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Abstract

Understanding how humans move their eyes to gather visual information is a
central question in neuroscience, cognitive science, and vision research. While
recent deep learning (DL) models achieve state-of-the-art performance in predict-
ing human scanpaths, their underlying decision processes remain opaque. At an
opposite end of the modeling spectrum, cognitively inspired mechanistic mod-
els aim to explain scanpath behavior through interpretable cognitive mechanisms
but lag far behind in predictive accuracy. In this work, we bridge this gap by
using a high-performing deep model—DeepGaze III—to discover and test mech-
anisms that improve a leading mechanistic model, SceneWalk. By identifying
individual fixations where DeepGaze III succeeds and SceneWalk fails, we iso-
late behaviorally meaningful discrepancies and use them to motivate targeted
extensions of the mechanistic framework. These include time-dependent tem-
perature scaling, saccadic momentum and an adaptive cardinal attention bias:
Simple, interpretable additions that substantially boost predictive performance.
With these extensions, SceneWalk’s explained variance on the MIT1003 dataset
doubles from 35% to 70%, setting a new state of the art in mechanistic scanpath
prediction. Our findings show how performance-optimized neural networks can
serve as tools for cognitive model discovery, offering a new path toward inter-
pretable and high-performing models of visual behavior. Our code is available at
https://github.com/bethgelab/what-moves-the-eyes.

1 Introduction

Every time we view a scene, our eyes produce a sequence of rapid movements (saccades) and
brief pauses (fixations), selectively directing our high-resolution fovea to parts of the visual world.
This active sampling process—captured in so-called scanpaths—reveals a great deal about how
we perceive, attend to, and make sense of our surroundings. Understanding what governs fixation
selection is therefore a key question in visual neuroscience and cognitive science and also receives
substantial interest from computer vision due to many applications ranging from compression [31] to
design and layouting [15, 16].
Indeed, fixation selection has been extensively studied in a variety of scenarios, from reading [65, 23],
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to scene viewing [13, 93, 80, 45], to performing real-world tasks [33, 53, 64]. Here we focus
specifically on modeling free viewing of natural scenes.
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Figure 1: (a) We systematically compare prediction performances of a mechanistic scanpath model
(SceneWalk) to a high-performing DNN model (DeepGaze III) to find situations that could be
predicted very well but are not by the mechanistic model. Inspecting these extreme cases results
in ideas for effects than can be confirmed through further analyses and give rise to mechanisms
that are added to the mechanistic model. (b) This process yields three new mechanisms that double
SceneWalk’s predictive performance on MIT1003, substantially narrowing the explainability gap.

Approaches to this question in the modeling literature can be viewed as occupying different points on
a Pareto front trading off predictive performance with direct mechanistic interpretability. At one end,
models like SceneWalk [24, 68, 70] are constructed from a small set of interpretable components
that directly reflect cognitive hypotheses about attentional dynamics, oculomotor constraints, and
perceptual processing. These approaches align with the view of scientific understanding as a form of
compression [87]: the goal is to explain complex phenomena through a small set of generalizable
principles, a critical aim even when performance is not maximized. At the other end of the spectrum,
performance-oriented deep neural networks (DNNs) like DeepGaze III [51] take a data-driven
approach, learning to predict human fixations from large-scale data without explicitly modeling
the underlying mechanisms. Their strength lies in establishing a high mark for predictive accuracy,
revealing the extent of predictable structure in the data.

As common for the prediction of complex behavior, deep scanpath models indeed outperform
mechanistic ones in predicting where people look [44]. But this predictive success comes at a cost:
While DNNs can embed mechanisms and offer scientific insights[91, 51], they often capture complex
behavioral patterns in high-dimensional parameter spaces that are not immediately transparent
[27]. Conversely, mechanistic models, while more transparent, typically under-perform due to their
parsimonious parametrization and due to the same strong prior assumptions that make them great
testbeds for formulating and evaluating theoretical principles. This leaves a gap: We know that
certain behaviors are robustly predictable by data-driven models, but we lack a compact, mechanistic
account of them. One flourishing line of research addresses this by starting from the predictive
end of the modeling Pareto front, developing more transparent, hybrid, or task-constrained DNNs.
In this work, however, we pursue a complementary strategy embracing the mechanistic modeling
philosophy: starting from the interpretable end, we ask how much of the performance gap can be
closed by systematically improving the fully interpretable model.

A principled way to close this gap, then, is to focus on the mechanistic model’s largest prediction
errors. In the domain of static spatial saliency, model failures are often assessed by comparing
model predictions to inter-observer consistency, which serves as an empirical upper bound on pre-
dictability [49, 14, 12, 45]. However, in high-dimensional distributions such as scanpaths, estimates
of inter-observer consistency have been so far intractable: Each fixation is sampled from a condi-
tional distribution p(fi+1|f≤i, I) that depends on the unique history of previous fixations. Because
scanpaths are highly idiosyncratic, the same fixation history is almost never observed more than
once, leaving us with a single empirical sample for each high-dimensional distribution. This sparse
coverage makes it challenging to form stable, non-parametric estimates of inter-observer agreement.
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Here is where a high-performing DNN becomes indispensable. We propose to use DeepGaze III not
just as a benchmark, but as a dense, queryable approximation of the true data-generating process
[41, 2]. By directly comparing the predictions of DeepGaze III and SceneWalk at the level of
individual fixations, we identify controversial fixations: Cases where the models strongly disagree.
These disagreements highlight specific behavioral patterns captured by the deep model but missed by
the mechanistic one. We use them as entry points for analysis, confirming with empirical data whether
the behavior is human-like, and then reformulating the missing tendencies as explicit mechanisms
within the SceneWalk framework. A key question at the outset was whether the discrepancies between
the models would reveal a few systematic, missing principles or a myriad of subtle, complex effects.
Interestingly, as we will show, the disagreements clustered into clear, actionable categories, validating
the approach. Subsequent model comparisons between versions of the mechanistic model provide
a strong test for the newly added mechanisms. This iterative process repurposes the deep model
as a tool for mechanistic discovery, helping quantify how much specific mechanisms contribute
to scanpath behavior and bridging the gap between prediction and understanding. As such, our
primary contribution is not the discovery of entirely novel phenomena—which would also have been
possible—, but a systematic, model-guided methodology for prioritizing which of the many plausible
mechanisms most improve prediction on naturalistic data.

We evaluate our method on four free-viewing datasets and demonstrate that augmenting SceneWalk
with mechanisms inspired by DeepGaze leads to consistent performance improvements, bringing
interpretability closer to predictive performance by halving the explanatory gap on most datasets. In
doing so, we offer a roadmap for principled model development that leverages the complementary
strengths of hypothesis- and data-driven approaches.

2 Related Work

Scanpath Modeling While the field of eye movement prediction has been focused for a long time
mainly on spatial fixation density prediction (“saliency prediction”, [36, 11, 38, 47, 56, 22], see
[7, 45] for an overview), the problem of predicting the dependencies within scanpaths of fixations
has also attracted substantial interest. The seminal model of Itti and Koch [36] already predicted
scanpaths, and since then a range of different mechanistic models have been proposed. Many
models take direct inspiration from neuroscience and biology (MASC [1], LATEST [81], Star-FC
[89], [40]) or build on statistical ideas such as CLE [5], SaccadicFlow [19], WALD-EM [43] and
others [10, 79, 55, 54, 21, 90, 94], and some models implement ideas from cognitive science and
attention research, such as SceneWalk [24, 68, 70], Exploration-Exploitation [59] and ROI-LSTM
[78]. Finally, the progress in machine learning has brought deep-learning based models that are either
only partially interpretable or complete black boxes such as SaltiNet [4], PathGAN [4], DeepGaze
III [51], GazeFormer [60], ScanDMM [77] and HAT [92]. Many scanpath models take as given a
spatial saliency map of the image, however, there are also models that incorporate more complex
interactions of scene content and scanpath dynamics. An extensive comparison [44, 51] showed that
SceneWalk is the best mechanistic model in terms of explained information, which is why we are
using it as the starting point of our project. While here we focus on free-viewing behaviour, other
models also take into account task dependency, such as visual search [1, 34, 91, 71], or inter-subject
differences [17, 37].

