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Abstract
The use of parallel actors for data collection has
been an effective technique used in reinforcement
learning (RL) algorithms. The manner in which
data is collected in these algorithms, controlled
via the number of parallel environments and the
rollout length, induces a form of bias-variance
trade-off; the number of training passes over the
collected data, on the other hand, must strike a
balance between sample efficiency and overfit-
ting. We conduct an empirical analysis of these
trade-offs on PPO, one of the most popular RL
algorithms that uses parallel actors, and establish
connections to network plasticity and, more gener-
ally, optimization stability. We examine its impact
on network architectures, as well as the hyper-
parameter sensitivity when scaling data. Our anal-
yses indicate that larger dataset sizes can increase
final performance across a variety of settings, and
that scaling parallel environments is more effec-
tive than increasing rollout lengths. These find-
ings highlight the critical role of data collection
strategies in improving agent performance.

1. Introduction
Reinforcement Learning (RL) is a promising framework
for addressing a wide range of decision-making tasks, from
robotics and autonomous driving to game playing and re-
source optimization (Schwarzer et al., 2023; Vinyals et al.,
2019; Bellemare et al., 2020; Fawzi et al., 2022). Central to
the success of RL is the iterative process of data collection
and policy learning, wherein agents interact with an envi-
ronment to gather experience, which is subsequently used to
improve decision-making policies (Sutton & Barto, 2018).

*Equal contribution 1Independent Researcher 2Mila - Québec
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This interaction forms the foundation of RL’s ability to dis-
cover and refine strategies that can handle high-dimensional
and dynamic decision spaces. However, many RL tasks,
particularly those involving complex environments, suffer
from a critical bottleneck: the need for extensive and diverse
training data to effectively generalize across the state space
(Cobbe et al., 2020). This bottleneck is further compounded
in online RL, where data arrives sequentially over time in a
non-stationary fashion (Khetarpal et al., 2022).

Traditional RL methods often rely on single-environment
simulations which limits the speed and diversity of data
collection. This approach, while straightforward, is inher-
ently slow and can restrict the scope of exploration, leading
to suboptimal policy learning (Rudin et al., 2022; Singla
et al., 2024). To address these limitations, recent advances
in parallelized simulations, powered by GPU technology
and distributed computing, have enabled simultaneous inter-
action with multiple instances of the environment (Handa
et al., 2023; Gallici et al., 2024; Singla et al., 2024). This
innovation allows RL agents to gather significantly more
data within a given timeframe, which can result in more
diverse training data and richer training signals (Horgan
et al., 2018; Espeholt et al., 2018; Petrenko et al., 2020).

Parallelized data collection has the potential to facilitate
better state space coverage, reduce variance in gradient es-
timates, and accelerate the learning process by providing a
larger and more diverse data for each policy update (Schul-
man et al., 2017). However, the practical realization of these
benefits might be hindered by intrinsic challenges within
deep RL algorithms. One such challenge is the loss of plas-
ticity, which refers to a network’s ability to adapt to new
information without degrading its performance on previ-
ously learned tasks (Berariu et al., 2021; Lyle et al., 2023;
Juliani & Ash, 2024; Moalla et al., 2024). Recent work has
also demonstrated that scaling data can often saturate an
agent’s performance (Singla et al., 2024).

With this work we systematically investigate the interplay
between parallelized data collection, plasticity, learned rep-
resentations, and sample efficiency. Our findings reveal
that parallelized data collection can help mitigate common
optimization challenges in deep RL, ultimately resulting
in a significant positive impact on final performance. We
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show that increasing the number of parallel environments
(Nenvs) leads to stabler training dynamics, as evidenced by
reductions in weight norm and gradient kurtosis, and that
this strategy is generally more effective than increasing roll-
out length (NRO) for a fixed data budget (see Sec. 4 and
Sec. 5). We conclude by providing guidance for maximiz-
ing data efficiency when increasing the data collected via
parallelization.

2. Related Work
Early efforts to scale RL focused on distributing computa-
tion across multiple actors and learners. A3C (Mnih et al.,
2016) introduced an asynchronous multi-threaded frame-
work to parallelize experience collection and learning. IM-
PALA (Espeholt et al., 2018) extended this idea using a
decoupled actor-learner architecture with off-policy correc-
tion, enabling efficient scaling to thousands of environments.
Other systems explored synchronous data collection using
large batches (Stooke & Abbeel, 2018; Horgan et al., 2018),
improving hardware utilization but often increasing training
instability.

Recent advances in GPU-accelerated simulators such as
Isaac Gym (Makoviychuk et al., 2021), EnvPool (Weng
et al., 2022), and PGX (Koyamada et al., 2024) have signifi-
cantly increased the throughput of data collection, enabling
thousands of environment instances to run in parallel on a
single device. These tools have enabled researchers to scale
simulation-based learning to previously inaccessible do-
mains, such as dexterous manipulation (Rudin et al., 2021),
legged locomotion (Agarwal et al., 2022), and complex
coordination tasks (Handa et al., 2023).

