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Abstract

In a large class of deep learning models, specifically vector embedding models1

in NLP, we observe that floating point exponent values tend to cluster around2

few unique values, presenting entropy encoding opportunities. The proposed3

EFloat floating point number format encodes frequent exponent values and signs4

with Huffman codes to minimize the average exponent field width while keeping5

the original exponent range unchanged. Saved bits then become available to the6

significand increasing the EFloat numeric precision on average by 4.3 bits compared7

to other low-precision floating point formats of equal bit budget. The EFloat format8

makes 8-bit and smaller floats practical by preserving the full exponent range9

of a 32-bit floating point representation. We currently use the EFloat format for10

compressing and saving memory used in large NLP deep learning models while11

I/O and memory bandwidth savings in GPUs and AI accelerators are also possible.12

Using RMS-error as a precision metric, we demonstrate that EFloat provides more13

accurate floating point representation than other formats with the same bit budget.14

EF12 with 12-bit budget has less end-to-end application error than the 16-bit15

BFloat16. EF16 RMS-error is 17 to 35 times less than BF16 RMS-error for a range16

of datasets. Using the NDCG metric for evaluating ranked results of similarity and17

dissimilarity queries in NLP, we demonstrate that EFloat matches the result quality18

of other floating point representations with larger bit budgets.19

1 Introduction20

As natural language processing (NLP) models expand their capabilities, complexity, and training costs,21

the model sizes have been increasing dramatically. For example, state-of-the-art transformer-based22

NLP models such as BERT (Vaswani et al. (2017)), Megatron-LM (Shoeybi et al. (2020)), Open AI23

GPT-3 (Brown et al. (2020)), or Google Switch-C Transformers (Fedus et al. (2021)), contain from24

hundreds of millions, to even trillion parameters (Hoefler (2020); Fedus et al. (2021)). Although25

NLP model compression is a very active area of research (Section 6), its current focus is on model26

inference scenarios, in which reduced precision and integer quantization are commonly used, given27

that the original model need not be restored.28

The primary goal for this work is to explore compression strategies for large vector embedding models29

such that one can recover or minimize the loss in the original model, or use the same compressed30

model in the inference phase. The database embedding (db2Vec), a vector embedding technique31

designed to develop semantic models from multi-modal relational database tables (Bordawekar and32

Shmueli (2016, 2017)), forms the impetus behind this exploration. Db2Vec differs from its NLP33

counterparts, such as Word2Vec (Mikolov et al. (2013)) and GloVe (Pennington et al. (2014b)), in34

that its source data follows the relational data model (Date (1982)) (the source data is not a natural35

language document but a relational database table). Considering the relational database tables can36
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Number of bits 1 2

9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3

(a) IEEE SINGLE (FP32) S E E E E E E E E M M M M M M M M M M M M M M M M M M M M M M M

(b) BFLOAT16 S E E E E E E E E M M M M M M M

(c) IEEE HALF (FP16) S E E E E E M M M M M M M M M M

(e) EFLOAT16 (8-bit logical exponent) S

(f) EFLOAT16 Frequent Exponents S E E E M M M M M M M M M M M M

(g) EFLOAT16 Infrequent Exp. S E E E E E E M M M M M M M

(h) EFLOAT16 Average (3 to 4-bit typical) S E E E M M M M M M M M M M M M

(i) EFLOAT11 Average S E E E M M M M M M M

N bits (15-N) bits

Figure 1: Floating point formats are compared. EFloat has a fixed total width, but the boundary
between the exponent and the significand is variable (e). The exponent is entropy coded, providing an
average of 4.3 extra bits of precision to the significand (e.g., (h)), while keeping the logical exponent
range at 8 bits, same as that of FP32. EFloat has greater precision and range than the existing FP
formats having the same bit budget.

