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Abstract

We tackle the problem of Persistent Independent Particles (PIPs), also called Track-
ing Any Point (TAP), in videos, which specifically aims at estimating persistent
long-term trajectories of query points in videos. Previous methods attempted to
estimate these trajectories independently to incorporate longer image sequences,
therefore, ignoring the potential benefits of incorporating spatial context features.
We argue that independent video point tracking also demands spatial context
features. To this end, we propose a novel framework Context-PIPs, which effec-
tively improves point trajectory accuracy by aggregating spatial context features
in videos. Context-PIPs contains two main modules: 1) a SOurse Feature En-
hancement (SOFE) module, and 2) a TArget Feature Aggregation (TAFA) module.
Context-PIPs significantly improves PIPs all-sided, reducing 11.4% Average Tra-
jectory Error of Occluded Points (ATE-Occ) on CroHD and increasing 11.8%
Average Percentage of Correct Keypoint (A-PCK) on TAP-Vid-Kinetics. Demos
are available at https://wkbian.github.io/Projects/Context-PIPs/.

1 Introduction

Video particles are a set of sparse point trajectories in a video that originate from the first frame
(the source image) and move across the following frames, which are regarded as the target images.
In contrast to optical flow estimation that computes pixel-wise correspondences between a pair of
adjacent video frames, Persistent Independent Particles (PIPs) [12] or Tracking Any Point (TAP) [5]
is interested in tracking the points in the follow-up frames that correspond to the original query
points even when they are occluded in some frames. Video particles provide long-term motion
information for videos and can support various downstream tasks, such as video editing [16] and
Structure-from-Motion [48].

Long-range temporal information is essential for video particles especially when the particles are
occluded because the positions of the occluded particles can be inferred from the previous and
subsequent frames where they are visible. However, simultaneously encoding long image sequences
brings larger computational and memory costs. Previous methods [12, 5] learn to track individual
points independently because dense video particles are unnecessary in most scenarios. Inspired
by optical flow estimation from visual similarities, they learn to predict point trajectories from the
similarities between the query point and the subsequent target images. Specifically, given a query
point at the source image, PIPs encodes T feature maps from T consecutive target images and builds
a T ×H×W correlation volume by computing the feature similarity between the feature of the query
point and the feature maps. The T particle positions are iteratively refined with the 3D correlation
volume through a shared MLP-Mixer [40]. In other words, PIPs trades the spatial context features of

∗Weikang Bian and Zhaoyang Huang assert equal contributions.

37th Conference on Neural Information Processing Systems (NeurIPS 2023), Vancouver, Canada.

https://wkbian.github.io/Projects/Context-PIPs/


the particle for longer temporal feature encoding. PIPs achieves great performance on the DAVIS
dataset, which contains large movement particles and weak texture images (e.g., fast-moving dogs
and black bears).

We argue that independent point tracking still demands spatial context features. Intuitively, although
PIPs only accounts for specified query points, spatial context features around them provide informative
cues for point trajectory refinement. For example, video particles on the same objects always share
similar motions over time. In some video frames where the target particles are occluded, their
surrounding particles may be visible and provide guidance for the position estimation of the target
particles. However, PIPs only takes correlations and features belonging to the particles while ignoring
abundant spatial context features around them. In this work, we propose tracking particles with
Context (Context-PIPs) to improve independent point tracking with spatial context features. Context-
PIPs contains two key modules for better point trajectory refinement: 1) a source feature enhancement
(SOFE) module that learns to adopt more spatial context features in the source image and builds
a guidance correlation volume, and 2) a target feature aggregation (TAFA) module that aggregates
spatial context features in the target image guided by the correlation information.

In the source image, points that possess similar appearances are supposed to move in similar trajec-
tories in subsequent frames. Such an assumption has also been used in GMA [21] for optical flow
estimation. Given a query point, SOFE computes the correlation between the query point and the
source image feature map, which is its self-similarity map. With the guidance of the correlation (self-
similarity), SOFE predicts M offsets centered from the query point, and samples at the corresponding
M auxiliary points to collect source context features. During the iterative point trajectory refinement,
the correlation information between the M auxiliary features and T target feature maps is injected
into the MLP-Mixer, which provides strong guidance and shows evident performance improvement.

Existing methods for optical flow and video particle estimation ignore features in target images for
iterative refinement. To better utilize the context of target images, in each iteration, our TAFA module
collects target features surrounding the previous iteration’s resulting movements. TAFA for the first
time shows that context features in target images also benefit correspondence estimation and further
improve the point tracking accuracy.

