than the product of the
smallest singular values, the stated result follows.

41

E.4 Concentration inequalities

Theorem S26. Suppose that H is a graph on a vertex set {r1, . . . , rl, v1, . . . , vm} where the vertices
ri are referred to as root vertices, and the remaining vertices as free vertices. We refer to such a
graph as a rooted graph. Suppose that all the edges in H have at least one free vertex as an endpoint.
Write x = (x1, . . . , xm) for the collection of m variables xi, and let Y be a statistic of the form

Y =
∑

x1,...,xm∈[n]

gx
∏
i∼Hj

txi,xj
(S166)

where the random variables txi,xj
are independent and {0, 1} valued with cp ≤ P(txi,xj

= 1) ≤
1 − cp for all xi, xj; the coefficients cg ≤ gx ≤ ∥g∥∞ < ∞ for some cg > 0; and i ∼H j iff
(i, j) is an edge within the graph H . Suppose that ρn = n−α for some α < 1/m′(H) where
m′(H) = max2≤j≤k(j − 1)/(v(j) − 2), v(j) = min|A|≥j v(A) and v(A) for a set of edges A
indicates the number of vertices in A. Then there exist constants c, δ,∆ which depend only on cg , cp,
∥g∥∞, H and α such that

P
(∣∣Y − E[Y]

∣∣ ≥ E[Y]
√
λ(n2ρn)−1

)
≤ exp(−cλ) (S167)

for all ∆ ≤ λ ≤ nδ .

Proof. Without loss of generality suppose that ∥g∥∞ = 1. The proof is essentially the same as Vu
[48, Corollary 6.4], where we extend the result derived for the asymptotics of subgraph counts to that
of a weighted count of rooted subgraph counts. To do so, we introduce some notation introduced
within [48]. If H has k edges, and A is a set of pairs {xi, xj}, we write ∂AT for the polynomial∏

x∈A ∂xT when interpreting T as a formal sum in the variables axi,xj
(which we recall are {0, 1}

valued. We then define for 1 ≤ j ≤ k the quantities

Ej [Y] = max
|A|≥j

E[∂AY],Mj(Y) = max
t,|A|≥j

∂AY (t). (S168)

Let v(A) denote the number of vertices specified within the set A, and let v(j) −min|A|≥j v(A).
With this, we note that E[Y] = Θ(nmρkn) and E[∂AY) = Θ(nm−v(A)ρ

k−|A|
n). Consequently, we

have that
Ej [Y] = max

h≥j
Θ(nm−v(h)ρk−h

n),E[Y]/Ej [Y] = Θ(min
h≥j

nv(h)ρhn) (S169)

where the implied constants depend only on k, cg and cp. The same arguments as given in Claim 6.2
and Corollary 6.4 in [48] can then be applied verbatim to give the claimed result.

Lemma S27. Let T be a statistic of the form

T ′ =
∑

x1 ̸=x2 ̸=···̸=xm

g(λx1 , . . . , λxm) (S170)

where cg ≤ g(·) ≤ ∥g∥∞ <∞. Then we have that

P
(
|T ′ − E[T ′]| ≥ ϵE[T ′]

)
≤ 2 exp

(−ϵ2c2g⌊n/m⌋
2∥g∥2∞

)
. (S171)

Consequently, if we define

Tl,k =
∑

x1,x2,...,xm

g(λx1
, . . . , λxm

, λl, λk), T ′
l,k =

∑
x1 ̸=x2 ̸=···≠xm

g(λx1
, . . . , λxm

, λl, λk)

(S172)
where cg ≤ g(·) ≤ ∥g∥∞ <∞ as above, then we have that

max
l,k

∣∣∣ Tl,k
E[T ′

l,k |λl, λk]
− 1

∣∣∣ = Op

((log n
n

)1/2)
(S173)

where the implied constant depends only on m and cg .

42

Proof. The first part is an immediate consequence of Hoeffding’s inequality for U-statistics [39],
which states that for U = ((n−m)!/n!) · T that

P
(
|U − E[U]| ≥ t

)
≤ 2 exp

(−t2⌊n/m⌋
2∥g∥2∞

)
, (S174)

by substituting in t 7→ tE[U] and making use of the bound E[U] ≥ cg .