be very large (e.g., billions of rows in a table) with a large number of unique tokens, it leads to a37

much larger vocabulary than a traditional natural language document. As a result, trained db2Vec38

models can be very large. Any trained vector embedding model is a snapshot of it’s weight matrices39

and consists of weight values represented typically with IEEE 32-bit single-precision floating point40

(FP32) format. Therefore, we focus on compression approaches that exploit different low-precision41

floating point formats.42

Existing low-precision floating-point(FP) formats make a tradeoff between the number of exponent43

and significand bits. An FP number is of the form44

−1signbit × 2exponent−bias × significand
The exponent largely determines the range of minimum and maximum values representable by the45

format and the significand width determines the precision (A constant bias is added to exponents to46

make them all positive integers which simplifies magnitude comparisons.) For example, the BFloat1647

(BF16) format with an 8-bit exponent and 7-bit significand has a wide range but low precision when48

compared to FP32 (Wang and Kumar (2019)) and IEEE 754-2019 Half-precision (FP16) as illustrated49

in Figures 1(a,b,c). On the other hand, FP16 with a 5-bit exponent and 10-bit significand has a greater50

precision but a tighter range than BF16 (IEEE (2019)).51

In this work, we introduce a new low-precision FP format, EFloat (EFn), that uses entropy-coded52

variable-width exponent and a variable-width significand with a total FP bit budget n, as illustrated in53

Fig.1(e). Our design is motivated by a key pattern that we observed across a wide range of vector54

embedding models: post-training, these models use only few of the 28 = 256 unique exponents55

available in FP32 and with a bell-shaped distribution caused by a certain class of non-linear activation56

functions used in model training. The EFloat design exploits this behavior and assigns the least57

number of exponent bits to most common exponent values, without losing the exponent range of the58

original floating point value.59

The proposed EFloat format has the following benefits:60

• Reduced-bit representation of any floating point format (e.g., FP32, FP16), by using fewer61

exponent bits to map the same exponent range as the original value.62

• For a given bit budget (e.g., 16), EFloat provides more accurate representation of the FP3263

values than BF16 and FP16 by using fewer exponent bits to capture the same range as before,64

and then using the remaining bits to increase significand precision.65

• The format is suitable for both memory and bandwidth compression and reduced-bit66

computations over pre-trained vector embedding models. Software implementation trades67

2



compute cycles with capacity and I/O bandwidth savings. A factor of 3 reduction in memory68

footprint is achieved converting FP32 values to EF11. Hardware conversion is possible for69

FPn to EFn and vice versa with simple Static RAM based lookup tables.70

• For a given dataset, many different FP to EF conversion tables are possible. Tables may be71

optimized for maximum significand width (highest exponent compression) at the expense of72

worse precision for few floats with infrequent exponents (less significand bits for outliers)73

and vice versa.74

• Since vector embedding models are used in a wide array of NLP transformer architectures,75

the EFloat format can be used for a much wider (and more space consuming) class of NLP76

models.77

In Section 2, we first present the analysis of various vector embedding models. The EFloat format78

is presented in Section 3. Section 4 describes key steps in conversion between EFloat and other FP79

formats. Section 5 presents an error analysis of various EFloat widths (EFn) against BF16 and FP16.80

In Section 6, a review of related work on model compression and floating-point formats for deep81

learning is presented. Finally, Section 7 presents conclusions and outlines future directions.82

2 Analyzing vector embedding models83

Vector embedding models are extensively used in natural language processing (NLP) to capture84

and exploit semantic relationships of word entities (e.g., words, sentences, phrases, paragraphs, or85

documents). A trained vector embedding model consists of a set of vectors, each vector encoding86

a distributed representation of inferred semantics of a word entity, i.e., a single vector captures87

different attributes of the inferred semantics (Hinton et al. (1986)), created, in part, by contributions88

by other word entities. Every vector embedding model implements some variant of the log-bilinear89

language (LBL) model that predicts the probability of the next word wi given the previous words90

