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Abstract

Knowledge reasoning, helping overcome the
incompleteness issue of knowledge graph(KG),
significantly contributes to the development of
large KG, which consists of relations and con-
stants. Rule mining studies the problem of cap-
turing interpretable patterns over KG, which is
one of the key tasks of knowledge reasoning.
However, previous works mainly focus on the
combination of different relations, and are lim-
ited for ignoring the importance of constants.
In this paper, we propose that constants should
be considered in rule mining process, and in-
troduce an Elegant Differentiable rUle learn-
ing with Constant mEthod (EduCe). Based
on soft constant operator and dynamic weight,
the model we proposed can mine more diverse
and accurate logical rules while controlling the
number of parameters, which is also a great
challenge to this problem. Experiment results
on several benchmark datasets demonstrate the
effectiveness and accuracy of our approach.

1 Introduction

Vast amounts of knowledge based on web about ab-
stract and real-world is always a major component
of Artificial Intelligence (AI). One way to repre-
sent knowledge is Knowledge Graph (KG), and
there are well known KGs such as Wordnet (Miller,
1995) and Freebase (Bollacker et al., 2008) have
been built. Such KGs represent facts as a graph of
constants(e.g., iPhone, Apple) connected by rela-
tions(e.g., brandls), which could be formally rep-
resented as a set of binary grounded atoms, called
triplets or facts, such as brandls(iPhone, Apple).
Due to the incompleteness of KGs, many meth-
ods have been proposed to KG completion in-
cluding knowledge graph embedding(KGE) (Wang
et al., 2017; Bordes et al., 2013; Lin et al., 2015;
Yang et al., 2015; Trouillon et al., 2016; Dettmers
et al., 2018; Sun et al., 2019), graph neural net-
works (Schlichtkrull et al., 2018; Vashishth et al.,
2020; Nathani et al., 2019; Bansal et al., 2019) and
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Figure 1: Examples of rules with and without constant.

rule learning (Meilicke et al., 2019; Ortona et al.,
2018a; Chen et al., 2016; Galarraga et al., 2013).
Compared to deep learning approaches like KGE,
rule learning is preferred due to its interpretabil-
ity and robustness in transfer tasks. To mine the
structure and confidence of rules at the same time
in a fast way, differentiable rule learning methods
(Yang et al., 2017; Sadeghian et al., 2019) are intro-
duced and attract many research interests in recent
years.

Existing work such as Neural-LP (Yang et al.,
2017) and DRUM (Sadeghian et al., 2019) learn
to sequentially compose the primitive operations
which are inspired by TensoLog (Cohen, 2016)
with gradient-based optimization. At each stage
of computation, they ’softly’ choose a subset of
TensorLog’s operation with high weight, which is
used to connect rule application with matrix multi-
plication. While their target is learning chain-like
logical rules such as livesin(X, Y) < worksA{(X, Z)
A locatedIn(Z, Y), and the model only focuses on
choosing suitable parameters of every relation for
each step.

But suppose we add another limitation factor to

the above rule and make it livesin(X, Y) < work-
SAHX, Z) A locatedIn(Z, Y) N isA(Z, HighSchool).



Obviously, the confidence is higher than the first
rule, since a high school is commonly located in
one city, while it is not the case for many large
companies because they usually have multiple of-
fices located in different cities, such as Google, and
usually there is only one city that a person lives in.
The atom isA(Z, HighSchool) is called a constant
atom which has one variable and a constant (High-
School), and the rules with such atoms are rules
with constants. Our goal in this paper is to enable
differentiable learning of rules with constants in
knowledge graphs, to facilitate higher completion
results and more accurate rule learning.

However, ensuring efficiency of this problem is
difficult. On the one hand, a KG usually contains
hundreds or even thousands of times as many con-
stants than relations, which makes the search space
for constant atoms much larger than variable atoms.
On the other hand, not only one constant atom is
possibly added in each step, which also leads to
higher time complexity.

In this paper, we propose a differentiable frame-
work named EduCe that can mine logical rules with
constants. In EduCe, we define a relevant operator
to select constants, a ’soft” way to use it, and dy-
namic weight mechanism to reduce the amount of
parameters.