For the second part, we work conditionally on λl, λk and note we can decompose Tl,m for each
l,m into a sum of statistics of the form T ′, one of order Θp(n

m) and
(
m
k

)
of order Θp(n

m−k)
(corresponding to when some of the indices xi are equal) for 1 ≤ k ≤ m. By applying the first
concentration inequality to these m! · n2 random variables, conditional on the (λl, λk), we note
the RHS is independent of these quantities, and so the probability bounds hold unconditionally.
Consequently, we know that asymptotically Tl,k is asymptotic to T ′

l,k, from which we can then apply
the resulting concentration bound for this term.

Theorem S28. Suppose we have a statistic of the form

Tn,β,J(λu, λv) = ρ−β−|J|
n

∑
α∈Vβ−1

g(λα̃0 , . . . , λα̃β−1
, λu, λv)

∏
i≤β

aα̃i−1,α̃i ·
∏
j∈J

aα̃j−1,α̃j+1 (S175)

where α̃ = (α, u, v) is a concatenation of α, u and v in order, g : Rβ+1 → R is a positive function
which satisfies cg ≤ g ≤ ∥g∥∞ <∞ for some constant cg, and J is a possibly empty set of indices.
Define λ′ = (λ̃0, . . . , λ̃β−1, λu, λv) where λ̃ is an independent copy of λ. Further define the statistic

T ′
n,β,J(λu, λv) :=

(n− β)!

n!
· E

[
g(λ′)

∏
i≤β

W (λ′i−1, λ
′
i)
∏
j∈J

W (λ′j−1, λ
′
j+1) |λu, λv

]
. (S176)

Then for any ρn = n−α for α sufficiently small, we have that

max
β,J,u,v

∣∣∣Tn,β,J(λu, λv)
T ′
n,β,J(λu, λv)

− 1
∣∣∣ = Op

(((log n)k

n · (nρn)

)1/2)
. (S177)

Proof. For this, we apply the above results. We begin by working conditionally on all of the λ, whose
collection we denote λ, and note that by Theorem S26 by taking λ = (log n)k for some k > 1 and a
union bound, we have that

Tn,β,J(λu, λv) = E[Tn,β,J(λu, λv) |λ] · (1 + E(1)
n) where E(1)

n = O
(((log n)k

n · (nρn)

)1/2)
(S178)

uniformly over all O(m2m! · n2) random variables with probability 1− exp(O((log n)k)). As we
have that
E[Tn,β,J(λu, λv) |λ] =

∑
α∈Vβ−1

g(λα̃0
, . . . , λα̃β−1

, λu, λv)
∏
i≤β

W (λα̃i−1
, λα̃i

)·
∏
j∈J

W (λα̃j−1
, λα̃j+1

)

(S179)
where the function is bounded below by cg · cβ+|J|

p and is bounded above by ∥g∥∞, we can make use
of Lemma S27 to show that

max
β,J,u,v

∣∣∣E[Tn,β,J(λu, λv) |λ]
T ′
n,β,J(λu, λv)

− 1
∣∣∣ = Op

((log n
n

)1/2)
(S180)

from which the claimed result follows.

Remark 1. One natural question to ask about the necessity of the range of values of ρn specified
above. Generally speaking, one can show for Erdos-Renyi graphs G(n, p) that the number of
subgraphs YH of H in Gn satisfy a zero-one law, where

P(YH = 0) =

{
1− o(1) if p≪ n−c(H),

o(1) if p≫ n−c(H) (S181)

for some constant c(H) which relates to the geometry of the graph G [6]. In the latter regime, one
can then show that YH ∼ E[YH] asymptotically again, and in the former this shows that the term
is asymptotically negligible. As the purpose of this result is to derive an asymptotic expansion for
the sum of various statistics of the form of T to the highest order, provided ρn is of an order which
avoids any of the "phase transition" stages of the form above we could eventually generalize our
results further. As this involves even more additional book-keeping, we do not do so here.

