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ABSTRACT

We investigate soft sampling which is a simple yet effective approach for efficient
training of large-scale deep neural network models when dealing with massive data.
Soft sampling selects a subset uniformly at random with replacement from the full
data set in each epoch. First, we derive a theoretical convergence guarantee for
soft sampling on non-convex objective functions and give the convergence rate.
Next, we analyze the data coverage and occupancy properties of soft sampling from
the perspective of the coupon collector’s problem. And finally, we evaluate soft
sampling on various machine learning tasks using various network architectures and
demonstrate its effectiveness. Compared to existing coreset-based data selection
methods, soft sampling offers a better accuracy-efficiency trade-off. Especially on
real-world industrial scale data sets, soft sampling can achieve significant speedup
and competitive performance with almost no additional computing cost.

1 INTRODUCTION

Deep learning (LeCun et al., 2015) has made great progress in a broad variety of domains in recent
years (Silver et al., 2016; Esteva et al., 2017; Saon et al., 2017; Xiong et al., 2017). The high
performance of deep neural network models having huge numbers of parameters relies on large
amounts of training data (Brown et al., 2020; Parthasarathi et al., 2019; Chowdhery et al., 2022). This
comes with a cost of long training time and demands substantial computing and storage resources.
High computational complexity sometimes becomes a barrier to the hyper-parameter tuning and
model validation steps that are crucial for real-world deployments. In this situation, data selection is
often used to select a representative subset of the entire training data to speed up the training while
maintaining decent model performance.

Subset selection has been shown to be an effective approach to alleviating the computational cost in
large scale machine learning (Mirzasoleiman et al., 2020a; Borsos et al., 2021; Kowal, 2022; Guo
et al., 2022). It is also used in distributed training to reduce the communication cost (Reddi et al.,
2015) and active learning to create compact sets for human labeling (Hakkani-Tur et al., 2002; Tur
et al., 2003; Kaushal et al., 2019; Coleman et al., 2020). Usually a subset is selected based on some
criterion such that the performance of a model trained on the subset is comparable to one trained on
the whole dataset, but with much less data and computing efforts. A variety of criteria have been
introduced in various applications in the literature. For instance, diversity reward is used in (Lin
& Bilmes, 2011) for document summarization and in (Kaushal et al., 2019) for computer vision
(CV). Text similarity and saturated coverage are used in (Wei et al., 2013) to select acoustic data for
automatic speech recognition (ASR). The maximum entropy principle is applied in (Wu et al., 2007;
Yu et al., 2009) to select an informative data subset. Confidence scores are used in (Hakkani-Tur
et al., 2002; Tur et al., 2003) based on a well-trained model to select a subset with highest uncertainty
for labeling for active learning. In (Sivasubramanian et al., 2021) error bounds on the validation set
are taken into account when selecting a data subset for `2 regularized regression problems for better
model generalization. In (Mirzasoleiman et al., 2020a; Killamsetty et al., 2021a) subsets are selected
to closely approximate the full gradient for training machine learning models using incremental
gradient methods.

The construction of an optimal subset is combinatorial and NP-hard in principle. In (Wei et al.,
2015; 2014b;a; Kirchhoff & Bilmes, 2014; Killamsetty et al., 2021b) subsets are selected leveraging
submodular functions with diminishing returns where the subset selection can be formulated as
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constrained submodular cover optimization (Fujishige, 1991). Subset selection is also viewed as
summarizing the full data set using a coreset (e.g. weighted subset samples) in (Mirzasoleiman et al.,
2020a;b; Reddi et al., 2015; Coleman et al., 2020; Killamsetty et al., 2021a). Most of the subset
construction algorithms are greedy algorithms which are computationally efficient, and some of them
can provide provable approximation guarantees compared to the solution on the full data set. For
many of the existing data selection approaches, the selection is a hard selection where a subset of the
full data is selected and models are trained on this constant subset of data while the samples outside
the subset are totally discarded (Wu et al., 2007; Lin & Bilmes, 2011; Wei et al., 2014b). Furthermore,
to reduce the cost of data selection, an additional light-weight proxy model is introduced for selecting
subsets in a family of so-called selection via proxy (SVP) methods (Coleman et al., 2020; Sachdeva
et al., 2021). However, even with greedy algorithms which are relatively efficient in constructing
subsets or selection via proxy, many of the existing data selection techniques still suffer from scaling
issues when dealing with large amounts of data and models of large capacity due to demanding
processing time and memory requirements (Wei et al., 2014a; Mirzasoleiman et al., 2020a).

