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Abstract

In subjective NLP tasks, where a single ground001
truth does not exist, the inclusion of diverse002
annotators becomes crucial as their unique003
perspectives significantly influence the anno-004
tations. In realistic scenarios, the annotation005
budget often becomes the main determinant of006
the number of perspectives (i.e., annotators) in-007
cluded in the data and subsequent modeling.008
We introduce a novel framework for annota-009
tion collection and modeling in subjective tasks010
that aims to minimize the annotation budget011
while maximizing the predictive performance012
for each annotator. Our framework has a two-013
stage design: first, we rely on a small set of an-014
notators to build a multitask model, and second,015
we augment the model for a new perspective016
by strategically annotating a few samples per017
annotator. To test our framework at scale, we018
introduce and release a unique dataset, Moral019
Foundations Subjective Corpus, of 2000 Red-020
dit posts annotated by 24 annotators for moral021
sentiment. We demonstrate that our framework022
surpasses the previous SOTA in capturing the023
annotators’ individual perspectives with as lit-024
tle as 25% of the original annotation budget025
on two datasets. Furthermore, our framework026
results in more equitable models, reducing the027
performance disparity among annotators.028

1 Introduction029

The common pipeline for supervised learning030

in Natural Language Processing (NLP) starts by031

collecting annotations from multiple annotators.032

These annotations are often aggregated through033

majority voting (Talat and Hovy, 2016) to con-034

struct a ground truth or gold standard on which035

the subsequent modeling is performed. In recent036

years, researchers have advocated for a transition037

from single ground-truth labels to annotator-level038

modeling, aiming to capture diverse perspectives,039

enhance contextual understanding, and incorporate040

cultural nuances (Uma et al., 2021), and have pro-041

posed different frameworks that take into account042

unique perspectives of the annotators by model- 043

ing them as separate subtasks (Davani et al., 2022; 044

Kanclerz et al., 2022). 045

The impact of individual annotators’ back- 046

grounds and life experiences on annotations in sub- 047

jective tasks signifies the importance of incorpo- 048

rating a diverse set of annotators. Nevertheless, 049

the primary constraint on achieving this diversity 050

is often the annotation budget, limiting the num- 051

ber and, consequently, the diversity of perspectives 052

considered. In this paper, we introduce a novel 053

framework for annotation collection and modeling 054

in subjective tasks. Our framework is designed to 055

minimize the annotation budget required to model 056

a fixed number of annotators, while maximizing 057

the predictive performance for each annotator. 058

Our framework operates in two stages. In the 059

first stage, data is collected from a small pool of 060

annotators. This data serves as a foundation for 061

building a multitask model that captures the gen- 062

eral patterns for the task and provides a signal of 063

differences among individual annotators. Informed 064

by the first stage annotations, the second stage in- 065

volves collecting a few samples from each new 066

annotator that best capture their differences from 067

the general patterns. We use this data to augment 068

the model from the first stage to learn the new anno- 069

tators’ perspective from a few examples (Figure 1). 070

We introduce a unique dataset that enables the 071

study of detecting moral content, an understudied 072

subjective task, at a scale that was not possible 073

before1. The Moral Foundations Subjective Cor- 074

pus (MFSC) is a collection of 2000 Reddit posts, 075

each annotated by 24 annotators for moral content 076

along with annotators’ responses to a range of psy- 077

chological questionnaires (§4.1).We use the MFSC 078

dataset in conjunction with the Brexit Hate Dataset 079

(Akhtar et al., 2021) to extensively study each com- 080

ponent of our proposed framework. We evaluate 081

our framework on three models: RoBERTa-Base, 082

1The dataset will be released as part of the accepted paper
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RoBERTa-Large, and Llama-3. In section 5.1, we083