43

Lemma S29. Let I be a finite index set of size |I| = m. Suppose that there exist constants τ > 0,
a bounded non-negative sequence (pi)i∈I such that pi ≤ τ−1 for all i, and a real sequence (ti)i∈I .
Define the random variable

X =
1

m

∑
i∈I

(
τ−1ai − pi

)
ti where ai

indep∼ Bernoulli(τpi) for i ∈ I. (S182)

Then for all u > 0, we have that

P
(
|X| ≥ u

)
≤ 2 exp

(
−min

{ u2

4τ−1m−2∥t∥22
,

u

2τ−1m−1∥t∥∞

})
. (S183)

Proof. This follows by an application of Bernstein’s inequality, by noting that X is a sum of
independent mean zero random variables Xi = m−1(τ−1ai − pi)ti which satisfy

|Xi| ≤ τ−1m−1|ti| ≤ τ−1m−1∥t∥∞ for all i, E[X2
i] ≤ m−2τ−1t2i .

Lemma S30. Define the random variable

Y =
1

n(n− 1)

∑
i ̸=j

(
ρ−1
n aij −W (λi, λj)

)
Tij (S184)

for some constants (Tij). Write ∥T∥22 =
∑

i ̸=j T
2
ij and ∥T∥∞ = maxi ̸=j |Tij |. Then we have that

P
(
|Y | ≥ u

)
≤ 2 exp

(
−min

{ u2

128ρ−1
n n−4∥T∥22

,
u

16ρ−1
n n−2∥T∥∞

})
(S185)

In particular, when Tij = 1 for all i ̸= j, we have that Y = Op((n
2ρn)

−1/2).

Proof. Note that under the assumptions on the model (where we have that aij = aji andW (λi, λj) =
W (λj , λi) for all i ̸= j), we can write

Y =
2

n(n− 1)/2

∑
i<j

(
ρ−1
n aij −W (λi, λj)

)
(Tij + Tji). (S186)

Note that ∑
i<j

(Tij + Tji)
2 ≤ 2

∑
i<j

(
T 2
ij + T 2

ji

)
≤ 2∥T∥22, (S187)

max
i<j

|Tij + Tji| ≤ max
i<j

|Tij |+max
i<j

|Tji| ≤ 2∥T∥∞, (S188)

where we have used the inequality (a+ b)2 ≤ 2(a2 + b2) which holds for all a, b ∈ R. Consequently,
as a result of Lemma S29, we have conditional on λ that

P
(
|Y | ≥ u |λ

)
≤ 2 exp

(
−min

{ u2

128ρ−1
n n−4∥T∥22

,
u

16ρ−1
n n−2∥T∥∞

})
(S189)

As the right hand side has no dependence on λ, taking expectations gives the first part of the lemma
statement. For the second part, note that if Tij = 1 for all i ̸= j, then we have that ∥T∥22 ≤ n2 and
∥T∥∞ = 1, and consequently

P
(
|Y | ≥ u) ≤ 2 exp

(
−min

{ u2

128ρ−1
n n−2

,
u

16ρ−1
n n−2

})
(S190)

In particular, this implies that Y = Op((n
2ρn)

−1/2).

44

E.5 Miscellaneous results

Lemma S31. Suppose that A ∈ Rm×m is a matrix whose diagonal entries are α, and off-diagonal
entries are β, soAij = αδij+β(1−δij), where δij is the Kronecker delta. ThenA has an eigenvalue
α+(m− 1)β of multiplicity one with eigenvector 1m, and an eigenvalue α−β of multiplicity m− 1,
whose eigenvectors form an orthonormal basis of the subspace {v : ⟨v, 1m⟩ = 0}. For the subspace
{v : ⟨v, 1m⟩ = 0}, we can take the eigenvectors to be

vi =
1√
2
(em,1 − em,i+1) for i ∈ [m− 1]

where em,i are the unit column vectors in Rm, The singular values ofA are |α−β| and |α+(κ−1)β|.
Consequently, we can write A = UV T for matrices U, V ∈ Rm×m with UUT = V V T , where the
rows of U satisfy

U1· =
|α+ β(m− 1)|1/2√

m
em,1 +

|α− β|1/2√
2

em,2 (S191)

Ui· =
|α+ β(m− 1)|1/2√

m
em,1 −

|α− β|1/2√
2

em,i for i ∈ {2, . . . ,m}. (S192)

Consequently, we then have that ∥Ui·∥2 ≤
(
2|α + β(m − 1)|/m + |α − β|/2

)1/2
for all i, and

mini ̸=j ∥Ui· − Uj·∥2 = (|α− β|)1/2.