Our contributions can be summarized as threefold: 1) We propose a novel framework, Context-PIPs,
to improve independent video particle tracking with context features from both source and target
features. Context-PIPs ranks 1st on the four benchmarks and shows clear performance superiority. 2)
We design a novel SOurce Feature Enhancement (SOFE) module that builds a guidance correlation
volume with spatial context features in the source image, and 3) a novel TArget Feature Aggregation
(TAFA) module that extracts context features from target images.

2 Related Work

Optical Flow. Optical flow estimates the dense displacement field between image pairs and has
traditionally been modeled as an optimization problem that maximizes the visual similarity between
image pairs with regularizations [13, 1, 2, 34]. It serves as the core module of many downstream
applications, such as Simultaneously Localization And Mapping (SLAM) [8, 47, 27, 43, 9], video
synthesis [46, 14, 15, 42, 41], video restoration [24, 23], etc. Since FlowNet [6, 20], learning
optical flow with neural networks presents superior performance over traditional optimization-
based methods and is fast progressing with more training data obtained by the renderer and better
network architecture [6, 20, 28, 35, 36, 18, 19, 45]. In recent years, iterative refining flow with
all-pairs correlation volume presents the best performance. The most successful network designs are
RAFT [39] and FlowFormer [17, 32], which achieves state-of-the-art accuracy.

Typical optical flow estimation only takes image pairs but longer image sequences can provide more
information that benefits optical flow estimation. Kalman filter [4, 7] had been adopted in dealing
with the temporal dynamics of motion and estimating multi-frame optical flow. Recent learning-based
methods also attempted to exploit multi-frame information and perform multi-frame optical flow
estimation. PWC-Fusion [29] is the first method that learns to estimate optical flow from multiple
images. However, it only fuses information from previous frames in U-Net and improves little
performance. The "warm start" technique [39, 33, 37] that wrapped the previous flow to initialize
the next flow is firstly proposed in RAFT and shows clear accuracy increasing. VideoFlow [31]
takes multi-frame cues better, iteratively fusing multi-frame information in a three-frame and five-
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frame structure, which reveals that longer temporal information benefits pixel tracking. Recently,
researchers [25, 10] also tried to learn to estimate optical flow with event cameras.

Tracking Any Point. Optical flow methods merely focus on tracking points between image pairs
but ignore tracking points across multiple consecutive frames, which is still challenging. Harley et
al. [12] studied pixel tracking in the video as a long-range motion estimation problem inspired by
Particle Video [30]. They propose a new dataset FlyingThings++ based on FlyingThings [26] for
training and Persistent Independent Particles (PIPs) to learn to track single points in consecutive
frames with fixed lengths. Doersch et al. [5] is a parallel work, which formalized the problem as
tracking any point(TAP). They also propose a new dataset Kubric [5] for training and a network
TAP-Net to learn point tracking. Moreover, they provide the real video benchmarks that are labeled
by humans, TAP-Vid-DAVIS [5] and TAP-Vid-Kinetics [5], for evaluation. PIPs and TAP solve
the video particle tracking problem in a similar manner, i.e., recurrently refining multi-frame point
trajectory via correlation maps. In this paper, our Context-PIPs follows the training paradigm of
PIPs and improves the network architecture design of PIPs. We also take the TAP-Vid-DAVIS and
TAP-Vid-Kinetics benchmarks from TAP-Net for evaluation.

3 Method

In contrast to optical flow methods [39, 17] that track dense pixel movement between an image pair,
the problem of point tracking takes T consecutive RGB images with a single query point xsrc ∈ R2

at the first frame as input, and estimates T coordinates X = {x0,x1, . . . ,xT−1} at the video frames
where every xt indicates the point’s corresponding location at time t. Persistent Independent Particles
(PIPs) [12] is the state-of-the-art network architecture for TAP. It iteratively refines the point trajectory
by encoding correlation information that measures visual similarities between the query point and
the T video frames. The query points to be tracked are easily lost when the network only looks
at them and ignores spatial context features. We propose a novel framework Context-PIPs (Fig. 1)
that improves PIPs with a SOurce Feature Enhancement (SOFE) module and a TArget Feature
Aggregation (TAFA) module. In this section, we first briefly review PIPs and then elaborate on our
Context-PIPs.