demonstrate the efficacy of our framework in cap-084

turing diverse annotator perspectives under budget085

constraints. Our framework achieves a 4% increase086

in F1 score with access to just 50% of the anno-087

tation budget in hate speech detection, and a 2%088

gain in moral sentiment detection with as little as089

25% of the original annotation budget. Further-090

more, we evaluate the efficiency of our framework091

in scaling to more annotators, i.e., incorporating a092

new annotator into an already existing annotated093

dataset and model through our second-stage few-094

shot adaptation. Our results show an F1 score gain095

of 9% and 4% in the Brexit and MFSC datasets,096

respectively, demonstrating the scalability of our097

framework. Next, in section 5.2, we show that098

our proposed framework yields a more equitable099

model by minimizing performance disparity across100

annotators. Specifically, in the lowest budget sce-101

narios, our approach reduces the standard deviation102

of the performance across annotators by 7% in hate103

speech detection and by 1% in moral sentiment104

classification. Finally, in section 5.3, we extend105

our analysis to investigate whether the selection of106

the initial set of annotators in the first stage of our107

framework affects the model’s performance.108

Our experiments on two subjective datasets re-109

vealed that our framework consistently surpasses110

previous state-of-the-art models with access to as111

little as 25% of the original annotation budget.112

In addition, our framework produced more equi-113

table models with reduced performance disparities114

among the annotators. By minimizing data require-115

ments, our cost-efficient framework for subjective116

tasks enables us to scale the number of included117

annotators and, hence, improve the diversity of118

captured perspectives. Furthermore, the two-stage119

design of our framework facilitates the integration120

of new annotators into pre-existing datasets.121

2 Related Work122

Subjective Tasks in NLP: In recent years, the vari-123

ety of tasks for which NLP is used has significantly124

expanded. In many of these tasks, a single ground125

truth does not exist, making them inherently sub-126

jective in nature. In subjective tasks, researchers127

have argued that disagreements in particular labels128

should not be treated as statistical noise (Larimore129

et al., 2021; Pavlick and Kwiatkowski, 2019; Plank,130

2022), as they are often indicative of individual dif-131

ferences which are driven by different backgrounds132

and lived experiences of the annotators (Akhtar 133

et al., 2019; Plank et al., 2014; Prabhakaran et al., 134

2021; Díaz et al., 2018; Garten et al., 2019; Ferra- 135

cane et al., 2021). For example, Davani et al. (2023) 136

revealed how the stereotypes of annotators influ- 137

ence their behavior when annotating hate speech. 138

In a similar context, Sap et al. (2021) demonstrate 139

that annotators’ identity and beliefs impact their 140

ratings of toxicity. Sang and Stanton (2022) con- 141

ducted a study showing that differences in age and 142

personality among annotators result in variations 143

in their annotations. Larimore et al. (2021) ex- 144

plored how annotators’ perceptions of racism differ 145

based on their own racial identity. Basile (2020) 146

calls for a paradigm shift away from majority ag- 147

gregated ground truths, and towards representative 148

frameworks preserving unique perspectives of the 149

annotators. In their later work, Basile et al. (2021) 150

define the phenomena of Data Perspectivism, and 151

share recommendations and outlines to advance the 152

perspectivist stance in machine learning. 153

Capturing the Perspectives: One method for 154

learning directly from crowd annotations is using 155

soft loss, where the probability distributions of item 156

labels are used as soft targets in a loss function (Pe- 157

terson et al., 2019). However, this approach does 158

not provide individual predictions for annotators, 159

making it unsuitable for subjective tasks that re- 160

quire such specificity. To capture annotator-level 161

labels, Akhtar et al. (2020) proposed dividing anno- 162

tators into groups based on similar personal char- 163

acteristics and creating different sets of gold stan- 164

dards for each group. Kanclerz et al. (2022) and 165

Deng et al. (2023) incorporated knowledge about 166

annotators into their models to make them person- 167

alized. Davani et al. (2022) propose a multitask 168

approach, modeling each annotators’ perspective 169

as a subtask, while having a shared encoder across 170

the subtasks. Baumler et al. (2023) and Wang and 171

Plank (2023) propose active learning methods for 172

reducing the budget of data collection by propos- 173

ing methods for collecting samples based on model 174

confidence and annotators’ disagreement. Casola 175

et al. (2023) also proposes ensembling perspective- 176

aware models based on their confidence. 177

3 Method 178

Problem Formulation: To formalize the task, sup- 179

pose we have a set of annotators A = {a1, ..., an} 180

and input texts X = {x1, x2, ..., xm} and their cor- 181

responding annotations Y = {y1, y2, ..., ym}. Let 182
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Figure 1: Left: The baseline approach for annotator-level modeling, in full and reduced budget scenarios. Right:
Our two-stage proposed framework, designed to achieve the outlined objectives

D = {Dai |ai ∈ A} be the entire annotations and183

Dai = {Xai , Yai} denote data collected from an-184

notator ai. Then the budget B = |D| is defined185

as the total number of annotations collected. Let186

F = {fai)|ai ∈ A} and fai denote the model cap-187

turing labels assigned by annotator ai.188

Proposed Framework: We design our framework189

with two objectives: first, maximizing the average190

performance over all annotators. Second, minimiz-191

ing the budget (B) required to achieve the first goal.192

The second objective allows us to increase the num-193

ber of annotators’ perspectives (|A| ) captured with194

a given budget. Our framework design is based on195

two key intuitions. Firstly, as shown in Figure 3,196

multitask learning (the orange line), which has of-197

ten been treated as the upper bound by previous198

work, does not always improve in performance as199

the number of annotators grows. Secondly, even in200

subjective tasks, there exists a substantial number201

of texts on which annotators mostly agree, partic-202

ularly when these texts are randomly drawn from203

a source. Therefore, obtaining many annotations204

on such instances is not beneficial in learning a205

new perspective. In line with these intuitions, our206

framework consists of two stages (Figure 1). In207

the first stage, we learn the commonalities between208

annotators through a multitask model Fmtl. A cru-209

cial difference of our approach in comparison to210

previous multitask methods is that we only col-211

lect annotations from a small subset of annotators212

Amtl ⊂ A. In the second stage, we learn the per-213

spectives of new annotators Afs = A−Amtl with214

only a few shots. Specifically, we collect anno-215

tations for k input texts S(X) ⊂ X , where S is216

a sampling function that ideally helps in captur-217

ing patterns specific to individual annotators’ per- 218

spectives. Let Dfs
ai = {(x, yai)|x ∈ S(X)} and 219

|Dfs
ai | = k << |Dai |. We initialize FAfs

with 220

Fmtl and train it on Dfs
ai . 221

Sampling Function (S): We explore four different 222

sampling functions: 1) Srand: selects a random 223

sample for each annotator 2) Smv: selects a bal- 224

anced sample determined by the majority vote of 225

the annotators. For a set of annotators Amtl, we 226

calculate the majority vote among these annotators 227

and select k samples that have an equal number of 228

each label based on that majority vote. 3) Sdis se- 229

lects the samples from Amtl with highest disagree- 230

ment score, and 4) Sbal acts as an oracle, selecting 231

a balanced sample based on a specific annotator’s 232

label, not the majority vote. Therefore, if we have a 233

new annotator, Sbal would select a balanced sample 234

based on the annotations of that specific annotator. 235

One frequent challenge in some subjective tasks is 236

the heavy imbalance in class frequencies. Hence, 237

we chose Smv and Sbal to provide a more balanced 238

sample to the few-shot model for each annotator. 239

We added Sdis with the goal of providing samples 240

that differentiate the individual annotator perspec- 241

tives to the model. We use the “item disagreement” 242

and “annotator disagreement” measures from Da- 243

vani et al. (2023) to select samples in Sdis. 244

4 Experiments 245

4.1 Datasets 246

We run experiments on two datasets annotated for 247

subjective tasks: Brexit Hate dataset (Akhtar et al., 248

2021) and the Moral Foundations Subjective Cor- 249

pus (MFSC), which we created as part of this work 250
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to explore this less-studied subjective task. Both251

datasets contain per-annotator labels for instances,252

with every instance being annotated by all annota-253

tors. This ensures that any observed performance254

gains are attributed to our method, rather than the255

specific samples annotated by each annotator. Ad-256

ditionally, we evaluate our framework on the Gab257

Hate Corpus (GHC; Kennedy et al., 2018), where258

the number of annotations by different annotators259

varies. Detailed experiments and results for this260

dataset are presented in Appendix C.2.261

Moral Foundations Subjective Corpus (MFSC):262

We introduce the Moral Foundations Subjective263

Corpus (MFSC), a new dataset consisting of 2000264

Reddit posts annotated by 24 annotators for moral265

sentiment based on the Moral Foundations The-266

ory (MFT; Graham et al., 2013; Atari et al., 2023).267

Morality, being a subjective concept heavily in-268

fluenced by cultural backgrounds (Graham et al.,269

2016), has not been extensively explored in the270

NLP community.271

Each sample in the MFSC is annotated with a272

binary label indicating moral sentiment: 1 if the273

sentence pertains to morality and 0 if it does not.274

We utilize this binary moral/non-moral label in our275

experiments. Additionally, we have collected more276

fine-grained labels of morality, which are detailed277

in the Appendix A. Examples of the dataset and278

their annotations for moral sentiment are presented279

in Table 1. The demographics of the annotators are280

provided in Appendix A.1.281

MFSC examples a1 a2 a3 a4 a5 a6

You’re a horrible person, and deserve the same thing to
happen to you.

1 1 1 1 1 1

As an expat Brit, I was moved: What a brilliant unifying
speech. Here’s fingers crossed for you USA.