In this paper we propose soft sampling, a simple but effective approach to training models with
reduced data size for efficiency. Soft sampling selects uniformly at random with replacement a subset
from the full data set for each training epoch, so every data sample can be sampled with non-zero
probability. The selection of data is agnostic to loss functions and models. Compared to deterministic
loss/cost function based data selection methods, soft sampling is significantly faster without requiring
additional memory, which makes it very suitable for training deep neural networks using incremental
gradient techniques such as stochastic gradient descent (SGD) and its variants. Randomized subset
selection has been presented in the literature (Pooladzandi et al., 2022; Killamsetty et al., 2021a;
Guo et al., 2022), where it is mostly treated as an underperforming baseline. It is either compared
with coreset selection methods on small datasets with a very low data selection percentage (e.g 1%)
or it is not investigated at its full strength when the comparative study is made with other subset
selection techniques. In this work we assess random subset selection as a low-cost data selection
approach that is very computationally efficient when training deep models with a large number of
parameters on large scale datasets. We study this random subset selection approach both theoretically
and practically. We show that soft sampling is guaranteed to converge and give its convergence rate.
We also analyze its statistical properties on sample coverage and occupancy. Experiments are carried
out to extensively evaluate its effectiveness on a variety of datasets from image classification and
speech recognition. We show that soft sampling can obtain competitive or superior performance
compared with some existing high-performance data selection approaches while being much more
efficient in speed and memory usage.

2 RELATED WORK

Subset selection is cast as submodular optimization in (Lin & Bilmes, 2009; 2011; Wei et al., 2013;
2014b;a; 2015; Kirchhoff & Bilmes, 2014; Mirzasoleiman et al., 2015) where submodular functions
are defined on discrete sets and optimized under constraints (e.g. cardinality of the selected subset).
Submodular optimization based subset selection is mathematically rigorous, as under mild conditions
a simple greedy implementation is theoretically guaranteed to be only a constant fraction away
from the optimal solution. However, despite the availability of a rich class of functions, suitable
submodular functions still need to be carefully chosen and tailored to the problem under investigation
given the computational complexity and scale of the data. Furthermore, once the subset is selected, it
is usually fixed throughout the training regardless of the iteratively updated model.

Coreset algorithms have been explored in (Mirzasoleiman et al., 2020a; Killamsetty et al., 2021b;a;
Pooladzandi et al., 2022) where weighted subsets are selected to summarize some desired properties of
the full data for efficient training. GLISTER, proposed in (Killamsetty et al., 2021b), selects a coreset
that maximizes the log-likelihood on a validation set. CRAIG in (Mirzasoleiman et al., 2020a) and
GRAD-MATCH in (Killamsetty et al., 2021a) each find a coreset that closely approximates the full
gradient. ADACORE in (Pooladzandi et al., 2022) extracts a coreset that dynamically approximates
the curvature of the loss function based on the Hessian matrix. CRAIG, GRAD-MATCH and
ADACORE are all adaptive methods which are shown to achieve superior performance over a fixed
subset. ADACORE relies on second-order statistics which are more computationally demanding,
while CRAIG and GRAD-MATCH search for first-order coresets which are computationally more
efficient. In this work, we compare the performance on the accuracy-efficiency trade-off between soft
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sampling and GRAD-MATCH (Killamsetty et al., 2021a). GRAD-MATCH is a first-order coreset
selection approach to selecting coresets to approximate the full gradient. The selection is carried out
using an efficient orthogonal matching pursuit (OMP) algorithm. We choose GRAD-MATCH as a
baseline because it is a representative coreset selection approach and has been shown to outperform
numerous existing high-performing subset selection techniques such as CRAIG and GLISTER in
(Killamsetty et al., 2021a).

3 SOFT SAMPLING

Let X denote the input space and Y the output space. The goal of machine learning is to estimate a
function h that maps from the input to the output

h(x;w) : X → Y (1)

where x ∈ X and h belongs to a family of functions parameterized by w ∈ Rd. A loss function
f(h(x;w), y) is defined on X ×Y to measure the closeness between the prediction h(x;w) and
the output y ∈ Y . A risk function L(w) is defined as the expected loss over the underlying joint
distribution p(x, y):

L(w) = E(x,y)[f(h(x;w), y)]. (2)

We want to find parameters w that minimize L(w)

w∗ = arg min
w

L(w). (3)

In practice, we only have access to a training set G of n data samples G = {(xi, yi)}ni=1 ∈X ×Y
where |G| = n and the following empirical risk is minimized