DNNs as scientific tools One conceptual foundation of our work is the idea that DNNs can serve as
queryable empirical stand-ins for Bayesian ideal observers in domains where the analytical solution
is intractable [41]. A direct extension of this idea is Scientific Regret Minimization (SRM [2]):
using expressive machine learning models as powerful approximators of the data-generating process,
leveraging their predictions to identify systematic failures in simpler, hypothesis-driven models.
Crucially, this emphasizes cases where we know—because the DNN predicts accurately—that the
behavior should have been predictable, but the mechanistic model fails. This reframes the role of
DNNs not merely as predictive tools, but as guides for scientific inquiry.

Model comparisons for insight and hypothesis generation Our method also relates to work com-
paring model predictions to extract insights or derive interpretable mechanisms. Classic approaches
include some early work in model distillation, where the goal is to extract simpler, interpretable
models from complex DNNs—e.g., distilling neural networks into decision trees [26]. Other work
frames model comparison as a way to generate maximally informative contrasts between hypotheses
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or models. An example of this is the Maximum Differentiation (MAD) Competition for perceptual
models [85], or the use of controversial stimuli to pit vision models against each other in regions
of disagreement [30]. These approaches resonate with our method of using disagreement between
models to uncover where new mechanisms may be required.

Finally, it is important to distinguish our approach from a different line of research in post hoc
mechanistic interpretability methods, such as feature attribution [42, 95], which aim to explain
black-box models’ internals. In contrast, we treat the DNN as an opaque but predictive reference, and
focus instead on refining an interpretable model by learning from its disagreements with the DNN.

3 Methods and Experimental Setup

Modeling Framework and Evaluation Our models and evaluations are formulated in the frame-
work of next-fixation-prediction [34, 45]: Eye movements can be considered a sequential decision
process in which each decision is about where to look next. This means that given an image I and
a sequence of previous fixations f0, . . . , fi, models predict the next fixation fi+1 as a conditional
probability distribution p(fi+1 | fi, . . . , f0, I), or for short p(fi+1 | f≤i, I). Compared to predicting
whole scanpaths, the framework of next-fixation-prediction comes with the advantage that it allows
to inspect model predictions for each individual fixation in the dataset and is compatible with classic
spatial fixation density prediction: it constitutes the special case p(fi+1 | f≤i, I) = p(fi+1 | I)
where each fixation is predicted independently of previously made fixations. Model predictions can
naturally be scored via log-likelihood log p(fi+1 | fi, . . . , f0, I) which we report in bits and relative
to the uniform baseline model as log p(fi+1 | fi, . . . , f0, I)− log puniform(fi+1 | I) (sometimes also
termed information gain, IG [48]). Information gain has been shown to be a preferable metric due
to its sensitive nature [50] and we use it as our main metric of predicton quality. The traditionally
often used scanpath similarity metrics [3] are not applicable in our case because they don’t allow
single-fixation analyses and have additional conceptual problems [44].

Explainable Information Gain Because information gain constitutes a ratio scale [76], differences
and relative changes are meaningful. This forms the basis of explainable information gain [48], which
quantifies how much of the theoretically possible performance a model achieves. In spatial saliency,
this is measured between a lower bound (i.e. center bias) and an upper bound (i.e. gold-standard
empirical model), with the difference defining the explainable information gain log p(f | I)− p(f).
In our setting, we are interested in modeling the dependency of fixations on scanpath history.
Therefore, the static gold standard from spatial saliency becomes our lower baseline p(fi+1 | I).
The upper bound, a principled gold standard model of p(fi+1 | f≤i, I), is intractable to estimate
non-parametrically from empirical data due to the sparsity of unique scanpath histories. Since each
trial generates a unique fixation history, we are typically left with only a single data point for each
high-dimensional conditional distribution, precluding direct estimation of inter-observer consistency.
We therefore approximate this ceiling with what is to our knowledge the best performance-optimized
model for scanpath prediction, DeepGaze III [51], which serves as a queryable proxy for human
predictability. As a model, it also enables controlled analyses of the data distribution that sparse
empirical observations alone do not permit (see Fig. 5).

Controversial Fixations At the heart of our analysis technique is what we call controversial fixa-
tions, based on the concept of controversial stimuli [30]. A controversial fixation is a fixation for which
the predictions from DeepGaze III and SceneWalk, given the previous scanpath history, differ sub-
stantially. We use two different measure to quantify these differences: First, we use the log-likelihood
difference (LLD) log pDG3(fi+1 | f≤i, I)− log pSW(fi+1 | f≤i, I). Large values mean that DeepGaze
III assigns much more probability to a given fixation than SW, e.g. 8 times as much for a difference of
3 bit. Such differences suggest that while the fixation is predictable, the mechanisms currently imple-
mented by SceneWalk do not capture it well. Additionally, we use the weighted log-likelihood differ-
ence (WLLD) pDG3(fi+1 | f≤i, I) (log pDG3(fi+1 | f≤i, I)− log pSW(fi+1 | f≤i, I)). By weighting
with DeepGaze’s probability, we select fixations with large LLD that are additionally considered
very likely by DeepGaze. We chose these fixation-centric metrics over full-distribution measures like
KL-divergence because they focus the analysis on the actually observed fixation and are substantially
more computationally efficient. This means that we focus more on cases that DeepGaze considers
easy and which might hence showcase effects more clearly.
These controversial fixations serve as entry points for further analysis. Rather than proposing mecha-
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Figure 2: Controversial Fixations: Those fixations in the dataset where SceneWalk loses most
performance compared to DeepGaze III in terms of LLD or WLLD. Numbers on top of predictions
indicate the achieved log-likelihood relative to a uniform model for the fixation in question.

nisms ad hoc from single examples, we use these disagreements to guide targeted comparisons across
models and empirical data. Patterns that generalize across fixations are formalized and integrated into
the SceneWalk model. This provides a principled alternative to intuition-driven model development,
using prediction disagreement to identify which candidate mechanisms are most impactful.

4 Experimental Setup

Datasets We use the MIT1003 dataset [38] for our controversial fixations experiments. It is well
established in the gaze prediction community since it is the training set for the MIT300 benchmark
dataset [39] of the MIT/Tübingen Saliency Benchmark [46]. It features a broad range of mostly
photographic images, including indoor, urban, and natural scenes, which are viewed by 15 observers
for 3 seconds each. All training and evaluation on this dataset employs a 10-fold cross-validation
scheme across images (with separate training, validation and test splits, see Appendix D), ensuring
that models are always tested on stimuli (and their associated fixations) held out during training.

We additionally use the DAEMONS [72], COCO Freeview [18] and Potsdam corpus [69] datasets
for additional evaluations of the mechanisms added through our controversial fixations analyses on
MIT1003.

Spatial Baseline Our spatial baseline model tries to predict the average spatial fixation density
p(f | I) on images, i.e. without taking scanpath dependencies into account. We require it for two
reasons: Firstly we need it for putting scanpath model performances into perspective: performance
gains compared to the spatial baseline show how well models exploit the scanpath dynamics. Secondly,
as is the case for many scanpath models, the SceneWalk model requires as input a spatial saliency map:
a map encoding which image areas are interesting independent of scanpath dynamics. Consistent
with previous applications of the model [24, 70] we use our spatial baseline model to that end. Our
spatial baseline model is a mixture model of a KDE of empirical fixations and predictions from a
SOTA saliency model, where the parameters are fitted per image. For details see Appendix C.

SceneWalk The SceneWalk model [24, 68, 70] is a mechanistic scanpath model inspired by results
from cognitive science. It implements an activation map and an inhibition map, which evolve over
time depending on the fixated image locations. The activation map is updated for each fixation with
a Gaussian window on the saliency map and decays over time, encoding what the model knows
about relevant parts of the image. The inhibition map is updated for each fixation with a Gaussian at
the fixation location and also decays over time, encoding which image areas the model has already
explored. To predict the next saccade target, activation and inhibition maps are postprocessed with an
exponential nonlinearity and combined to yield the fixation selection map. Here, we use the latest
version of SceneWalk [70] which additionally includes a peri-saccadic attention shift mechanism:
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Prior to a saccade, attention is already shifted towards the saccade target and hence, after the saccade,
a small area in the direction of the saccade is uncovered. This mechanism results in higher prediction
performance and explains the directional statistics of scanpaths better. SceneWalk has only about 20
parameters, which we fit using MAP estimation (for details see Appendix E).