1 0 0 1 1 1

That meal is insane compared to what we got. Don’t
think we ever had fresh veg/fruit.

0 0 0 0 0 0

Table 1: Examples from the MFSC dataset with binary
labels for moral sentiment. The examples show the
labels provided by 6 out of 24 annotators.

Brexit Hate dataset: Hate speech detection has282

become one of the primary subjective tasks stud-283

ied in the NLP community (Akhtar et al., 2019;284

Sang and Stanton, 2022; Sap et al., 2021). The285

Brexit Hate dataset (Brexit) introduced by Akhtar286

et al. (2021), consists of 1,120 English tweets col-287

lected with keywords related to immigration and288

Brexit. The dataset was annotated with hate speech289

(in particular xenophobia and islamophobia), ag-290

gressiveness, offensiveness, and stereotype, by six291

annotators belonging to two distinct groups: a tar-292

get group of three Muslim immigrants in the UK, 293

and a control group who were researchers with 294

Western background. For our experiments, we use 295

the overall hate label. 296

Table 2 provides the datasets’ statistics, includ- 297

ing Fleiss’s kappa (Fleiss, 1971), which measures 298

the inter-annotator agreement. The low agree- 299

ment values highlight the subjective nature of these 300

tasks. Furthermore, the ’%Pos.’ column in Table 2 301

shows the class imbalance in these datasets and the 302

scarcity of positive class annotations. For exam- 303

ple, in the Brexit dataset, only 12% of samples, on 304

average, were labeled as "Hate". 305

Dataset Size |A| Kappa %Pos.

Brexit 1120 6 0.34 12.86

MFSC (Moral) 2000 24 0.26 63.69

Table 2: Statistics of the datasets used in our experi-
ments. |A| denotes the number of annotators, Kappa
represents Fleiss’s kappa inter-annotator agreement, and
%Pos. indicates the average percentage of positive class
annotations across annotators.

4.2 Experiment Setup 306

We designed our experiments to study the impact 307

of each component of the framework towards our 308

two objectives: maximizing average performance 309

and minimizing annotation budget. 310

We use multitask learning (MTL) on all the an- 311

notators as our baseline and assess the efficacy of 312

our framework compared to this baseline in cap- 313

turing individual annotators’ perspectives under a 314

range of budget constraints. Specifically, for our 315

approach, we vary the budget B by changing the 316

size of |Amtl|. Recall that B = |D| =
∑

|Dai | 317

and |Dfs
ai | = k << |Dai |. Also, recall that under 318

our proposed framework the annotators A are di- 319

vided into two sets Amtl and Afs. Since the cost 320

of annotating a few samples per new annotator is 321

negligible ( |D
fs
ai

|
|Dai |

is close to 0) the budget under our 322

proposed framework can be reduced to 323

Bours ≈
∑

ai∈Amtl

|Dai | 324

=

∑
ai∈Amtl

|Dai |∑
ai∈A |Dai |

×B =
|Amtl|
|A|

×B 325

For example, the MFSC dataset has |A| = 24 an- 326

notators. Hence, 25%B shows the scenarios where 327

|Amtl| = 6. Whereas, for the baseline, we vary 328
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the budget B by changing the size of Dai for all329

