
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

How Few Davids Improve One Goliath: Federated Learning in
Resource-Skew Edge Computing Environments

Anonymous Author(s)

ABSTRACT

The real-world deployment of federated learning requires orches-
trating clients with widely varying compute resources, from strong
enterprise-level devices in data centers to weak mobile and Web-of-
Things (WoT) devices. Prior works have exploredways to downscale
large models for weak devices and perform aggregation among het-
erogeneous models. A typical architectural assumption is that there
are equally many strong and weak devices. In reality, we often see
resource-skew environments where a few (1 or 2) strong devices
hold a substantial amount of data resources, accompanied by a large
number of weak devices. This poses challenges—the unshared por-
tion of the large model rarely receives updates or derives benefits
from the weak collaborators.

We aim to facilitate reciprocal benefits between strong and weak
devices in the presence of resource skewness in federated learning.
We propose RecipFL, a novel framework featuring a server-side
graph hypernetwork that generates weights for personalized client
models, aligning them with the unique data distributions and com-
putational capacities of individual devices. The graph hypernetwork
captures local and global structures of client models and generalizes
knowledge about model weights across model architectures. No-
tably, RecipFL is agnostic to model scaling strategies and can enable
collaboration among arbitrary neural network models. We establish
the generalization bound of RecipFL through theoretical analysis
and conduct extensive experiments across image classification and
natural language inference tasks with various model architectures.
The results show that RecipFL can improve accuracy by 3.6% and
8.7% on strong and weak devices respectively, providing incentives
for strong devices to actively participate in federated learning.

KEYWORDS

federated learning; edge computing; resource skewness
ACM Reference Format:

Anonymous Author(s). 2023. How Few Davids Improve One Goliath: Feder-
ated Learning in Resource-Skew Edge Computing Environments. In Proceed-
ings of ACM Conference (Conference’17). ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The growing demand for data privacy has catalyzed the rise of
federated learning [29] as a privacy-preserving distributed learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

paradigm. The real-world deployment of federated learning needs to
deal with heterogeneous edge computing environments [13, 20, 33].
Typically, a few devices, often owned by large enterprises, can be
very powerful to afford large models, while the vast majority are
‘weak’ devices that can only host small models, such as mobile and
Web-of-Things (WoT) devices owned by individuals. Universally
deploying homogeneous small models as required by traditional
methods [17, 18] not only wastes available compute resources but
also compromises performance. Ideally, we need models scaled to fit
varying device capacities and perform effective model aggregation.

To support the collaboration among heterogeneousmodels across
clients, existing approaches [5, 15, 22, 28, 30] downscale the large
model for weak devices and aggregate the common parts among
models. These works typically assume there are equally many
strong and weak devices [15, 28, 36]. However, in reality, we often
see a skewed scenario where a small number of strong devices
operated by enterprises are accompanied by a large number of user-
owned weak devices. For example, a smartwatch company wants to
develop a human activity recognition system. The company trains
a large model using a vast dataset gathered from controlled experi-
mental environments, while their smartwatch users can participate
in this process via federated learning to train small models using
personal data in the wild. It is expected that small models can ben-
efit from the large model [2, 9], however, their contribution to the
large model is dubious due to their constrained capability.

In light of this gap, we address a new research question: Can
strong devices benefit from weak devices in resource-skew computing
environments? We consider an extreme scenario where the majority
are weak devices and limited (1 or 2) strong devices participate in
the learning, as depicted in Figure 1(a). In this scenario, the learning
system heavily leans on weak devices, while the unshared portion
of the large model on strong devices rarely receives updates or
derives benefits from others, which brings a significant challenge
to benefit strong devices from weak collaborators.

Existing approaches deploy either width-scaling that prunes the
channels of the large model [5, 22, 30], or depth-scaling that per-
forms layer-wise pruning [15, 28]. They rely on traditional weight-
averaging aggregation [24, 29] to update shared layers. However, it
can be destructive when the layers in small models are ill-aligned
with the layers in large models. For example, if the first block of
ResNet [8] is used as an independent neural network handling a
completed vision recognition process, the function of its layers
inevitably changes, compared to its counterpart within an entire
ResNet model. When a few large ResNet models are aggregated
with a majority of their smaller counterparts (i.e., ResNet with
the first block), its first block may only extract shallow vision fea-
tures, thus resulting in performance degradation. Even facilitated
with knowledge distillation [15], there is no guarantee of benefit if
knowledge is transferred from numerous small models biased by
non-IID data, as corroborated by our experiment results.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Strong Devices

W
ea

k
D

ev
ic

es

FedGHN

DepthFL

All Small

InclusiveFL
FlexiFed

ExclusiveFL

higher
accuracy

hi
gh

er

ac
cu

ra
cy

strong
devices

weak
devices

computational power

size of local dataset

of devices

(a) Resource-skewness

Strong Devices

W
ea

k
D

ev
ic

es

Ours

DepthFL [14]

AllSmall

InclusiveFL [27]

FlexiFed [35]

ExclusiveFL

higher
accuracy

hi
gh

er

ac
cu

ra
cy

strong
devices

weak
devices

computational power

size of local dataset

of devices

(b) Performance Summary

Figure 1: Illustration of problem setting and the performance

of prior methods in resource-skew environments.

To effectively align and aggregate models when clients employ
customized model architectures, we propose RecipFL, a novel fed-
erated learning framework that empowers the server with a graph
hypernetwork tasked with generating weights for client models.
Clients retain the flexibility to adapt the model architectures to
their unique computational capacities, either through pruning the
large model or changing architectures. The server transforms client
models into directed acyclic graphs to delineate the computation
flow among layers. Figure 2 presents the overview of RecipFL. In
contrast to the traditional weight-averaging aggregation method,
which requires the layer to have uniform operations, sizes, and
computational flows for aggregation, the graph hypernetwork can
deal with arbitrary model architectures. This is achieved by en-
coding information about computational graphs of client models
with a gated graph neural network (GatedGNN) [26] and decoding
parameters with multi-layer perceptrons (MLPs). The GatedGNN
captures the local and global structures of client models, sharing
knowledge across model architectures even when layers vary in
size or follow different computation flows. The graph hypernet-
work is trained during federated learning according to the feedback
(i.e., locally updated weights) from clients. The computations of
hypernetwork are executed by the server and therefore do not add
any additional communication or computation overhead to edge
devices. We further augment weak devices by distilling knowledge
from large models to smaller ones on strong devices and aggregate
the knowledge by the update of the graph hypernetwork.

We theoretically analyze the generalization bound of RecipFL
and empirically evaluate RecipFL framework across four datasets
for image classification and natural language inference.We simulate
non-IID client distributions and evaluate personalized client models
on their own test data as real-world WoT and mobile computing ap-
plications typically require. The results show RecipFL outperforms
state-of-the-art methods across different scaling strategies and vari-
ous model architectures with significant margins. Notably, RecipFL
yields improvements for both strong and weak devices, demonstrat-
ing that even devices with limited computational resources can
contribute meaningfully to the learning system, thereby incentiviz-
ing strong devices to actively engage in federated learning.

Our contributions are summarized as follows:

• We address a new research question in federated learning: Can
strong devices benefit from weak devices in the presence of resource

skewness? We show the existing methods do not guarantee im-
provement for both types of devices.

• We propose a novel framework RecipFL to effectively generate
weights for heterogeneous client models based on graph hyper-
network, compatible with arbitrary model scaling strategies.