(context) (Hinton (2013); Almeida and Xexeo (2019); Bender and Koller (2020)). The LBL model91

first predicts a real-valued vector representation of a word by linearly combining the real-valued vector92

representations of its context words. Then the distributed representation of the word is computed93

based on the similarity between the predicted representation and the representations of all words in94

the vocabulary. This step is accomplished using the normalized exponential or Softmax function over95

the associated feature vectors. The output of the Softmax function is the probability distribution over96

V different possible outcomes, where V is the vocabulary size.97
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Figure 2: Histogram of the exponent fields of 32-bit floating-point (FP32) values found in vector-
embedding and related NLP models. Only the db2Vec, word2vec, doc2vec, and sentence-encoder
models were generated. Others were downloaded as publically available pretrained models.

Figure 2 presents histograms of exponent values in multiple pre-trained vector embedding models,98

where the X-axis represents exponent values (from the 8-bit exponent portion of a 32-bit IEEE 75499
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floating point value). For each X-axis value, the Y-axis represents normalized number of occurrences100

of that exponent value, i.e., a histogram. Vector embedding and related NLP models presented in Fig. 2101

include word embedding (word2Vec) (Mikolov et al. (2013); Zhang et al. (2019)), sentence (sent2Vec)102

and document embedding (doc2Vec) (Le and Mikolov (2014); Chen et al. (2019)), GloVe (Pennington103

et al. (2014a)), subword embedding (FastText) (Bojanowski et al. (2017a,b)), database embedding104

(db2Vec), graph embedding (PyTorch BigGraph Lerer et al. (2019)), and Google’s transformer-based105

universal sentence encoder (Cer et al. (2018); Google (2021)) using the Brown corpus ( Brown-106

corpus (2021)). All these models implement different variations of the LBL model. The word2Vec107

based models, e.g., word2Vec, sent2Vec, doc2Vec, db2Vec, and FastText, use a neural network with108

different versions of Softmax as the activation function. GloVe, on the other hand, is a count-based109

optimization approach that uses a word co-occurrence matrix and weighted least-square as the110

optimization function. The FastText subword model (Joulin et al. (2016); Bojanowski et al. (2017a))111

assigns a vector for every character n-gram, using an extended skip-gram model (Mikolov et al.112

(2013)) and then, words are represented as the sum of these representations. The universal sentence113

encoder generates embedding vectors for sentences using a standard Transformer architecture that114

takes word embedding vectors as input and uses a Softmax function to compute attention (Vaswani115

et al. (2017)). Irrespective of the model type, we observe that exponent values cluster around a116

certain range of values, and display a distinct peak. The only exception is the doc2Vec model that117

exhibits two peaks as the doc2Vec first builds fine-grained embeddings for words and then uses them118

to build embeddings for coarser-grained entities such as paragraphs via concatenating and averaging119

individual word vectors which results in a smaller second peak as observed in Fig. 2.120
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Figure 3: The Sigmoid σ(x) curve and its gradi-
ent. The floating-point (FP32) exponent of few
neural weights are overlaid on σ(x).
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The Softmax family of activations functions used in vector embedding models is responsible for the121

clustering behavior of exponents (Figure 2). To understand the reasons, let us delve deeper into the122

training of an embedding model. For illustration purposes, we use database embedding (db2Vec)123

of the Telcom Churn data (IBM (2020)) as an example. db2Vec is an adaptation of the word2Vec124

approach, and has been designed to build an embedding model from structured database tables that125

adhere to the relational data model. Like word2Vec, db2Vec also uses Skipgram with Negative126

Sampling (SGNS) as the training approach. The SGNS approach uses a binary classifier based on127

the logistic (Sigmoid) function instead of using the Softmax-based predictor. The overall training128

process involves multiple back-propagation iterations to update model weights using the gradient of129

the Sigmoid function. Weights get updated iteratively during the back-propagation process by the130

error computed for that iteration. Practically, the error is computed using the gradient of the activation131

function. During model training, we observe that the weights rapidly converge (Fig.4) to their final132

values. Their exponents are substantially clustered at the slope of the Sigmoid curve, the 2−8 to 20133

output range of Sigmoid, as evidenced by Figures 3 and 4. Training eliminates smaller exponents134

from the model because the activation function output is practically zero for any input value when135

weights are small, and large exponents are non-existent of normalization of weights.136