annotators. In the given example, a 25%B for the330

baseline means using only 25% of Dai for each ai.331

To ensure that our results are not driven by the332

specific choices of Amtl, we run our experiments333

for each budget on multiple samples of Amtl ⊂ A.334

Specifically, we run our models with all possible335

choices of Amtl for Brexit dataset and 20 different336

samples of Amtl for the MFSC dataset.337

For each annotator ai, F
ai
1 denotes the perfor-338

mance on predicting ai’s labels. We use F fs
1 and339

Fmtl
1 to denote the average of F ai

1 scores when340

ai ∈ Afs and ai ∈ Amtl respectively. For our341

framework, we also calculate the overall perfor-342

mance for all annotators F overall
1 as the weighted343

average of F fs
1 and Fmtl

1 .344

4.3 Implementation Details345

We evaluate our framework using three base mod-346

els: RoBERTa (both base and large versions) (Liu347

et al., 2019), and Llama-3 (Touvron et al., 2023).348

Roberta Models: All multitask models undergo349

hyperparameter tuning for learning rate and weight350

decay (see Appendix D.1) and are trained for 5351

epochs. The best model is selected based on the352

validation F1 score, and its optimal hyperparam-353

eters are also applied in the few-shot stage. All354

models converge within 5 epochs for MTL and 50355

epochs for few-shot learning. To ensure robustness,356

experiments are repeated with three random seeds.357

Llama-3: We use Llama-3-8b and employ LoRA358

(Low-Rank Adaptation; Hu et al., 2021) for fine-359

tuning. We conduct hyperparameter tuning for360

LoRA parameters, in addition to learning rate and361

weight decay. In the second stage of our framework,362

we use the same set of hyperparameters determined363

in the first stage for few-shot adaptation. The hyper-364

parameters used in our MTL training, along with365

other variables, are shown in Table 7.366

For all models, we use the AdamW optimizer.367

For the Brexit dataset, we utilize predefined train,368

validation, and test splits provided within the369

dataset2, and we employ a weighted random sam-370

pler to account for the imbalance in the labels of371

each annotator. For the MFSC dataset, we allo-372

cate 80% for training, 10% for validation, and the373

remaining 10% for testing.374

In the few-shot stage, we experiment with four375

different values of k (16, 32, 64, and 128). We376

report the results for k = 128 in the next section,377

2https://le-wi-di.github.io/

while the experiments for other values of k are 378

provided in Appendix D. 379

5 Results and Analysis 380

5.1 Towards Better Performance with Less 381

Annotation Budget 382

Figure 2 shows the overall F1 scores of our frame- 383

work for two datasets across varying budgets, eval- 384

uated using three different base models. We ob- 385

serve that our framework consistently outperforms 386

the baseline, particularly at lower budget levels. 387

More importantly, our method surpasses the base- 388

line trained with 100% of the budget using as little 389

as 25% of the original budget across all three base 390

models, demonstrating its model-agnostic efficacy. 391

Specifically, at the lowest budget level in the 392

Brexit dataset, our framework with balanced sam- 393

pling (Sbal) achieves performance gains of 5%, 394

14%, and 5% compared to the baseline when 395

trained with RoBERTa-Base, RoBERTa-Large, and 396

Llama-3, respectively. Compared to the full budget, 397

our method shows a gain of 3.8% with RoBERTa- 398

Large and 3.38% with Llama-3 using only 50% 399

of the original budget, and a gain of 4.34% with 400

RoBERTa-Base using 66% of the budget. 401

For the MFSC dataset, our framework, regard- 402

less of the sampling method, outperforms the base- 403

line across all budget levels with the RoBERTa- 404

Base and RoBERTa-Large models. Additionally, 405

with the Llama-3 model at 25% of the budget, our 406

method has 4% gain compared to baseline. 407

These findings demonstrate the success of our 408

framework in achieving its dual objectives: en- 409

hancing performance across all annotators while 410

reducing annotation budget requirements. We also 411

conduct an ablation study by omitting the first MTL 412

stage and employing random few-shot sampling 413

for each annotator. Additionally, we compare our 414

framework with more baselines (see Appendix B). 415

Incorporating a New Annotator: The second 416

stage of our framework suggests that few-shot adap- 417

tation not only allows us to integrate a new anno- 418

tator into an already existing model with minimal 419

budget, but also maintains the annotator’s perfor- 420

mance. To validate this ability, in Figure 3 we 421

compare the performance of the second stage of 422

our framework (F fs
1 ) with the baseline. 423

For the Brexit dataset, F fs
1 scores exceed the 424

baseline across all base models by 9.28%, 8.47%, 425

and 5.07%, respectively. The balanced sampling 426

(Sbal) method consistently performs well across 427

5
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Figure 2: Overall F1 score (F overall
1 ) of our framework compared to the baseline across all three base models on

both datasets. We observe a 3.8% performance gain with only 50% of the annotation budget on Brexit dataset, and
2.24% gain with 25% of the annotation budget on MFSC dataset, on the best performing base models.

all models. Similarly, for the MFSC dataset, our428

framework achieves higher F fs
1 scores regardless429

of sampling method, except with Llama-3 model.430

Overall, our results on both datasets show that431

the few-shot stage of our framework results in mod-432

els that outperform the multitask learning baseline.433

Base Model Comparison: Generally, the434

RoBERTa models perform better than the Llama-3435

model in MTL setting. Llama-3 model, despite436

undergoing the most hyperparameter search and437

utilizing the most GPU hours to find optimal pa-438

rameters, still performs significantly poorer than439

the other two models, especially when fine-tuned440

in a few-shot setting. A potential reason for this441

disparity is that larger models like Llama-3, while442

generally more capable, require extensive hyper-443

parameter tuning to optimize their performance.444

Additionally, they have stronger biases, making it445

more challenging to adapt them to different per-446

spectives (Naveed et al., 2023; Liu et al., 2023).447

5.2 Reduced Performance Disparities across448

Annotators449

Ensuring a comprehensive representation of anno-450

tators’ viewpoints is crucial in modeling subjective451

tasks. To achieve this goal, a critical criterion is452

to create models that not only improve the aggre- 453

gated performance but also demonstrate fair and 454

equitable performance across all annotators. For 455

example, if the F1 scores of one model for two 456

annotators are 0.6 and 0.8, respectively, while the 457

second model scores 0.7 for both annotators, the 458

latter is considered a better model. Although the 459

average performance is the same for both models, 460

the first model has a disparate negative impact on 461

the first annotator. This is important because per- 462

formance disparities among social groups (in our 463

case annotators) can lead to biased models, limit- 464

ing the system’s ability to accurately reflect diverse 465

perspectives and potentially perpetuating inequali- 466

ties in the outputs of subjective tasks (Buolamwini 467

and Gebru, 2018). Merely relying on aggregated 468

performance measures, such as the average across 469

all annotators, fails to provide a comprehensive 470

understanding of how well the model captures the 471

varying perspectives of different annotators. For 472

instance, it remains unclear whether the average 473

performance improves because the approach bet- 474

ter captures the perspectives of all the annotators 475

or only a subset of them. Hence, we look into 476

the standard deviation of performance across all 477

annotators as a measure of performance disparity: 478
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Figure 3: Few-shot F1 score (F fs
1 ) of our framework compared to the baseline across all three base models on both

datasets. We observe a 8.47% performance gain with 83% of the annotation budget on Brexit dataset, and 4.37%
gain with 25% of the annotation budget on MFSC dataset, on the best performing base models.

d =
√

1
N−1

∑N
i=1(F

ai
1 − F overall

1 )2. Lower stan-479

dard deviations indicate more equitable models.480

As shown in Table 3, our approach results in481

lower performance disparities (d) compared to the482

MTL baseline regardless of the base model, across483

all budgets for the MFSC dataset. For the Brexit484

dataset, this improvement is observed at lower bud-485

gets (50% and 66%). Among the various sampling486

strategies, the balanced sampling strategy (Sbal)487

consistently results in lower d for MFSC dataset.488

When comparing different base models, the lowest489

d is achieved using RoBERTa-Base model. Specif-490

ically, for the MFSC dataset, there is a 1.1% re-491

duction in d at 25% of the budget compared to the492

baseline, and for the Brexit dataset, there is a 7.5%493

reduction in d at 50% of the budget. Figure 4 visu-494

alizes this model’s performance in comparison to495

the MTL baseline for each annotator. Notably, our496

framework improves performance for annotators in497

the non-Western control group (i.e., the first three498

annotators) while maintaining the performance of499

the remaining annotators.500

Overall, these findings suggest that our proposed501

framework not only improves the overall perfor-502

mance of all annotators but also yields models that503

are more fair and equitable.504

d ↓
Brexit MFSC

50% 66% 83% 100% 25% 50% 75% 100%

R
ob

er
ta

-B
as

e

MTL .168 .139 .131 .130 .128 .136 .127 .130

Sbal .093 .108 .117 .117 .122 .121

Sdis .111 .120 .124 .130 .129 .127

Smv .137 .142 .132 .126 .128 .127

Srand .131 .127 .136 .134 .133 .128

R
ob

er
ta

-L
ar

ge

MTL .170 .136 .117 .155 .152 .143 .146 .149

Sbal .102 .127 .148 .117 .121 .127

Sdis .112 .134 .140 .132 .128 .133

Smv .134 .141 .149 .130 .128 .131

Srand .120 .131 .146 .127 .129 .130

L
la

m
a-

3

MTL .172 .122 .112 .130 .189 .171 .167 .158

Sbal .117 .113 .120 .137 .147 .158

Sdis .114 .113 .120 .198 .187 .176

Smv .127 .103 .124 .170 .174 .170

Srand .150 .128 .119 .176 .173 .166

Table 3: Performance disparities across annotators (d ↓).
The best values are shown in bold. Sbal, Sdis, Smv,
and Srand refer to the sampling functions used in the
second stage of our framework (§3). We generally ob-
serve lower performance disparities with our framework
compared to the MTL baseline.
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Figure 4: Comparison of Annotator level F1 scores
(F ai

1 ) on the Brexit dataset between MTL model and
our framework, leveraging the Sbal sampling method
for all budgets and shots on RoBERTa-base model