• We establish the generalization bound of RecipFL through theo-
retical analysis and validate its performance through extensive
experiments. RecipFL outperform various state-of-the-art meth-
ods with significant margins and demonstrate that weak devices
can also contribute effectively to the learning of strong devices.

Reproducibility. We will release the code on Github1.

2 PRELIMINARIES

2.1 Problem Definition

We aim to build a federated learning system with 𝑀 clients that
allows the clients to have customized model architectures {G𝑚 |𝑚 ∈
[𝑀]} that fit their specific running capabilities. Within the 𝑀
clients, there are a few (e.g., 1 or 2) strong devices that have enough
running capacity to hold large models and the rest are weak devices
having limited computing power. Denote the training set on client

𝑚 as D𝑚 =

{(
𝑥
(𝑚)
𝑖

, 𝑦
(𝑚)
𝑖

)}𝑁𝑚

𝑖=1
, where 𝑥 (𝑚)

𝑖
is the input data and

𝑦
(𝑚)
𝑖

is the label, and the data distribution of client𝑚 as P𝑚 . Denote
ℓ as the loss function. The goal is to learn a personalized model
𝑓𝑚 (·;𝜃𝑚) for every client𝑚 that works on its own data distribution:

𝜽 ∗ = argmin
𝜽

1
𝑀

𝑀∑︁
𝑚=1
E(𝑥,𝑦)∼P𝑚 ℓ (𝑓𝑚 (𝑥 ;𝜃𝑚), 𝑦), (1)

where 𝜽 is the set of client model weights: 𝜽 = {𝜃1, . . . , 𝜃𝑀 }.

2.2 Resource-Skew Computing Environments

Existing works typically assume the strong and weak devices are
equally distributed. Interestingly, a tangential sensitivity evaluation
in a prior work shows that when the strong devices are the minor-
ity, the convergence of the large models in the federated system is
slow and the performance is worse than exclusively training large
models without the participation of small models [28]. However,
no analyses or solutions were proposed for the resource skewness
problem. To have a clearer understanding of how existing methods
perform in the resource-skew computing environment, we summa-
rize the results from Section 5 by averaging the accuracies on strong
and weak devices respectively across all datasets. In our experi-
ments, we set the weak devices as the majority (e.g., 5, 20, 50, 100)
and use only 1 or 2 strong device(s). For each dataset, we allocate
50% of the entire dataset to the strong device(s), with the remaining
data assigned to small devices following Dirichlet distributions. We
craft two naive baselines: AllSmall, which trains small models on all
devices via federated learning, and ExclusiveFL, which lets strong
devices run large models and weak devices run small models and
conducts federated learning within their respective groups. Note
that when only 1 strong device exists, it conducts centralized learn-
ing under ExclusiveFL. Additionally, we include comparisons with
existing federated methods for heterogeneous models [15, 28, 36].
For each method, we evaluate client models on their own test data
1https://github.com/anonymous

2

https://github.com/anonymous

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

How Few Davids Improve One Goliath: Federated Learning in Resource-Skew Edge Computing Environments Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Server

MLP
Decoder

predicted
weights !θGraph Hypernetwork

Clients

#!
$!

%!

clients’
feedback θ

forward pass

backward pass

communication

client models -> DAGs #! %!$! weak device

strong device$!

di
st

ill

G
at

ed
G

N
N

En

co
de

rfo
rw

ar
d

ba
ck

w
ar

d
transmit model weights

transmit model weights

Figure 2: Overview of RecipFL framework. The server transforms client models into directed acyclic graphs (DAGs) to represent

the computation flow among operations and trains a graph hypernetwork to generate weights for customized client models.

sampled from clients’ data distributions. The summary is presented
in Figure 1(b), from which we draw the following observations:
• Small models are insufficient for strong devices: By comparing

AllSmall and ExclusiveFL on strong devices, we see that training
small models with collaboration from weak devices yields lower
accuracy compared to exclusively training large models.

• Weak devices benefit from collaboration with strong devices: By
comparing existing methods and AllSmall on weak devices, we
see the existing methods generally show a higher accuracy.

• Strong devices derive minimal benefits from weak devices with
existing methods: For strong devices, we see the accuracy of
existing methods is always lower than ExclusiveFL.

• Existing methods could enhance the performance of one type of
model but struggle to improve both. For example, DepthFL achieves
high accuracy on weak devices but does not perform well on
strong devices. FlexiFed achieves higher accuracy on strong de-
vices than DepthFL but shows less improvement on weak devices.
Recognizing the limitations of prior methods, we aim to facilitate

reciprocal benefits between strong and weak devices in resource-
skew computing environments.

3 OUR RECIPFL FRAMEWORK

3.1 Federated Training

The pseudo code of the training process is presented in Algorithm 1.
During each round of training, the server initiates the process by
randomly selecting a subset of clients, denoted as S𝑡 , to conduct lo-
cal updates. The server utilizes the graph hypernetwork to produce
model weights {𝜃𝑚 |𝑚 ∈ S𝑡 }, sends the weights to selected clients
and waits for their feedback. At the client side, the client performs
local updates by training the client model 𝑓𝑚 with its local dataset
D𝑚 . The training objective at client𝑚 is to minimize the loss:

argmin
𝜽
L𝑚 (𝜃𝑚) = argmin

𝜽

1
𝑁𝑚

𝑁𝑚∑︁
𝑖=1

ℓ

(
𝑓𝑚

(
𝑥
(𝑚)
𝑖

;𝜃𝑚
)
, 𝑦
(𝑚)
𝑖

)
, (2)

where 𝑁𝑚 is the number of samples in the local dataset D𝑚 . Let 𝜂𝑐
be the learning rate for local training at the client. Starting with
the initial value 𝜃𝑚 = 𝜃𝑚 , the client updates 𝜃𝑚 as follows:

𝜃𝑚 ← 𝜃𝑚 − 𝜂𝑐∇𝜃𝑚L𝑚 (𝜃𝑚) . (3)

After local training, the clients send the updated model weights
back to the server. The server then calculates the change in local

Algorithm 1: RecipFL Framework
Input :Communication rounds 𝑇 , number of selected

clients per round |S𝑡 |, local training epochs 𝐸,
client descriptors {𝑎𝑚 |𝑚 ∈ [𝑀]} and model
architectures {G𝑚 |𝑚 ∈ [𝑀]}.

Output :A graph hypernetwork that generates personalized
model weights for heterogeneous client models.

Server executes:

for 𝑡 = 1, . . . ,𝑇 do

Select a subset S𝑡 of clients at random;
for𝑚 ∈ S𝑡 do

𝜃𝑚 ← GHN(G𝑚, 𝑎𝑚 ;𝜙);
𝜃𝑚 ← ClientUpdate(𝑚,𝜃𝑚);
Δ𝜃𝑚 ← 𝜃𝑚 − 𝜃𝑚 ;

Update GHN: 𝜙 ← 𝜙 − 𝜂𝑠
∑
𝑚∈S𝑡 (∇𝜙𝜃𝑚)

𝑇Δ𝜃𝑚 ;

return GHN(·;𝜙);
ClientUpdate(𝑚,𝜃𝑚):
𝜃𝑚 ← 𝜃𝑚 ;
for 𝑒 = 1, . . . , 𝐸 do

Partition D𝑚 into mini-batches
⋃𝑗𝑚
𝑖=1 𝐵

(𝑚)
𝑖

;
for 𝑖 = 1, . . . , 𝑗𝑚 do

𝜃𝑚 ← 𝜃𝑚 − 𝜂𝑐∇𝜃𝑚L𝑚 (𝜃𝑚 ;𝐵 (𝑚)
𝑖
) ;

return 𝜃𝑚 to server ;

model parameters Δ𝜃𝑚 = 𝜃𝑚−𝜃𝑚 , and uses the chain rule ∇𝜙L𝑚 =

(∇𝜙𝜃𝑚)𝑇∇𝜃𝑚L𝑚 to update the graph hypernetwork parameter 𝜙 :