3.1 A Brief Revisit of PIPs

PIPs [12] processes T video frames containing N independent query points simultaneously and then
extends the point trajectories to more video frames via chaining rules [12]. Given a source frame with
a query point xsrc ∈ R2 and T − 1 follow-up target video frames, PIPs first extracts their feature
maps I0, I1, . . . , IT−1 ∈ RC×H×W through a shallow convolutional neural network and bilinearly
samples to obtain the source point feature fsrc = I0(xsrc) from the first feature map at the query
point xsrc. C,H,W are the feature map channels, height, and width. Inspired by RAFT [39], PIPs
initializes the point trajectory and point visual features at each frame with the same xsrc and fsrc:

X0 = {x0
0,x

0
1, . . . ,x

0
T−1|x0

t = xsrc, t = 0, . . . , t = T − 1},
F0 = {f00 , f01 , . . . , f0T−1|f0t = fsrc, t = 0, . . . , t = T − 1},

(1)

and iteratively refines them via correlation information. xk
t and fkt respectively denote the point

trajectory and point features in the t-th frame and k-th iteration. Intuitively, the point features store
the visual feature at the currently estimated query point location in all the T frames.

Specifically, in each iteration k, PIPs constructs multi-scale correlation maps [39] between the
guidance feature {fkt }T−1

t=0 and the target feature maps {Ikt }T−1
t=0 , which constitutes T correlation

maps Ck = {ck0 , ck1 , . . . , ckT−1} of size T ×H ×W , and crops correlation information inside the
windows centered at the point trajectory: Ck(Xk) = {ck0(xk

0), c
k
1(x

k
1), . . . , c

k
T−1(x

k
T−1)}, where

ckt (x
k
t ) ∈ RD×D denotes that we crop D ×D correlations from ckt inside the window centered at

xk
t . The point features Fk, point locations Xk, and the local correlation information Ck(Xk) are fed

into a standard 12-layer MLP-Mixer that produces ∆F and ∆X to update the point feature and the
point trajectory:

∆F, ∆X = MLPMixer(Fk,Ck(Xk),Enc(Xk − xsrc)),

Fk+1 = Fk +∆F, Xk+1 = Xk +∆X.
(2)
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Context-PIPs Overview

Figure 1: Overview of Context-PIPs Pipeline. Our Context-PIPs improves PIPs [12] with SOurce
Feature Enhancement (SOFE) and TArget Feature Aggregation (TAFA). PIPs iteratively refines the
point trajectory Xk with an MLP-Mixer with the current point trajectory Xk, the correlation features
Ck, and the point features Fk. SOFE and TAFA respectively improves the correlation features and
point features, denoted as Ĉk and F̂k.

PIPs iterates K times for updates and the point trajectory in the last iteration XK is the output.

PIPs achieves state-of-the-art accuracy on point tracking by utilizing longer temporal features.
However, the previous method ignores informative spatial context features which are beneficial to
achieve more accurate point tracking. Context-PIPs keeps all modules in PIPs and is specifically
designed to enhance the correlation information Ck and point features Fk as Ĉk and F̂k with the
proposed SOFE and TAFA.

3.2 Source Feature Enhancement

Given the query point xsrc and feature map I0 of the source image, PIPs simply samples a source
feature fsrc at the query point location to obtain the point visual features Fk. Although the point
features are updated via the iterative refinement, its perceptive field is limited to the single point,
easily compromised in harsh scenarios. The correlation maps Ck in the k-th iteration provide vague
information when the query point is in a less textured area. Moreover, the correlation map ckt at
timestamp k is ineffective once the particle is occluded at the t-th frame. To enhance the source
feature, as shown in Fig. 1, we propose SOurce Feature Enhancement (SOFE) that accepts spatial
context features in the source image as auxiliary features to guide the point trajectory refinement. The
MLP-Mixer can infer the point locations via the auxiliary features even when the points are occluded
or on less textured regions, which improves the point tracking accuracy and robustness.

Directly adopting all features in the source image brings large computational costs. SOFE
learns to sample a small number of auxiliary features to enhance the source feature. Specifi-
cally, SOFE improves the point features in three steps. Firstly, SOFE learns to predict M off-
sets δx0, δx1, . . . , δxM−1 ∈ R2 with an MLP-based sampler to sample M auxiliary features
G = {g0,g1, . . . ,gM−1|gm = I0(xsrc + δxm)} around the query point xsrc in the source im-
age. Motivated by GMA that aggregates pixel flows from pixels that are likely to belong to the same
object through self-similarity, our proposed sampler also learns the locations of the auxiliary features
based on local self-similarities c00(xsrc) which store the correlations cropped from the first frame at
the query point location. Secondly, we construct the correlation map c′m,t =< gm, It >∈ RH×W

that measure visual similarities of the m-th auxiliary feature and the t-th frame feature map. ĉm,t

provides additional correlation information to guide the iterative point trajectory refinement. In each
iteration k, we crop the additional correlation information c′m(xk

t ) according to the point locations
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xk
t and concatenate them with the original point correlation information ckt (x

k
t ), where c′m(xk

t )
denotes the same cropping operation as ckt (x

k
t ). Finally, for each frame t, we reduce the augmented

correlations to a correlation feature vector ĉt of length 196 through a correlation encoder CorrEnc.