3 The EFloat format: EFn137

The key idea behind the EFloat format is the variable-width encoding of exponents using the well-138

known Huffman algorithm. Frequency of unique exponent values in the dataset determine the139

coded-exponent widths which may vary between as small as 1-bit and some software configurable140

maximum, e.g., 8-bit (Figure 1(e,f,g)). Thanks to the entropy coding of the Huffman algorithm,141
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frequent exponent values are coded with fewer bits and infrequent exponents are coded with more142

bits as observed in Fig.5.143

Bits saved from the exponent become part of the significand, therefore increasing the floating point144

precision compared to other float formats with the same bit budget. An N -bit coded-exponent in145

an EF16 float results in a (15-N )-bit significand as shown in Fig.1(e). Since Efloats with frequent146

exponents have wide significands, the entire dataset has a greater precision on average. Efloats with147

infrequent exponents have narrow significands. But, their contribution is relatively small in the148

common calculations used in model training and inferencing, such as dot-products, vector-sums, and149

cosine-similarity (EFloat precision is quantified and compared to prior formats in Section 5.).150

EFloat on average have greater precision and range than any other fixed-field FP format with the151

same bit budget. For example, EF16 with a 3-bit coded-exponent has 12-bits of significand compared152

to the 7-bit significand found in a BF16 (Figures 1(h,b)). EFloat exponent’s logical width is always153

8-bit, the same as for FP32 and BF16, irrespective of EFloat width. Even for extremely narrow floats154

such as EF8, the logical exponent width can be 8-bit since encoding compresses the exponent field.155

The EFloat format compresses special values of IEEE 754, such as signed zeros and infinities156

losslessly. NaN are semantically compressed losslessly: converting a NaN to and from FP32 to EFn157

and vice-versa still results in a NaN. Denormal floats may round to zero since least significant bits of158

significands are truncated during encoding.159

4 EFloat encoding and decoding160

The Huffman algorithm: is a popular lossless compression algorithm used in many compression161

tools and compressed data formats (Salomon (2004)). Data symbols are encoded with variable-length162

binary codes whose length are determined by the symbol probabilities in the data stream. The163

algorithm builds a binary tree with each leaf assigned a symbol. Higher probability symbols are164

closer to the tree root than others. The path from the tree root to the leaf is the binary coding of the165

symbol. To demonstrate with a trivial example, the letters A, B, C occuring with probabilities of166

0.5, 0.25, and 0.25 may be encoded with the bit patterns 0, 10, and 11, respectively. The algorithm167

yields 1.5-bit/symbol compression efficiency, better than 8-bits/symbol using an ASCII representation168

or 2-bits/symbol using a simplistic mapping of the 3 letters to 2-bit integers. Huffman coding is169

optimal when symbol probabilities are negative powers of 2. However, it is an effective compression170

method even for non-optimal data distributions. Fig.5 shows the Huffman coded exponent widths as171

a function of exponent frequencies of a word2vec trained model.172

Huffman codes have the prefix property which states that no code is a prefix of a longer code (due173

its tree structure.) As a result, the Huffman code not only encodes the original symbol but the174

code-length as well. We use this property to locate the bit position of the movable boundary between175

the exponent and the significand fields when decoding EFloats( Fig.1(e)).176

Length-Limiting: The basic Huffman algorithm, depending on probabilities, may produce extremely177

wide codes consuming the entire width of EFloats and more. We use the Length-Limiting variant of178

the Huffman algorithm to set a maximum coded-exponent width (Abali et al. (2020)). In Fig.5, the179