𝜙 ← 𝜙 − 𝜂𝑠
∑︁
𝑚∈S𝑡
(∇𝜙𝜃𝑚)𝑇Δ𝜃𝑚, (4)

where 𝜂𝑠 is the learning rate for updating the graph hypernetwork.
By adopting graph hypernetwork, we modify Equation 1 and for-
mulate the new learning objective as:

argmin
𝜙

L̂(𝜙,𝑫). (5)

where L̂(𝜙,𝑫) = 1
𝑀

∑𝑀
𝑚=1 L𝑚 (GHN(G𝑚, 𝑎𝑚 ;𝜙)) is the average

empirical loss on dataset 𝑫 = {𝑫𝑚}𝑀𝑚=1.
Importantly, the graph hypernetwork resides on the server, with

all computations related to the graph hypernetwork executed solely
3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

GatedGNN
Encoder

client descriptor &"

operation
type

parameter

message passing and
node feature updates

M
LP

ℎ#!
$

ℎ#"
$ (%

($)

G
R

U
Ce

ll ℎ%($)

ℎ%($())

…

backward passes

…

!#
!$

"

gr
ap

h
pr

op
ag

at
io

n
fo

r #
st

ep
s

MLP

ℎ%!
&ℎ%"

&

%'
(&)

GRU ℎ'(&)ℎ'(&*#)

forward passes
select decoder based on

operator type &'

MLP
Decoder

[ℎ'(+);),]

+'

MLP
Decoder

(a) Encoding

GatedGNN
Encoder

client descriptor &"

operation
type

parameter

message passing and
node feature updates

M
LP

ℎ#!
$

ℎ#"
$ (%

($)

G
R

U
Ce

ll ℎ%($)

ℎ%($())

…

backward passes

…

))
)*

*

gr
ap

h
pr

op
ag

at
io

n
fo

r +
st

ep
s

MLP

ℎ#!
$ℎ#"

$

(%
($)

GRU ℎ%($)ℎ%($())

forward passes select decoder based
on operator type ,%

MLP
Decoder

(a) Encoding (b) Decoding

[ℎ%(+); &"]

0%

MLP
Decoder

(b) Decoding

Figure 3: Graph hypernetwork architecture.

by the server. This design ensures it does not impose any additional
communication or computational overhead on clients.

3.2 Weight Generation with Graph

Hypernetwork

Representation of target network architectures. We represent
the computational graph of a neural network model as a directed
acyclic graph, denoted as G(V, E), where the nodesV are the oper-
ators (e.g., convolution, pooling, linear layer, etc.) and the directed
edges E describe the computation flow in the order of forward
propagation among the operators. Conventional graph hypernet-
works are inefficient to deal with repeated similar local connection
patterns in deep networks such as the ResNet blocks in ResNet-
152. To enhance the ability to distinguish local connection patterns
in target networks, we inform the graph hypernetwork about the
model parameters of the target network at the current training
round. To do so, the node features {ℎ𝑣 |𝑣 ∈ C} = {[𝑙𝑣, 𝑞𝑣] |𝑣 ∈ C}
consist of two parts: (1) one-hot vectors 𝑙𝑣 indicating the opera-
tions performed by the node, and (2) the current parameters 𝑞𝑣 of
the operators. A linear embedding layer transforms the one-hot
vector 𝑙𝑣 to a dense vector and a Transformer encoder [34] maps
the variable-length node parameters 𝑞𝑣 to a fixed-dimensional vec-
tor. The linear embedding layer and the Transformer encoder are
learnable and are updated during training.
Graph Hypernetwork Architecture. As depicted in Figure 3, the
graph hypernetwork consists of an encoding process that extracts
features from node information and a decoding process that predicts
weights for parametric operators according to the encoded features.

During the encoding phase, a Gated Graph Sequence Neural
Network (GatedGNN) [26] is employed to conduct 𝜏 steps of graph
propagation within G(V, E) of the target network. During the
propagation, the GatedGNN topologically traverses the nodes in
both forward and backward directions, iteratively conducting mes-
sage passing and updating node features. For the 𝑡-th propagation
step, the GatedGNN first forward traverses nodes. Every node 𝑣
receives messages from its incoming nodes and sends messages to
its outgoing nodes. Denote the incoming nodes to node 𝑣 as IN(𝑣).
The message function is modeled with an MLP shared among all
the nodes. The message received by node 𝑣 at step 𝑡 is:

𝑚
(𝑡)
𝑣 =

∑︁
𝑢∈IN(𝑣) MLP(ℎ (𝑡)𝑢) (6)

The node feature vector ℎ (𝑡)𝑣 is then updated based on the aggre-
gated message𝑚 (𝑡)𝑣 and the feature vector of node 𝑣 at step 𝑡 − 1
using a Gated Recurrent Unit (GRU) cell:

ℎ
(𝑡)
𝑣 = GRU(ℎ (𝑡−1)𝑣 ,𝑚

(𝑡)
𝑣) (7)

After traversingG(V, E) in forward propagation, the GatedGNN
reverses the traversal direction and updates the node features again,
i.e. receives messages from its incoming nodes along backward
passes and sends to its outgoing nodes.

During the decoding phase, we use an individual MLP as the de-
coder for each type of parametric operator to generate parameters.
To further support personalization, we introduce client descriptors
{𝑎𝑚 |𝑚 ∈ [𝑀]} that describe the data characteristics of every client
𝑚. This descriptor is provided as input to the MLP decoder. Specif-
ically, we use the class distribution of local training samples as
the client descriptor. Alternatively, the client descriptor can simply
be the client IDs, and in that case, a linear embedding layer can
be used to transform them into client embeddings, enabling the
learning of the client embedding through training. Let MLP𝑙 (·)
represent the decoder for the 𝑙-type operator. MLP𝑙 operates on the
concatenation of the node embedding and the client embedding,
denoted as [ℎ (𝜏)𝑣 , 𝑎𝑚], and generates the parameters for the node.
The resulting set of generated weights for the target network is:

𝑤 = {𝑤𝑣 |𝑣 ∈ V} = {MLP𝑙𝑣 ([ℎ
(𝜏)
𝑣 , 𝑎𝑚]) |𝑣 ∈ V} (8)

To handle different dimensionalities of layers within the same
operator type, the outputs of the decoder are reshaped through
tiling and concatenation to match the shape of the target layers
following common practices in graph hypernetworks [16, 38].

3.3 Knowledge Transfer from Strong to Weak

Devices

To further enhance the learning of small models, we leverage the
computing resources on strong devices and employ regularizations
to distill knowledge from large models to small ones.