LG(w) =
1

|G|
∑
i∈G

f(h(xi;w), yi). (4)

Incremental gradient methods such as SGD (Bottou et al., 2016; Bottou & Bousquet, 2007) and its
variants (Kingma & Ba, 2015; Nesterov, 1983) have been the dominant approach in solving this
optimization problem where at iteration l a sample (xil , yil), il ∈ {1, · · · , n}, is drawn at random
from G and its stochastic gradient ∇̂fil is then used to update w with an appropriate stepsize α > 0:

wl+1 = wl − α∇̂fil(wl). (5)

When dealing with large scale machine learning, mini-batch based incremental gradient methods are
commonly used for better trade-off between computing cost and approximation error (Bottou et al.,
2016).

In case of a massive training set G, a subset V ⊂G (|V|� |G|) is selected and the optimization is
carried out only on V for computing efficiency. In a generic form, training after data selection can be
given as

LVk(w) =
1

|Vk|
∑
i∈Vk

f(h(xi;w), yi) (6)

where Vk is the subset selected for each epoch k under some criterion (Wei et al., 2015; Mirzasoleiman
et al., 2020a; Killamsetty et al., 2021b;a). Vk can be a constant subset in some works (Lin & Bilmes,
2011; Wei et al., 2014b).

In this paper we investigate soft sampling that efficiently trains machine learning models using
randomized subsets. Suppose |Vk| = m, for k = 1, · · · ,K. In each epoch k, instead of choosing
a subset based on measures that are computationally demanding, we simply select a subset of size
m randomly from the ground set G. Suppose Ω = {ω1, ω2, · · · } are the

(
n
m

)
subsets of size m. In

each epoch, a subset is drawn with replacement from Ω with an equal probability to be used in the
optimization of Eq.6. A detailed implementation is given in Algorithm 1.

3



Under review as a conference paper at ICLR 2023

Algorithm 1 Training with soft sampling

K ← Total number of epochs;
n← Total number of training samples;
m← Number of subset samples used in each epoch;
Ψ← SGD optimizer
Initialize w0

Create Ω = {ω1, · · · , ωL} consisting all subsets of size m from ground set G
for k ← 1, · · · ,K do

Select a subset ωj uniformly at random with replacement from Ω
Vk ← ωj
wk ← Ψ(wk−1,Vk,LVk)

4 CONVERGENCE

We assume that (A1) the loss function is smooth and gradient Lipschitz continuous with constant L;
and (A2) the gradient estimate is unbiased and has bounded variance, i.e., E[∇̂fi(w)] = ∇LVk(w),
E‖∇̂fi(w)−∇LVk(w)‖2 ≤ σ2,∀i ∈ Vk and ∀k.
Theorem 1. Suppose assumptions A1 and A2 hold and the iterates are generated by soft sampling.
When the step size of Algorithm 1 satisfies α < 1/L, we have

1

K

K∑
k=1

E‖∇LG(wk)‖2 ≤ 2m(LG(w1)− L(w∗))

αK
+ αmL

(
1 +

m

n

)
σ2 (7)

where the expectation is taken over all the randomness of the subset and data sample selection
process. In addition, if LG satisfies the Polyak-Łojasiewicz inequality with µ > 0, i.e., ‖∇LG(w)‖2 ≥
2µ(LG(w)− LG(w∗)), then

E [LG(wk)− LG(w∗)] ≤ (1− µα)
K

(LG(w1)− LG(w∗)) + 2ακmL
(

1 +
m

n

)
σ2, (8)

where condition number κ := L/µ.

Remark. Theorem 1 shows that when step size α ∼ O(1/
√
K) the convergence rate of the proposed

training scheme with soft sampling isO(1/
√
K) (i.e., Algorithm 1 takesO(1/ε4) number of iterations

to achieve an ε-approximate first order stationary point of problem Eq. 3 under the empirical risk),
which is the same as the standard SGD. Futher, when neural networks are overparametrized, the
loss functions satisfy the Polyak-Łojasiewicz property (Jacot et al., 2018; Liu et al., 2022), therefore,
Algorithm 1 with soft sampling is able to achieve the global optimal solution at the rate of O(1/K)
when α ∼ O(1/K). Details of the proof are given in Appendix A.1.

5 SAMPLE COVERAGE AND OCCUPANCY

In soft sampling, subsets of samples are drawn with replacement from the ground set during training.
In this section we investigate the data sample coverage and occupancy of soft sampling. Given n, the
total number of samples in the ground set, and m, the number of samples in the subset used in each
epoch, we are interested in answering the following questions:

Coverage How many samples in the ground set will we cover in training after K epochs?
Occupancy How many epochs do we need in order to cover s (s≤n) samples in the ground set?