Several recent studies have revisited the role of parallel
data collection in improving learning performance. Li et al.
(2023) showed that increasing the number of environments
during training can improve exploration and stabilize learn-
ing. Liu et al. (2024) demonstrated that combining parallel
environment rollout with distributed learners leads to faster
convergence and stronger final performance. Despite these
benefits, scaling rollout length (NRO) versus environment
count (Nenvs) remains underexplored.

While high-throughput simulators provide vast amounts of
experience, prior work has shown that simply increasing
batch size or rollout length is often suboptimal. Singla et al.
(2024) showed diminishing returns when scaling data vol-
ume without accounting for structural factors such as rollout
diversity or update frequency. Similar results were observed
in single-environment settings, where larger batches hin-
dered generalization and slowed adaptation (Obando Ceron
et al., 2024). These findings suggest that the structure of
collected data, not just its volume, is critical for effective
and stable training.

Our work builds on these insights by systematically analyz-
ing how different modes of data scaling (via Nenvs and NRO)
affect performance, sample efficiency, and network plas-
ticity in PPO and PQN. This study isolates these variables
under fixed data budgets and links their effects to optimiza-
tion stability and final returns across discrete and continuous
control tasks.

3. Background
RL is a machine learning paradigm that enables agents to
map observations to actions. When these actions are exe-
cuted in an environment, the environment provides a numer-
ical reward and transitions the agent to a new state. This is
typically formalized as a Markov Decision Process (MDP)
(Puterman, 1994). M := (S,A,R, P, γ), where S is a finite
set of states, A is a finite set of actions available to the agent,
R : S × A → [Rmin, Rmax] is the reward function that
gives the immediate reward received after taking action a
in state s, P : S ×A → ∆(S) is the transition probability,
where P (s, a)(s′) represents the probability of transition-
ing to state s′ when the agent takes action a in state s, and
γ ∈ [0, 1) is a discount factor.

The primary objective of reinforcement learning is to learn
a policy π that maximizes cumulative rewards over time. A
policy, which defines the behavior of an agent, is represented
as π : S → ∆(A). Two key approaches to obtaining the
best policy are value-based (McKenzie & McDonnell, 2022)
and policy-based (Sutton et al., 1999) methods. In value-
based methods, the policy is determined by learning a state-
action value function and selecting actions with the highest
estimated value. In contrast, policy-based methods directly
optimize over the policy (Schulman et al., 2017).

3.1. Proximal Policy Optimization (PPO)

PPO is a policy-based method that alternates between sam-
pling and optimization (Schulman et al., 2017). In the sam-
pling step, the algorithm collects a batch B from multiple
environments and rollouts. The agent then trains by sam-
pling mini-batches from B over multiple epochs; the size
of B thus determines how much data is collected, while the
number of epochs determines the number of times each data
point is (re-)used for learning. PPO is designed to optimize
the policy while maintaining stability and preventing large,
potentially destabilizing, policy updates. To achieve this,
PPO introduces a clipping mechanism in the objective func-
tion, ensuring that policy updates remain within a predefined
trust region:

LCLIP(θ) = Et [min (rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)] ,

where rt(θ) = πθ(at|st)
πθold (at|st) represents the probability ratio

between the new policy πθ and the old policy πθold . The term
At is the advantage function, which quantifies the relative
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Figure 1. (a) Collecting the data with a large Nenvs is more effective; both experiments contain the same amount of data. (b) Scaling
parallel data collection improve sample efficiency and final performance. Scaling data by increasing the Nenvs is more effective than NRO .
(c) Scaling parallel data collection diminishes performance degradation as the number of epochs increases. Performance collapse is better
mitigated by increasing the Nenvs. All the experiments were run on the Atari-10 benchmark (Aitchison et al., 2023) for PPO (Schulman
et al., 2017). See Sec. 4 for training details.

improvement of an action over the expected value of the
state. The hyperparameter ϵ controls the amount of clip-
ping, ensuring that policy updates are restricted to prevent
excessively large changes. The complete PPO objective is
expressed as: L(θ) = LCLIP(θ) − c1LVF(θ) + c2LENT(θ),
where LVF(θ) represents the Value Function Loss, given by
(Vθ(st)−V target

t )2, LENT(θ) is the Entropy Bonus encourag-
ing exploration, and c1 and c2 are coefficients that balance
the contributions of each.

3.2. Parallelized Data Collection

The batch B previously mentioned is obtained by run-
ning Nenvs environments in parallel, each for a rollout of
length NRO. Their product thus defines the batch size
|B| = Nenvs × NRO and, as we will demonstrate below,
the choice of these two factors can have a large impact on
agent performance. The choice of Nenvs can have an impact
on the diversity of data gathered, as governed by the support
of the starting state distribution. A larger value can result
in greater state-action coverage, but excessive paralleliza-
tion can also result in (possibly) conflicting learning signals,
highlighting the need to balance coverage and specificity.
Varying NRO, on the other hand, induces a bias-variance
tradeoff: longer rollouts can result in less biased estimates of
returns (approaching Monte-Carlo estimates), while exces-
sively long rollouts may produce updates with high variance,
resulting in training instabilities.