maximum code-width is set to 8-bits resulting in infrequent exponents encoded with that maximum.180
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Figure 6: EFloat uses Length-Limited Huff-
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The software-defined limit presents an opportunity to tune the EFloat precision to a particular NLP181

application requirements. Figure 6 shows the effect of limiting maximum width of coded-exponents to182
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5, 8, and 10-bits. As the limit is increased, the least frequent exponents are coded with the maximum-183

width codes, therefore their respective significands lose precision. On the other hand, with increasing184

limits the most frequent exponents are coded with fewer bits reducing both the minimum and the185

average coded-exponent widths, therefore their respective significands gain precision. Therefore,186

EFloat not only compresses the regular floats but for a given EFn budget of n-bits the application can187

optimize the end-to-end precision by adjusting the maximum coded-exponent width.188

That the minimum and average code widths are inversely proportional to the maximum code-width189

may appear counterintuitive (Figure 6). Let the maximum coded-exponent width be K-bits (K = 5,190

K = 8, etc.). K-bits are sufficient to represent N unique exponents in the dataset provided191

dlog2(N)e ≤ K holds. When K is chosen much larger than the minimum dlog2(N)e, some codes192

can have fewer than K-bits. Consider a short L-bit code such that L ≤ K (e.g., assume K = 8,193

L = 2 and the short-code = 00.) Due to the prefix property the L-bit code consumes 2K−L bit194

patterns out of the 2K maximum possible (e.g., all 8-bit patterns whose 2-bit prefix is 00, 64 patterns195

in total, are consumed by the code 00.) The remaining N − 1 exponents can still be encoded if196

N − 1 ≤ 2K − 2K−L holds. We observed in practice that increasing the maximum code-width by 2197

to 3 bits over the minimum dlog2(N)e gives a good compression ratio.198

EFloat Encoding and the Code-Table: During the conversion from FP32 to an EFn (e.g., EF16),199

exponents in the original dataset are histogrammed first, e.g., Fig.2. The histogram representing200

probabilities of the exponents is the input to the Length-Limiting Huffman algorithm. The output is a201

256-entry (28) code-table indexed by the original 8-bit exponent. Each table entry contains a pair, the202

variable-width coded-exponent and its width. Note that the code-table is quite small, tens of bytes in203

practice, since few unique exponents are present in most NLP datasets as Fig.2 shows.204

When the sign bits have a skewed distribution, e.g., if they are substantially positive, then the sign205

bit and the 8-bit exponent may be treated as a single 9-bit integer when histogramming. Thanks to206

Huffman coding, a skewed sign bit distribution may provide up to one additional bit of precision to207

the significand.208

Using the code-table, the entire dataset is converted from FP32 to the chosen EFn width (e.g., EF16)209

replacing original exponents with coded-exponents. Least significant bits of the FP32 significand are210

truncated to match the EFn width. For example, in Fig.5, the algorithm encodes the most frequent211

exponent with 2-bits. Accounting for the sign bit, this yields a 13-bit significand in EF16 by truncating212

the bottom 10-bit of the 23-bit significand of FP32. We use the round-to-nearest method to provide213

on average 0.5 bits of additional precision: when the leading bit of the truncated part is 1 the upper214

part of the significand is incremented +1 provided it doesn’t overflow in to the exponent field.215

For large datasets, a statistically representative subset may also be used to reduce histogram collection216

time. When the histogram is known in advance, a pre-built code-table may be used. Pre-built217

code-tables eliminate the overhead of executing the Huffman algorithm. During training exponents218

rapidly converge to their final values as observed in Fig.4. The exponent distribution is practically219

identical for all iterations 11 to 2481, Therefore, a single pre-built code-table optimized for final220

iterations may serve for all iterations start to finish. The same pre-built table, although suboptimal221

for early iterations, may be used because significand precision is not as important at that point in222

time; model weight updates are dominated by exponent updates. Once exponents settled to their final223

values the significand precision becomes important since model weights updates progressively get224

smaller.225

EFloat Decoding: For EFloat to FP32 conversion (i.e., decoding) we use a inverse mapping of the226

code-table described earlier. A decoder-table indexed by the coded-exponent may be used to decode227

the original exponent value and the significand’s leading bit position in constant time. Each table entry228

contains the original exponent and width of the coded-exponent. To index the decoder-table with229

variable-width codes many entries are filled with duplicates. For example, the 2-bit coded-exponent230