The analysis can be cast into a balls-and-bins problem (Mitzenmacher & Upfal, 2005) where there are
n bins and every time m balls are drawn and dropped into m distinct bins. Each draw is independent
and uniform at random. We want to analyze the distribution of non-empty bins after a number of
draws. This is essentially a generalization of the coupon collector’s problem (Mitzenmacher & Upfal,
2005) with group drawings (Stadje, 1990; Holst, 1986; Johnson & Kotz, 1977; David & Barton, 1962)
where coupons come in groups of a constant size m and all groups of coupons occur with equal
probability.
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5.1 COVERAGE

Let S denote the set of distinct training samples from the ground set after K epochs of soft sampling
and |S| denote the cardinality of S. The distribution of |S| is given as (Stadje, 1990)

P (|S| = l) =

(
n

l

) l∑
i=0

(−1)i
(
l

i

)[(l−i
m

)(
n
m

) ]K , l = 0, 1, · · · , n. (9)

Especially, when l = n, we have

P (|S| = n) =

n∑
i=0

(−1)i
(
n

i

)[(n−i
m

)(
n
m

) ]K (10)

which is the probability of covering all the training samples after K epochs of soft sampling.

From Eq.9, we have the expectation

E[|S|] = n

[
1−

(
1− m

n

)K]
(11)

which is, on average, the number of covered training samples from the ground set after K epochs.
Table 1 shows the expected data coverage (in percentage) for various selection ratios (mn ) and numbers
of epochs K.

m/n K=10 K=20 K=30
5% 40.1% 64.2% 78.5%

10% 65.1% 87.8% 95.8%
20% 89.3% 98.8% 99.9%

Table 1: Expected data coverage in percentage of the ground set for various data selection ratios and
numbers of epochs.

5.2 OCCUPANCY

Let k̄ denote the number of draws (i.e. epochs) required to cover s (s≤n) samples in the ground set.
The distribution of k̄ is given as (Stadje, 1990)

P (k̄) =

s−1∑
i=0

(−1)s−i+1

(
n

i

)(
n− i− 1

n− s

)(n
m

)
−
(
i
m

)(
n
m

) ((
i
m

)(
n
m

))k̄−1

, k̄ = 1, 2, · · · . (12)

From Eq.12, we have its expectation

E[k̄] =

s−1∑
i=0

(−1)s−i+1

(
n

i

)(
n− i− 1

n− s

) (
n
m

)(
n
m

)
−
(
i
m

) . (13)

When s = n, we have

P (k̄) =

n−1∑
i=0

(−1)n−i+1

(
n

i

)(n
m

)
−
(
i
m

)(
n
m

) ((
i
m

)(
n
m

))k̄−1

(14)

and its expectation

E[k̄] =

n−1∑
i=0

(−1)n−i+1

(
n

i

) (
n
m

)(
n
m

)
−
(
i
m

) (15)

which is also given in (Ferrante & Saltalamacchia, 2014). Eq.15 gives the number of epochs required
on average in order to cover the whole training ground set given the subset size m and total sample
size n.
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In particular, when m = 1 we have

E[k̄] =

n−1∑
i=0

(−1)n−i+1

(
n

i

)
n

n− i
(16)

j=n−i
= −

n∑
j=1

(−1)j
(
n

j

)
n

j
= n

− n∑
j=1

(−1)j
(
n

j

)
1

j


=nHn = n log n+O(n)

where Hn =
∑n
i=1

1
i is the nth Harmonic number. Eq.16 is a well-known occupancy result for the

classical coupon collector’s problem (Mitzenmacher & Upfal, 2005).

6 EXPERIMENTS

We evaluate the accuracy-efficiency trade-off of soft sampling and compare with GRAD-MATCH,
a high-performing coreset based subset selection approach, on image classification and automatic
speech recognition (ASR) tasks. For the former we use the public CIFAR10 dataset. For the latter
we use the public Librispeech dataset and an in-house Payload dataset. The Payload dataset is a
real-world industrial scale dataset for training product-level ASR acoustic models. We used GRAD-
MATCHPB-WARM (batch based GRAD-MATCH with a warm start) for the experiments because
it gives the best performance compared to other GRAD-MATCH implementations in (Killamsetty
et al., 2021a). In the CIFAR10 and Librispeech experiments soft sampling selects batches (similar to
GRAD-MATCHPB), while in the Payload experiments soft sampling selects chunks of data due to
the storage structure of this dataset and its massive size. In the experimental results, SS denotes soft
sampling and GM denotes GRAD-MATCHPB-WARM. We use R to denote the selection interval
where R1 stands for using different subsets for every epoch, which is the default setting for SS. R5
and R10 stand for selecting subsets every 5 and 10 epochs, respectively.