DeepGaze III DeepGaze III [51] is a deep learning based scanpath model. For predicting the
next fixation in a scanpath, it takes as input the viewed image and the last four fixation locations.
The input image is encoded with a pretrained backbone and processed by a priority network that
decodes a spatial priority map. This spatial priority map is then combined with the information about
previous fixation locations in a fixation selection network to output a priority map that is conditioned
on the previous scanpath history. This map is blurred, combined with a center bias and passed
through a softmax to yield the probability distribution for the upcoming fixation location. For better
comparability with SceneWalk, here we removed the priority network and instead used the same
empirical densities that are also used by SceneWalk in the fixation selection network. This serves to
make sure that all differences between the two models are necessarily due to how they combine the
spatial priority map with the fixation history and avoids confounders. We fit DeepGaze III in this
setting on the MIT1003 dataset using 10-fold crossvalidation across images (see Appendix E).

5 Experiments and Results
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Figure 3: Time dependent temperature scaling. We found that DeepGaze shows higher confidence
(less entropy) early on (a) and predicts fixations in more salient locations (b) in agreement with the
empirical data. SceneWalk is not showing this effect. To address this, we introduced fixation-index-
dependent temperature scaling (c), modeled with exponential decay (d), which improves predictions
for both early and late fixations (e).

5.1 Model Comparison

Explainable information By evaluating our spatial baseline, DeepGaze and SceneWalk on the held-
out test cross-validation splits of the MIT1003 dataset, we find that DeepGaze explains 0.43 bit/fix
more than the spatial baseline. From estimate of the explainable information gain , the SceneWalk
model explains with 0.15 about one third, leaving an explanatory gap of two thirds.

Controversial Fixations After the full-dataset level analysis, we now go to the level of individual
fixations and inspect those fixations where SceneWalk shows the largest failures. For both log-
likelihood difference and weighted log-likelihood difference, we select the top six images with largest
mean score and from them visualize the six fixations with highest individual scores. We find that
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nearly all (92%, see Appendix J) of these controversial fixations can be classified into four categories
(Figure 2): DeepGaze III seems to gain by predicting that (1) early saccades go exclusively to the
most salient targets and that (2) often saccades tend to continue in the direction of the previous
saccade. In addition, DeepGaze gains by having a better understanding of when saccades are (3)
longer or (4) shorter.

5.2 New Mechanisms in SceneWalk

Time Dependent Temperature Scaling Controversial fixations revealed that DeepGaze favors
high-saliency targets early in scanpaths, with this effect diminishing over time (Fig. 2). We confirmed
that DeepGaze indeed shows higher confidence (less entropy) early on (Fig. 3a) and predicts fixations
in more salient locations in agreement with the empirical data (Fig. 3b). SceneWalk partially captures
this effect thanks to the buildup of the inhibitory stream over time which forces the model to
increasingly attend to less salient locations. However, the effect in SceneWalk is clearly weaker than
in DeepGaze and very off for the first fixation. The original SceneWalk model already uses exponents
to shape the activation and inhibition maps to be more or less deterministic, i.e. emphasize highly
activated areas. This essentially regulates the temperature of the distributions. To model the change
in the focus on salient locations, we now made this exponent in SceneWalk dependent on the fixation
index in the scanpath (Fig. 3c). We first used different independent exponents for earlier and later
fixations (“prototype version” in Fig. 3c). These exponents closely resembled an exponential decay
and hence for the final version we fitted the exponent as an exponential decay over the course of
a scanpath (details in Appendix B.1). The result is a strong early preference for salient locations,
with the exponent decaying below the baseline model’s value around the third fixation, allowing
more exploratory behavior later in viewing. This improves prediction performance both for early
and late fixations (Fig. 3d) and also visibly improves the behavior on the corresponding controversial
fixations (Fig. 3e). Interestingly, it has been hypothesized before that the temperature of the fixation
distribution might change over presentation time [69].
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Figure 4: Saccadic momentum: Controversial fixations suggested that DeepGaze sometimes prefers
saccade to continue in the same direction. We confirmed such a saccadic momentum effect especially
after long saccades (a) and later in scanpaths (b). These effects remain even after controlling for
the distribution of salient objects (dashed lines), indicating a genuine directional bias. We added a
saccadic momentum and return mechanism to SceneWalk (c) modulated by previous saccade length
(d) and fixation index (e), improving predictions for "ongoing saccades" controversial fixations (f).

Saccadic Momentum A second prominent cluster of controversial fixations clearly indicated that
DeepGaze more accurately predicted short, continuing fixations mostly following long saccades.
We found the effect to be consistent with known phenomena of saccadic momentum [74, 75, 88],
which have also been previously used in scanpath models [40]. We noticed that this behavior is
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particularly pronounced after long saccades [75] and during later stages of the scanpath (Fig.4a,b).
While some of this structure could be explained by saliency alone, control analyses using DeepGaze
evaluated on uniform empirical fixation densities (i.e., with saliency effectively removed) revealed
that the momentum effect largely persists (Fig.4d, dashed lines), suggesting it reflects some form of
oculomotor bias rather than image content. Besides momentum, both DeepGaze and the empirical
data exhibited a balance between returning to previously attended regions and continuing in the same
direction, especially during early viewing and following short saccades.

SceneWalk’s perisaccadic attention shift can partially explain such behavior, but much more weakly
than in the data (see Appendix Fig 7 for a larger figure). To address this, we introduced a dynamic
oculomotor bias map that captures both saccadic momentum and return tendencies. The mechanism
modulates directional preferences based on the length of the previous saccade and the position
within the scanpath and applies the resulting bias map to SceneWalk’s internal probability map
(details in Appendix B.2). Following short saccades early in a scanpath, the model learns to balance
return saccades and momentum, while after long saccades and later in viewing, it favors continued
movement in the same direction (Fig. 4c). This extension significantly improves SceneWalk’s ability
to capture directional patterns in controversial fixations, bringing its predictions closer to those of
DeepGaze (Fig. 4f). Again, this mechanism aligns with prior literature suggesting that saccadic
momentum and return effects may jointly reflect oculomotor constraints or facilitation-of-return
mechanisms [74, 88, 67], and even more complex dynamics beyond muscle physics [62].
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Figure 5: Horizontal and left-wards attention bias: Controversial fixations suggested that DeepGaze
predicts early saccades to go to the left. This is indeed the case in the data (a) and the DeepGaze
predictions (b). The effect persists when DeepGaze is run with uniform saliency maps (c) while
SceneWalk (d) shows a too weak effect that increases over time. Therefore, we added a cardinal
attention bias to SceneWalk, than can additionally have a left-asymmetry (e) and can adapt over time
(f, g). This improves predictions on the relevant controversial fixations (f).

A horizontal and left-wards attentional bias Especially for early controversial fixations,
DeepGaze seemed very confident about left-wards saccades (Figure 2). We found his effect in-
deed present in the data (Fig. 5a), as previously reported elsewhere [25]. We tested how well the
models reflected the effect by computing, for each individual fixation, a histogram of expected saccade
directions and averaged them for earlier and later fixations. This confirmed that DeepGaze learned a
left-wards and more generally a horizontal bias (Fig. 5b). Importantly, the bias is still there when
we evaluate DeepGaze with uniform saliency maps (Fig. 5c), confirming that the effect is not not
purely saliency-driven. Interestingly, DeepGaze’s leftward bias fades over time, while its horizontal
bias builds up across early fixations. SceneWalk, in contrast, shows only weak directionality and an
incorrect increase in leftward bias over time (Fig. 5d), possibly reflecting artifacts from the empirical
densities.
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We decided to account for these directional biases by applying a variable cardinal prior to SceneWalk’s
attention map before saccade selection. This modification is motivated by two complementary
observations. First, a purely oculomotor bias—like the one implemented by [40]— is unlikely to
explain the found preference for early saccades to the left or the weaker horizontal bias for early
fixations even in the absence of saliency. Second, beyond known effects of cardinal oculomotor
biases, empirical evidence suggests that attentional processes themselves exhibit anisotropies across
the cardinal axes—particularly favoring horizontal over vertical directions [83, 57, 82]. Notably,
attentional modulation has been observed as early as the lateral geniculate nucleus [57] lending
biological plausibility to an attentional bias operating in concert with oculomotor constraints.