Further suppose that β = −α/(m− 1). Then provided α > 0, A is positive semi-definite, is of rank
m− 1, with a singular non-zero eigenvalue αm/(m− 1) of multiplicity m− 1. Consequently one
can write A = UUT where U ∈ Rm×(m−1) and whose columns equal the

√
αm/(m− 1)vi. In

particular, the rows of U equal

U1· =
(αm

2(m− 1)

)1/2
eTm−1,1, Ui· = −

(αm

2(m− 1)

)1/2
eTm−1,i−1 for i ∈ [2,m].

Consequently, one has that ∥Ui·∥2 =
√
αm/(m− 1) for all i, and moreover we have the separability

condition min1≤i<j≤m ∥Ui· − Uj·∥2 = (αm/(m− 1))1/2.

Proof. It is straightforward to verify that A has an eigenvalue of α + (n − 1)β with the claimed
eigenvector. For the second part, we note that the characteristic polynomial of A is

det(A− tI) = (α− β − t)n−1 · (α+ (n− 1)β − t)

and so A has m− 1 eigenvalues equal to α− β; as A is symmetric, we know that we can always take
eigenvectors to be orthogonal to each other, and consequently the eigenspace associated with such an
eigenvalue must be a subspace of {v : ⟨v, 1m⟩ = 0}. As both of these subspaces are of dimension
m − 1, it consequently follows that they are equal. We then highlight that if A is a symmetric
matrix with eigendecomposition A = QΛQT for an orthogonal matrix Q, then the SVD is given by
Q|Λ|sgn(Λ)QT , and we can write A = UV T with U = Q|Λ|1/2 and V = Qsgn(Λ)|Λ|1/2 such that
UUT = V V T . This allows us to derive the remaining statements about the matrix A which hold in
generality. The remaining parts discussing what occurs when β = −α/(m− 1) follow by routine
calculation.

Lemma S32. Let σ(x) = (1 + exp(−x))−1 be the sigmoid function. Then there exists a unique
y ∈ R which solves the equation

ασ(y) = β + γσ(−y/s) (S193)

for α, γ, s > 0 and β ∈ R if and only if β < α and β + γ > 0. Moreover, y > 0 if and only if
β + γ/2 > α/2.

Proof. Note that ασ(x) is a function whose range is (0, α) on x ∈ (−∞,∞), and is strictly monotone
increasing on the domain. Similarly, β + γσ(−y/s) is strictly monotone decreasing with range
(β, β + γ), and so simple geometric considerations of the graphs of the two functions gives the
existence result. For the second part, note that the ranges of the functions on the LHS and the RHS on
the range y > 0 are [α/2, α) and (β, β + γ/2] respectively, and so the same considerations as above
give the second claim.

45

Lemma S33. Let σ(x) = (ex)/(1 + ex) be the sigmoid function. Then for any x, y ∈ R, we have
that

− log(1− σ(x)) ≥ − log(1− σ(y)) + σ(y)(x− y) + E(x− y) (S194)
where

E(z) =

{
1
2e

−Az2 if |x|, |y| ≤ A,
1
4e

−A min{z2, 2|z|} if either |x| ≤ A or |y| ≤ A.
(S195)

Proof. Note that by the integral version of Taylor’s theorem, for a twice differentiable function f one
has for all x, y ∈ R that

f(x) = f(y) + f ′(y)(x− y) +

∫ 1

0

(1− t)f ′′(tx+ (1− t)y)(x− y)2 dt. (S196)

Applying this to f(x) = − log σ(x) gives

− log σ(x) = − log σ(y) + (−1+ σ(y))(x− y) +

∫ 1

0

(1− t)(x− y)2σ′(tx+ (1− t)y) dt (S197)

where σ′(x) = ex/(1 + ex)2. Applying this to f(x) = log(1− σ(x)) gives

− log(1−σ(x)) = − log(1−σ(y))+σ(y)(x−y)+
∫ 1

0

(1−t)(x−y)2σ′(tx+(1−t)y) dt (S198)