For strong devices, we let the central graph hypernetwork gen-
erate weights for both small and large models. Denote the small
and large model at the strong device𝑚 as 𝑓 𝑆𝑚 and 𝑓 𝐿𝑚 respectively
and the corresponding model parameters are 𝜃𝑆𝑚 and 𝜃𝐿𝑚 . After
training the large model 𝑓 𝐿𝑚 , we proceed to train the small model
and distill knowledge from the large model. We introduce an addi-
tional cross-entropy loss term 𝐶𝐸 (·) to let the small model mimic
the prediction probabilities of the large model. In addition, we add
a KL-divergence loss term 𝐷𝐾𝐿 (·) to align the feature spaces be-
tween the small and large models. Denote the softmax probability
distributions of features generated by the last hidden layer before
the classifier of the small model and the large model as 𝑝𝑆

𝑖
and 𝑝𝐿

𝑖

respectively. The training objective for the small model 𝑓 𝑆𝑚 on large
device𝑚 is to minimize the following loss:

L𝑆𝑚 (𝜃) =
1
𝑛

∑︁𝑛

𝑖=1
[𝐶𝐸 (𝑓 𝑆𝑚 (𝑥𝑖 ;𝜃𝑆𝑚), 𝑦𝑖)

+𝐶𝐸 (𝑓 𝑆𝑚 (𝑥𝑖 ;𝜃𝑆𝑚), 𝑓 𝐿𝑚 (𝑥𝑖 ;𝜃𝐿𝑚)) + 𝐷𝐾𝐿 (𝑝𝑆𝑖 ∥𝑝
𝐿
𝑖)] .

(9)

After local training, the updated weights of both small and large
models are transmitted to the server and used in conjunction with
weights from other selected clients for the update of the graph

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

How Few Davids Improve One Goliath: Federated Learning in Resource-Skew Edge Computing Environments Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

hypernetwork. This knowledge transfer mechanism helps small
models benefit from insights learned by strong devices.

4 ANALYSIS ON GENERALIZATION BOUND

In this section, we analyze RecipFL method theoretically and estab-
lish a generalization bound.

Consider a training set on clients D𝑚 =

{(
𝑥
(𝑚)
𝑖

, 𝑦
(𝑚)
𝑖

)}𝑁
𝑖=1

for
some natural number 𝑁 ≥ 1, i.e. we sample uniformly 𝑁 training
data from each data distribution P𝑚 on client𝑚 for𝑚 = 1, · · · , 𝑀 .

Assume the loss function ℓ takes value in [0, 1], or equivalently
with rescaling, ℓ is bounded. Let 𝑑 be the dimension of the graph
hypernetwork parameter 𝜙 and assume 𝜙 ∈ [−𝑅, 𝑅]𝑑 for some
large 𝑅 > 0. Finally, assume the loss 𝑙 is Lipschitz with respect to 𝜙
with Lipschitz constant𝐾 > 0, i.e. |ℓ (𝑓𝑚 (𝑥 ;GHN(G𝑚, 𝑎𝑚 ;𝜙)) , 𝑦)−
ℓ (𝑓𝑚 (𝑥 ;GHN(G𝑚, 𝑎𝑚 ;𝜙 ′)) , 𝑦) | ≤ 𝐾 ∥𝜙 − 𝜙 ′∥ for all 𝑥,𝑦 and𝑚 =

1, . . . , 𝑀 . Here ∥ · ∥ denotes the Euclidean distance on R𝑑 . Define
the expected loss as:

L(𝜙) = 1
𝑀

𝑀∑︁
𝑚=1
E(𝑥,𝑦)∼P𝑚 ℓ (𝑓𝑚 (𝑥 ; (G𝑚, 𝑎𝑚 ;𝜙)), 𝑦). (10)

Theorem 4.1. If the number of samples of each client’s data dis-
tribution satisfies

𝑁 ≥ max

{
4𝑑
𝑀𝜖2

log

⌈
4𝑅𝐾
√
𝑑

𝜖

⌉
+ 4
𝑀𝜖2

log
4
𝛿
,
1
𝜖2

}
, (11)

then with probability at least 1 − 𝛿 with respect to the probability
distribution on 𝑫 = {𝑫𝑚}𝑀𝑚=1, L(𝜙) < L̂(𝜙,𝑫) + 𝜖 for every 𝜙 .

The proof and more details are given in the Appendix. From
Equation 11, we observe that the number of training samples 𝑁
per device required for generalization is negatively related to the
number of devices𝑀 , which suggests that introducing new weak
devices to the system can help lower the threshold for generaliza-
tion. Moreover, when there is a strong device that possesses a large
amount of data, it can also lower the threshold for weak devices.
For example, if there is one strong device and𝑀 weak devices, we
can regard the strong one as 𝑘 virtual devices, which increases the
total number of devices to𝑀 + 𝑘 , and thereby lower the threshold
for the number of samples on weak devices. The only requirement
is that the strong device then needs to take on 𝑘 times more data
samples than that is required for a weak device. In Section 5.4, we
show how the data allocation on strong and weak devices affects
the performance through exploratory studies. The results of the
experiment align with our theoretical findings.

5 EXPERIMENTS

5.1 Experiment Setup

We summarize the configurations of the experiments in Table 2.
Details are presented as follows.
Datasets. We evaluate RecipFL on the image classification task
with CIFAR-10 [19], CIFAR-100 [19], MNIST [21], and the natural
language inference task with MNLI [37]. We simulate quantity skew
where strong devices possess a dominant amount of data, as it often
occurs in realistic resource skew environments. We allocate 50%
of the entire dataset to the large devices, while the small devices

Table 1: RecipFL is compatible with various ways of model

scaling, showing more flexibility than existing solutions.

Scaling Strategy HeteroFL InclusiveFL FlexiFed DepthFL RecipFL (ours)

depth-wise ✓ ✓ ✓ ✓
width-wise ✓ ✓

architecture-wise ✓

(b) depth-wise (c) width-wise (d) architecture-wise(a) original model

,#

+#

,$
,#

+#
+$

layer (color represents operations)

Figure 4: Illustration of model scaling strategies. The rectan-

gle blocks represent the layers in neural networks. Different

colors indicate different operations (e.g., convolution).

evenly share the remaining half. This ensures the total amount of
the data owned by weak devices is comparable to that owned by
strong devices, making it possible for weak devices to contribute
to the model enhancement of strong devices. Note that we conduct
exploration studies in Section 5.4 to investigate the impact of data
ratio by changing this configuration. To simulate non-IID client
distributions, we follow the prior work [11, 15] and employDirichlet
distribution 𝐷𝑖𝑟 (𝛼 = 0.5) to sample the class distribution for every
client. For the large device, we assume it follows the universal
distribution due to its substantial data volume.
Model architectures. To evaluate the robustness of our frame-
work, we experiment with various model architectures. The large
models include ResNet-18 [8], DenseNet-121 [12], LeNet-5 [21]
and BERT [4]. Our framework is compatible with different ways
of model scaling and we test all three scaling strategies shown in
Figure 4. For depth-scaling, we follow [15] and regard the first block
of ResNet-18 and DenseNet-121 as the small models. For width-
scaling, we follow [5] and shrink the channels and hidden layers
of the large model based on a scaling ratio. In order to achieve
comparable model sizes with depth-scaling, we carefully set the
scaling ratio for width-scaling by comparing the parameters in the
depth-scaled models to those in the large models. In addition, we
craft a smaller version of LeNet-5 which reserves the first block
of LeNet-5 and scales the rest layers along the width. By doing
this, we enable both depth- and width-wise aggregation for the
comparison of existing methods. For architecture-wise scaling, We
use DistilBERT [31] as the smaller version of BERT.
Enabling Fine-tuning from Pretrained Models. RecipFL can
support fine-tuning by inserting adapters [10], a small set of new
parameters, and classification heads into pretrained models. During
training, only the adapters and classification heads are updated
and communicated between the server and clients, while the other
layers are fixed at local. We initialize BERT2 and DistilBERT3 with
pretrained weights provided by HuggingFace.
2https://huggingface.co/bert-base-uncased
3https://huggingface.co/distilbert-base-uncased

5

https://huggingface.co/bert-base-uncased
https://huggingface.co/distilbert-base-uncased

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Federated Learning Configurations.