ĉkt = CorrEnc(Concat(c′0(x
k
t ), c

′
1(x

k
t ), . . . , c

′
M−1(x

k
t ), c

k
t (x

k
t ))), (3)

and inject Ĉk = {ĉk0 , ĉk1 , . . . , ĉkT−1, } into the MLP-Mixer. Compared with PIPs that only adopts
ckt (x

k
t )), SOFE provides more informative correlations to the MLP-Mixer with spatial context

features but does not increase its parameters and computations. The additional auxiliary features
from the self-similarity map of the source image enhance the original source point features and
significantly improves tracking accuracy.

3.3 Target Feature Aggregation

Inspired by existing optical flow methods, PIPs iteratively refines the point trajectory with correlation
information and context features and also iteratively updates the point visual feature Fk+1 = Fk+∆F
after initializing them with the source feature, which presents benefits for point trajectory refinement.
We observe that the input for supporting the point feature updating comes from the correlations Ck

only. However, such correlations Ck are calculated as only cosine distances between the source
point visual feature Fk and the target features around currently estimated point locations Xk, which
provide limited information on how to conduct visual feature updating. Can we better guide the point
feature update with context features in target images?

We, therefore, propose TArget Feature Aggregation (TAFA) to augment point features with target
image features nearby the point trajectory. Specifically, for each target frame t, a patch of shape
D ×D cropped from the corresponding target feature map It centered at xk

t to generate key and
value. The augmented correlation features Ĉ in Eq. 3 encode abundant visual similarities. Therefore,
we generate a query from it to extract target context features and adopt cross-attention with relative
positional encoding to obtain the target context feature f ′

k
t , which is added to the original source

point feature f̂kt = fkt + f ′
k
t . Finally, such augmented point features F̂k = {f̂k0 , f̂k1 , . . . , f̂kT−1} are

injected into the MLP-Mixer. Similar to our proposed SOFE, TAFA also keeps the same parameters
and computations of MLP-Mixer as PIPs while providing additional target context features and
further improving PIPs. Although context features in the source image are used since RAFT [39], no
previous methods adopt context features from target images. TAFA for the first time validates that
target images also contain critical context features that benefit point movement refinement. SOFE
improves PIPs with auxiliary features in the source image while TAFA absorbs more target image
features. Equipping SOFE and TAFA to PIPs constitutes our final model, Context-PIPs.

3.4 Loss Functions

We compute the L1 distance between Xk computed in iteration k and the ground truth Xgt and
constrain with exponentially increasing weights γ = 0.8.

LTAP =

K∑
k=1

γK−k||Xk −Xgt||1 (4)

In addition, we will predict the visibility/occlusion V by a linear layer according to the F̂K obtained
by the iterative update. And the cross entropy loss is used to supervise V with the ground truth Vgt.

LV is = Vgt logV + (1−Vgt) log(1−V). (5)

The final loss is the weighted sum of the two losses:

Ltotal = w1LTAP + w2LV is. (6)

We use w1 = 1 and w2 = 10 during training.
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Table 1: Experiments on FlyingThings++, CroHD, TAP-Vid-Davis, and TAP-Vid-Kinetics (first). Vis.
and Occ. denotes ATE-Vis. and ATE-Occ.

Method FlyingThings++ CroHD DAVIS (first) Kinetics (first)

Vis. Occ. Vis. Occ. AJ A-PCK AJ A-PCK
DINO 43.05 76.25 22.50 26.06 - - - -
RAFT 16.75 43.21 7.99 13.16 27.1 42.1 35.1 49.7
TAP-Net - - 17.00 20.86 33.0 48.6 38.5 54.4
PIPs (Paper) 15.54 36.67 5.16 7.56 - - - -
PIPs (Re-imp.) 7.40 24.40 4.73 7.97 39.2 55.1 33.4 51.0
Context-PIPs (Ours) 6.44 22.22 4.28 7.06 42.7 60.3 40.2 57.0

4 Experiments

We evaluate our Context-PIPs on four benchmarks: FlyingThings++ [12], CroHD [38], TAP-Vid-
DAVIS, and TAP-Vid-Kinetics [5]. Following PIPs [12], we train Context-PIPs on Flyingthings++
only and evaluate it on other benchmarks without finetuning. Context-PIPs achieves state-of-the-art
performance on all benchmarks and significantly improves PIPs. Moreover, we show that by utilizing
spatial context features in Context-PIPs, we achieve on-par performance with PIPs when using only
40.2% of its parameters.