6.1 CIFAR10

The CIFAR10 dataset (Krizhevsky & Hinton, 2009) has 50,000 training images and 10,000 test
images in 10 classes. We use the ResNet-18 model (He et al., 2015) with 11 million parameters.
The batch size is 512 which is distributed to 4 P100 GPUs. The training ends after 320 epochs. A
Nesterov accelerated SGD optimizer is used with a momentum of 0.9. The initial learning rate is 0.1
and it is annealed by 10x at the 160th epoch and the 240th epoch. The warm start of GM uses the 10th

epoch of full data. The experimental results are given in Table 2.

6.2 LIBRISPEECH

The Librispeech dataset consists of 960 hours of 16kHz English audio from public domain audio
books (Panayotov et al., 2015). There are about 30,000 utterances from 2338 speakers in the dataset
with maximum duration of 35 seconds. Each utterance is converted to a sequence of frames every
10ms represented by a 40-dim logMel feature vector. We use the test-clean split to report word
error rates (WERs). The acoustic model is a RNN-Transducer (RNN-T) (Graves, 2012). We use
the standard training recipe from Speechbrain (Ravanelli et al., 2021). The transcription network
has 2 convolutional layers followed by a 4-layer bi-directional LSTM (Hochreiter & Schmidhuber,
1997) and then 2 feed-forward layers. The prediction network is a single layer LSTM. The joint
network projects the 1024-dimensional embeddings from the transcription and prediction networks to
the output space of 1000 Byte-pair encoding units over the vocabulary. The decoding involves an
external transformer language model trained on the Librispeech text. The RNN-T model has about
170 million parameters. The training uses an AdaDelta optimizer. The starting learning rate is 2.0
with an annealing factor of 0.8 for the relative improvement of 0.0025 on validation loss afterwards.
The training is distributed on 2 A100 GPUs with a batch size of 24 utterances for 30 epochs. The
warm start of GM uses the 2nd epoch of full data. The experimental results are given in Table 3.
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6.3 PAYLOAD

The Payload dataset consists of 56,300 hours of English spontaneous speech data after data augmen-
tation. Utterances are collected from real-world ASR services. The sampling rate is 8KHz. The set
contains 20.3 million utterances with an average length of 10 seconds. The shortest utterances are
around 0.1 seconds while the longest ones are around 333 seconds. Each utterance is converted to a
sequence of frames every 10ms, and every two frames are represented by a 240-dim feature vector
(logMel acoustic features and their first and second order derivatives), which gives rise to 10.1 billion
feature vectors for the full training set. There are 8 test sets (S1 to S8) varying in duration from
1.4–7.3 hours with an average of 3.2 hours. They represent a good coverage of application domains in
model deployment. The acoustic model is also an RNN-T. It has 6 bi-directional LSTM layers in the
transcription network with 1,280 cells in each layer (640 cells per direction). The prediction network
is a single-layer uni-directional LSTM with 1024 cells. The outputs of the transcription network and
the prediction network are projected down to a 256-dimensional latent space where they are combined
by element-wise multiplication in the joint network. After a hyperbolic tangent nonlinearity followed
by an affine transform, it connects to a softmax layer consisting of 46 output units which correspond
to 45 characters and the null symbol. The model has 59 million parameters. The RNN-T models
are trained using the AdamW optimizer. The learning rate starts at 5×10−4 and is annealed by 1√

2
every epoch after 7 epochs. The training ends after 20 epochs. The batch size is 256 utterances which
are distributed to 32 V100 GPUs. Since the dataset is large (2.4TB disk space for feature storage),
it is divided into 320 chunks. The training is conducted sequentially by chunks. In each chunk the
utterances are organized in a sorted order. This amounts to a curriculum learning strategy where it
starts with short utterances to stabilize the training early on before gradually increasing to difficult
longer utterances. SS is carried out by randomly selecting a subset of chunks. GM selects a batch
subset across all chunks. The reason is that if GM selects entire chunks as SS it will significantly
sacrifice the representative nature of a coreset. Furthermore, even if GM selects entire chunks it still
has to go through every chunk to compute the gradient matching criterion in order to select the best
subset. The warm start uses the 1st epoch of full data. Experimental results are given in Table 4.