Ideally, deep RL algorithms should be maximally sample-
efficient by training over B multiple times. Doing so, how-
ever, has been shown to overfit to the data, leading to poor
performance and plasticity (Nikishin et al., 2022; D’Oro
et al., 2023; Juliani & Ash, 2024). The diversity induced
by increasing Nenvs can help mitigate this risk, but it may
not be sufficient when the number of epochs is high (Moalla
et al., 2024).

4. Data collection and efficiency
Our work aims to develop a better understanding of the trade-
offs mentioned above, with the aim of providing guidance
for how best to scale data collection for more performant
agents. In this section we examine how parallelized data
collection can impact agent performance and plasticity.

4.1. Experimental Setup

We use the CleanRL implementation of PPO (Huang et al.,
2022) with default hyperparameter settings. Our evaluation
was conducted on the Arcade Learning Environment (ALE)
(Bellemare et al., 2013), focusing on the Atari-10 games
(Aitchison et al., 2023), which were shown to be reflective
of performance on the full suite, trained for 100 million total
timesteps, which is equivalent to the total number of envi-
ronment steps1. Following the evaluation protocol proposed
by Agarwal et al. (2021), each experiment was executed
using 5 independent random seeds. We report the human-
normalized interquantile mean (IQM) scores, aggregated
across games, configurations, and seeds, along with 95%
stratified bootstrap confidence intervals. In all our figures,
default configurations will be shown in black. All experi-
ments were performed on NVIDIA Tesla A100 GPUs, with
each experiment requiring approximately 2-3 days.

4.2. Data collection and efficiency

Fixed data budgets Given a fixed data budget B =
Nenvs × NRO, Fig. 1(a) illustrates the impact of varying
Nenvs and NRO while maintaining B fixed. Specifically, we
compare the default settings (Nenvs = 8, NRO = 128) with
a variant that increases the number of environments and
reduces the rollout length (Nenvs = 128, NRO = 8). This

1The number of environment interactions is fixed across all
experiments when varying Nenvs or NRO.
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result suggests that, for a fixed data budget, scaling Nenvs is
preferable to scaling NRO.

Scaling data We next explore settings where the data
budget is increased. Fig. 1(b) illustrates the impact of in-
creasing B by varying Nenvs and NRO. While results show
that increasing either leads to improved performance, in-
creasing Nenvs appears to yield more gains, consistent with
our previous result.

Data reuse The number of epochs controls the number
of times we train over each data point. In Fig. 1(c) we ex-
plore increasing the default value of 4 by a factor of 2 and 4,
while simultaneously increasing Nenvs and NRO. Consistent
with prior works (Nikishin et al., 2022; Sokar et al., 2023),
overly training on the same data, via increasing the number
of epochs, negatively impacts performance. However, it
can be seen that the gains obtained from increasing data,
in particular by scaling Nenvs, can help to counteract this
degradation. For instance, the performance decline when
training twice as many times over the data (with 8 epochs)
is completely overcome by doubling the number of environ-
ments.

Data diversity In on-policy RL, the diversity of collected
trajectories plays a key role in determining agent perfor-
mance by influencing the quality of the training signal.
Fig. 2 shows how varying the number of parallel environ-
ments (Nenvs) and rollouts per environment (NRO) affects
the coverage of the learned state distribution. Increasing
Nenvs enhances spatial diversity by exposing the policy to a
wider range of initial conditions and environment stochas-
ticity, while increasing NRO improves temporal depth but
may induce stronger trajectory correlations. Configurations
with higher Nenvs (right column) consistently yield greater
state-space coverage and higher performance across Atari
games, as measured by a visitation-based metric. This high-
lights that increasing the Nenvs, while keeping total samples
constant, can lead to diverse policy updates. Fig. 9 further
supports this observation by showing consistent improve-
ments in state-space coverage across different Nenvs values.

While longer rollouts might improve temporal credit assign-
ment, our results suggest the gains from better state-action
coverage induced by more environments are more effective
at improving performance and mitigating overfitting. It is
likely that this tradeoff is not fixed throughout training, and
future work could explore adjusting Nenvs and NRO dynami-
cally throughout training. Taken together, our results in this
section can be summarized as follows.

When dealing with a fixed or scaling data budget,
or when increasing the number of epochs, it is more
effective to scale Nenvs over NRO.

Figure 2. State-space coverage under varying parallel rollout
configurations across Atari games. (Left) fewer environments,
more rollouts per environment (Nenvs = 8, NRO = 128). (Right)
more environments, fewer rollouts (Nenvs = 128, NRO = 8).
Increasing the number of environments improves spatial coverage
and distributional spread, as quantified by the coverage metric
(Cvg) shown in each plot. See Sec. B.7 for Cvg metric details. The
color scale indicates the critic value associated with each projected
point: higher critic values are shown in yellow, and lower values
in blue.

5. Analyses
Having demonstrated the benefits of scaling environments,
in this section we explore its connection to various learning
dynamics and algorithmic components, with the aim to
better understand the reasons for the observed gains.

5.1. Learning dynamics

To assess how learning dynamics are affected by changing
data collection strategies, in Fig. 3 we examine the following
metrics throughout training in four representative games:
feature rank, dormant neurons, weight norm and gradient
kurtosis; these metrics can serve as proxy indicators of
feature collapse and loss of plasticity. The results on the
remaining games are provided in Fig. 10, and results on
extra games in Fig. 15.