Concretely, our cardinal attention bias is implemented as a smooth function of saccade angle, with
preference peaking along the cardinal axes and decaying with distance from the current fixation.
Additionally, we model a dynamic asymmetry between horizontal and vertical directions, with the
horizontal bias gradually increasing over the course of a trial (Fig. 5f). Finally, to account for the
early leftward bias, we also introduced an asymmetry that favors leftward over rightward saccades
during early fixations, with strength that decays over time (Fig. 5g). The resulting cardinal attention
bias map is combined multiplicatively with the attention map (Fig. 5e). For details see Appendix B.3.

5.3 Results

A new SOTA for mechanistic scanpath prediction On the MIT1003 dataset, our full extended
SceneWalk model (which we term SceneWalk-X for short), doubles the performance of the original
SceneWalk perisaccadic model compared to the spatial baseline. It further closes 56% of the
remaining gap in explainable performance as estimated by DeepGaze. Since SceneWalk was the
previous SOTA on MIT1003 in mechanistic scanpath prediction [51], this sets a new SOTA in
mechanistic scanpath prediction. Notably, we evaluated SceneWalk-X also on the DAEMONS dataset
[72], which is specifically designed for scanpath prediction and includes longer scanpaths on high-
resolution natural scenes. SceneWalk performs better when trained and evaluated on DAEMONS,
where it already explains more than 60% of the explainable information relative to the baseline.
SceneWalk-X closes 40% of the residual gap in explainable performance between DeepGaze and
the base SceneWalk model. While this is smaller than the gains observed on MIT1003, it is worth
noting that DAEMONS contains longer, more complex scanpaths where the spatial baseline alone is
less predictive, and the original SceneWalk model already performs well—consistent with its design
focus on extended viewing behavior. Nonetheless, SceneWalk-X still nearly halves the remaining
gap to DeepGaze, demonstrating its robustness and leaving room for future improvements specific to
this richer dataset.

More evaluations In Appendix A we confirm our results hold on two more datasets (COCO
Freeview [18] and the Potsdam Scene Viewing Corpus [69]) and compare with other mechanistic
models. We further report AUC scores for all datasets to show that our results do not depend on the
chosen evaluation metric.

Relevance Assessment To quantitativly assess the overall relevance of each added effect, we
evaluated different extensions of SceneWalk and also compared to the earlier “classic” SceneWalk
[24, 68] without perisaccadic attention shifts (Fig. 6). We find that on MIT1003, each of the three
mechanisms contributes about equally to the overall increase in explanatory performance. On the
DAEMONS dataset, the performance gain is mostly due to momentum and cardinal biases, while
temperature scaling contributes little. We hypothesize that this might be because DAEMONS features
much longer scanpaths, and the temperature stays mostly constant after the first few fixations.

Reconciling controversial fixations In Appendix J, we show all examined controversial fixations
together with the predictions from the fully extended SceneWalk model and find that many of them
are now predicted substantially better.

6 Discussion

Data-driven (DNN) and hypothesis-driven (mechanistic) approaches to modelling cognitive and
perceptual processes are usually painted as being in contrast with each other. One aims primarily to
predict, the other primarily to understand and confirm hypotheses. In this work we demonstrate how
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Figure 6: Contributions of the different added mechanisms on the MIT1003 and DAEMONS datasets.

both techniques can be used in concert to improve our understanding of the mechanisms underlying
fixation selection. By focusing on fixations where the predictions of a deep model (DeepGaze III) and
a mechanistic model (SceneWalk) diverged, we isolated specific mechanisms implicitly captured by
the deep model but absent in SceneWalk. These mechanisms were then formalized and incrementally
implemented into SceneWalk. Each addition was tested via its impact on predictive likelihood,
thereby providing a strong test of its behavioral relevance.

The conceptual cornerstone of our method is to use a DNN model as a stand-in for predictability. This
turns a black-box model into a scientific instrument: not something we trust blindly, but something
we can probe, compare against, and learn from. This shift circumvents many of what are portrayed as
the classic weaknesses of deep learning and focuses instead on the strenghts of such models. For
example, DeepGaze III allows us to test whether certain spatial or temporal biases affect behavior
beyond what is already explained by bottom-up saliency—a manipulation that would be extremely
difficult, if not impossible, to achieve with empirical data alone. In this sense, deep models can offer
novel ways to look at the underlying data distribution. When combined with direct comparisons to
mechanistic models, this enables to more flexibly look at data and formulate hypotheses.

Importantly, the main contribution of our method is not necessarily in discovering novel mechanisms.
Many of the effects we identify, have been observed before, and we mainly add nuance to the way they
might be operating, which will require future work to confirm. Rather, our main contribution here
lies in offering a principled procedure for identifying which among the many plausible mechanisms
are most useful for improving behavioral predictions. By translating prediction errors into candidate
explanations and rigorously testing them in a mechanistic framework, our method strengthens the
link between predictive performance and theoretical insight.

Limitations and outlook A few potential limitations and subtleties of our approach warrant further
discussion. First, our method assumes that DeepGaze provides a reasonable proxy for human
fixation behavior, but, like any DNN, it may learn dataset-specific biases or shortcuts [28, 27].
Second, we acknowledge that adding a mechanism which improves the mechanistic model’s fit does
not necessarily imply that the same mechanism is used by humans, as it could be a correlate or
computational proxy. While mechanistic models aim for interpretability, they are still approximations
and subject to their own inductive biases. Grounding mechanisms in empirical findings helps address
this limitation. Finally, our current pipeline relies on manual identification and implementation of
mechanisms, a deliberate choice to validate the methodology in a transparent, end-to-end fashion.
We view this work as a foundational proof of concept. Automating this search over candidate model
extensions, especially for more complex interactions across time and context, remains an open and
exciting challenge [29] that points toward a generalizable, semi-automated modeling pipeline—a step
towards what could be seen as an “automated scientist” [e.g., 58] for behavioral modeling. Similarly,
our results are based on scanpaths over natural images; applying this framework to other domains
such as reading, video, or real-world interactions is an exciting direction for future research.

Broader impact Accurate scanpath models have practical relevance in fields such as visual design,
education, and assistive technology. However, there are ethical considerations: predictive models of
attention could be used to manipulate user behavior, for example in advertising or UX design. It is
therefore important that such models are developed transparently and deployed with caution.
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A Comparative evaluation on more models and datasets

We evaluated our models on four datasets: MIT1003 [38], DAEMONS [72], COCO Freeview [18]
and the Potsdam Corpus [69]. On all four datasets, we construct a common spatial baseline model
and then train DeepGaze as well as the different SceneWalk variants using the spatial baseline model.
For better comparison, we also evaluate the Constrained Levy Exploration model [CLE; 6] and the
model of Kadner et al., 2023 [40]. For all models we evaluate information gain relative to the uniform
baseline (LL) and AUC [44]. We find (Table 1) that on all datasets, SceneWalk-X closes a substantial
part of the performance gap between the perisaccadic SceneWalk and DeepGaze, both in LL and in
AUC.

As a note, temperature scaling has only a very small effect in AUC: this is to be expected, as AUC is
invariant to temperature changes. The marginal score increase is likely an indirect effect, as having
temperature as a free parameter during training gives the optimizer more flexibility, allowing the
other model parameters to converge to a slightly better solution.