5.3 Annotator-level Analysis505

Here, we delve into the relationship between506

annotator-level variables. Recall that our frame-507

work is trained on Amtl in the initial stage, fol-508

lowed by fine-tuning for each a ∈ Afs. Hence, a509

practical question arises: does the choice of the set510

Amtl matter? In other words, would the similarity511

or divergence in perspectives among annotators in512

this set impact the performance on Afs? Investi-513

gating this is crucial, as identifying such an effect514

would necessitate a thoughtful selection of Amtl.515

To examine this, we conduct the following analysis:516

Disagreement within Amtl and performance on517

Afs: The aim of this analysis is to investigate518

whether there is a relationship between the dis-519

agreement within annotators in Amtl and the per-520

formance of the newly adopted annotators in Afs.521

To test this relationship, we employ a mixed-522

effects model to predict the performance of a ∈523

Afs by the agreement within Amtl denoted as d1524

(Fleiss, 1971). The model controls for k, budget525

B, and agreement between Afs and Amtl, denoted526

using d2, incorporating random effects for Amtl527

and Afs. The formula for this model is as follows:528

fij =β0 + β1d
1
j + β2kij + β3Bj

+ β4d
2
ij + u0i + v1j + eij

(1)529

where fij denotes the performance of ith annota-530

tor in Afs on the model trained on a jth sample of531

Amtl. The fixed effects coefficients are represented532

by β0 to β4, and the random effects for i and j are533

represented by u0i, v1j respectively. eij denotes534

the residual error term. To see the impact of sam- 535

pling strategies, we run a total of four models, each 536

corresponding to the performance results obtained 537

from one of the strategies (Sbal,Sdis,Smv,Srand). 538

The findings regarding Brexit indicate no statis- 539

tically significant effect of agreement within Amtl 540

(d1) on the performance. For the MFSC dataset, a 541

significant effect was observed only for results ob- 542

tained from Sbal (β1 = −0.052, SE = 0.012, p < 543

0.001). This implies that a unit decrease in d1, 544

corresponding to moving from full agreement to 545

full disagreement, is associated with a 0.052 in- 546

crease in the F1 score. This finding suggests that 547

selecting a diverse Amtl with high disagreement 548

can potentially be advantageous. 549

6 Conclusion 550

We introduced a framework for annotation collec- 551

tion and annotator modeling in subjective tasks. 552

Our framework aims to minimize the annotation 553

budget required to model a fixed number of annota- 554

tors while maximizing the predictive performance 555

for each annotator. Our approach involves collect- 556

ing annotations from an initial set of annotators and 557

building a multitask model that captures general 558

task patterns while signaling differences among in- 559

dividual annotators. Subsequently, we utilize the 560

annotations from the first stage to select a small set 561

of samples from new annotators that best highlight 562

their deviations from the general patterns. Finally, 563

we use this samples to augment the initial model 564

in a feew-shot setting to learn the new annotator’s 565

perspective. We evaluated our framework using 566

three base models, and explored four distinct meth- 567

ods for few-shot sample selection and found that 568

the most effective approach involves balanced and 569

random sample selections. We introduced a new 570

subjective task dataset Moral Foundations Subjec- 571

tive Corpus (MFSC), of 2000 Reddit posts anno- 572

tated by 24 annotators for moral sentiment which 573

enabled us to test our framework in scale. Our 574

experiments on MFSC and a hate speech dataset 575

revealed that our framework consistently surpasses 576

previous SOTA with access to as little as 25% of the 577

original annotation budget. In addition, we showed 578

that our framework yields more equitable models 579

that reduce performance disparities among annota- 580

tors. Our cost-efficient framework for subjective 581

tasks allows enhancing the diversity of the captured 582

perspectives, and facilitates the integration of new 583

annotators into pre-existing datasets and models. 584

8



7 Limitations and Ethical Statement585

We acknowledge that the datasets employed in our586

experiments are not representative of all annota-587

tor populations. While in MFSC we recruited a588

substantial number of annotators and efforts were589

made to diversify this pool, it is important to note590

that our sample is limited to undergraduate students591

at a private university in the US. Consequently,592

we advocate for the replication and extension of593

our work with non-student, non-US-based samples.594

Furthermore, we exclusively operate with English595

data and focus on datasets related to moral senti-596

ment prediction and hate speech detection tasks.597

This may restrict the generalizability of our find-598

ings to a broader linguistic and thematic landscape.599

Despite these constraints, our research lays the600

groundwork for future research to extend and val-601

idate our approach across diverse languages and602

subjective NLP tasks. In our experiments, we do603

not consider the cost of collecting few-shot sam-604

ples, as discussed in Section 4.2. We recognize605

that in certain cases, depending on the budget and606

the nature of the task, this assumption can be chal-607

lenged. Even with the additional expense of an-608

notating a few samples per new annotator, it is609

crucial to highlight that our proposed framework610

substantially reduces annotation cost, especially as611

the number of included perspectives grows.612

In the MFSC dataset the annotators underwent613

four sessions of training, including guidance on614

avoiding potential adverse consequences of anno-615

tations, and were compensated at a rate of $17 per616

hour. The study protocol received approval from617

the Institutional Review Board (IRB), and all an-618

notators consented to both the terms outlined in619

an information sheet provided by the IRB about620

the study and the sharing of their responses to the621

psychological questionnaires along with their anno-622

tations. We emphasize that MFSC is created with623

the intention of exploring subjectivity and different624

perspectives in this context and it should not be625

used for any other purposes.626
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A Dataset Details817

Each sample in the MFSC dataset is annotated with818

a binary label indicating moral sentiment: 1 if the819

sentence pertains to morality and 0 if it does not.820

Additionally, we have collected more fine-grained821

labels of morality (i.e., Purity, Harm, Loyalty, Au-822

thority, Proportionality, or Equality) following the823

procedure outlined by Trager et al. (2022). Specifi-824

cally, if a sample is labeled as moral, the annotator825

can select any of the applicable moral categories826

for that text. The distribution of these labels across827

annotators is demonstrated in Figure 6. The dataset828

also includes additional metadata information, such829

as confidence levels for each instance using a 3-830

level measure (confident, somewhat confident, and831

not confident). Furthermore, we collected annota-832

tor responses for the “Big Five Inventory-2-Short”833

questionnaire (Soto and John, 2017). The MFSC834

dataset provides an opportunity to explore the sub-835

jective nature of morality. The substantial number836

of annotators, along with their questionnaire re-837

sponses, enables future researchers to investigate838

the modeling of subjective tasks on a larger scale.839

See Table 1 and Table 4 for sample annotations for840

MFSC and Brexit datasets.841

A.1 Demographics of MFSC Annotators842

We aimed to diversify the annotators for MFSC843

dataset across gender, sexual orientation, religion,844

and race. Even though our dataset is not balanced845

across these dimensions, we strived to include rep-846

resentative annotators from a cross-section of the847

aforementioned demographics. The distribution of848

the annotators across the mentioned demographics849

is presented in Figure 5.850

Brexit examples a1 a2 a3 a4 a5 a6

THE MAJORITY WILL NEVER allow the Mentally
Ill Globalists to turn the world into a SJW and Radical
Islam SAFE SPACE #brexit #Trump2016

0 0 1 1 0 1

A muslim Mayor of London? What!? This PC Sickness
has become a pandemic. England turning into Little
Asia.