Feature Rank Feature rank reflects the effective dimen-
sionality of the representations learned by the agent’s neural
network (see Sec. B.1 for further details). Higher feature
rank suggests richer and more diverse representations, which
can contribute to improved policy learning. We consistently
observe an increase in feature rank when increasing Nenvs,
suggesting that the resulting increased data diversity can
improve learned representations. This is consistent with
prior techniques, such as data augmentation, which have
been shown to aid in learned representations.
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Figure 3. Empirical analyses for four representative games with different amount of parallel data for PPO (Schulman et al., 2017).
From left to right: training returns, feature rank, dormant neurons percentage (Sokar et al., 2023), weight norm and gradient kurtosis. All
results averaged over 5 seeds, shaded areas represent 95% confidence intervals. See Sec. 4 for training details.

Dormant Neurons We measure the fraction of neurons
that have gone dormant, or inactive, during training (see
Sec. B.2 for details), which can indicate inefficient usage of
network capacity (Sokar et al., 2023; Ceron et al., 2024c;b).
We observe a negative correlation between Nenvs and the
level of neuron dormancy. This suggests that the increased
data diversity induced by more environments can help miti-
gate dormancy and thereby increase network utilization and
plasticity.

Weight Norm Weight norm measures the magnitude of
the network weights (see Sec. B.3 for details) and has been
shown to be correlated with training instability (Krogh &
Hertz, 1991; Bartlett, 1996; Hinton et al., 2012; Neyshabur
et al., 2015). Our results show an inverse correlation be-
tween Nenvs and weight norm, suggesting that increased
data collection via more parallelization can help stabilize
network training.

Gradient Kurtosis Gradient kurtosis (see Sec. B.4 for de-
tails) quantifies the sharpness or variability of gradient distri-

butions (Garg et al., 2021). High kurtosis can indicate sharp
minima and unstable training which implies an increase in
heavy-tailedness of the gradient distribution, whereas lower
kurtosis may correspond to smoother gradients. We observe
a strong negative correlation between gradient kurtosis and
Nenvs; it is possible that the increased state-action diversity
induced by a higher number of parallel environments has a
regularizing effect on the gradients, which in turn leads to
stable learning.

Policy Variance and ESS Policy variance measures the
variability in the π(·) and is correlated with the network’s
“churn” (Schaul et al., 2022). Effective Sample Size (ESS)
measures the proportion of independent and high-quality
samples contributing to policy updates, with higher ESS
values suggesting more effective learning (Martino et al.,
2017). Fig. 4 shows that increasing Nenvs leads to lower
policy variance and higher ESS, which further helps explain
the observed increased performance.

5



The Impact of On-Policy Parallelized Data Collection on Deep Reinforcement Learning Networks

0.0

0.5

1.0

1.5

2.0

Am
id

ar

×103 Average Episodic Return

0

2

4

6

×10 2 Policy Variance

0.92

0.94

0.96

0.98

1.00
×102 ESS percentage

0.5

1.0

1.5

Na
m

eT
hi

sG
am

e

×104

0

1

2

3 ×10 2

0.96

0.97

0.98

0.99

1.00

1.01 ×102

0

2

4

Ph
oe

ni
x

×105

0.00

0.25

0.50

0.75

1.00
×10 1

0.90

0.95

1.00
×102

0 25 50 75 100

1

2

Ri
ve

rra
id

×104

0 25 50 75 100
0

1

2

3

×10 2

0 25 50 75 100

0.96

0.98

1.00

×102

Total Timesteps (in millions)

Games vs Metrics for Proximal Policy Optimization (PPO) agent.

Nenvs=8 & NRO=128 Nenvs=16 & NRO=128

Figure 4. Increasing Nenvs for parallel data collection leads to
lower policy variance and higher ESS, which results in a higher
average episodic return. All results averaged over 5 seeds, shaded
areas represent 95% confidence intervals. See Sec. 4 for training
details.

Key observations on increased Nenvs:

• Increases representational diversity and pre-
vents feature collapse.

• Leads to broader state space coverage, ensuring
better exploration.

• Results in networks that are both more expres-
sive and exhibit greater plasticity.

• Reduces weight norm, which tend to result in
stabler learning.

• Exhibits low heavy-tailedness in gradients,
which offers optimization stability.

• Reduces policy variance and increases ESS,
leading to stabler and more effective learning.

5.2. Decoupled architectures

The architectural choice between shared and separate en-
coders for the actor and critic networks can significantly in-
fluence an agent’s performance (Cobbe et al., 2021). While
shared encoders streamline the model and reduce computa-
tional overhead, they may inadvertently constrain learning
capacity by requiring a unified representation to simultane-
ously optimize both policy and value functions. In contrast,
using dedicated encoders allows each network to indepen-

dently optimize its feature representations, potentially en-
hancing learning efficiency and performance, particularly in
complex environments. This separation can be especially
beneficial when scaling parallel data, given that in Sec. 5.1
we demonstrated that scaling Nenvs helps in learning more
expressive and robust representations.