Datasets Flyingthings++ is a synthetic dataset based on Flyingthings3D [26], which contains 8-frame
trajectories with occlusion. The video resolution is 384×512 for both training and evaluation. Crowd
of Heads Dataset (CroHD) is a high-resolution crowd head tracking dataset. Following PIPs, the
RAFT [39], PIPs, and our Context-PIPs are evaluated at 768 × 1280 resolution. DINO [3] and
TAP-Net [5] are respectively evaluated at 512× 768 and 256× 256 resolution. TAP-Vid-DAVIS and
TAP-Vid-Kinetics are two evaluation datasets in the TAP-Vid benchmark, both of which consist of
real-world videos with accurate human annotations for point tracking. Note that TAP-Vid provides
two distinct query sampling strategies, i.e., first and strided. The “first” sampling contains only the
initial visible query points until the last frame, while the “strided” sampling is to sample all visible
query points in every 5 frames. RAFT, TAP-Net, PIPs, and our Context-PIPs are evaluated with two
different sampling strategies respectively at 256× 256 resolution. While Kubric-VFS-like [44, 11]
and COTR [22] are only evaluated with the “first” sampling strategies at the same resolution.

Experiment Setup We use the average trajectory error (ATE) metric [12] for evaluation on FlyingTh-
ings++ and CroHD. ATE measures the average L2 distances between the coordinates of all predicted
points in the trajectories and the corresponding ground truth coordinates. According to the ground
truth visibility of the points, we calculate ATEs for all visible points and occluded points separately.
i.e., ATE-Vis. and ATE-Occ. We use the average Jaccard (AJ) [12], the average percentage of correct
keypoint (A-PCK) metrics for TAP-Vid-DAVIS and TAP-Vid-Kinetics. The Jaccard metric measures
the ratio of “true positive” visible points within a given threshold. Average Jaccard (AJ) averages
Jaccard across the different thresholds. PCK measures the percentage of the predicted coordinates
whose L2 distances from the ground truth are smaller than a given threshold. A-PCK refers to
calculating PCK according to multiple different thresholds and then taking the average. We set the
thresholds as 1, 2, 4, 8, and 16.

Implementation Details We train our Context-PIPs with a batch size of 4 and 100,000 steps on
Flyingthings++ with horizontal and vertical flipping. We use the one-cycle learning rate scheduler.
The highest learning rate is set as 5× 10−4. During training, we set the convolution stride to 8 and
the resolution of the input RGB images to 384× 512, and randomly sample N = 128 visible query
points for supervision. To limit the length of the input videos, we set T = 8 and apply the trajectory
linking mechanism [12] at test time, similarly to PIPs. To align to the PIPs paper, the PIPs compared
in Tab. 1 and Tab. 2 is trained with K = 6. In the ablation study, all models are trained with K = 4
while tested with K = 6 for a fair comparison.

4.1 Quantitative Comparison

FlyingThings++ and CroHD As shown in Tab. 1, Context-PIPs ranks 1st on all metrics and presents
significant performance superiority compared with previous methods. Specifically, Context-PIPs
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Table 2: Experiments on TAP-Vid-DAVIS(strided) and TAP-Vid-Kinetics(strided).

Method TAP-DAVIS(strided) TAP-Kinetics(strided)

AJ A-PCK AJ A-PCK
RAFT 30.0 46.3 34.5 52.5
Kubric-VFS-Like 33.1 48.5 40.5 59.0
COTR 35.4 51.3 19.0 38.8
TAP-Net 38.4 53.1 46.6 60.9
PIPs(Re-imp.) 45.2 59.8 42.9 58.3
Context-PIPs (Ours) 48.9 64.0 49.8 64.3

Table 3: Occlusion Accuracy on TAP-Vid-DAVIS and TAP-Vid-Kinetics.

Method First Strided

TAP-DAVIS TAP-Kinetics TAP-DAVIS TAP-Kinetics
TAP-Net 78.8 80.6 82.3 85.0
PIPs (Re-imp.) 79.3 77.0 82.9 81.5
Context-PIPs (Ours) 79.5 79.8 83.4 83.3

achieves 7.06 ATE-Occ and 4.28 ATE-Vis on the CroHD dataset, 11.4% and 9.5% error reductions
from PIPs, the runner-up. On the FlyingThings++ dataset, our Context-PIPs decreases the ATE-Vis
and ATE-Occ by 0.96 and 2.18, respectively.