00 is duplicated 64 times in the table at locations 00000000 through 00111111 with each location231

containing the pair (original exponent and code-width= 2). Duplicating entries is equivalent to having232

logical don’t care bits in the index which is a useful in hardware based decoder implementations.233

The second element of each table entry contains the EFloat significand width. Since the significand234

was truncated earlier during the FP32 to EFloat conversion, the missing least significant bits must be235

padded with zeros to match the original FP32 width.236
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5 Evaluating the EFloat representation237

In this section, we evaluate the efficacy of the EFloat format using two sets of experiments. The238

first set measures the loss of precision in representing FP32 data in BF16, FP16, and EFloat formats239

with bit budgets from 16 to 8 bits. The second set of experiments compares the quality of ranked240

results for similarity and dissimilarity queries using the Normalized Discounted Cumulative Gain241

(NDCG) score for BF16, FP16, and various EFloat formulations. Table 1 presents the list of models242

used in these experiments, along with their characteristics: model types, model size (stored using243

FP32), number of unique exponents, range of exponent bits generated by the Huffman algorithm, the244

average count of exponent bits, and minimum and maximum average count of significand bits. For245

EF16, the average significand length is 4.3 bits more than BF16 (with 7-bit significand) and 1.2 bits246

more than FP16 (with 10-bit significand).247

Table 1: EFloat characteristics from EF16 to EF8 for different datasets

Model Type Size Unique EFn exponent bits EFn significand bits (Avg.)
exponents Min Max Avg. Max (EF16) Min (EF8)

churn db2vec 20 MB 23 3 5 3.6 11.4 3.4
crawl fast-text 4.3 GB 30 3 5 3.4 11.6 3.6
enwiki word2vec 9.6 GB 27 4 5 4.2 10.8 4.8
MDM db2vec 14 GB 24 3 6 3.6 11.4 3.4
840B GloVe 5.3 GB 35 3 6 3.5 11.5 3.5
wiki-sw fast-text 2.2 GB 22 3 5 3.6 10.5 3.4
virginia db2Vec 222 MB 24 3 5 3.7 11.3 3.4

The first set of experiments compares the loss of precision due to the least significant significand248

bits being truncated during conversion from FP32 to various lower-precision formats. Given a249

low-precision format (e.g., EF16 or BF16), the values are converted back to FP32, and the arithmetic250

difference, fo − f c, of the original FP32 value, fo, and the regenerated FP32 value, f c, is computed.251

This difference represents the precision loss due to conversion. Root Mean Square Error (RMSE)252

metric is then used to summarize the loss of precision across a dataset of N floats as:253

RMSE =

√√√√ 1

N

N∑
k

(fok − f ck)2

We then compare the errors of BF16/FP16 and EFn by dividing RMSEBF16/FP16 by RMSEEFn254

in Table 2. Ratios greater than 1.0 indicate that the EFloat error is less than BF16 or FP16 errors.255

For EF16, across all models, we observe an average RMSE error ratio of 24.1 for BF16, and 1.5 for256

FP16. Note that for these experimental results, the datasets were encoded with a minimum of 3-bit257

and a maximum of 6-bit coded-exponents resulting in an average width in the range of 3.4 to 4.2-bits258

(Table 1). Accordingly, for EF16, the minimum significand width is 10-bit which is 3-bit wider than259

BF16, and of the same length as FP16. Therefore, EF16 has significantly higher precision against260