Dataset
of devices Data allocation (%)

Large model
of parameters

Pretrained?
Strong Weak Strong Weak Original Depth-scaled Width-scaled

CIFAR-10 1 5 50% 10% ResNet-18 11M 450K 444K ✗

CIFAR-100 1 50 50% 1% DenseNet-121 1M 258K 276K ✗

MNIST 2 100 25% 0.5% LeNet-5 44K 5.6K (scaled in depth & width) ✗

MNLI 1 20 50% 2.5% BERT 110M 67M (DistilBERT) ✓

Table 3: Experiment results (average accuracy and standard deviation). RecipFL consistently outperforms the compared

methods across all datasets and model scaling strategies, benefiting both strong and weak devices.

Scaling Method
CIFAR-10 CIFAR-100

Strong Weak Strong Weak

Depth

AllSmall 64.34±2.14 68.50±3.42 17.86±2.56 25.56±3.11
ExclusiveFL 84.85±1.85 59.11±4.22 32.21±3.81 19.22±2.07
FlexiFed [36] 82.86±1.77 67.66±3.93 28.60±3.48 27.84±2.98
InclusiveFL [28] 83.22±0.47 67.66±3.14 18.98±3.49 28.71±2.87
DepthFL [15] 73.90±1.49 78.16±1.48 22.08±3.58 36.83±2.87
RecipFL 85.28±0.22 78.65±1.35 41.63±2.24 45.52±3.12

Width

AllSmall 82.86±1.77 78.90±2.87 29.80±3.32 37.90±2.83
ExclusiveFL 83.96±1.97 70.65±3.99 32.22±6.66 24.49±3.52
HeteroFL [5] 84.76±1.19 77.93±2.92 26.51±2.70 39.05±2.82
RecipFL 85.06±0.13 82.88±1.29 43.64±2.84 42.00±3.88

Method
MNIST MNLI

Strong Weak Strong Weak

AllSmall 94.84±1.34 92.01±3.53 73.47±0.52 82.13±2.89
ExclusiveFL 96.21±0.59 83.59±3.58 80.20±0.20 70.52±6.04
FlexiFed [36] 96.13±1.04 90.15±4.78 79.65±0.18 82.31±6.15
InclusiveFL [28] 91.18±1.29 87.42±3.35 79.87±0.30 81.17±4.31
DepthFL [15] 96.92±0.68 92.94±2.72 77.11±0.90 80.92±6.64
HeteroFL [5] 83.47±1.96 79.17±6.71 79.65±0.18 82.31±6.15
RecipFL 97.99±0.58 95.44±2.28 82.78±0.57 83.37±4.72

Comparedmethods. First, we construct two naive baselines based
on the classical federated learning algorithm FedAvg [29]:
• AllSmall: All clients deploy the small models to compromise

the smallest running capacity and conduct federated learning.
• ExclusiveFL: Clientswith the same level of capacity are equipped
with the same model, i.e., strong devices deploy large models
while weak devices deploy small models. Each type of device
performs federated learning exclusively. When there is only 1
strong device, it conducts centralized learning.

The performance of weak devices under AllSmall and that of strong
devices under ExclusiveFL serve as reference points for assessing
whether a method enhances the performance of weak or strong
devices. We then compare RecipFL with state-of-the-art methods
for federated learning with heterogeneous models:
• HeteroFL [5] adopts width-scaling. The channels and hidden

layers are scaled according to a fixed ratio. The global layer
updates a subset of weight parameters correspondingly from
scaled layers and updates all the parameters from unscaled layers
by weight averaging.

• FlexiFed [36] identifies common base layers across client models
and clusters personal layers into groups. The same group of
personal layers have identical operations and sizes. Then, it fuses
the knowledge contained in common base layers and clustered
personal layers by weight averaging.

• InclusiveFL [28] adopts depth scaling. The common base layers
are aggregated via weight averaging. It also distills knowledge
from the classifier of the large model to its shallow counterpart
by calculating a gradient momentum as the average over updates

of the deep layers (pruned in the small model) in the large model
and injecting it to the last encoding layer in the small model.

• DepthFL [15] scales the large model along the depth and creates
local models with different depths and classifiers. The shared lay-
ers are aggregated (i.e., averaged) across the clients. It is further
equipped with a self-distillation strategy to transfer knowledge
among deep and shallow classifiers if available at local.

Table 1 showcases the downscaling strategies that prior methods
work on. For architecture-wise scaling settings, these methods
identify shared layers (e.g. classification heads) for aggregation.
Note that HeteroFL can be generalized to FlexiFed for the common
base layers reserved in depth-scaling settings (i.e., the scaling ratio
of those layers is 1).
Federated learning configuration. We evaluate each client model
on its respective test data which is sampled from the client’s data
distribution. To obtain personalized models, for every compared
method, we fine-tune the client models on their local training
dataset for one round after receiving the model weights from
the server. During training, the server randomly samples |S𝑡 | =
min(𝑀, 10) clients per communication round. We set the number
of communication rounds 𝑇 according to the convergence speed
of each task. Specifically, we set 𝑇 = 50 rounds for CIFAR-10 and
MNLI, 𝑇 = 100 rounds for MNIST, and 𝑇 = 500 rounds for CIFAR-
100. Since RecipFL trains both small and large models on strong
devices to enable knowledge transfer, to ensure a fair comparison,
we also train both types of models on strong devices for the com-
pared methods (i.e., FlexiFed, HeteroFL, InclusiveFL, and DepthFL).
During evaluation, only the target client model is evaluated for

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

How Few Davids Improve One Goliath: Federated Learning in Resource-Skew Edge Computing Environments Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

0.1 0.5 0.9

Data Ratio of Weak Devices

0.8

0.9

1

A
C

C
 [
W

e
a
k
]

0.1 0.5 0.9

Data Ratio of Weak Devices

0.6

0.8

1

A
C

C
 [
S

tr
o
n
g
]

RecipFL AllSmall ExclusiveFL

(a) Impact of data ratio

10
1

10
2

10
3

of Weak Devices

0.8

0.9

1

A
C

C
 [
W

e
a
k
]

10
1

10
2

10
3

of Weak Devices

0.6

0.8

1

A
C

C
 [
S

tr
o
n
g
]

RecipFL AllSmall ExclusiveFL

(b) Scalability: Varying weak devices

10
0

10
1

10
2

Strong Devices

0.7

0.8

0.9

1

A
C

C
 [

W
e

a
k
]

10
0

10
1

10
2

Strong Devices

0.7

0.8

0.9

1

A
C

C
 [

S
tr

o
n

g
]

RecipFL AllSmall ExclusiveFL

(c) Degree of skewness: Varying strong devices

Figure 5: Exploratory Studies.RecipFL exhibits superior scalability and robustness across a range of resource skewness scenarios

compared to the baselines, consistently enhancing the performance of both strong and weak devices.

Figure 6: Ablation study: Performance of weak devices.

every client. The experiments are repeated 5 times. Following [25],
we report the accuracy of the last 20% rounds averaged over strong
and weak devices respectively, along with standard deviations.