0 0 0 1 1 1

Not all foreign people who wants to go to the uk have
bad intentions. Improve your law. The #Brexit isn’t
gonna help your economy.

0 0 0 0 0 0

Table 4: Examples from Brexit dataset with binary Hate
labels from all 6 annotators.

Figure 5: The abbreviations in the pie chart for race
W stands for White or European American, B stands
for Black or African American, H stands for Hispanic
or Latino/Latinx, P stands for Native Hawaiian or Pa-
cific Islander, A stands for Asian or Asian American, M
stands for Middle Eastern or North African.

B Additional Baseline and Ablation Study 851

In the following sections, we conduct the exper- 852

iments using the Roberta-base model due to its 853

superior performance among the base models in 854

our experiments, as well as its resource efficiency. 855

First, we conduct an ablation study by omitting 856

the first stage of MTL, effectively reducing the 857

model to few-shot adaptation for each annotator 858

from a pre-trained model. The resulting F1 scores 859

are shown in Figure 7. When comparing these 860

scores to our complete framework in Table 8, we 861

observe that our framework consistently outper- 862

forms the second stage alone in all few-shot scenar- 863

ios. For instance, in random few-shot sampling for 864

k = 16, our model achieves a 23% gain in Brexit 865

and a 12% gain in MFSC compared to this ablation 866

model. This highlights the critical role of the first 867

stage of MTL in the success of our framework. 868
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Figure 6: Distribution of the labels across annotators in MFSC dataset

In the second ablation study, we omit the second869

stage, few-shot sample selection, from our frame-870

work. In other words, in the second stage, we use871

all annotated samples for each annotator instead872

of selecting only a few samples. Note that this is873

equivalent to using 100% of the budget and serves874

as an upper bound to the performance achieved875

with an ideal sampling function.876

Additionally, we present a new baseline where877

a separate model is trained for each annotator us-878

ing 100% of their respective data. Following the879

naming convention used by Davani et al. (2022),880

we refer to this baseline as “Ensemble” to ensure881

consistency with previous work in this field.The882

Ensemble baseline involves fine-tuning the model883

directly for each annotator, calculating individ-884

ual annotator F1 scores, and reporting the aver-885

age F1 score across annotators. Hyperparameters886

and epoch numbers for training are consistent with887

those mentioned for the MTL model in Section888

4.3. Figure 7 presents a comparison of 3 different889

strategies, using 100% of the budget (MTL, En-890

semble, and ours). On the Brexit Dataset (top) our891

framework has as much as 7.4% performance gain892

compared to the Ensemble baseline (when using893
4
6 annotators in MTL), and for the MFSC dataset894

our framework has as large as 5% gain compared895

to Ensemble baseline (when using 12
24 of annotators896

in MTL). These results show that even considering897

the 100% budget, our framework outperforms both898

baselines, demonstrating the benefit of our two-899

stage design. Interestingly, the Ensemble model900

outperforms MTL for these datasets, contrary to 901

previous research findings comparing these two 902

methods. 903

(a) Brexit

(b) MFSC

Figure 7: Baseline results in Blue compared to our
framework results in green

C Additional Tasks 904

C.1 MFSC (Care label) 905

We evaluate our framework on an additional 906

binary label of Care moral concern from our 907

MFSC dataset. This moral concern is defined as 908

"Care/Harm: Intuitions about avoiding emotional 909

and physical damage or harm to another individ- 910

ual. It underlies virtues of kindness, gentleness, 911
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and nurturing, and vices of meanness, violence,912

and abuse." (Trager et al., 2022). Table 5 presents913

the results for this task. Our framework outper-914

forms the baseline MTL approach with 25% and915

50% of the annotation budget. Notably, with only916

25% of the budget, our framework has a 1.4% gain917

in F1 score compared to MTL with 100% budget.918

The experiments were conducted with the same919

hyper-parameter tuning described in Section 4.3.920

metric = FOverall
1 ↑

MFSC (Care)
25% 50% 75% 100%

X% × |Dai
| 25%|Dai

| 50%|Dai
| 75%|Dai

| |Dai
|

MTL 0.474 0.476 0.49 0.469

X% × |A| 50%|A| 66%|A| 83%|A|

k = 16

Sbal 0.462 0.471 0.485
Sdis 0.46 0.467 0.485
Smv 0.476 0.473 0.49
Srand 0.469 0.468 0.482

k = 32

Sbal 0.467 0.477 0.487
Sdis 0.463 0.463 0.483
Smv 0.475 0.475 0.488
Srand 0.47 0.468 0.484

k = 64

Sbal 0.47 0.475 0.486
Sdis 0.467 0.471 0.478
Smv 0.479 0.48 0.487
Srand 0.472 0.477 0.49

k = 128

Sbal 0.473 0.477 0.488
Sdis 0.474 0.474 0.481
Smv 0.477 0.482 0.488
Srand 0.483 0.481 0.487

Table 5: Overall F1 scores on MFSC dataset, Care label,
with varying annotation budgets (%B).

C.2 GHC (Hate label)921

To ensure the generalizability of our framework,922

we evaluate it on a larger dataset with an imbal-923

anced number of annotations among annotators.924

We conducted the experiments using the RoBERTa-925

Base model due to its superior performance among926

the base models in our experiments, as well as its927

resource efficiency.928

Gab Hate Corpus (GHC) consists of 27,665 posts929

from the social network service gab.ai, each an-930

notated by a minimum of three trained annotators,931

and 18 total annotators. It is coded for hate-based932

rhetoric and has labels of “assaults on human dig-933

nity” or “calls for violence”. The annotators with934

less than 1000 annotations were filtered out result-935

ing in 16 annotators. Figure 8 shows the number of936

annotated instances by each annotator.937

Figure 8: The number of annotated instances by each
annotator in GHC dataset

Experiments: We replicate the experiment de- 938

scribed in Section 4.2 with the same implemen- 939

tation details outlined in Section 4.3. We employ 940

varying budgets of 25%, 50%, and 75%, using the 941

two best-performing sampling methods identified 942

in our experiments (Sbal and Srand), and compare 943

the results to the MTL baseline. The overall re- 944

sults are presented in Table 6. It is evident that our 945

framework consistently outperforms MTL across 946

all numbers of shots, sampling methods, and bud- 947

get variations. Specifically, with 25% of the budget, 948

our model achieves a gain of 1.6% with k = 64 949

and Srand, and with 75% of the budget, our model 950

performs the best, achieving a gain of 2%.