As the integral terms are the same, we concentrate on lower bounding this quantity. To do so, we
make use of the lower bound σ′(x) ≥ e−|x|/4 (Lemma 68 of Davison and Austern [11]) which holds
for all x ∈ R. We then note that if |x|, |y| ≤ A, then we have that

− log(1− σ(x)) = − log(1− σ(y)) + σ(y)(x− y) +

∫ 1

0

(1− t)(x− y)2σ′(tx+ (1− t)y) dt

(S199)

≥ − log(1− σ(y)) + σ(y)(x− y) +
e−|A|

2
(x− y)2. (S200)

Alternatively, if we only make use of the fact that |x| ≤ A (without loss of generality - the argument
is essentially equivalent if we only assume that |y| ≤ A), then we have that∫ 1

0

(1− t)σ′(tx+ (1− t)y)(x− y)2 dt ≥
∫ 1

0

(1− t)e−|tx+(1−t)y|(x− y)2 dt (S201)

≥
∫ 1

0

(1− t)e−|x|e−(1−t)|x−y|(x− y)2 dt (S202)

= e−|x|{|x− y|+ e−|x−y| − 1
}

(S203)

≥ 1

4
e−A min{(x− y)2, 2|x− y|}, (S204)

and consequently we get that

− log(1− σ(x)) ≥ − log(1− σ(y)) + σ(y)(x− y) +
1

4
e−A min{|x− y|2, 2|x− y|} (S205)

as claimed.

Lemma S34. Suppose that we have a function

f(X) =
1

m2

m∑
i,j=1

min{X2
ij , 2|Xij |}. (S206)

Then if f(X) ≤ r, we have that m−2
∑m

i,j=1 |Xij | ≤ r + r1/2.

Proof. To proceed, note that if we have that
E[min{X2, 2X}] ≤ r (S207)

for a non-negative random variable X , then by Jensen’s inequality we get that(
E[X1[X < 2]]

)2
+ E[X1[X ≥ 2]] ≤ E[min{X2, 2X}] ≤ r (S208)

and consequently E[X] ≤ r + r1/2 by decomposing E[X] into the parts where X ≥ 2 and X < 2.
Applying this result to the empirical measure on the |Xij | across indices i, j ∈ [m] gives the desired
result.

46

F Minimizers for degree corrected SBMs when α ̸= 1

In this section, we give an informal discussion of how to study the minimizers of Rn(M) for degree
corrected SBMs when the unigram parameter α ̸= 1. We begin by highlighting that Rn(M) does not
concentrate around its expectation when averaging over only the degree heterogenity parameters θi,
which rules out using a similar proof approach as to what was carried out earlier in Appendix 1.

Recall that we were able to derive that the global minima of Rn(M) was the matrix

M∗
ij = log

(2EW (α)

(1 + k−1)E[θ]E[θ]α
·

Pc(i),c(j)

P̃c(i)P̃c(j) ·
(
θα−1
i P̃α−1

c(i) + θα−1
j P̃α−1

c(j)

)). (S209)

When α = 1 or the θi are constant, this allows us to write M∗ = ΠMΠT where Π is the matrix
of community assignments for the network and M is some matrix, which allows us to simplify the
problem. If we supposed that the θ actually had some dependence on the c(i) and were discrete - in
that θi|c(i) = l ∼ Ql for some discrete distributions Ql for l ∈ [κ], then we could in fact employ the
same type of argument as done throughout the paper. The major change is that then the embedding
vectors would each concentrate around a vector decided by both a) their community assignment, and
b) the particular degree correction parameter they were assigned. This would then potentially effect
our ability to perform community detection depending on the underlying geometry of these vectors.
One possible idea would be to explore Rn(M) partially averaged over the θi - we divide the θi into
B bins where B = nβ for some β ∈ (0, 1), and average over only over the refinement of the θi as
belonging to the different bins. This would be similar to the argument employed in Davison and
Austern [11].