5.2 Main Experiment Results

The experiment results are presented in Table 3. Note that the
average accuracy on weak devices may appear higher than that on
strong devices since the evaluation is based on every client’s data
distribution and the weak devices may only have a small subset of
classes, making it easier to get higher accuracy. By comparing the
performance of the state-of-the-art methods (HeteroFL, FlexiFed,
InclusiveFL, and DepthFL) with the two naive baselines (AllSmall
and ExclusiveFL), we see that existing methods can often achieve
equal or superior performance compared to training small models
on all devices (AllSmall). However, they do not perform as well
as ExclusiveFL on strong devices. Furthermore, there is no scaling
strategy that consistently outperforms others. For example, width-
scaling works better than depth-scaling on CIFAR-10 and CIFAR-
100with the ResNet andDenseNet architectures but it (i.e., the result
of HeteroFL) lags behind depth-scaling on MNIST with LeNet.

RecipFL consistently outperforms the compared methods across
all datasets, regardless of the model scaling strategies, demonstrat-
ing its capability to generalize knowledge across different model
architectures. Notably, RecipFL shows its ability to improve the
model performance on both strong devices and weak devices. More-
over, when fine-tuning from the pretrained weighted of BERT and
DistilBERT, RecipFL also shows a better performance compared to
the baselines. More details about the performance with respect to
the communication round are presented in Figure 7 in the Appen-
dix. In general, RecipFL achieves a better performance and is more
stable than the compared methods.

5.3 Ablation Study

In Section 3.3, we introduced the knowledge transfer mechanism
on the base of our graph hypernetwork design to further enhance

the performance of small models. To evaluate the effectiveness of
this design, we craft an ablated version of RecipFL without knowl-
edge transfer, denoted as RecipFLw/o KT. We evaluate the model
performance on weak devices and compare the performance of Re-
cipFL, RecipFLw/o KT, AllSmall, and DepthFL (the best-performing
baseline in depth scaling setting). The results are presented in Fig-
ure 6. We observe that RecipFL w/o KT already exhibits significant
improvements over the naive baseline AllSmall across all datasets,
and it can often outperform the state-of-the-art method DepthFL.
However, the comparison between RecipFL and RecipFL w/o KT
indicates that the inclusion of knowledge transfer leads to even bet-
ter small models. The knowledge (i.e., prediction logits and feature
distribution) from strong devices contribute to the improvement.

5.4 Exploratory Studies

To gain deeper insights into the behavior of RecipFL across di-
verse resource-skew conditions, we conduct exploratory studies
using the MNIST dataset with the LeNet architecture and involve
comparisons between RecipFL, AllSmall, and ExclusveFL.
Impact of data ratio between two types of devices. We aim to
understand how much data on weak devices is required in order to
provide improvement for strong devices. We vary the ratio of total
data owned by each type of device to the entire dataset among {0.1,
0.5, 0.9}. The number of devices remains the same as in the main ex-
periment, i.e., 100 weak devices and 2 strong devices. The results are
presented in Figure 5(a). On weak devices, we observe a decrease in
performance as the total data ratio increases. This can be attributed
to the reduced availability of data samples for training the large
models, resulting in decreased large model performance, and con-
sequently, the knowledge transferred to the small models becomes
less effective in enhancing their performance. This observation also
aligns with the implication derived from the theoretical analysis on
the generalization bound: When the number of devices𝑀 remains
unchanged, weak devices need more training samples to achieve
generalization if the data quantity on the large devices decreases.
On strong devices, we observe that as the data ratio increases, the
large model benefits from a larger quantity of data for training.
Remarkably, when the data ratio allocated to the large model is
small (less than 50%), the performance gap between RecipFL and
ExclusiveFL becomes more pronounced. This observation suggests
that when the total data owned by weak devices is comparable to
that owned by strong devices, the weak devices are more likely to
contribute significantly to the model improvement of the strong
devices. Based on these findings, we recommend that the federated

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

system involves a substantial number of weak devices, as this can
lead to substantial improvements for strong devices.
Scalability and degree of skewness. To evaluate the scalability
of the federated systems, First, we vary the number of weak devices
among {10, 100, 1000}. The number of strong devices and the data
ratio are kept the same as in the main experiments where the two
large devices own 50% of the whole dataset and the weak devices
share the rest. The results are shown in Figure 5(b). When increas-
ing the number of weak devices, the strong devices get selected for
local updates less frequently. Consequently, within the same com-
munication rounds, the performance of ExclusiveFL and AllSmall
on strong devices degrades. Conversely, the overall sampling rate
of weak devices becomes higher as the number of weak devices
increases, leading to improved performance of weak devices. In
contrast, RecipFL demonstrates an impressive capability to mem-
orize client model weights and generalize them across different
architectures effectively. As a result, the clients can achieve good
performance even with a reduced client sampling ratio. This sug-
gests RecipFL is more scalable than the baselines. Then, we increase
the number of strong devices from 2 to 5 and 50 while keeping the
number of weak devices constant at 100. The strong devices equally
share 50% of the entire dataset. Figure 5(c) presents the results. We
see that RecipFL always achieve better performance than the two
baselines. These results highlight the robustness of RecipFL across
varying degrees of skewness, whether in a relatively balanced envi-
ronment (with a strong-to-weak device ratio of 1:2) or an extremely
skewed one (with a strong-to-weak device ratio of 1:500).

6 RELATEDWORK

Federated Learning with Heterogeneous Models. Federated
learning [29] has emerged as a privacy-preserving approach to
collaborative machine learning across decentralized devices. Tradi-
tional federated learning methods [14, 17, 18, 24, 40] have primarily
focused on homogeneous model architectures, where all partic-
ipating devices train identical models. These methods often fall
short in addressing the inherent system heterogeneity found in
real-world edge computing environments. As such, the exploration
of federated learning in the context of diverse computational capac-
ities has given rise to novel approaches that facilitate collaboration
among heterogeneous models [1, 6, 23, 39]. Existing work explores
two directions to facilitate the collaboration among devices with
different running capacities: (1) how to scale the large model for
weak devices and (2) how to effectively aggregate the models with
different sizes. In the first direction, methods are proposed to prune
the model along the model depth [15, 28] and layer width [5, 22, 30].
As the first work to deal with the model heterogeneity problem
in federated learning, HeteroFL [5] proposes to scale the width of
hidden channels in the large model to reduce the computation com-
plexity. More recently, DepthFL [15] proposes to prune the deepest
layers in the large model to work as small client models. It reports
better performance than width scaling. In the second direction,
typical practices [36] are to identify shared patterns (i.e., layers)
in local models and aggregate the common parts. Recent methods
like InclusiveFL [28] and DepthFL [15] take one step further which
leverage knowledge distillation for transferring knowledge among
deeper layers and shallow layers to enhance the performance of

the small models. These approaches have shown promise in accom-
modating device-specific requirements and resource constraints.
However, the reliance on a particular scaling strategy and the naive
weight averaging-based aggregation constrain model performance
in the presence of resource-skewness. In this work, we design a
more effective way to generalize knowledge about model weights
across different models by training a graph hypernetwork.
Hypernetworks. A hypernetwork [7] is a neural network that
predicts the model parameters of another neural network (i.e., the
target network). Hypernetworks have demonstrated the potential
in meta-learning scenarios [35], facilitating fast adaptation to new
tasks, as they capture the common knowledge among tasks via the
weight generation mechanism. Prior work [32] has explored its use
in federated learning by training a hypernetwork at the server to
generate personalized model weights while preserving the effec-
tive parameter-sharing feature of hypernetworks. This previous
work uses a linear-structured hypernetwork that only works with
homogeneous model architectures. Graph hypernetwork [16, 38]
was originally proposed for neural architecture search as it can
effectively encode the computational graph information of vari-
ous neural networks. There has been an initial try on leveraging
graph hypernetworks for generating weights across different client
models [27]. However, the prior work trains local hypernetworks
at clients and aggregates them by weight averaging at the server
following a typical federated training process which requires high
computational budgets at clients and is impractical for resource-
constrained small devices. In contrast, RecipFL equips the graph
hypernetwork at the server and we design ways to update the
graph hypernetwork based on predicted weights and clients’ feed-
back. The computations of hypernetwork are executed only by the
server and therefore do not add any additional communication or
computation overhead to the edge devices.