Model MIT1003 DAEMONS COCO Freeview Potsdam Corpus
LL AUC LL AUC LL AUC LL AUC

Spatial Baseline 2.52 0.9223 1.88 0.8743 2.08 0.9034 1.81 0.8768
Kadner et al. 2023 [40] - 0.9237 - 0.8806 - 0.9113 - -
CLE (Boccignone et al. 2004, [6]) 2.18 0.9240 2.42 0.9118 2.34 0.9212 - -
SceneWalk (perisaccadic) 2.66 0.9304 2.71 0.9207 2.53 0.9240 2.32 0.9129

+ temp. scaling 2.72 0.9305 2.73 0.9209 2.54 0.9241 2.33 0.9130
+ momentum 2.77 0.9321 2.82 0.9235 2.58 0.9254 2.38 0.9147
+ card. bias = SceneWalk-X 2.82 0.9343 2.88 0.9267 2.64 0.9275 2.42 0.9164

DeepGaze 2.94 0.9386 3.18 0.9365 2.87 0.9343 2.54 0.9194
Table 1: Performance of our models and other previous scanpath models on MIT1003, DAEMONS,
COCO-Freeview and the Potsdam Scene Viewing Corpus

B Implementation details of the new mechanisms

B.1 Time dependent temperature scaling

To capture the observation that early fixations tend to be more strongly biased toward salient image
regions, we introduce a time-dependent temperature scaling mechanism into the SceneWalk model.
This mechanism dynamically adjusts the exponents used to shape the attention and inhibition maps
during scanpath generation based on the fixation index. The original SceneWalk model already
applies a fixed exponent to these maps to regulate their sharpness, acting similarly to a softmax
temperature. Our extension generalizes this by making the exponents decay over time, allowing for
sharper attention selection early in the trial and broader selection later.

Concretely, in the original SceneWalk model, the priority map uij(t) at each location is computed as
a subtractive combination of normalized, exponentiated attention Aij(t) and inhibition Fij(t) maps:

uij(t) =
(Aij(t))

γ∑
kl(Akl(t))γ

− CF ·
(Fij(t))

γ∑
kl(Fkl(t))γ

. (1)

Here, CF is a weight parameter for inhibition, and, importantly, γ controls the sharpness of both the
attention and inhibition distributions and was constant across fixations.

We replace the constant γ with a fixation-index-dependent value. Specifically, the exponent γn for the
n-th fixation is given by an exponential decay from an initial high value γ toward a base value γbase:

γn = γbase + (γ − γbase) · e−λγ ·(n−1). (2)

Note that here the fixation index in the scanpath n follows a 1-based indexing.

The new trainable parameters we introduce with this formulation are:

1. γbase: minimum exponent for inhibition
2. λγ : decay rate for γ
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This enables the model to express a strong preference for high-saliency targets early on (large γn)
and gradually reduce this preference (lower γn) over time, converging to γbase.

B.2 Saccadic momentum

To better capture directional tendencies that DeepGaze can capture in human scanpaths—specifically
the tendency to continue in the same direction (momentum) and to return to previously attended
regions (return saccades)—we augment the SceneWalk model with a dynamic oculomotor bias
map M dir

ij . The map is computed over all possible gaze targets on each fixation, and combines two
angular Gaussian components: A momentum component favoring forward continuation and a return
component favoring 180° reversals. These components are blended using a dynamic weighting
function, which depends both on the current fixation index and the length of the preceding saccade.

Specifically, let

• n be the current fixation index (with 1-based indexing),
• s be the length of the previous saccade, in degrees of visual angle,
• θij be the angular difference between the current fixation and candidate saccade directions,

normalized between −π and π.

Then we define the fixation index weight as:

wfix(n) =
1

1 + exp
(
−n−µfix

σfix

) , (3)

and the saccade length weight as:

wlen(s) =
1

1 + exp
(
− s−sshort

sscale

) . (4)

The fixation index weight and the saccade length weight are then multiplied to get the combined
direction weight:

wdir = wfix · wlen . (5)

We can compute the angular preference fields as:

Gmomentum(θij) = exp

(
−

θ2ij
2σ2

mom

)
,

Greturn(θij) = exp

(
− (θij − π)2

2σ2
return

)
+ exp

(
− (θij + π)2

2σ2
return

)
.

(6)

These are then combined as follows, using the combined direction weight:

M dir
ij = (1− wdir) ·Greturn(θij) + wdir ·Gmomentum(θij) . (7)

Finally, the map is combined with SceneWalk’s priority map ufinal
ij before saccade selection:

ufinal
ij =

ufinal
ij · (ωbias ·M dir

ij )

Z
. (8)

The new trainable parameters we introduce with this mechanism are:

1. σmom: width of the angular Gaussian for saccadic momentum (same-direction preference)
2. σreturn: width of the angular Gaussian for return saccades (opposite-direction preference)
3. µfix: fixation index midpoint for the sigmoid controlling the momentum-return tradeoff
4. σfix: steepness of the sigmoid over fixation index
5. sshort: midpoint of the sigmoid controlling sensitivity to saccade length
6. sscale: scale parameter of the sigmoid over saccade length
7. ωbias: scaling factor controlling the influence of the directional prior in the final priority map.
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B.3 Cardinal attention bias

Following comparisons with DeepGaze and consulting the literature, to capture anisotropies in visual
attention and oculomotor behavior we introduce a mechanism that biases SceneWalk’s attention map
toward cardinal (horizontal and vertical) saccade directions. Additionally, we model a leftward bias
for early fixations. These components are combined into a single potential map that modulates the
attention map before it is normalized and combined with inhibition. As for saccadic momentum and
temperature, the mechanism is dependent on fixation index.

Let:

• n be the current fixation index (with 1-based indexing),
• θij be the angular difference between the current fixation and candidate saccade target,
• dij be the Euclidean distance of a candidate saccade target to the current fixation.

Then we formulate the cardinal bias as:

Qcardinal
ij = cos(4θij) · exp

(
−dij

τ

)
, (9)

where τ ∝ 1
χ is a decay constant.

We further define the vertical/horizontal strength modulation as a scalar that increases over fixations:

αdir(n) = 1 + (αvert − 1) · (1− e−ρn) , (10)

and the leftward bias as:
αleft(n) = 1 + (α0

left − 1) · e−λ(n−1) . (11)

The biases are then applied as follows. First, for the horizontal/vertical bias, let mvert
ij = 1 if location

(i, j) lies in the vertical direction relative to the current fixation (i.e., |dx| < |dy|), otherwise mvert
ij = 0.

The vertical bias is applied as:

Qcardinal
ij ← Qcardinal

ij ·
[
mvert

ij · αdir(n) + (1−mvert
ij ) · 1

]
. (12)

Similarly, for the leftward bias, we define binary masks for horizontal directions:

• mleft
ij = 1 if dx < 0 and |dx| > |dy|, 0 otherwise;

• mright
ij = 1 if dx > 0 and |dx| > |dy|, 0 otherwise;

and then apply:

Qcardinal
ij ← Qcardinal

ij ·
[
mleft

ij · αleft(n) +mright
ij ·

1

αleft(n)
+ (1−mleft

ij −mright
ij ) · 1

]
. (13)

Finally, the resulting potential map is normalized to sum to 1, and applied multiplicatively to the
attention map:

Amod
ij =

Aij · (1 + ωmix ·Qcardinal
ij )

Z
(14)

The new trainable parameters we introduce with this mechanism are:

1. χ: controls the spatial decay rate of the cardinal potential with distance
2. αvert: maximum vertical vs horizontal bias ratio
3. ρ: growth rate of vertical/horizontal anisotropy over fixations
4. α0

left: initial strength of the leftward bias
5. λ: decay rate of the leftward bias over fixations
6. ωmix: global scaling factor for the oculomotor potential’s influence on the attention map.
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Figure 7: relative saccade direction distribution as predicted by DeepGaze, DeepGaze without
saliency maps and SceneWalk for early and late saccades (a) as well as after short or long previous
saccades (b).