An alternative perspective to give some type of guarantee on the concentration of the embedding
vectors is to study the rank of the matrix M∗. If we are able to prove that is of finite rank r even
as n grows large, then we are able to give a convergence result for the embeddings as soon as the
embedding dimension d is greater than or equal to r. To study this, it suffices to look at the matrix

(M∗
E)ij = log

(
θα−1
i P̃α−1

c(i) + θα−1
j P̃α−1

c(j)

)
(S210)

and argue that this is low rank (due to the logarithm, we can write M∗ as the difference between
this matrix and a matrix of rank κ, which is therefore also low rank). The entry-wise logarithm is a
complicating factor here, as otherwise it is straightforward to argue that the entry-wise exponential of
this matrix is of rank 2. One can reduce studying the rank of the matrix M∗

E to studying the rank of
the kernel

KM

(
(x, cx), (y, cy)

)
= log

(
xα−1P̃α−1

cx + yα−1P̃α−1
cy

)
(S211)

of an operator L2(P) → L2(P), where P is the product measure induced by θ and the community
assignment mechanism c. As KM is of finite rank r if and only if it can be written as

KM

(
(x, cx), (y, cy)

)
=

r∑
i=1

ϕi(x, cx)ψi(y, cy) (S212)

for some functions ϕi, ψi, it follows that the matrix (M∗
E)ij will be of finite rank r also. Indeed, this

representation forces that M∗
E = ΦΨT for some matrices Φ,Ψ ∈ Rn×r, meaning that M∗

E is of rank
≤ r; Corollary 5.5 of Koltchinskii and Giné [24] then guarantees convergence of the eigenvalues of
the matrix M∗

E to the operator KM so that M∗
E is actually of full rank.

47

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction match the theoretical contributions
of the paper. These are supported by experimental verification. Similarly, where theoretical
results are not obtained we investigate these scenarios using simulation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We highlight and discuss the assumptions required for the theoretical results
presented within the paper and in detail in the appendix. We demonstrate empirically the
performance of our procedure when these assumptions are relaxed, if theoretical results
were not obtained.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

48

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Due to space constraints all proofs appear in the supplemental material.
We provide intuition for these proofs in the paper where space allows. Complete proofs
are included in the supplemental material, along with all required Lemmas and exact
assumptions.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We detail the experimental setup used in this work in the supplemental
procedure, along with providing all code required to run and replicate these experiments
also.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

49

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have included an anonymized version of the code repository used to create
all experimental results in this paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide sufficient detail in the main text to understand the experimental
results presented. In the appendix, we completely detail all experimental details, along with
providing the exact code used as supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For all experimental results we either show error bars corresponding to one
standard error or all simulation results (in the case of box plots).

50

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computation required for individual experiments was relatively small
(in terms of both memory and time) and is detailed in the appendix. These were run on a
computing cluster.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have ensured the research conforms with the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

51

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]
Justification: This paper provides theoretical guarantees for community detection in a
specific class of statistical network models. Any potential societal impacts, positive or
negative, will be ancillary from the theoretical focus of this paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: As this work theoretical guarantees for community detection in a specific class
of statistical network models, such safeguards are not applicable.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We credit the original owners of code and data used.
Guidelines:

• The answer NA means that the paper does not use existing assets.

52

• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide an anonymized zip file which details the code used to generate all
results.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Crowdsourcing or human subjects were not used in this research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Crowdsourcing or human subjects were not used in this research.

53

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

54

	Introduction
	Summary of main results
	Related Works

	Framework
	Probabilistic models for community detection
	Obtaining embeddings from node2vec
	Using embeddings for community detection

	Results
	Asymptotic distribution of the embeddings
	Guarantees for community detection

	Experiments
	Conclusion and Future Work
	Additional Experimental Results
	Performance on Real Networks

	Additional Notation
	Proof of Theorems 2 and 3
	Proof overview
	Replacing the sampling weights
	Averaging over the adjacency matrix of the graph
	Adding in a diagonal term
	Chaining up the loss function approximations
	Minimizers of Rn(U, V)
	Minimizers in the constrained regime U = V

	Strong convexity properties of the minima matrix
	Convergence of the gram matrices of the embeddings
	Convergence of the embedding vectors

	Proof of Theorem 4 and Corollary 5
	Guarantees for community detection
	Guarantees for node classification and link prediction

	Intermediate results
	Sampling probabilities for node2vec
	Proof of Theorem S1
	Proof of Theorem S2

	Chaining and bounds on Talagrand functionals
	Matrix Algebra
	Concentration inequalities
	Miscellaneous results

	Minimizers for degree corrected SBMs when =1