TAP-Vid-DAVIS and TAP-Vid-Kinetics (first) A-PCK, the average percentage of correct key points,
is the core metric. Context-PIPs ranks 1st in terms of A-PCK on both benchmarks. Specifically,
Context-PIPs outperforms TAP-Net by 24.1% on the TAP-Vid-DAVIS benchmark and improves
PIPs by 11.8% on the TAP-Vid-Kinetics benchmarks. Context-PIPs also achieves state-of-the-art
occupancy accuracy on both datasets.

TAP-Vid-DAVIS and TAP-Vid-Kinetics (strided) Tab. 2 compares methods in the “strided” sam-
pling setting. Our Context-PIPs also achieves the best performance on both AJ and A-PCK metrics
for the two datasets. Context-PIPs effectively improves PIPs’ occupancy accuracy and presents the
best performance on the TAP-Vid-Davis dataset.

4.2 Qualitative Comparison

We visualize the trajectories estimated by TAP-Net, PIPs, and our Context-PIPs respectively in Fig 2
to qualitatively demonstrate the superior performance of our method. By incorporating additional
spatial context features for point tracking, Context-PIPs surpasses the compared methods in accuracy
and robustness. Specifically, the first row shows the case of large-scale variation. The trajectory
predicted by TAP-Net deviates considerably from the ground truth. TAP-Net also outputs jittery
predictions when the query pixel is on the texture-less area as shown in the second row. Our Context-
PIPs generates more accurate results than PIPs in these two hard cases. Furthermore, as depicted in
the third row, PIPs struggles to distinguish the front wheel and the rear wheel due to the changing
lighting conditions. However, our Context-PIPs achieves consistent tracking, thanks to the rich
context information brought by the SOFE and TAFA modules.

4.3 Efficiency Analysis

We train our Context-PIPs and PIPs with different MLP-Mixer depths, i.e., the number of layers in
the MLP-Mixer, to show the prominent efficiency and effectiveness of our proposed Context-PIPs.
Context-PIPs improves PIPs with SOFE and TAFA, which introduce minor additional parameters and
time costs. We show that the accuracy benefits do not come from the increased parameters trivially.
As displayed in Tab. 4, we increase the MLP-Mixer depth to 16, which significantly increases the
parameters but does not bring performance gain. We also decrease the MLP-Mixer depth in our
Context-PIPs. Even with only a 3-layer MLP-Mixer, Context-PIPs achieves better performance than
the best PIPs (MLP-Mixer depth=12). Context-PIPs outperforms PIPs with only 40.2% parameters.
Moreover, evaluated by the pytorch-OpCounter [49], PIPs consumes 287.5G FLOPS while Context-
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Query Points TAP-Net PIPs Context-PIPs (Ours)

Figure 2: Qualitative comparison. In the leftmost column, the green crosses mark the query points
and the image is the starting frame. The right three columns show the results of TAP-Net, PIPs, and
Context-PIPs. The red and green lines illustrate the predicted and ground truth trajectories.

Table 4: Efficiency analysis for PIPs and Context-PIPs with different MLP-Mixer depth.

Method MLP-Mixer Param.(M) Flyingthings++ CroHD

Depth vis occ vis occ

PIPs
6 16.06 8.00 25.30 5.04 8.15

12 28.67 7.70 24.70 4.98 8.20
16 37.09 7.69 24.71 4.84 8.07

Context-PIPs (Ours)
3 11.54 7.37 24.19 4.54 7.79
6 17.84 6.94 22.56 4.37 7.05

12 30.46 6.60 22.11 4.30 6.73

PIPs only consumes 216.4G FLOPS, saving 24.7% computation resources. These numbers reveal the
high memory and computation efficiency of our proposed Context-PIPs.

4.4 Ablation Study on Modules

We conduct a module ablation study on the proposed modules as presented in Tab. 5. The errors of
Context-PIPs consistently decrease when we sequentially add the SOFE and TAFA modules, which
reveals the effectiveness of SOFE and TAFA. To demonstrate the necessity of the cross-attention
mechanism used in TAFA, we attempt to predict a matrix of weights corresponding to the feature
map shaped with ra and directly weigh and sum the features to get δF . Cross-attention performs
better than prediction.

4.5 Ablation Study on Parameters

We conduct a series of ablation experiments (Tab. 6) to demonstrate the significance of each module
and explain the rationality of the settings. All ablation experiments are trained on Flyingthings++.
Starting from the PIPs baseline, we first add the SOFE module and explore the two related hyper-
parameters, i.e., the correlation radius rc and the number of samples M . Then, we further add the
TAFA module and also adjust the attention window radius ra. We additionally conduct a comparison
between the prediction and attention mechanisms in TAFA. In the below experiments, we set N = 64,
learning rate as 3× 10−4, and train for 20, 000 steps. Below we describe the details.