C Spatial baseline

Commonly, empirical fixation densities are estimated with Gaussian kernel density estimates. How-
ever, recent progress in spatial saliency modeling [52] has produced models which predict fixations
from new observers better than the empirical density. While this feels counterintuitive, it is possible
because saliency datasets typically have data from only 10–20 subjects per image [18, 8]). Subopti-
mal saliency maps could lead to confounders in our study, e.g., models might use previous fixation
locations simply for estimating a better saliency map. Hence we extend the approach by [52] and
estimate the average fixation density for each subject on an image as a mixture of four distributions:
first, a KDE over the fixations from all other subjects, secondly the centerbias, i.e. a KDE over the
fixations from all other images, thirdly a uniform component, and in addition as fourth component we
add the predicted fixation density from the state-of-the-art saliency model [52]. The last component
guarantees that the spatial baseline model is at least as good as the used saliency model. For a
discussion of the other three components, see [45].

The parameters of the model, i.e. bandwidth and mixture weights, are optimized individually on
each image for maximum likelihood. This results in a prediction for each subject, using only other
subject’s fixations. To compute the final fixation density for an image, we average over the predicted
fixation densities for all subjects with weights that are location dependent: for each true fixation
location, only the components not using this fixation in their KDE are switched on. This defines
weighting coefficients for all fixated pixels such that the prediction for that pixel only comes from
subjects which didn’t fixate the pixel. For all other pixels, the weights are interpolated linearly, and
the resulting spatial average is re-normalized. This approach removes visual artifacts due to single,
potentially random fixations and gives more interpretable results.

D Details about the datasets

The MIT1003 dataset is accessed via the pysaliency python library https://github.
com/matthias-k/pysaliency. DAEMONS and COCO Freeview come with an offi-
cial training/validation split which we are using. MIT1003 and the Potsdam Cor-
pus do not have official validation splits. Instead, we use 10-fold crossvalidation us-
ing pysaliency.filter_datasets.train,validation,test_fold(stimuli, fixations,
crossval_folds=10, test_folds=1, val_folds=1). On MIT1003, the validation split has
been used for tuning model hyperparameters and learning rate schedules, which have then also been
used on the other datasets. All reported evaluations use the test split on MIT1003 and the Potsdam
Corpus, and the official validation split for DAEMONS and COCO Freeview.

E Details about models and training

DeepGaze DeepGaze III was originally trained using a four stage training paradigm including
spatial pretraining on a different dataset, spatial training on the target dataset, scanpath training on
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the target dataset and a final joint training phase. This procedure was necessary for not overfitting
the spatial priority network while training the scanpath parts. Since we removed the spatial priority
network, we only need the scanpath training phase. Since DeepGaze III was originally trained
on MIT1003 dataset, which we are also using, we can apply exactly the same hyperparameters:
DeepGaze is trained using the Adam optimizer with a batchsize of 4 and an initial learning rate of
0.001. In addition, we use a learning rate schedule consisting of decays of the learning rate by a
factor of 10 after 10, 20, 30 and 31 epochs. After the 32nd epoch, training is stopped. Consistent
with the original training, we also use 10-fold crossvalidation. For all results in this paper use for
each image the model weights which have not seen this image in training.

SceneWalk Originally, SceneWalk was trained fully Bayesian using MCMC. Here, we instead
re-implemented the model in Jax and train it using MAP estimation, resulting in substantially faster
fitting times. SceneWalk is trained via gradient descent with the Adam optimizer on a MAP objective.
Parameter prior ranges are chosen to be broad, and taken mostly from Schwetlick et al. [70]. The
hyperparameter configuration for the base perisaccadic model is also taken from Schwetlick et al.
[70]. We use a “OneCycle” learning rate schedule [73] over 30 epochs for the MIT1003 dataset, and
50 epochs for DAEMONS, with an initial learning rate 0.001, a peak learning rate of 0.01 and a batch
size of 32.

F Error bars

All reported error bars are bootstraped 95% confidence intervals for the mean log-likelihood per
image using the normalization method of Cousineau [20] for paired comparisons with the correction
of Morey [61].

G Assets

DeepGaze is implemented in python using pytorch [63] using the official implementation from
github.com/matthias-k/DeepGaze). SceneWalk was reimplemented in jax [9] (Apache 2 li-
cense) based on the official implementation from github.com/lschwetlick/SceneWalk_Model.
Model evaluations and saliency metrics were using the public pysaliency toolbox (github.com/
matthias-k/pysaliency, MIT license). Also used were scipy [84] and numpy [32] for computa-
tions, pandas [66] for statistics and data handling as well as matplotlib [35] and seaborn [86]
for plotting.

H Code Availability

The SceneWalk-X implementation in jax, along with code to reproduce our main findings can be
found at https://github.com/bethgelab/what-moves-the-eyes.

I Compute Resources

All main experiments were conducted on 2080Ti GPUs. Training the DeepGaze model took about 3
days for all 10 splits and was done four times until the final model setup evolved. Training SceneWalk
took about 30 minutes, while developing the mechanisms we trained about 50 model iterations. On
DAEMONS, we used A100 GPUs and DeepGaze took about 4 days to train, and each SceneWalk
model about two hours. Overall, we used about 18 days of compute.

J Controversial Fixations

Here we show the full set of controversial fixations that we inspected and classified as basis for our
mechanistic extensions. We examined a total of 72 fixations, defined as the top 6 fixations from
the top 6 images in both conditions (LLD and WLLD). For all controversial fixations, we show
predictions from DeepGaze, SceneWalk and all mechanistic extensions of SceneWalk, including the
fully extended SceneWalk-X model.

Of the four categories we detail in Figure 2, we found:
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• Long saccades: 17 clear, 3 plausible
• Short saccades: 8 clear, 1 plausible
• Continuing: 13 clear, 2 plausible
• Early fixations: 30 clear

66 out of 72 fixations (92%) could be clearly assigned to one of the four categories, and the remaining
6 (8%) still plausibly belonged to a known type. We see this as a strong indicator that the analysis
indeed revealed failure cases that are not idiosyncratic, but rather fall into meaningful, repeatable
patterns that are interpretable and mechanistically actionable.

0.76 bit/fix Empirical Density
DeepGaze

4.27 bit/fix, 7.47 bit/fix
SceneWalk
-3.19 bit/fix

SW+temp
-1.46 bit/fix

SW+momentum
1.18 bit/fix

SW+cardinal
-2.39 bit/fix

SceneWalk Extended
0.45 bit/fix

1.58 bit/fix, 6.32 bit/fix -4.74 bit/fix -2.85 bit/fix -1.22 bit/fix -5.47 bit/fix -1.87 bit/fix

3.67 bit/fix, 4.37 bit/fix -0.70 bit/fix -1.36 bit/fix -0.55 bit/fix -0.82 bit/fix -1.56 bit/fix

0.05 bit/fix, 4.08 bit/fix -4.03 bit/fix -2.64 bit/fix -2.36 bit/fix -4.68 bit/fix -2.58 bit/fix

-3.85 bit/fix, 3.36 bit/fix -7.20 bit/fix -7.25 bit/fix -7.94 bit/fix -7.39 bit/fix -6.32 bit/fix

2.54 bit/fix, 2.77 bit/fix -0.23 bit/fix 0.13 bit/fix 1.47 bit/fix 0.68 bit/fix 1.65 bit/fix

Figure 8: Controversial Fixations selected for maximum difference in log-likelihood between
DeepGaze and SceneWalk, Part 1. We first select the top images with mean log-likelihood dif-
ference and then show for each image the 6 fixations with maximum log-likelihood difference. We
visualize the image, the empirical densities and the predictions of DeepGaze, SceneWalk and all
extension versions that we introduce. On top of each prediction, we show the log-likelihood of how
well the fixation is predicted. For the DeepGaze prediction, we additionally show the score difference
between DeepGaze and SceneWalk that resulted in this fixation being picked as controversial. On top
of the image we show the mean score difference that resulted in this image being picked.
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0.70 bit/fix Empirical Density
DeepGaze

1.77 bit/fix, 3.62 bit/fix
SceneWalk
-1.85 bit/fix

SW+temp
-1.09 bit/fix

SW+momentum
-1.75 bit/fix

SW+cardinal
-0.52 bit/fix

SceneWalk Extended
-0.15 bit/fix

7.69 bit/fix, 3.42 bit/fix 4.27 bit/fix 4.09 bit/fix 5.38 bit/fix 4.54 bit/fix 5.25 bit/fix

0.16 bit/fix, 2.84 bit/fix -2.68 bit/fix -1.48 bit/fix -0.56 bit/fix -2.95 bit/fix -1.07 bit/fix

5.89 bit/fix, 2.34 bit/fix 3.55 bit/fix 3.30 bit/fix 5.05 bit/fix 3.39 bit/fix 4.12 bit/fix

5.60 bit/fix, 2.30 bit/fix 3.31 bit/fix 3.09 bit/fix 4.09 bit/fix 3.13 bit/fix 3.69 bit/fix

-1.10 bit/fix, 2.25 bit/fix -3.35 bit/fix -1.96 bit/fix -3.42 bit/fix -2.39 bit/fix -2.00 bit/fix

Figure 9: Controversial Fixations selected for maximum difference in log-likelihood between
DeepGaze and SceneWalk, Part 2.