Fig. 5 shows that when employing separate networks for
the actor and critic, agents benefit more from scaling paral-
lel data collection, leading to improved final performance.
However, our findings suggest that separate encoders alone
do not always provide substantial performance gains over
shared architectures unless paired with large-scale data col-
lection. This indicates that data diversity plays a crucial
role in maximizing the benefits of independent actor-critic
representations.

5.3. Hyper-parameter sensitivity

The effect of varying one algorithmic parameter is known to
be tied to the settings of other hyper-parameters. Given our
focus on increasing batch size, often via increasing rollouts,
in this section we investigate the sensitivity of our findings
to the choice of two related components: the learning rate
and the discount factor γ.

Learning rate The learning rate plays a pivotal role in the
stability of RL optimization (Andrychowicz et al.; Ceron
et al., 2024a), and is generally advised to be re-tuned for
larger batch sizes (Shallue et al., 2019). It bears question-
ing whether the strong performance gains we have thus far
observed by increasing Nenvs is sensitive to the particular
choice of learning rate. Indeed, Hilton et al. (2022) sug-
gest scaling the learning rate by a factor proportional to the
change in B; specifically, either k or

√
k, where k is the

multplicative factor used to increase Nenvs. Fig. 11 illus-
trates that the current default learning rate generally yields
the best performance. While we observe some variability
with different choices for the learning rate, these differences
are not significant.

Length of Rollouts and γ The choice of NRO can signif-
icantly impact training efficiency and stability (Ceron et al.,
2024a). A larger NRO provides more temporally extended
trajectories, allowing reduced estimation bias by incorpo-
rating more future rewards. However, high values of NRO

can result in over-correlated data with higher variance, neg-
atively affecting updates. As Fig. 1 demonstrates, we can
scale data collection via increasing Nenvs and reducing NRO.

The choice of the discount factor γ is intimately tied with
the rollout length, as it affects how much transitions are
weighted along a trajectory, as well as in general advantage
estimation (Schulman et al., 2015), which is a core compo-
nent of PPO. Thus, it is worth investigating how sensitive

6



The Impact of On-Policy Parallelized Data Collection on Deep Reinforcement Learning Networks

0 25 50 75 100
0.0

0.5

1.0

1.5
2.0

Av
er

ag
e 

Ep
iso

di
c 

Re
tu

rn ×103 Amidar

0 25 50 75 100
0

5

10

15

20
×103 NameThisGame

0 25 50 75 100
0

200

400

×103 Phoenix
Architecture
Shared
Decoupled
Nenvs
Default
×2

0 25 50 75 1000

10

20

×103 Riverraid

Total Timesteps (in millions)
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See Sec. 4 for training details.

the performance gains observed in Fig. 1(b) are to different
values of γ. In Fig. 12 we swept over a number of values
for γ and found that the observed performance gains remain
unaffected.

6. Analysis in other settings
We extend our analysis to value-based methods, which offer
alternative learning paradigms, and assess the impact of
parallel data collection across additional environments to
evaluate the generalization of our findings.

6.1. Value-based methods

PPO (Schulman et al., 2017) and Parallel Q Network (PQN)
(Gallici et al., 2024)2 both collect on policy parallel data, but
they differ fundamentally in the nature of their loss functions.
PQN is a value-based learning method that simplifies and
improves deep temporal difference learning approaches such
as DQN (Mnih et al., 2015). It eliminates the need for both
a replay buffer and a target network. PQN collects a batch
B of experiences from multiple environments and rollouts
and samples mini-batches for training, similar to PPO.

2We use the PQN implementation from CleanRL.
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The learning objective for PQN is to minimize the mean
squared error (MSE) between the predicted Q-values
Qϕ(si, ai), where ϕ are the network parameters, and the
Bellman target for each sample i from B:

L(ϕ) = 1

B

B∑
i=1

(targeti −Qϕ(si, ai))
2
,

targeti = ri + γ · maxa′ Qϕ(s
′
i, a

′); where si, ai, ri, a′i
and s′i is sampled from the current batch. We conduct a
similar analysis as with PPO to examine if the same benefits
can be observed from scaling Nenvs and NRO. In Fig. 6 and
Fig. 14 we can see that, although larger values of Nenvs do
not appear to yield significant performance improvements,
we do observe some mild improvements on some of the
learning dynamics metrics. We observe a similar trend
across the remaining Atari-10 suite; see Fig. 13. Although
there are a number of differences between PPO and PQN,
we hypothesize that these qualitative differences are largely
due to the choice of loss function and, more generally, the
distinction between value-based and policy-based methods.

6.2. Evaluating on a separate benchmark

To further assess the generalization and scalability of paral-
lel data collection, we extend our analysis to two environ-
ments from the Procgen suite (Cobbe et al., 2020), which
uses procedural generation for each level; and three Isaac
Gym environments (Makoviychuk et al.). In Fig. 7 and
Fig. 8 we observe the same general tendency: increasing B
improves performance, but it is more effective to do so by
scaling Nenvs.