Correlation Radius in SOFE We crop a multi-scale correlation of size (2rc + 1)× (2rc + 1) from
the first correlation map to predict the auxiliary feature offsets in SOFE. The correlation radius rc
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Table 5: Modules ablation study.

Method Experiment Flyingthings++ CroHD

vis occ vis occ
PIPs Baseline 7.40 24.4 4.73 7.97

Context-PIPs

+SOFE 6.91 22.64 4.36 7.15
+SOFE+TAFA (attention) 6.60 22.11 4.30 6.73
+SOFE+TAFA (prediction) 7.15 23.33 4.34 7.27

Table 6: Ablation study. We add one component at a time on top of the baseline to obtain our Context-
PIPs. rc, M , and ra respectively denote the correlation radius and the number of predicted samples
in SOFE, and the attention window radius in TAFA. Our final model uses M = 9, rc = 2, ra = 3 to
achieve the best performance.

Method Experiment Parameters Flyingthings++ CroHD

M rc ra vis occ vis occ
PIPs Baseline - - - 14.42 37.33 6.14 9.97

+SOFE

Correlation Radius (rc)

3 1 - 13.60 36.17 6.40 10.30
3 2 - 13.02 35.60 6.48 9.69
3 3 - 13.07 35.74 6.23 10.09
3 4 - 13.75 37.01 6.64 10.20

Number of Samples (M )

1 2 - 15.00 37.51 6.94 10.25
3 2 - 13.02 35.60 6.48 9.69
6 2 - 13.21 35.39 6.58 9.77
9 2 - 12.18 34.23 5.71 9.18
12 2 - 12.87 35.27 6.20 10.17

+SOFE+TAFA Attention Window (ra)

9 2 1 11.98 34.10 5.90 9.52
9 2 2 11.82 33.82 5.64 9.28
9 2 3 11.67 33.38 5.53 9.19
9 2 4 11.81 33.88 5.65 9.23
9 2 5 11.83 33.76 5.60 9.15

determines the cropping patch size. We fix M = 3, and gradually increase rc from 1 to 4. The model
achieves the best performance when rc = 2.

Number of Samples in SOFE SOFE learns to sample M additional auxiliary features to enhance the
source feature. Given rc = 2, we continued to experiment with the different number of samples M .
The model achieves the best performance on both Flyingthings++ and CroHD datasets when M = 9.

Attention Radius in TAFA TAFA aggregates target features surrounding the currently estimated
corresponding point locations to enhance the context feature via cross-attention. The radius of the
attention window ra determines how far the attention can reach. We gradually increase ra from 1 up
to 5, and find that ra = 3 performs best.

5 Conclusion

We have presented a novel framework Context-PIPs that improves PIPs with spatial context features,
including a SOurce Feature Enhancement (SOFE) module and a TArget Feature Aggregation (TAFA)
module. Experiments show that Context-PIPs achieves the best tracking accuracy on four benchmark
datasets with significant superiority. This technology has broad applications in video editing and
3D reconstruction and other fields. Limitations. Following PIPs, Context-PIPs tracks points in
videos with a sliding window. The target point cannot be re-identified when the point is lost. In
our future work, we will explore how to re-identify the lost points when the points are visible again.
Acknowlegement This project is funded in part by National Key R&D Program of China Project
2022ZD0161100, by the Centre for Perceptual and Interactive Intelligence (CPII) Ltd under the
Innovation and Technology Commission (ITC)’s InnoHK, by General Research Fund of Hong Kong
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Appendix

A More Implementation Details

SOFE sampler. While sampling auxiliary features, SOFE learns to predict offsets with an MLP-
based sampler which consists of 5 linear layers interweaved with RELU activations. The local
self-similarities c00 at location xsrc) would first be projected into 128 feature channels. A 3-layer
feedforward network with 4× 128 channels followed, outputting the feature in 128 feature channels.
The final linear layer is used to predict offsets M × 2 from the 128-channel features.

SOFE CorrEnc. SOFE reduces the augmented correlations (M + 1)× 196 to a correlation feature
vector ĉkt through a correlation encoder CorrEnc which contains only 2 linear layers. The first linear
layer reduces the feature channels to 4× 196. After a RELU, the later linear layer further reduces the
feature channels to 196, which is the ĉkt .

Table A1: Experiments on FlyingThings++ and CroHD datasets.