0.68 bit/fix Empirical Density
DeepGaze

3.86 bit/fix, 3.52 bit/fix
SceneWalk
0.34 bit/fix

SW+temp
0.83 bit/fix

SW+momentum
2.56 bit/fix

SW+cardinal
0.48 bit/fix

SceneWalk Extended
2.15 bit/fix

3.70 bit/fix, 3.03 bit/fix 0.67 bit/fix 1.21 bit/fix 2.39 bit/fix 1.10 bit/fix 1.85 bit/fix

4.16 bit/fix, 2.95 bit/fix 1.21 bit/fix 0.91 bit/fix 1.35 bit/fix 1.72 bit/fix 1.52 bit/fix

7.28 bit/fix, 2.87 bit/fix 4.42 bit/fix 4.00 bit/fix 5.59 bit/fix 4.67 bit/fix 5.32 bit/fix

6.97 bit/fix, 2.82 bit/fix 4.15 bit/fix 3.79 bit/fix 5.34 bit/fix 4.39 bit/fix 5.14 bit/fix

3.63 bit/fix, 2.67 bit/fix 0.96 bit/fix 0.73 bit/fix 1.31 bit/fix 1.09 bit/fix 1.14 bit/fix

Figure 10: Controversial Fixations selected for maximum difference in log-likelihood between
DeepGaze and SceneWalk, Part 3.
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0.67 bit/fix Empirical Density
DeepGaze

4.36 bit/fix, 3.10 bit/fix
SceneWalk
1.25 bit/fix

SW+temp
1.60 bit/fix

SW+momentum
1.68 bit/fix

SW+cardinal
0.89 bit/fix

SceneWalk Extended
1.96 bit/fix

3.20 bit/fix, 3.10 bit/fix 0.10 bit/fix 0.80 bit/fix 1.17 bit/fix -0.30 bit/fix 1.23 bit/fix

2.50 bit/fix, 2.68 bit/fix -0.17 bit/fix 0.64 bit/fix 0.02 bit/fix -0.14 bit/fix 1.11 bit/fix

7.70 bit/fix, 2.29 bit/fix 5.41 bit/fix 5.29 bit/fix 6.17 bit/fix 5.95 bit/fix 6.37 bit/fix

4.93 bit/fix, 2.11 bit/fix 2.82 bit/fix 3.11 bit/fix 3.47 bit/fix 3.35 bit/fix 3.99 bit/fix

6.72 bit/fix, 2.07 bit/fix 4.65 bit/fix 4.63 bit/fix 4.88 bit/fix 4.94 bit/fix 5.15 bit/fix

Figure 11: Controversial Fixations selected for maximum difference in log-likelihood between
DeepGaze and SceneWalk, Part 4.

0.67 bit/fix Empirical Density
DeepGaze

7.68 bit/fix, 2.68 bit/fix
SceneWalk
4.99 bit/fix

SW+temp
4.78 bit/fix

SW+momentum
5.75 bit/fix

SW+cardinal
5.27 bit/fix

SceneWalk Extended
5.97 bit/fix

3.21 bit/fix, 2.55 bit/fix 0.66 bit/fix 1.08 bit/fix 1.65 bit/fix 0.85 bit/fix 2.13 bit/fix

7.54 bit/fix, 2.54 bit/fix 5.00 bit/fix 4.53 bit/fix 5.92 bit/fix 5.30 bit/fix 5.56 bit/fix

6.89 bit/fix, 2.43 bit/fix 4.46 bit/fix 4.31 bit/fix 5.30 bit/fix 4.76 bit/fix 5.28 bit/fix

6.98 bit/fix, 2.34 bit/fix 4.64 bit/fix 4.45 bit/fix 5.43 bit/fix 4.90 bit/fix 5.56 bit/fix

7.28 bit/fix, 2.33 bit/fix 4.96 bit/fix 4.52 bit/fix 5.81 bit/fix 5.19 bit/fix 5.82 bit/fix

Figure 12: Controversial Fixations selected for maximum difference in log-likelihood between
DeepGaze and SceneWalk, Part 5.
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0.64 bit/fix Empirical Density
DeepGaze

0.70 bit/fix, 3.95 bit/fix
SceneWalk
-3.25 bit/fix

SW+temp
-1.79 bit/fix

SW+momentum
-2.36 bit/fix

SW+cardinal
-2.43 bit/fix

SceneWalk Extended
-1.13 bit/fix

6.74 bit/fix, 3.40 bit/fix 3.33 bit/fix 3.22 bit/fix 4.86 bit/fix 4.05 bit/fix 4.95 bit/fix

-0.33 bit/fix, 2.84 bit/fix -3.17 bit/fix -1.91 bit/fix -3.21 bit/fix -3.00 bit/fix -2.28 bit/fix

6.98 bit/fix, 2.56 bit/fix 4.42 bit/fix 4.27 bit/fix 4.46 bit/fix 5.19 bit/fix 5.38 bit/fix

5.44 bit/fix, 2.55 bit/fix 2.89 bit/fix 2.89 bit/fix 3.05 bit/fix 4.08 bit/fix 4.26 bit/fix

-1.20 bit/fix, 2.49 bit/fix -3.68 bit/fix -2.56 bit/fix -3.28 bit/fix -3.99 bit/fix -2.65 bit/fix

Figure 13: Controversial Fixations selected for maximum difference in log-likelihood between
DeepGaze and SceneWalk, Part 6.

2.18e-04 bit/fix Empirical Density
DeepGaze

8.85 bit/fix, 1.90e-03 bit/fix
SceneWalk
5.60 bit/fix

SW+temp
7.42 bit/fix

SW+momentum
5.68 bit/fix

SW+cardinal
6.22 bit/fix

SceneWalk Extended
8.07 bit/fix

9.06 bit/fix, 1.84e-03 bit/fix 6.36 bit/fix 8.15 bit/fix 6.46 bit/fix 6.83 bit/fix 8.54 bit/fix

8.74 bit/fix, 1.35e-03 bit/fix 6.26 bit/fix 7.77 bit/fix 6.35 bit/fix 6.68 bit/fix 8.09 bit/fix

8.70 bit/fix, 1.34e-03 bit/fix 6.17 bit/fix 7.93 bit/fix 6.27 bit/fix 6.64 bit/fix 8.34 bit/fix

8.93 bit/fix, 1.13e-03 bit/fix 7.10 bit/fix 6.37 bit/fix 7.83 bit/fix 7.27 bit/fix 7.30 bit/fix

8.49 bit/fix, 9.43e-04 bit/fix 6.43 bit/fix 8.04 bit/fix 6.53 bit/fix 6.82 bit/fix 8.34 bit/fix

Figure 14: Controversial Fixations selected for maximum difference in log-likelihood between
DeepGaze and SceneWalk weighted by the probability assigned by DeepGaze, Part 1.
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1.18e-04 bit/fix Empirical Density
DeepGaze

8.86 bit/fix, 1.55e-03 bit/fix
SceneWalk
6.23 bit/fix

SW+temp
7.86 bit/fix

SW+momentum
6.32 bit/fix

SW+cardinal
5.92 bit/fix

SceneWalk Extended
7.62 bit/fix

8.89 bit/fix, 1.36e-03 bit/fix 6.63 bit/fix 8.32 bit/fix 6.73 bit/fix 6.32 bit/fix 8.06 bit/fix

8.47 bit/fix, 9.14e-04 bit/fix 6.43 bit/fix 7.94 bit/fix 6.53 bit/fix 6.17 bit/fix 7.51 bit/fix

8.22 bit/fix, 8.47e-04 bit/fix 5.99 bit/fix 7.43 bit/fix 6.07 bit/fix 6.29 bit/fix 7.67 bit/fix

8.47 bit/fix, 8.42e-04 bit/fix 6.60 bit/fix 7.74 bit/fix 6.68 bit/fix 6.40 bit/fix 7.65 bit/fix

8.63 bit/fix, 7.52e-04 bit/fix 7.14 bit/fix 8.50 bit/fix 7.24 bit/fix 6.86 bit/fix 8.38 bit/fix

Figure 15: Controversial Fixations selected for maximum difference in log-likelihood between
DeepGaze and SceneWalk weighted by the probability assigned by DeepGaze, Part 2.