Experimentally, we apply EduCe to several
knowledge graph datasets, and evaluate the capabil-
ity of EduCe on both link prediction and rule min-
ing tasks. The results show that EduCe is able to
recover rules containing constants and yield more
accurate prediction results compared to previous
differentiable rule learning methods, and even some
embedding methods. At the same time, the results
also show that rules with constants usually have
higher quality.

Thus our contributions are as follows:

* We draw attention to expanding the diversity
of target rules for differentiable rule learning
method and emphasize the importance of con-
stants to rule.

* We propose EduCe, a new end-to-end differ-
entiable rule learning method mining rules
with constants.

* We experimentally demonstrate that EduCe
outperforms existing differentiable rule learn-
ing methods, and even some embedding meth-
ods on link prediction task and successfully

outputs high quality symbolic rules with con-
stants.

2 Related work

2.1 Symbolic-based rule learning and
reasoning

The problem of learning collection of relational
rules is a type of statistical relational learning
(Koller et al., 2007), and it can also be called induc-
tive logic programming (ILP) (Muggleton, 1995)
when the learning process involves proposing new
logical rules. Although ILP methods can learn from
relational data, most methods in this field require
negative examples and can’t handle modern large
knowledge graph.

AMIE (Galérraga et al., 2013) concentrates on
association rule mining following two steps. The
first step is rule extending, which extends candidate
rules by several kinds of operations. The second
step is rule pruning according to the predefined
evaluation metrics like confidence. AMIE+ (Galéar-
raga et al., 2015) revises the rule extending process
and improves evaluation method. They suffer from
the predefined metrics and discrete counting.

Rudik (Ortona et al., 2018b) mine positive and
negative rules in knowledge graph, while the for-
mer class infers new facts in KG, and the latter
class is crucial for other tasks, such as detecting
erroneous triples. Anyburl (Meilicke et al., 2019)
propose an efficient way to mine rules, but the rule
it mined is hard to transfer to other KG.

2.2 Neural-based rule learning and reasoning

A common neural-based reasoning method for KG
is Knowledge Graph Embeddings (KGEs) (Wang
et al., 2017), which has been proved to be effective
for KGC. These methods embed entities and rela-
tions into vectors space and measure the true value
of triplets via calculation in vector space. Most
KGEs like TransE (Bordes et al., 2013), TransD
(Ji et al., 2015), TransH (Wang et al., 2014) and
DistMult (Yang et al., 2015), concentrate on en-
coding the true value of triplets constructed with
two entities and one relation. And KR-EAR (Lin
et al., 2016) propose to distinguish attributes and
relations in KG since attributes and relations ex-
hibit rather distinct characteristics, like entity set
size. It also inspires us to learn rules with constants
because attributes are more likely to participate in
partially grounded atoms in rules. Some of the
KGE:s such as DistMult (Yang et al., 2015) are also



used for rule learning based on well-trained relation
embeddings, while their performance is limited by
the huge search space as the incremental of the rule
length.

Some neural-based methods such as KALE (Guo
et al., 2016) and RUGE (Shu et al., 2017), learn the
entity and relation embeddings not only based on
triplets observed in KGs but also triplets inferred
from rules that are learned from symbolic-based
rule learning methods such as AMIE (Galarraga
et al., 2013). They benefit from symbolic-based
rule reasoning while they can’t conduct rule learn-
ing. Thus IterE (Zhang et al., 2019) learns rules
based on updated embedding at each iteration and
injects new facts inferred by these rules into KGE.

More recently, end-to-end differentiable rule
learning methods based on TensorLog (Cohen,
2016) are proposed. Neural-LP (Yang et al., 2017)
is the first differentiable rule learning method aim-
ing at learning probabilistic chain-like logic rules
with learning parameters and structure of rules si-
multaneously with the basic idea that expressing
the logical relationships between two entities by
matrix operations. Extensions based on Neural-
LP like DRUM (Sadeghian et al., 2019) are also
proposed. To extend the diversity of target rules,
Neural Logic Inductive Learning (NLIL) (Yang
and Song, 2019) tackles the non-chain-like rules by
incorporating a primitive statement. Neural-Num-
LP (Wang et al., 2019) extends Neural-LP to learn
the numerical rules, which is a great inspiration for
fully understanding the possible reasoning patterns.