Method FlyingThings++ CroHD

ATE-Vis. ATE-Occ. ATE-Vis. ATE-Occ.
TAP-Net - - 17.00 20.86
PIPs (Paper) 15.54 36.67 5.16 7.56
PIPs (Re-imp., K = 4) 7.70 24.70 4.98 8.20
PIPs (Re-imp., K = 6) 7.40 24.40 4.73 7.97
PIPs (Released) 6.08 19.15 4.56 7.71
Context-PIPs (Ours, K = 4) 6.60 22.11 4.30 6.73
Context-PIPs (Ours, K = 6) 6.44 22.22 4.28 7.06

Table A2: Experiments on TAP-Vid-DAVIS (first), and TAP-Vid-Kinetics (first).

Method K
MLP-Mixer TAP-Vid-DAVIS (first) TAP-Vid-Kinetics (first)

Depth AJ A-PCK AJ A-PCK
TAP-Net - - 33.0 48.6 38.5 54.4
PIPs (Re-imp.) 4 6 34.4 51.6 28.8 48.6
PIPs (Re-imp.) 4 12 34.6 51.8 28.8 47.2
PIPs (Re-imp.) 4 16 35.3 52.5 29.9 48.5
PIPs (Re-imp.) 6 12 39.2 55.1 33.4 51.0
PIPs(Released) - - 38.5 55.4 30.1 48.3
Context-PIPs (Ours) 4 3 38.4 57.1 35.8 54.3
Context-PIPs (Ours) 4 6 41.0 58.3 36.2 54.8
Context-PIPs (Ours) 4 12 39.7 57.7 38.2 54.8
Context-PIPs (Ours) 6 12 42.7 60.3 40.2 57.0

B More Quantitative Comparisons

PIPs Re-implementation. There are two official PIPs [12] versions. PIPs (Paper) and PIPs (Released)
respectively denote the model reported in the paper and the model provided in the released code.
There are many misalignments between the paper description and the released code. We follow
the parameters suggested in the paper and the released code but fail to reproduce the results. We,
therefore, re-implement two PIPs as the baselines, according to the settings provided in the paper
(K = 6) and the released code (K = 4). K denotes the number of refinement iterations in training.
The underscored PIPs (Re-imp.), i.e. K = 6, is the chosen baseline for comparison in the main
paper. The performance of the re-implemented model is better than the numbers reported in the paper
(Tab. A1). Although our re-implemented model presents inferior performance than the released model
on FlyingThings++ and CroHD, they are comparable on TAP-Vid-DAVIS and the re-implement
model is even better than the released model on TAP-Vid-Kinetics (Tab. A2). We add our proposed
SOFE and TAFA modules to the re-implemented baselines to obtain our Context-PIPs models.
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Table A3: Experiments on TAP-Vid-DAVIS (strided) and TAP-Vid-Kinetics (strided).

Method K
MLP-Mixer TAP-Vid-DAVIS (strided) TAP-Vid-Kinetics (strided)

Depth AJ A-PCK AJ A-PCK
TAP-Net - - 38.4 53.1 46.6 60.9
PIPs (Re-imp.) 4 6 41.0 56.6 37.2 55.5
PIPs (Re-imp.) 4 12 41.2 56.5 37.4 54.1
PIPs (Re-imp.) 4 16 41.4 56.8 38.6 55.3
PIPs (Re-imp.) 6 12 45.2 59.8 42.9 58.3
PIPs (Released) - - 45.6 60.6 39.6 55.6
Context-PIPs (Ours) 4 3 44.8 61.2 44.9 61.2
Context-PIPs (Ours) 4 6 45.9 61.9 45.4 62.1
Context-PIPs (Ours) 4 12 46.1 61.9 47.4 62.0
Context-PIPs (Ours) 6 12 48.9 64.0 49.8 64.3

We list the results for Flyingthings++ and CroHD in Tab. A1, the results for TAP-Vid-DAVIS (first)
and TAP-Vid-Kinetics (first) in Tab. A2, and the results for TAP-Vid-DAVIS (strided) and TAP-Vid-
Kinetics (strided) in Tab. A3. “first” and “strided” are two distinct query sampling strategies proposed
by TAP-Vid [5], where “first” sampling only contains the initial visible query points, while “strided”
sampling would contain all visible query points in every 5 frames.

The released PIPs model tends to overfit on FlyingThings++ because although it obtains the lowest
error on FlyingThings++ but is inferior on TAP-Vid-DAVIS and TAP-Vid-Kinetics. Although we
only show the Context-PIPs with K = 4 in the main paper, our K = 6 version achieves the best
performance, outperforming PIPs K = 6 by 9.44% and 11.76% on DAVIS and Kinetics. Moreover,
Context-PIPs trained with K = 4 and 3-layer MLP-Mixer achieves even better results than PIPs
trained with K = 6 and 12-layer MLP-Mixer (Tab. A2).
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