BF16 than FP16. Also, Table 2 shows that EF12 has the same to slightly better RMSE than BF16261

since the RMSE ratios are in the 1.0 to 2.2 range. Thus, EF12 uses 25% less bandwidth and memory262

capacity than BF16 for similar floating-point precision.263

Note that the RMSE method amplifies larger errors due to the squaring of differences. EFloat coded264

floating point values with short significands (i.e., those with infrequent exponents) are disproportion-265

ately represented in the RMSE summation. However, the true measure of error for vector embedding266

models will be the evaluation of ranked results for similarity queries for different floating point267

formats. Unlike the binning in traditional classification inference tasks, ranked results from similarity268

queries are far more sensitive to numerical precision. We use the Normalized Discounted Cumulative269

Gain (NDCG) metric (Järvelin and Kekäläinen (2002); Wang et al. (2013)), to evaluate the quality270

of ranked results for different floating point formats. NDCG is widely used in information retrieval271

and web search to evaluate the relevance of retrieved documents. NDCG is a normalization of the272

Discounted Cumulative Gain (DCG) measure. DCG is calculated as a weighted sum of the degree of273

relevancy of the ranked items, where the weight is a decreasing function of the position of an item.274

NDCG is computed by normalizing DCG by IDCG, which is the DCG measure for a perceived ideal275

ranking result. Thus, the NDCG measure always lies within [0.0,1.0].276
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Table 2: BFloat16 (BF16), IEEE Half (FP16), and EF16–8 precision comparisons using RMSE-with-
FP32 ratio. Higher is better.

Model EF16 EF14 EF12 EF10 EF8
BF16 FP16 BF16 FP16 BF16 FP16 BF16 FP16 BF16 FP16

churn 22.5 1.4 5.6 0.4 1.4 0.09 0.3 0.02 0.08 0.005
crawl 34.6 2.2 8.6 0.5 2.2 0.1 0.5 0.03 0.1 0.008
enwiki 16.9 1.0 4.2 0.3 1.0 0.07 0.3 0.02 0.06 0.004
MDM 27.9 1.8 6.9 0.4 1.8 0.1 0.4 0.03 0.1 0.007
840B 25.0 1.6 6.3 0.4 1.6 0.09 0.4 0.02 0.09 0.006
wiki-sw 22.0 1.4 5.5 0.3 1.2 0.08 0.3 0.02 0.08 0.005
virginia 19.6 1.2 4.9 0.3 1.2 0.08 0.3 0.02 0.07 0.004

For a given vector embedding model, we choose q = 20 randomly selected distinct query points.277

For each query point, we compute similar and dissimilar points by computing cosine similarities278

over the corresponding vectors. For similarity queries, the result contains a list of points sorted in279

decreasing order of their similarity scores (most similar pair of items will have score closer to 1.0),280

and for dissimilarity queries, the result list is sorted in increasing order of their similarity scores (most281

dissimilar pair of items will have score closer to -1.0). For each query point, we run similarity and282

dissimilarity queries for different floating point formats, and use the top k = 10 results for each test283

to compute the NDCG score, (NDCG@10). In our evaluation, we use the ranked results for FP32284

as the baseline for calculating the IDCG. For each model, we report the average NDCG@10 score285

computed over 20 query points using BF16, FP16, and various EFn from EF16 to EF8.286

Figure 7: Evaluation of similarity query accuracy using NDCG score across different floating point
formats. Higher score (closer to 1.0) is better.