Table 2: Accuracy (Acc) and training time (hours) of SS and GM on CIFAR10 under various training
configurations and percentage of data selection. R1 denotes selection interval is every epoch and R10
denotes selection interval is every 10 epochs.

SS R1 SS R10 GM R1 GM R10
Acc time Acc time Acc time Acc time

100% 95.08 0.60h 95.08 0.60h 95.08 0.60h 95.08 0.60h
5% 89.59 0.03h 87.24 0.03h 89.88 1.52h 87.44 0.18h
10% 92.11 0.06h 90.47 0.06h 92.11 1.55h 90.45 0.21h
20% 93.27 0.12h 92.71 0.12h 93.50 1.60h 92.63 0.27h
30% 94.29 0.18h 93.37 0.18h 93.83 1.66h 93.25 0.33h

Table 3: Word error rate (WER) and training time (hours) of SS and GM on Librispeech under various
training configurations and percentage of data selection. R1 denotes selection interval is every epoch
and R5 denotes selection interval is every 5 epochs.

SS R1 SS R5 GM R1 GM R5
WER time WER time WER time WER time

100% 4.21 103.2h 4.21 103.2h 4.21 103.2h 4.21 103.2h
1% 6.95 8.0h 7.12 8.0h 7.09 55.3h 7.10 16.4h
5% 6.02 11.7h 6.35 11.7h 6.39 60.2h 6.41 20.9h
10% 5.65 17.0h 5.87 16.9h 5.63 64.1h 5.71 27.4h
20% 4.76 27.9h 5.08 27.8h 4.95 73.6h 5.01 35.5h
30% 4.48 36.5h 4.62 36.6h 4.55 84.2h 4.58 46.6h

From Tables 2, 3 and 4, it can be observed that SS has a better accuracy-efficiency trade-off compared
to GM considering recognition accuracy and training time. SS outperforms GM in most cases.
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Table 4: Word error rate (WER) and training time (hours) of SS and GM on Payload under various
training configurations and percentage of data selection. R1 denotes selection interval is every epoch
and R10 denotes selection interval is every 10 epochs. In SS R0 a random subset is selected and fixed
for the training. In SS R1 nw models are trained without warm start. Note that since SS is carried
out at the chunk level while GM has to be carried out at the batch level, there is extra data loading
time in GM. It takes about 42 seconds to load a chunk and 3.73 hours to load in all 320 chunks. That
amounts to 74.6 hours for 20 epochs in the training.

S1 S2 S3 S4 S5 S6 S7 S8 Avg. Time
100% 6.2 9.7 6.3 22.6 16.5 25.3 16.3 29.0 16.49 426.7h

5%

SS R0 9.7 14.5 10.4 26.8 21.2 24.3 19.0 34.4 20.04 21.7h
SS R1 nw 9.5 14.6 9.9 26.4 21.3 24.7 19.0 33.8 19.90 22.1h
SS R1 7.5 12.0 8.0 23.7 18.9 24.1 17.6 30.6 17.80 42.3h
GM R10 7.5 12.1 7.4 23.8 18.7 25.7 17.6 31.2 18.00 128.3h

10%

SS R0 8.2 12.6 8.3 24.5 19.7 24.0 17.7 32.3 18.41 41.6h
SS R1 nw 7.8 12.0 8.6 24.3 19.1 22.3 17.2 31.7 17.88 40.9h
SS R1 7.1 11.4 7.8 23.5 18.3 24.6 17.5 30.3 17.56 59.8h
GM R10 7.1 11.4 7.5 23.5 18.2 26.7 18.2 30.8 17.93 192.9h

20%

SS R0 7.2 11.1 7.9 23.8 18.0 25.0 17.7 30.5 17.65 89.0h
SS R1 nw 7.0 11.0 7.1 23.5 18.1 23.9 16.6 29.9 17.14 89.6h
SS R1 6.8 10.7 7.2 23.0 17.7 24.9 17.4 29.9 17.20 106.4h
GM R10 6.9 11.0 7.2 23.2 17.5 26.9 17.8 30.3 17.60 314.5h

GM only outperforms SS in cases when the selected subset is very small (e.g. 1% or 5%) and
the two have the same selection interval (e.g. both with R1, R5 or R10). Even in this case, the
difference of recognition accuracy between the two is not significant. However, SS has the same
computational cost regardless of selection interval while GM has increasing computational cost when
the selection interval is reduced. Taking that into account, SS can still outperform GM in the small
subset conditions. This can be observed in Table 2 where for the 5% case SS R1 has a better accuracy
(89.59%) and shorter training time (0.03h) than GM R10 (87.44% and 0.18h), in Table 3 where for
the 1% case SS R1 has a better WER (6.95%) and shorter training time (8h) than GM R5 (7.10%
and 16.4h), in Table 4 where for the 5% case SS R1 has a better WER (17.80%) and shorter training
time (42.3h) than GM R10 (18.00% and 128.3h).