7 CONCLUSIONS AND FUTUREWORK

We study the problem of federated learning in the presence of re-
source skewness among devices, specifically, when the majority are
weak devices and there are only limited (1 or 2) strong devices. We
show that existing methods do not guarantee performance improve-
ment for both types of devices. We propose RecipFL framework that
trains a central graph hypernetwork to enable the collaboration
of clients with heterogeneous model architectures in order to fit
specific running capacities. RecipFL is agnostic to model scaling
strategies and is able to generalize knowledge about model weights
across different neural network architectures. Our experiment re-
sults show that RecipFL can outperform state-of-the-art methods
with significant margins and demonstrate that even weak devices
can contribute effectively to the learning system, providing strong
devices with an incentive to participate. In future work, we plan to
design mechanisms to adaptively adjust the model size in response
to the dynamic changes in the running capacity of devices caused
by user usage. This will enable efficient utilization of compute re-
sources during learning. Together with our proposed framework,
we envision our solutions will create a viable, more powerful, and
useable alternative to current large model services, alleviating pri-
vacy and efficiency concerns by facilitating edge-based learning
without the need to transmit user input to central servers.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

How Few Davids Improve One Goliath: Federated Learning in Resource-Skew Edge Computing Environments Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES

[1] Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. 2022. Fedrolex: Model-
heterogeneous federated learning with rolling sub-model extraction. Advances
in Neural Information Processing Systems 35 (2022), 29677–29690.

[2] Jimmy Ba and Rich Caruana. 2014. Do deep nets really need to be deep? Advances
in neural information processing systems 27 (2014).

[3] Jonathan Baxter. 2000. A model of inductive bias learning. Journal of artificial
intelligence research 12 (2000), 149–198.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

[5] Enmao Diao, Jie Ding, and Vahid Tarokh. 2020. HeteroFL: Computation and
communication efficient federated learning for heterogeneous clients. arXiv
preprint arXiv:2010.01264 (2020).

[6] Xiuwen Fang and Mang Ye. 2022. Robust federated learning with noisy and
heterogeneous clients. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 10072–10081.

[7] David Ha, Andrew Dai, and Quoc V. Le. 2016. HyperNetworks.
arXiv:1609.09106 [cs.LG]

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[9] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[10] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin
De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In International Conference on
Machine Learning. PMLR, 2790–2799.

[11] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. 2019. Measuring the
effects of non-identical data distribution for federated visual classification. arXiv
preprint arXiv:1909.06335 (2019).

[12] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 4700–4708.

[13] Zhida Jiang, Yang Xu, Hongli Xu, ZhiyuanWang, Chunming Qiao, and Yangming
Zhao. 2022. Fedmp: Federated learning through adaptive model pruning in
heterogeneous edge computing. In 2022 IEEE 38th International Conference on
Data Engineering (ICDE). IEEE, 767–779.

[14] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian
Stich, and Ananda Theertha Suresh. 2020. SCAFFOLD: Stochastic Controlled
Averaging for Federated Learning. In ICML. PMLR, 5132–5143.

[15] Minjae Kim, Sangyoon Yu, Suhyun Kim, and Soo-Mook Moon. 2023. DepthFL:
Depthwise Federated Learning for Heterogeneous Clients. In The Eleventh Inter-
national Conference on Learning Representations.

[16] Boris Knyazev, Michal Drozdzal, GrahamWTaylor, and Adriana Romero Soriano.
2021. Parameter prediction for unseen deep architectures. Advances in Neural
Information Processing Systems 34 (2021), 29433–29448.

[17] Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. 2015. Federated op-
timization: Distributed optimization beyond the datacenter. arXiv preprint
arXiv:1511.03575 (2015).

[18] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies
for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).

[19] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learningmultiple layers of features
from tiny images. (2009).

[20] Fan Lai, Xiangfeng Zhu, Harsha V Madhyastha, and Mosharaf Chowdhury.
2021. Oort: Efficient federated learning via guided participant selection. In 15th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
21). 19–35.

[21] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[22] Ang Li, Jingwei Sun, Pengcheng Li, Yu Pu, Hai Li, and Yiran Chen. 2021. Hermes:
an efficient federated learning framework for heterogeneous mobile clients. In
Proceedings of the 27th Annual International Conference on Mobile Computing and
Networking. 420–437.

[23] Ang Li, Jingwei Sun, Xiao Zeng, Mi Zhang, Hai Li, and Yiran Chen. 2021. Fed-
mask: Joint computation and communication-efficient personalized federated
learning via heterogeneous masking. In Proceedings of the 19th ACM Conference
on Embedded Networked Sensor Systems. 42–55.

[24] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. 2020. Federated optimization in heterogeneous networks.
Proceedings of Machine learning and systems 2 (2020), 429–450.

[25] Xin-Chun Li and De-Chuan Zhan. 2021. Fedrs: Federated learning with restricted
softmax for label distribution non-iid data. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining. 995–1005.

[26] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015. Gated
graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015).

[27] Or Litany, Haggai Maron, David Acuna, Jan Kautz, Gal Chechik, and Sanja
Fidler. 2022. Federated learning with heterogeneous architectures using graph
hypernetworks. arXiv preprint arXiv:2201.08459 (2022).

[28] Ruixuan Liu, Fangzhao Wu, Chuhan Wu, Yanlin Wang, Lingjuan Lyu, Hong
Chen, and Xing Xie. 2022. No one left behind: Inclusive federated learning over
heterogeneous devices. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 3398–3406.

[29] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Net-
works from Decentralized Data. In AISTATS. PMLR, 1273–1282.

[30] Chaoyue Niu, Fan Wu, Shaojie Tang, Lifeng Hua, Rongfei Jia, Chengfei Lv,
Zhihua Wu, and Guihai Chen. 2020. Billion-scale federated learning on mobile
clients: A submodel design with tunable privacy. In Proceedings of the 26th Annual
International Conference on Mobile Computing and Networking. 1–14.

[31] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108 (2019).

[32] Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. 2021. Personalized
federated learning using hypernetworks. In International Conference on Machine
Learning. PMLR, 9489–9502.

[33] Chunlin Tian, Li Li, Zhan Shi, JunWang, and ChengZhong Xu. 2022. HARMONY:
Heterogeneity-Aware Hierarchical Management for Federated Learning System.
In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 631–645.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[35] Johannes Von Oswald, Christian Henning, Benjamin F Grewe, and João
Sacramento. 2019. Continual learning with hypernetworks. arXiv preprint
arXiv:1906.00695 (2019).

[36] Kaibin Wang, Qiang He, Feifei Chen, Chunyang Chen, Faliang Huang, Hai
Jin, and Yun Yang. 2023. FlexiFed: Personalized Federated Learning for Edge
Clients with Heterogeneous Model Architectures. In Proceedings of the ACMWeb
Conference 2023. 2979–2990.

[37] Adina Williams, Nikita Nangia, and Samuel R Bowman. 2017. A broad-coverage
challenge corpus for sentence understanding through inference. arXiv preprint
arXiv:1704.05426 (2017).