6.3. Parallel environments and exploration

In sparse-reward or hard-exploration settings, increasing the
number of parallel environments enhances the chance of
encountering rare but informative events by amplifying the
agent’s exposure to diverse trajectories. Unlike increasing
NRO, which can yield temporally correlated data, scaling the
Nenvs provides independent instantiations of environment

Figure 8. Scaling parallel data collection improves final perfor-
mance on the BigFish and StarPilot games from the Procgen
Benchmark (Cobbe et al., 2020). We observe that both increasing
Nenvs and NRO leads to greater performance, with Nenvs the more
effective of the two, as discussed in Sec. 3.2.

stochasticity and initial states, reducing redundancy and
promoting wider coverage of the state space. As shown in
Fig. 9, higher Nenvs configurations lead to broader empirical
support in the embedded state distribution, suggesting im-
proved exploration dynamics even under fixed sample bud-
gets. This structural diversity can complement algorithmic
exploration strategies, leading to more robust and sample
efficient learning. This effect is particularly beneficial in
challenging exploration tasks such as MONTEZUMA’S RE-
VENGE and PHOENIX, where progress depends on rare event
chains. Fig. 15 and Fig. 16 show mid-training improvements
in these environments, motivating further investigation.

7. Discussion
The findings of this study provide insights into the funda-
mental trade-offs in RL training with regards to data collec-
tion using parallel actors (Singla et al., 2024). Our results
indicate that larger dataset sizes, driven by increased Nenvs
or NRO, can enhance final agent performance. This aligns
with previous research emphasizing the importance of data
availability in deep learning and RL for improving gener-
alization and robustness (Taiga et al., 2023; Kumar et al.,
2022). Our analysis suggests that scaling Nenvs is a more
effective strategy than increasing NRO, which can be an im-
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Figure 9. State-space coverage under varying levels of parallel data collection. Increasing the Nenvs leads to improved spatial coverage
across Atari games. This suggests that scaling Nenvs promotes broader exploration and diverse training data under a fixed sample budget.
The color scale indicates the critic value associated with each projected point: higher critic values are shown in yellow, and lower values
in blue.

portant consideration in settings where one is constrained
by computational resources.

Recent works (Moalla et al., 2024; Juliani & Ash, 2024)
have observed representation deterioration and loss of plas-
ticity in the on-policy deep RL setting, particularly on PPO.
Juliani & Ash (2024) show that plasticity loss is widespread
under domain shift in this regime and that several existing
methods designed to address it in other contexts (Sokar
et al., 2023; Nikishin et al., 2022) often fail, sometimes even
performing worse than taking no intervention at all. We
provide evidence of the impact of parallel data collection in
addressing optimization challenges, such as feature collapse
and loss of plasticity.

In this work, we use GPU-vectorized PPO and PQN algo-
rithms to explore how large-batch data collection affects
network plasticity and learning dynamics. We find that scal-
ing the batch of data can mitigate representation collapse
and reduce dormant neurons. Additionally, we observe a
negative correlation between the number of environments
Nenvs and both weight norm and gradient kurtosis, suggest-
ing that increasing data collection through parallelization
can stabilize network training.

Scaling the batch of data via increased parallel environments
can be enhanced by exploring alternate network architec-
tures. In Fig. 5 we demonstrated that, by doubling Nenvs,
PPO is able to avoid collapse and obtain strong performance.
The relatively low performance gains observed when scaling
the batch of data in PQN warrants a more detailed analysis,

given the similarity to PPO in terms of data collection. We
hypothesize that this is due to their difference in loss func-
tions; if so, investigating this further could shed light on the
fundamental and practical differences between policy- and
value-based methods.

Future work: In our analyses, like in most prior works, we
have maintained the values of Nenvs and NRO fixed through-
out training. This is most likely sub-optimal as it is known
that the learning dynamics in RL vary throughout training
(Nikishin et al., 2022; Lyle et al., 2024) Thus, even when
maintaining the data budget fixed, the optimal trade-off be-
tween Nenvs and NRO will likely vary throughout training.
Future work will explore setting these values, and the size
of B itself, dynamically. The recent growth in popularity
and impact of machine learning, in particular large language
models (LLMs), has been largely driven by the ability of
supervised learning methods to leverage massive amounts
of pre-existing data. Online RL algorithms typically do not
have access to this type of dataset, and must instead collect
data throughout training. While parallelization can help
speed this collection, agent performance is still hampered
by many of the standard challenges in RL, such as those
outlined in the deadly triad (Sutton & Barto, 2018). If RL
is to achieve scale and impact comparable to that of LLMs
(beyond its use for fine-tuning LLMs), we need to develop
a better understanding of the challenges, and successful
strategies, in parallel data collection. Our work is a step in
that direction, and provides guidance for future research to
continue developing these insights.
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Girgin, S., Marinier, R., Hussenot, L., Geist, M., Pietquin,
O., Michalski, M., et al. What matters for on-policy deep
actor-critic methods? a large-scale study. In International
conference on learning representations.

Bartlett, P. For valid generalization the size of the weights
is more important than the size of the network. Advances
in neural information processing systems, 9, 1996.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-

form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, jun 2013. doi: 10.1613/jair.3912.