FOverall
1 ↑

GHC

25% 50% 75% 100%

X% × |Dai
| 25%|Dai

| 50%|Dai
| 75%|Dai

| |Dai
|

MTL .417(.004) .433(.007) .442(.013) .451(.006)

X% × |A| 50%|A| 66%|A| 83%|A|

k = 16
Sbal .45(.004) .46(.002) .464(.003)

Srand .455(.008) .469(.005) .468(.003)

k = 32
Sbal .456(.002) .459(.001) .464(.003)

Srand .461(.003) .472(.001) .468(.001)

k = 64
Sbal .458(.004) .461(.002) .466(.003)

Srand .467(.003) .474(.002) .468(.002)

k = 128
Sbal .466(.001) .466(0) .466(.003)

Srand .463(.007) .475(.003) .47(.001)

Table 6: Overall F1 scores on GHC dataset, Hate label,
with varying annotation budgets (%B).

951
Impact of the Imbalanced Number of Anno- 952

tations on Performance Results on the GHC 953

dataset indicate a consistent and significant ad- 954

vantage of our framework, even when applied to 955

larger datasets with imbalanced numbers of an- 956
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notations across annotators. To further investi-957

gate the impact of varying numbers of annota-958

tions across annotators on the performance of our959

framework, we conducted a correlation analysis960

between each annotator’s performance and their961

number of annotations. The results revealed no sta-962

tistically significant correlation between the num-963

ber of annotations and the overall F1 score of an964

annotator, as indicated by the correlation coeffi-965

cients for Srand (r = −0.17, p = 0.25) and Sbal966

(r = −0.14, p = 0.32). The plots in Figure 9 illus-967

trate the annotator-level F1 scores as the number968

of annotations of the annotators increases.

Figure 9: F1 scores of annotators as the number of
annotations increases

969

D Additional Details and Results970

Here, we present the results of our framework for971

all values of k, with the mean and standard devi-972

ations reported for three seeds for the RoBERTa973

models. Tables 8, 9, and 10 show the results for974

RoBERTa-Base, RoBERTa-Large, and Llama-3,975

respectively. The best values are highlighted in976

bold. As evident, our framework outperforms the977

baseline across all three models.978

D.1 Implementation Details979

For the RoBERTa models, hyperparameter tuning980

was conducted for each MTL model with learning981

rates of [3e-06, 5e-05, 1e-06, 2e-05] and weight de- 982

cays of [0, 0.01]. For the Llama model, hyperpa- 983

rameter tuning included learning rate, weight decay, 984

LoRA alpha, LoRA rank, and LoRA dropout for 985

one MTL model, and these parameters were used 986

across all models. The best configuration and other 987

parameters for training Llama-3 with LoRA are 988

shown in Table 7. 989

Hyperparameter Brexit MFSC

Train Batch Size 16 4
Eval Steps 50 100
Max Length 512 512
Learning Rate 1.2e-04 5e-05
Epochs 10 2
Weight Decay 0.01 0.01
LoRA r 8 4
LoRA Alpha 32 16
LoRA Dropout 0.003 0.1

Table 7: Hyperparameters of the Lora Llama-3 model
trained for Brexit and MFSC Datasets

D.2 Hardware Configuration 990

The experiments were conducted using four 991

NVIDIA RTX A6000 GPUs, each equipped with 992

48GB of RAM. The total computation time 993

amounted to approximately 2500 GPU hours. The 994

breakdown of GPU hours for different models is as 995

follows: 996

Roberta-base experiments: 300 GPU hours 997

Roberta-large experiments: 600 GPU hours 998

Llama-3-8B experiments: 1600 GPU hours 999

D.3 Impact of the Annotators’ Disagreement 1000

on Performance 1001

In Figure 10 we demonstrate the impact of agree- 1002

ment (as a measure of similarity) between the first 1003

and second-stage annotators (Amtl and Afs) on 1004

the performance of the model for the second stage 1005

annotators. Importantly, we do not observe perfor- 1006

mance degradation as the agreement between the 1007

two sets decreases. 1008

E Mathematical Symbols 1009

Table 11 provides a directory of mathematical sym- 1010

bols used in our paper, along with their respective 1011

meanings, to facilitate ease of understanding for 1012

the reader. 1013
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metric = F overall
1 ↑ Brexit MFSC

50% 66% 83% 100% 25% 50% 75% 100%

X% × |Dai
| 50%|Dai

| 66%|Dai
| 83%|Dai

| |Dai
| 25%|Dai

| 50%|Dai
| 75%|Dai

| |Dai
|

MTL 0.417(0.049) 0.449(0.027) 0.418(0.018) 0.431(0.014) 0.763(0.016) 0.773(0.011) 0.772(0.015) 0.776(0.004)

X% × |A| 50%|A| 66%|A| 83%|A| 25%|A| 50%|A| 75%|A|

k = 16

Sbal 0.443(0.005) 0.454(0.015) 0.457(0.015) 0.777(0.002) 0.779(0.0) 0.78(0.003)

Sdis 0.421(0.01) 0.44(0.011) 0.457(0.008) 0.784(0.01) 0.787(0.004) 0.782(0.005)

Smv 0.426(0.008) 0.441(0.019) 0.455(0.019) 0.789(0.004) 0.786(0.004) 0.783(0.006)

Srand 0.422(0.012) 0.44(0.025) 0.455(0.007) 0.795(0.009) 0.79(0.006) 0.785(0.005)

k = 32

Sbal 0.449(0.008) 0.458(0.009) 0.458(0.008) 0.779(0.002) 0.78(0.001) 0.78(0.003)

Sdis 0.423(0.008) 0.44(0.015) 0.457(0.016) 0.786(0.01) 0.788(0.004) 0.783(0.005)

Smv 0.424(0.017) 0.444(0.02) 0.458(0.011) 0.791(0.004) 0.787(0.003) 0.783(0.007)

Srand 0.428(0.006) 0.447(0.019) 0.452(0.016) 0.795(0.01) 0.791(0.006) 0.785(0.004)

k = 64

Sbal 0.453(0.003) 0.458(0.016) 0.459(0.011) 0.78(0.003) 0.781(0.003) 0.781(0.004)

Sdis 0.436(0.01) 0.455(0.016) 0.468(0.01) 0.787(0.01) 0.789(0.004) 0.783(0.005)

Smv 0.427(0.007) 0.439(0.026) 0.459(0.013) 0.791(0.005) 0.788(0.003) 0.784(0.007)