3 Problem Formulation

Knowledge Graph G is composed by a set of
grounded atoms like {r(ej,es)lr € R, e, €
E, ey € £} where £ is a countable set of constants,
which is also called entities, and R is a set of binary
relations, respectively.

Rule is in the form of head < body, where
the head of rule is an atom and the body of rule
is a conjunction of atoms. Each atom is defined
asover RUE U X, where X is a countable set of
variables. Based on this, we define four kinds of
atoms, 7 (e, e2), 7 (X,e), r (e, X) and r (X,Y),
where upper-case letters are variables { X, Y} € X,
and lower-case letters {e, e1, e2} € £ are constants.
The first kind is also called fact that is barely used
in rules, and we name the second and third kinds
constant atom and the last one variable atom.

Rules without constants is in the following

form:

r(X, Y)«—rm (X, Z)AN..Arp(Zr_1, Y)
An example of chain-like rule is
livesIn(X,Y) <= worksAt(X, Z)NlocatedIn(Z,Y)

This type of rule is defined over only variable atoms
without taking constant atoms into consideration.

Rules with constants refer to rules whose body
is composed of variable atoms and constant atoms,
which is in the following form:

T(X, Y)«+nri (X, Z1)A (A Ti (Zl, €7i)> A...

i=1

constant atoms for the 1st step

the 1st step

Nrp(Zr-1, Y) A </< v (Zr, e%))

=1

constant atoms for the T'th step

the T'th step

where ¢! € £ are entities formed constant atoms.
T is the length of chain in the rule and n; is the
number of constant atoms related to each step of
the chain. More specifically, if 7' = 2, ny = 2 and
ng = 1, a rule with constants is like Figure 2(a).

Learning rules with constants is not easy since
the quantity of parameters to be learned could be
extremely large. In particular, for each step, there
are 2|R| possible relations to choose with automat-
ically inverse relations considered, and the number
of candidate constants to be chosen in constant
atoms is |£]. Thus intuitively, the time complexity
of learning rules with constants is

O (IR[" x (IR[IENT) (D

The first part in Equation 1 indicates selecting a
suitable relation to expand the path, and the second
part means choosing one or several constant atoms
for each step. As we can see, the time complex-
ity of this problem is enormous, which is a great
challenge to this problem.

4 Method

To enable differentiable rule learning of chain-like
rules, Neural-LP has reduced the first part in Equa-
tion 1 to O(T|R|). What we consider here is re-
ducing the complexity of constant atom selection,
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Figure 2: The form of rule with constants and Reasoning process of EduCe.

which is shown as the second part in Equation 1,
to facilitate constant rule learning. By using con-
stant operator and dynamic weight in EduCe frame-
work, we successfully reduced the complexity to
O(2T'|R|). Next, we will introduce the details of
EduCe, including the operators we define, model
architecture and training objectives, and describe
how to decode symbolic rules based on well-trained
EduCe.

4.1 Operators

Given a KG G = {r(ej,e2)|r € R,e1,€ E,e9 €
&}, we firstly represent each entity e; as an one-
hot vector v® € {0, 1}/€], and represent each rela-
tion ry, as an adjacent matrix M"* € {0, 1}/¢/xI¢]
where M = Lif r(e;, e5) € G, else M¥ = 0.

For an inference query (e, 7) to predict the tail
entity with head entity e; and relation r, in order to
conduct inference process, two kinds of operations
are necessary. One is path operator which maps one
entity to other entities following a certain relation,
the other one is constant operator selecting entities
that satisfy a specific constant atom.

Path Operator OF is already defined by
TensorLog and applied in previous works like
(Yang et al., 2017):

Op(vi,M"*) = vIM"* 2)
Via recursively applying path operators, path
queries could be answered by expanding path with
path operator.