Bellemare, M. G., Candido, S., Castro, P. S., Gong, J.,
Machado, M. C., Moitra, S., Ponda, S. S., and Wang, Z.
Autonomous navigation of stratospheric balloons using
reinforcement learning. Nature, 588:77 – 82, 2020.

Berariu, T., Czarnecki, W., De, S., Bornschein, J., Smith, S.,
Pascanu, R., and Clopath, C. A study on the plasticity of
neural networks. arXiv preprint arXiv:2106.00042, 2021.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O.
Exploration by random network distillation. In In-
ternational Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=H1lJJnR5Ym.
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A. Training Details
In this section, we offer a detailed overview of the hyperparameters and configurations for each experimental section. To
ensure robustness and reliability of our results, each experimental setup is conducted with five random seeds.

Tasks We evaluate PPO and PQN on 10 games from the Arcade Learning Environment (Bellemare et al., 2013). We use
the same set of games evaluated by Aitchison et al. (2023). This includes: Amidar, Bowling, Frostbite, KungFuMaster,
Riverraid, BattleZone, DoubleDunk, NameThisGame, Phoenix, Qbert.

Hyper-parameters We use the default hyper-parameter values for PPO (Schulman et al., 2017) and PQN (Gallici et al.,
2024) agents. We share the details of these values in Tab. 1 and Tab. 2.

Table 1. Default hyper-parameters setting for PPO and PQN agents.

Atari

Hyper-parameter PPO PQN

Adam’s (ϵ) 1e-5 1e-8
Adam’s learning rate 2.5e-4 2.5e-4

Conv. Activation Function ReLU ReLU
Convolutional Width 32,64,64 32,64,64

Dense Activation Function ReLU ReLU
Dense Width 512 512

Normalization None LayerNorm
Discount Factor 0.99 0.99

Exploration ϵ 0.01 0.011
Exploration ϵ decay 250000 250000

Number of Convolutional Layers 3 3
Number of Dense Layers 2 2

Reward Clipping True True
Weight Decay 0 0

Table 2. Default hyper-parameters setting for PPO agent.

Procgen

Hyper-parameter PPO

Adam’s (ϵ) 1e-5
Adam’s learning rate 5e-4

Conv. Activation Function ReLU
Convolutional Width 16,32,32

Dense Activation Function ReLU
Dense Width 256

Normalization None
Discount Factor 0.999

Exploration ϵ 0.01
Exploration ϵ decay 250000

Number of Convolutional Layers 3
Number of Dense Layers 2

Reward Clipping True
Weight Decay 0
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B. Metrics
B.1. Feature Rank

This metric evaluates representation quality in deep RL by finding the smallest subspace retaining 99% variance, improving
interpretability, efficiency, and stability. A high feature rank indicates diverse representations and it is computed using the
approximate rank from Yang et al., 2019; Moalla et al., 2024.

k∑
i=1

σ2
i∑n

j=1 σ
2
j

≥ τ

Where σi denotes the singular values of the feature matrix, n represents the total number of singular values, and τ is a
threshold (e.g., 99%) used to determine the rank. The value k, referred to as the ”feature rank,” corresponds to the smallest
number of principal components (or singular values) needed to preserve at least τ of the total variance in the data.

B.2. Dormant Neuron

This metric quantifies the number of inactive neurons with near-zero activations, limiting network expressivity. It helps
detect learning inefficiencies and improve model performance. A high number of dormant neurons means many are inactive
or rarely contribute to the model’s output. Its computation follows Sokar et al., 2023.∑N

i=1 1(|ai| < ϵ)

N
× 100,

where N is the total number of neurons, ai is the activation of neuron i, ϵ is a small threshold (e.g., 10−5), and 1 is the
indicator function.

B.3. Weight Norm

This metric quantifies the magnitude of neural network weights, helping evaluate model complexity, stability, generalization,
and overfitting risks. A high weight norm indicates that the model’s parameters have large magnitudes, reducing its ability
to fit new targets over time. It is calculated as in Moalla et al., 2024; Lyle et al., 2023.

∥θ∥2 =

√∑
i

θ2i

where θi are the weights of the layer.

B.4. Kurtosis

This metric evaluates the sharpness and tail heaviness of weight gradients, highlighting distribution shape and outliers. High
kurtosis indicates extreme gradient values, heavy-tailed distribution, and large gradient magnitude disparities. Following
Garg et al., 2021, we additionally apply a logarithmic transformation to minimize the impact of extreme values and
emphasize differences between small and large gradients.

K =
E[(L− µL)

4]

σ4
L

where Li = log(|Gi|+ ϵ) are the log-transformed absolute gradients, µL is the mean of the log-transformed gradients, σL

is the variance of the log-transformed gradients, Gi represents each individual gradient and ϵ is a small positive constant to
prevent undefined values when Gi = 0.

B.5. Effective Sample Size

This metric estimates the number of independent samples in importance sampling by assessing weight dispersion, reflecting
sampling efficiency and estimator accuracy. A high ESS indicates low weight variance, efficient sampling, and accurate
estimator performance. It is computed using the ESS approximation from Martino et al. 2017.