The advantage of SS is apparent when the size of the dataset is large. The computational cost of
data selection in GM becomes more demanding when dealing with a large scale training set. In the
payload experiments, the data selection in GM takes about 23 hours, which is even longer than one
SGD epoch using the full training data (about 21.3 hours).

Figure 1: Percentage of data coverage using SS and GM for CIFAR10, Librispeech and Payload
datasets when 5% and 10% subsets are selected.

Fig.1 demonstrates the percentage of data coverage using SS and GM when 5% and 10% of data are
selected from the full data in each epoch with different selection intervals on the three datasets. It can
be seen from the figure that the coverage of distinct data samples increases both under SS and GM. If
the number of epochs goes higher (e.g. 320 epochs in CIFAR10), eventually both SS and GM will
tend to achieve a very high coverage of distinct data samples. However, SS has an obvious higher
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coverage rate than GM does when the number of epochs are not large (e.g. 30 epochs in Librispeech
and 20 epochs in Payload). In addition, due to the computational cost, GM usually can not afford
to make the subset adaptive every epoch which means its selection interval is typically larger than
one. For example, the selection interval is 10 epochs in CIFAR10 and Payload and is 5 epochs
in Librispeech in order to strike a reasonable balance between selection accuracy and computing
efficiency. Under this condition, the coverage of distinct data samples using GM is much lower than
that of SS. A higher data coverage in SS could benefit the training as the models learn from more
data given the same computing budget. Also note that the practically observed sample coverage in
Fig.1 is in line with the theoretical estimate in Table 1.

7 DISCUSSION

The coreset based data selection methods are typically resource and time demanding. GRAD-MATCH
has to go through the full training set in order to compute the full gradient, requiring O(n) gradient
evaluations. Furthermore, the greedy algorithm in OMP also requires O(nm) evaluations of the
gains when selecting a data sample. When dealing with large models and massive data, the time and
memory overhead could be prohibitive. Therefore the implementation of most coreset based data
selection methods involves various approximations to improve efficiency. For instance, the gradient
of the last layer is used to approximate the gradient of the whole model in the case of deep models,
and the coreset selection is performed at the batch level instead of sample level. To guarantee a good
subset selection at the start of training, a warm start is often used which requires a few SGD epochs
using the full data. Despite an elegant theoretical guarantee under submodularity, the fast OMP
implementation may give rise to sub-optimal solutions because the approximation error is dependent
on 1 − exp(−λ/(λ + k∇2

max)). When λ is large, the regularized problem is not the original one
anymore. When k is large, there is less theoretical benefit of selecting the subset. Compared to these
first-order coresets (Mirzasoleiman et al., 2020a; Killamsetty et al., 2021a), second order coresets
(Pooladzandi et al., 2022) may face even more severe issues in scaling.

Compared to the first and second order coreset based data selection, soft sampling incurs virtually
zero time and memory cost in data selection. In addition, given the selection budget, soft sampling
has more flexibility in choosing the selection granularity of subsets in accordance with the data
structure, which is desirable when the training data is massive (e.g. the payload data). Although for
a randomly selected subset in soft sampling the approximation error can not be guaranteed to be
optimal under certain criteria (e.g full gradient approximation), soft sampling can offer frequently
updated subsets across epochs that can provide a higher coverage of training data under the same
per-epoch budget. This may help model generalization.

If only considering accuracy, coreset based data selection has advantages in that coresets are more
representative of the full training set and they can give good results with lower data sample coverage
compared to soft sampling, especially under a small selection budget. It is its computational
complexity that makes it less efficient on massive training data. It should be noted that for coreset
based data selection a trade-off can be made between time and resources. The data selection can rely
on parallelization to significantly reduce the processing time, but it will meanwhile impose significant
demands on CPU/GPU and memory usage.