Srand 0.433(0.012) 0.451(0.015) 0.456(0.013) 0.797(0.009) 0.791(0.006) 0.785(0.004)

k = 128

Sbal 0.471(0.002) 0.474(0.018) 0.468(0.014) 0.781(0.002) 0.781(0.002) 0.782(0.003)

Sdis 0.45(0.008) 0.461(0.019) 0.466(0.016) 0.788(0.009) 0.789(0.003) 0.783(0.005)

Smv 0.434(0.015) 0.445(0.022) 0.458(0.016) 0.793(0.005) 0.788(0.004) 0.784(0.007)

Srand 0.439(0.015) 0.457(0.012) 0.455(0.011) 0.798(0.008) 0.791(0.005) 0.786(0.004)

Table 8: RoBERTa-Base Overall F1 results on Brexit and MFSC datasets for different budgets of annotation (B),
with various few shot sampling strategies; mean and standard deviation calculated over repeated runs.

metric = F overall
1 ↑ Brexit MFSC

50% 66% 83% 100% 25% 50% 75% 100%

X% × |Dai
| 50%|Dai

| 66%|Dai
| 83%|Dai

| |Dai
| 25%|Dai

| 50%|Dai
| 75%|Dai

| |Dai
|

MTL 0.366(0.123) 0.476(0.026) 0.497(0.012) 0.475(0.012) 0.773(0.002) 0.768(0.007) 0.772(0.004) 0.771(0.004)

X% × |A| 50%|A| 66%|A| 83%|A| 25%|A| 50%|A| 75%|A|

k = 16

Sbal 0.48(0.003) 0.476(0.008) 0.484(0.01) 0.778(0.003) 0.779(0.003) 0.776(0.002)

Sdis 0.475(0.01) 0.471(0.003) 0.487(0.012) 0.787(0.001) 0.787(0.001) 0.779(0.002)

Smv 0.463(0.027) 0.47(0.003) 0.486(0.018) 0.786(0.001) 0.786(0.002) 0.779(0.002)

Srand 0.477(0.019) 0.474(0.006) 0.486(0.02) 0.787(0.0) 0.786(0.001) 0.779(0.003)

k = 32

Sbal 0.486(0.003) 0.479(0.005) 0.486(0.011) 0.777(0.003) 0.778(0.002) 0.776(0.002)

Sdis 0.475(0.006) 0.477(0.009) 0.484(0.014) 0.789(0.002) 0.787(0.001) 0.78(0.002)

Smv 0.475(0.026) 0.471(0.005) 0.487(0.013) 0.788(0.001) 0.786(0.001) 0.779(0.002)

Srand 0.485(0.004) 0.473(0.004) 0.485(0.016) 0.787(0.0) 0.787(0.001) 0.779(0.003)

k = 64

Sbal 0.492(0.006) 0.48(0.002) 0.487(0.009) 0.775(0.004) 0.779(0.002) 0.777(0.001)

Sdis 0.501(0.003) 0.479(0.005) 0.499(0.011) 0.79(0.001) 0.788(0.001) 0.78(0.002)

Smv 0.479(0.025) 0.474(0.004) 0.487(0.013) 0.79(0.001) 0.787(0.001) 0.78(0.002)

Srand 0.49(0.008) 0.479(0.007) 0.486(0.004) 0.79(0.002) 0.787(0.001) 0.78(0.003)

k = 128

Sbal 0.513(0.006) 0.492(0.008) 0.493(0.005) 0.779(0.005) 0.78(0.003) 0.777(0.001)

Sdis 0.506(0.002) 0.486(0.002) 0.497(0.01) 0.791(0.001) 0.79(0.0) 0.781(0.002)

Smv 0.478(0.031) 0.479(0.005) 0.489(0.014) 0.791(0.001) 0.788(0.0) 0.781(0.002)

Srand 0.495(0.004) 0.485(0.01) 0.494(0.01) 0.791(0.002) 0.788(0.001) 0.781(0.003)

Table 9: RoBERTa-Large overall Aggregated F1 results on BREXIT and MFRC dataset for different %Bf s of
annotation, mean and std over 3 runs
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metric = F overall
1 ↑ Brexit MFSC

50% 66% 83% 100% 25% 50% 75% 100%

X% × |Dai
| 50%|Dai

| 66%|Dai
| 83%|Dai

| |Dai
| 25%|Dai

| 50%|Dai
| 75%|Dai

| |Dai
|

MTL 0.335 0.345 0.366 0.351 0.669 0.696 0.715 0.713

X% × |A| 50%|A| 66%|A| 83%|A| 25%|A| 50%|A| 75%|A|

k = 16

Sbal 0.316 0.326 0.355 0.637 0.648 0.692
dis 0.314 0.312 0.353 0.628 0.678 0.683
Smv 0.318 0.32 0.353 0.66 0.683 0.698
Srand 0.294 0.32 0.35 0.679 0.693 0.701

k = 32

Sbal 0.337 0.338 0.363 0.634 0.666 0.696
dis 0.318 0.323 0.353 0.655 0.675 0.699
Smv 0.329 0.322 0.357 0.681 0.691 0.7
Srand 0.32 0.329 0.345 0.69 0.693 0.703

k = 64

Sbal 0.348 0.355 0.373 0.644 0.666 0.69
dis 0.327 0.326 0.351 0.656 0.673 0.691
Smv 0.359 0.339 0.365 0.685 0.691 0.703
Srand 0.338 0.332 0.361 0.703 0.706 0.705

k = 128

Sbal 0.384 0.365 0.379 0.675 0.685 0.704
dis 0.337 0.339 0.357 0.664 0.688 0.698
Smv 0.365 0.363 0.375 0.698 0.698 0.705
Srand 0.339 0.343 0.365 0.711 0.713 0.716

Table 10: Llama-3 overall Aggregated F1 results on BREXIT and MFRC dataset for different %Bf s of annotation

(a) BREXIT (b) MFSC

Figure 10: Each plot demonstrates the effect of a single annotator’s agreement with the initial set of annotators used
for MTL training (Amtl), on its F1 score performance, when adopted as a few-shot task. The x-axis represents the
agreement measure, and the y-axis represents the F1 score. The darker color of the scatter plot corresponds to a
higher number of positive labels provided by the respective annotator.
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Symbol Meaning
Afs Annotators in MTL model
Amtl Annotators adopted as few shot task
Smv Sampling based on majority vote
Sbal Sampling based on balanced samples across classes
Sdis Sampling based on high disagreement of annotaions
Srand Random sampling
B Budget
D All annotations for a dataset
F fs
1 Avg. F1 scores of the few-shot model for Afs

Fmtl
1 Avg. F1 scores of the multi-task model for Amtl

Table 11: Mathematical notations used throughout the
paper with their explanations
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