ESS =
1∑N

i=1 r̃
2
i (θ)
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where r̃i(θ) represents the normalized ratio, which is computed as:

r̃i(θ) =
ri(θ)∑N
j=1 rj(θ)

where ri(θ) =
πθ(at|st)
πθold (at|st) represents the probability ratio between the new policy πθ and the old policy πθold . The variable

N denotes the number of samples drawn from πθold and weighted according to ri(θ). The ESS takes values in the range
1 ≤ ESS ≤ N . Based on this, we propose using the percentage of the ESS as:

ESS% =
ESS
N

× 100

B.6. Policy variance

The metric quantifies action probability dispersion across states, reflecting policy diversity and consistency within a batch. It
is computed similarly to the policy variance measure in Moalla et al. 2024.

σ2
policy =

1

A

A∑
a=1

σ2
a

where A represents the total number of possible actions in the action space of the policy and σ2
a is the variance of the

probability of action a across different states, computed as:

σ2
a =

1

B

B∑
i=1

(pi,a − p̄a)
2

where B is the number of states (batch size), pi,a is the probability of selecting action a in state si and p̄a is the mean
probability of selecting action a across all states.

B.7. UMAP and Coverage Metric (Cvg)

This visual and numerical metric allows us to quantify the cumulative dispersion of batch data across iterations. We begin
by projecting the high-dimensional batch data into a 2D space using UMAP (McInnes et al., 2018), a popular technique for
visualizing high-dimensional data. UMAP is particularly suitable for this task as it preserves both the local neighborhood
structure and the global layout of the data manifold, enabling a faithful representation of how the internal representations are
distributed over time.

Let the resulting 2D projection be denoted as:

D = {(xi, yi) | i = 1, . . . , N}, where xi, yi ∈ [0, 1)

We partition the 2D space into a uniform grid of size G×G. Each point (xi, yi) is assigned to a grid cell as follows:
idxxi = min (⌊xi ·G⌋ , G− 1) , idxyi = min (⌊yi ·G⌋ , G− 1)

We define the set of occupied grid cells as:

O = {(idxxi , idxyi ) | i = 1, . . . , N}

Finally, the spatial coverage is computed as the fraction of grid cells visited by at least one point:

Coverage =
|O|
G2

where |O| denotes the number of unique occupied cells, and G2 is the total number of cells in the grid.
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Figure 10. Empirical analyses for ALE games with different amount of parallel data for PPO (Schulman et al., 2017). From left
to right: training returns, feature rank, dormant neurons percentage (Sokar et al., 2023), weight norm and gradient kurtosis. All results
averaged over 5 seeds, shaded areas represent 95% confidence intervals. See Section 4.1 for training details.

17



The Impact of On-Policy Parallelized Data Collection on Deep Reinforcement Learning Networks

0.0

1.0

2.0

3.0

4.0

Am
id

ar

×103 Average Episodic Return

0.5

1.0

1.5

Na
m

eT
hi

sG
am

e

×104 Average Episodic Return

0 25 50 75 100
0.0

2.0

4.0

Ph
oe

ni
x

×105

0 25 50 75 100

0.5

1.0

1.5

2.0

2.5

Ri
ve

rra
id

×104

Total Timesteps (in millions)

lr = 2.5 × 10 4 (Default) lr × k lr × k lr ÷ k lr ÷ k

Figure 11. Varying the learning rate by a factor proportional to the increase to Nenvs. In this figure Nenvs was scaled by a factor of 2,
as Hilton et al. (2022) suggest increasing the learning accordingly. In addition to that increase, we explore decreasing the learning by the
same factor. Consistent with Hilton et al. (2022). PPO is robust to learning rate changes; the default learning is 2.5× 10−4.
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Figure 12. Performance gains from NRO × 2 are unaffected by varying γ, where the default value isγ = 0.95.
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Figure 13. Empirical analyses for ALE games with different amount of parallel data for PQN (Gallici et al., 2024). From left to
right: training returns, feature rank, dormant neurons percentage (Sokar et al., 2023), weight norm and gradient kurtosis. All results
averaged over 5 seeds, shaded areas represent 95% confidence intervals. See Section 4.1 for training details.
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Figure 15. Evaluating the impact of increasing Nenvs on a separate set of ALE games. These are the so-called “hard exploration
games” from Taiga et al. (2020). We can observe that increased batch size results in equivalent or improved performance, and overall
improvement on the learning dynamics measures. All results averaged over 5 seeds, shaded areas represent 95% confidence intervals. See
Section 4 for training details.
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Figure 17. Empirical analyses for four representative games with different amount of parallel data for PPO (Schulman et al., 2017).
From left to right: training returns, feature rank, dormant neurons percentage (Sokar et al., 2023), weight norm and gradient kurtosis.
Increasing Nenvs for parallel data collection improves final performance. All results averaged over 5 seeds, shaded areas represent 95%
confidence intervals.
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Figure 18. Proximal Policy Optimization (PPO) (Schulman et al., 2017; Huang et al., 2022) on Isaac Gym environments (Makoviychuk
et al.) when increasing Nenvs. Increasing Nenvs for parallel data collection improves final performance. We report returns over 5 runs for
each experiment.
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