Figure 7 presents NDCG10 results for similarity queries, and Figure 8 presents NDCG10 results for287

dissimilarity queries. For both similarity and dissimilarity queries, EF16 matches or exceeds the288

quality of BF16 or FP16 (in particular, among the three formats, BF16 provides the worst qaulity289

results). Furthermore, EF14 and EF12 provide similar quality results as EF16 in many instances. The290

two lower-precision EFn, EF10 and EF8, consistently generate the least quality results.291

In summary, results from the two sets of experiments (Table 2, and Figures 7 and 8), conclusively292

demonstrate that: (1) Given a bit budget, EFloat has higher accuracy than other formats, (2) In many293

scenarios, EFn with reduced bit budget (e.g., EF14 or EF12) provides results of quality comparable to294

higher precision formats, e.g., BF16, and FP16. These results validate the design of the EFloat format,295

and demonstrate that EFloats can be used for compressing and computing using vector embedding296

models.297
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Figure 8: Evaluation of dissimilarity query accuracy using NDCG score across different floating
point format. Higher score (closer to 1.0) is better.

6 Related Work298

Model quantization is widely used to compress pre-trained models for the inference phase (Gupta299

and Agrawal (2020)). Quantization covers two broad approaches: the first represents a full-precision300

(e.g., 32-bit) floating point weight value using reduced (e.g., BF16 or FP16) or mixed precision301

floats, and the second converts full-precision floating point values into integer values with fewer bits302

(e.g., INT8, INT4, and INT1 (Migacz (2017); Wu et al. (2020); TensorFlow Documentation (2020);303

Jacob et al. (2017))). In conjunction with the model compression work, there has been significant304

work in devising reduced-precision floating point formats tuned for broader machine learning and305

HPC applications (Sapunov (2020); Abdelfattah et al. (2020)). Unlike the inference-focused model306

compression work, reduced-precision floating points are designed to work for both model training and307

inference phases. The most common reduced-precision floating point formats use 16 bits. Current308

16-bit implementations include IEEE 754 half-precision (FP16); Brain Floating Point, BFloat16309

(Wang and Kumar (2019); Kalamkar et al. (2019)); and Deep Learning Float (DLFloat) (Agrawal310

et al. (2019)), with 1 sign bit, 6 exponent bits, and 7 fraction bits. TensorFloat-32 (TF32) from311

Nvidia is a 19-bit format that combines 8 exponent bits from BFLOAT16 and 10 exponent bits from312

IEEE FP16 (Kharya (2020)). Hybrid Block Floating Point (HBFP) (Drumond et al. (2018)), Intel313

Nervana’s Flexpoint (Koster et al. (2017)), and Microsoft MSFP (Rouhani et al. (2020)) formats314

combine the advantages of fixed point and floating point formats by splitting up the significand and315

the exponent part which is shared across multiple numeric values. Recent research proposals have316

described training of key deep learning models using even reduced precision floating point values317

(8- and 4-bit floats) (Sun et al. (2020); Wang et al. (2018); Cambier et al. (2020); Mellempudi et al.318

(2019)). Recently proposed AdaptiveFloat (Tambe et al. (2020)) is an inference-targeted floating-point319

format which maximizes its dynamic range at a network layer granularity by dynamically shifting320

its exponent range via modifications to the exponent bias and by optimally clipping (quantizing) its321

representable datapoints. Our proposed EFloat design practically achieves the same result without322

altering the exponent range and quantizing full-precision values.323

7 Conclusion324

We introduced EFloat, a novel entropy-coded variable length floating point format for deep learning325

applications. This format can be used for compressing a trained deep learning model, as well as for326

enabling more accurate model representations using reduced-precision floating point formats. While327

our intended use cases were initially for the database embedding (db2Vec) workloads, we demonstrate328

that the proposed format works effectively for other vector embedding models, and can be used for a329

much broader class of NLP models including transformer-based models. Broadly, EFloat may be330

used in deep learning applications where tradeoffs need to be made between range, precision, memory331

capacity and bandwidth savings. As a future work, we plan to explore the Benford distribution332

pattern (Benford (1938); Newcomb (1881)) exhibited by significands of vector embedding models333

(Appendix A in the supplementary document) and investigate its application in rounding EFloat334

values. A follow-up study on 8-bit floats and integers is being considered as well.335
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