1.17e-04 bit/fix Empirical Density
DeepGaze

8.11 bit/fix, 9.09e-04 bit/fix
SceneWalk
5.51 bit/fix

SW+temp
7.02 bit/fix

SW+momentum
5.59 bit/fix

SW+cardinal
5.94 bit/fix

SceneWalk Extended
7.50 bit/fix

7.89 bit/fix, 8.80e-04 bit/fix 4.99 bit/fix 6.42 bit/fix 5.05 bit/fix 5.50 bit/fix 7.05 bit/fix

8.11 bit/fix, 8.67e-04 bit/fix 5.64 bit/fix 7.02 bit/fix 5.72 bit/fix 5.98 bit/fix 7.42 bit/fix

7.92 bit/fix, 8.26e-04 bit/fix 5.24 bit/fix 6.71 bit/fix 5.31 bit/fix 5.63 bit/fix 7.19 bit/fix

7.69 bit/fix, 7.21e-04 bit/fix 4.93 bit/fix 5.11 bit/fix 4.92 bit/fix 5.25 bit/fix 5.41 bit/fix

7.81 bit/fix, 7.00e-04 bit/fix 5.35 bit/fix 6.67 bit/fix 5.42 bit/fix 5.79 bit/fix 7.18 bit/fix

Figure 16: Controversial Fixations selected for maximum difference in log-likelihood between
DeepGaze and SceneWalk weighted by the probability assigned by DeepGaze, Part 3.
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1.12e-04 bit/fix Empirical Density
DeepGaze

8.78 bit/fix, 1.30e-03 bit/fix
SceneWalk
6.44 bit/fix

SW+temp
6.15 bit/fix

SW+momentum
6.88 bit/fix

SW+cardinal
6.83 bit/fix

SceneWalk Extended
6.95 bit/fix

8.29 bit/fix, 9.75e-04 bit/fix 5.83 bit/fix 7.34 bit/fix 5.91 bit/fix 6.33 bit/fix 7.79 bit/fix

8.00 bit/fix, 7.60e-04 bit/fix 5.68 bit/fix 7.23 bit/fix 5.75 bit/fix 5.91 bit/fix 7.46 bit/fix

7.96 bit/fix, 7.34e-04 bit/fix 5.65 bit/fix 6.99 bit/fix 5.72 bit/fix 6.25 bit/fix 7.63 bit/fix

7.95 bit/fix, 7.16e-04 bit/fix 5.66 bit/fix 7.11 bit/fix 5.74 bit/fix 6.20 bit/fix 7.62 bit/fix

7.49 bit/fix, 5.55e-04 bit/fix 5.07 bit/fix 6.21 bit/fix 5.12 bit/fix 5.60 bit/fix 6.74 bit/fix

Figure 17: Controversial Fixations selected for maximum difference in log-likelihood between
DeepGaze and SceneWalk weighted by the probability assigned by DeepGaze, Part 4.

9.87e-05 bit/fix Empirical Density
DeepGaze

8.53 bit/fix, 8.09e-04 bit/fix
SceneWalk
6.81 bit/fix

SW+temp
7.95 bit/fix

SW+momentum
6.88 bit/fix

SW+cardinal
6.78 bit/fix

SceneWalk Extended
8.05 bit/fix

7.99 bit/fix, 7.07e-04 bit/fix 5.81 bit/fix 7.04 bit/fix 5.87 bit/fix 5.66 bit/fix 6.97 bit/fix

7.81 bit/fix, 3.94e-04 bit/fix 6.42 bit/fix 6.24 bit/fix 6.41 bit/fix 7.09 bit/fix 6.94 bit/fix

7.89 bit/fix, 3.88e-04 bit/fix 6.60 bit/fix 7.76 bit/fix 6.68 bit/fix 6.45 bit/fix 7.71 bit/fix

6.11 bit/fix, 2.92e-04 bit/fix 2.78 bit/fix 2.97 bit/fix 2.48 bit/fix 3.26 bit/fix 3.07 bit/fix

5.84 bit/fix, 2.86e-04 bit/fix 1.90 bit/fix 2.38 bit/fix 2.13 bit/fix 3.46 bit/fix 3.17 bit/fix

Figure 18: Controversial Fixations selected for maximum difference in log-likelihood between
DeepGaze and SceneWalk weighted by the probability assigned by DeepGaze, Part 5.
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9.76e-05 bit/fix Empirical Density
DeepGaze

8.62 bit/fix, 1.35e-03 bit/fix
SceneWalk
5.93 bit/fix

SW+temp
5.36 bit/fix

SW+momentum
6.87 bit/fix

SW+cardinal
6.18 bit/fix

SceneWalk Extended
6.47 bit/fix

8.43 bit/fix, 1.07e-03 bit/fix 5.99 bit/fix 6.48 bit/fix 6.25 bit/fix 6.36 bit/fix 7.12 bit/fix

8.09 bit/fix, 7.55e-04 bit/fix 5.92 bit/fix 6.41 bit/fix 6.19 bit/fix 6.31 bit/fix 7.07 bit/fix

8.20 bit/fix, 7.38e-04 bit/fix 6.23 bit/fix 6.71 bit/fix 6.35 bit/fix 6.65 bit/fix 7.28 bit/fix

7.90 bit/fix, 6.63e-04 bit/fix 5.72 bit/fix 6.16 bit/fix 5.91 bit/fix 6.05 bit/fix 6.73 bit/fix

7.50 bit/fix, 5.70e-04 bit/fix 5.02 bit/fix 6.32 bit/fix 5.08 bit/fix 4.69 bit/fix 5.89 bit/fix

Figure 19: Controversial Fixations selected for maximum difference in log-likelihood between
DeepGaze and SceneWalk weighted by the probability assigned by DeepGaze, Part 6.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims in the abstract and the introduction are supported by the results in
the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work as far as applicable already in the
section on the new mechanisms, and more broadly in the discussion including a specific
section on limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper doesn’t contain any theoretical results.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We specify details about used dataset splits and training methods for our
models in the appendix, as well as the used metrics and selection methods. The base models
we’re using are public models, so there is no need to specify details about the architecture.
We specify details for the new mechanisms we have implemented in SceneWalk-X in the
appendix.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: https://github.com/bethgelab/what-moves-the-eyes

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify details about used dataset splits and training methods for our
models in the Appendix, as well as the used metrics and selection methods. The models
we’re using are public models, so there is no need to specify details about the architecture.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We display error bars for all our results and give details about their computation
in the Appendix.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We detail the used resources in the Appendix and include an estimate of the
total compute needed.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We made sure to adhere to the NeurIPS code of ethics in each step of our
experiments.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss positive and negative broader impact of our research in the discus-
sion

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We do not release any data on our own and our models will be released under
a Responsible AI Licence (RAIL, licenses.ai) to prohibit misuse.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]
Justification: All authors of used assets are referenced in the paper and licenses, as far as
specified, are mentioned and respected. However, for some software libraries we couldn’t
find license details.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not introduce new assets. We will make model and checkpoints
available in the future.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with humans subjects.
We only use previously published datasets.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with humans subjects.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not use LLMs as core part of the research.
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