8 CONCLUSION

In this paper we investigate soft sampling for efficient training of deep neural network models on
large scale data. Soft sampling is computationally efficient with virtually no additional cost in data
selection. Theoretically, we show that soft sampling has a convergence guarantee on non-convex
objective functions and we provide the convergence rate. We also study the data coverage and
occupancy properties of soft sampling. Practically, we compare soft sampling with GRAD-MATCH,
a high-performing first-order coreset selection approach, on various datasets using various deep
neural network models including an industrial scale ASR application. We show that soft sampling can
provide a better accuracy-efficiency trade-off, which makes it very suitable for large scale training.
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A APPENDIX

A.1 PROOF OF THEOREM 1

Recall that Vk is the set of data samples randomly chosen from [n], where |Vk| = m� n. Also, let
F lk = {wlk, . . . , w1} as filtration of the iterates generated by soft sampling with w1

k = wk,∀k. We
denote wlk as the iterate updated by the SGD optimizer l times at the k epoch. Then, the iterative
algorithm can be written concisely as

wl+1
k = wlk − α∇̂fi(wlk), i ∈ Vk. (17)

Under the unbiasedness assumption of the gradient estimate, we know that

Ei
[
∇̂fi(wlk)

]
= ∇̂LVk(wlk),∀i ∈ Vk. (18)

According to the gradient Lipschitz continuity of the objective function, we have

E
[
LG(wl+1

k )|F lk
]

≤LG(wlk) + 〈∇LG(wlk), wl+1
k − wlk〉+

L

2
‖wl+1

k − wlk‖2 (19)

=LG(wlk)− α〈∇LG(wlk),E∇̂fi(wlk)|F lk〉+
α2L

2
E
[
‖∇̂fi(wlk)‖2|F lk

]
(20)

(a)
=LG(wlk)− α‖∇LG(wlk)‖2 +

α2L

2
E
[
‖∇̂fi(wlk)‖2|F lk

]
(21)

≤LG(wlk)− α‖∇LG(wlk)‖2 +
α2L

2
E
[
‖∇̂fi(wlk)−∇LG(wlk)‖2|F lk

]
(22)

+
α2L

2

[
‖E∇̂fi(wlk)‖2|F lk

]
(23)

(b)

≤LG(wlk)− α
(

1− αL

2

)
‖∇LG(wlk)‖2 + α2L

(
1 +

m

n

)
σ2 (24)

where (a) is true because

E
[
∇̂fi(wlk)|F lk

]
=EVk

[
Ei
[
∇̂fi(wlk)|Vk,F lk

]]
, i ∈ Vk (25)

=EVk
[
∇̂LVk(wlk)|F lk

]
= ∇LG(wlk), (26)

and (b) follows due to

E
[
‖∇̂fi(wlk)−∇LG(wlk)‖2|F lk

]
i ∈ Vk

=E
[
‖∇̂fi(wlk)−∇LVk(wlk) +∇LVk(wlk)−∇LG(wlk)‖2|F lk

]
(27)

≤2
(
σ2 +

m

n
σ2
)
. (28)

When 1− αL
2 > 1/2, i.e., α < 1

L , then, we have

LG(wl+1
k ) ≤ LG(wlk)− α

2
‖∇LG(wlk)‖2 + α2L

(
1 +

m

n

)
σ2. (29)

Taking the expectation over F lk and applying the telescoping sum over both k and l give

1

K

K∑
k=1

α

2
E‖∇LG(wk)‖2 ≤ m (LG(w1)− LG(wK))

K
+ α2mL

(
1 +

m

n

)
σ2. (30)

Therefore, When α ∼ O(1/
√
K), we have

1

K

K∑
k=1

E‖∇LG(wk)‖2 ≤ 2m(LG(w1)− LG(wK))

αK
+ αmL

(
1 +

m

n

)
σ2, (31)
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resulting in the convergence rate of O(1/
√
K). Alternatively, it implies that Algorithm 1

needs O(1/ε4) number of iterations to achieve an ε-approximate first order stationary point (i.e.,
E‖∇LG(w)‖ ≤ ε). Applying the definition of w∗ gives the desired result.

When LG satisfies the Polyak-Łojasiewicz condition, then, from Eq. 29 we have

LG(wl+1
k )− LG(w∗)

≤LG(wlk)− LG(w∗)− α

2
‖∇LG(wlk)‖2 + α2L

(
1 +

m

n

)
σ2 (32)

≤ (1− µα)
(
LG(wlk)− LG(w∗)

)
+ α2L

(
1 +

m

n

)
σ2 (33)

≤ (1− µα)
K

(LG(w1)− LG(w∗)) + α2L
(

1 +
m

n

)
σ2

mK−1∑
j=1

(1− µα)j (34)

≤ (1− µα)
K

(LG(w1)− LG(w∗)) + 2ακmL
(

1 +
m

n

)
σ2, ∀l, k (35)

which completes the proof.
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