[38] Chris Zhang, Mengye Ren, and Raquel Urtasun. 2018. Graph hypernetworks for
neural architecture search. arXiv preprint arXiv:1810.05749 (2018).

[39] Jie Zhang, Song Guo, Xiaosong Ma, Haozhao Wang, Wenchao Xu, and Feijie Wu.
2021. Parameterized knowledge transfer for personalized federated learning.
Advances in Neural Information Processing Systems 34 (2021), 10092–10104.

[40] Jiayun Zhang, Xiyuan Zhang, Xinyang Zhang, Dezhi Hong, Rajesh K. Gupta,
and Jingbo Shang. 2023. Navigating Alignment for Non-identical Client Class
Sets: A Label Name-Anchored Federated Learning Framework. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
ACM.

9

https://arxiv.org/abs/1609.09106

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A APPENDIX

A.1 More Experiment Results

Performance w.r.t. Communication Rounds. Figure 7 shows
the performance of all compared methods with respect to the com-
munication round. We observe that RecipFL often achieve higher
accuracy in fewer rounds compared to the baseline methods.

A.2 Theoretical Derivations

Notations. We will give the proof of Theorem 4.1 using the results
of Baxter [3]. Let us introduce the notations and definitions before
we state a key theorem from Baxter (Theorem 18 and Corollary 19)
from which the main results of the paper are derived.

LetX be the input space andY the output space. Let P1, . . . ,P𝑀
be𝑀 probability measures on X ×Y. For every𝑚 = 1, . . . , 𝑀 , sam-
ple (𝑥 (𝑚) , 𝑦 (𝑚)) from the distributionP𝑚 , and abbreviateL𝑚 (𝜙) =
ℓ

(
𝑓𝑚

(
𝑥 (𝑚) ;GHN(G𝑚, 𝑎𝑚 ;𝜙)

)
, 𝑦 (𝑚)

)
, where 𝜙 represents the pa-

rameters of the graph hypernetwork. Define a metric 𝑑P on R𝑑
by

𝑑P (𝜙, 𝜙 ′) =
1
𝑀
E(𝒙,𝒚)∼P

����� 𝑀∑︁
𝑚=1
L𝑚 (𝜙) −

𝑀∑︁
𝑚=1
L𝑚 (𝜙 ′)

����� , (12)

where P = P1 × · · · × P𝑀 is the product probability measure,
and (𝒙,𝒚) = ((𝑥 (1) , 𝑦 (1)), . . . , (𝑥 (𝑀) , 𝑦 (𝑀))). Define the covering
number of a subset 𝐸 of R𝑑 by closed ball of radius 𝜖 with respect
to the metric 𝑑P by

N(𝜖, 𝐸, 𝑑P) = inf{𝑛 : ∃𝜙1, · · · , 𝜙𝑛,∀𝜙 ∈ 𝐸, ∃ 𝑗, 𝑑P (𝜙, 𝜙 𝑗) ≤ 𝜖}
(13)

and the capacity of 𝐸 ⊂ R𝑑 by

C(𝜖, 𝐸) = sup
P
N(𝜖, 𝐸, 𝑑P), (14)

where the supremum is taken over all product probability measures
on (X,Y)𝑀 . The capacity measures the complexity of the hypoth-
esis space in much the same way as VC-dimension measures the
complexity of a set of Boolean functions. Here our hypothesis space
is indexed by 𝜙 ∈ R𝑑 . Now we are ready to state the theorem from
Baxter applied in our RecipFL framework.

Theorem A.1. Let 𝑫 = {𝑫𝑚}𝑀𝑚=1 be generated by 𝑁 independent
trials from (X ×Y)𝑀 according to some product probability measure
P = P1 × · · · × P𝑀 . If

𝑁 ≥ max

4
𝑀𝜖2

log
4C

(
𝜖
4 ,R

𝑑
)

𝛿
,
1
𝜖2

 , (15)

then

P

(
𝑫 : sup

𝜙

|L(𝜙) − L̂(𝜙,𝑫) | > 𝜖
)
≤ 𝛿. (16)

Proof of Theorem 4.1. It suffices to bound C
(
𝜖
4 ,R

𝑑
)
. Notice

that by the Lipschitz assumption on the loss function 𝑙 , |L𝑚 (𝜙) −
L𝑚 (𝜙 ′) | ≤ 𝐾 ∥𝜙 − 𝜙 ′∥ for all𝑚 = 1, · · · , 𝑀 . This implies by (12),
for all 𝜙, 𝜙 ′ ∈ R𝑑 ,

𝑑P (𝜙, 𝜙 ′) ≤
1
𝑀

𝑀∑︁
𝑚=1

��L𝑚 (𝜙) − L𝑚 (𝜙 ′)�� ≤ 𝐾 ∥𝜙 − 𝜙 ′∥ . (17)

20 40

0.4

0.6

0.8

A
C

C

CIFAR-10 (depth)

200 400
0

0.2

0.4

CIFAR-100 (depth)

30 60 90
0.1

0.4

0.7

1
MNIST

20 40

0.3

0.6

0.9

A
C

C

CIFAR-10 (depth)

200 400
0

0.2

0.4

CIFAR-100 (depth)

30 60 90

0.1

0.4

0.7

1
MNIST

20 40

0.4

0.6

0.8

A
C

C

CIFAR-10 (width)

200 400
0

0.2

0.4

CIFAR-100 (width)

20 40

Communication Round

0.3

0.6

0.9

A
C

C

CIFAR-10 (width)

200 400

Communication Round

0

0.2

0.4

CIFAR-100 (width)

20 40

Communication Round

0.5

0.7

MNLI

W
e

a
k

S
tr

o
n

g
W

e
a

k
S

tr
o

n
g

ExclusiveFL AllSmall FlexiFed InclusiveFL

DepthFL HeteroFL RecipFL (ours)

20 40
0.6

0.7

0.8

MNLI

Figure 7: Performance w.r.t. communication round

So ∥𝜙 − 𝜙 ′∥ ≤ 𝜖
𝐾

implies 𝑑P (𝜙, 𝜙 ′) ≤ 𝜖 . Now take an integer
𝑝 > 𝑅𝐾

√
𝑑/𝜖 and decompose [−𝑅, 𝑅]𝑑 as the union of 𝑝𝑑 congruent

cubes by dividing [−𝑅, 𝑅] into 𝑝 pieces of equal length. The side
length of these cubes is 2𝑅/𝑝 and so each cube is contained in a
ball of radius 𝑅

√
𝑑/𝑝 < 𝜖

𝐾
centered at the center of the cube. This

proves the covering number N(𝜖, 𝐸, 𝑑P) ≤ ⌈𝑅𝐾
√
𝑑/𝜖⌉𝑑 for all P.

So, C
(
𝜖
4 ,R

𝑑
)
≤ ⌈4𝑅𝐾

√
𝑑/𝜖⌉𝑑 . □

10

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Resource-Skew Computing Environments

	3 Our RecipFL Framework
	3.1 Federated Training
	3.2 Weight Generation with Graph Hypernetwork
	3.3 Knowledge Transfer from Strong to Weak Devices

	4 Analysis on Generalization Bound
	5 Experiments
	5.1 Experiment Setup
	5.2 Main Experiment Results
	5.3 Ablation Study
	5.4 Exploratory Studies

	6 Related Work
	7 Conclusions and Future Work
	References
	A Appendix
	A.1 More Experiment Results
	A.2 Theoretical Derivations