Constant Operator O is an operator we de-
fine, with variables vector v?, a constant vector v°
and a relation matrix M"* as input and output vari-
ables satisfying given constant. For constant atom
(X, 7, c) where X € X,r € R and ¢ € £, with

X = e;, the constant operator could be framed as

OC(V’L" Mrk,Vc) —vio (VC(Mrk)T) (3)
N—
uck
where o stands for Hadamard product. As we can
see, a constant operator is determined by a relation
and a constant. v¢(M"*)" could be computed in
advance, and we can rewrite it as u”.

4.2 EduCe

With the two operators we mentioned before, a
naive framework, Educey(naive version EduCe),
can be proposed that softly uses path and con-
stant operator, and rules can be learned in theory.
Specifically, suppose target rules are with 7" steps,
Educe is defined as a recurrent architecture with
the following function for step ¢:

= 0§ (05 (z1-1)) )

where OF is a soft function of path operator O
with o as parameters and (’)/g;j is a soft function of
constant operator O¢ with /3 as parameters.

Soft path operator O is defined the same as
DRUM and Neural-LP which softly choose rela-
tions along the path in each step:

IRI+1
= M 5
Zp = Zi-1 X a )
=1

where M" is the adjacent matrix of relation r; € R
as introduced before. Consider that we want to
mine rules with maximum length of 7', we add
a new relation |4 with an identity adjacency
matrix. «j is a scalar representing the possibility of
the relation r; as the relation in rules at step ¢, and



z, € RI€X1 could be interpreted as entities that
could be reached after soft path operator in step ¢.

Soft constant operator Of is defined with z;
as input to choose necessary constants in step ¢,
which could be written as

IRI €]

z/ =) > BiF xzou” (6)

k=0 i=1

where j3{* is the weight for constant operator
O%(z,, u’*) that should be learned in step ¢. Note
that maybe no constant should be considered for a
step, we also add a special relation 7y with u(i=1)
which is all-one vector.

Using soft path operator to learn chain-like
rules can successfully reduce the parameters from
O (|R|") to O(T|R]|). Similarly, the complexity
in Equation 1 can be reduced to O(T'|R|+T'|R||£])
with soft path operator and soft constant operator.
This is what Educe does.

Unfortunately, this naive way is not applicable
because the number of constants in G is large. Al-
though we have greatly reduced the time complex-
ity, the number of learnable parameters of Educey
is still huge for direct optimization because of the
limited number of data samples. Considering all
types, the number of 3, i.e. |R| x |£|, is much
larger than |R|, making the problem more difficult.

The next thing we need to consider is to fur-
ther reduce the amount of 5; and thus we propose
EduCe. As we mentioned before, a constant op-
erator is determined by a relation and a constant.
The parameters [3; indicate relation selection and
constant selection in a step, so Equation 6 can be
redefined as Equation 7:

IR €]

z) = Z Bf Z bik X 7y 0 ut* @)
k=1

=1

where (i¥ is replaced by 8 and bi*, which indicate
selecting relations and constants.

Now instead of regarding bi* as parameter to
be learned, we propose dynamic weight, which
computes bi* as below by utilizing intermediate
inference results:

bi* =z} - u™ ®)

In this case, bi* indicates the relevance between
z;, and constant e; via relation 7. It will be larger
if they are connected and smaller if not. Since it’s
computed from the reasoning process, we name it

dynamic weight. The key idea behind this is to use

the intermediate entities to select constants, and

then the constants can be used to select entities.
Thus, Equation 6 can be rewrite as

R EY o
zii1 =120 BfScale(d z;-u xu*) (9)
k=0 =1

where Scale(x) means scaling vector x to range
(0,1) by dividing by the maximum value of x, and
&y, stands for the tail entity of r.

Generating weights o and 5. We estimate
weights a and 8 via a BILSTM function F and
fully-connected layers. Given the embedding of
head relation r, denoted as r which is initialized
randomly, BiLSTM aims to sequentially generate
oy and B for step ¢.

hOa IQT = f(r) (10)
ht :]:(I',htfl,),t>0 (11)
o7t = F(r,hgp ), t >0 (12)

With the vectors output from BiLST M, two types

of fully-connected layers are applied to generate
and 3 :

ar = S(fu(hy +h)),t =1,3,...,2T — 1 (13)
Be=S(fo(hy +hy)),t=2,4,...2T  (14)

where f, and f; are fully connected neural network,
and S is a softmax function.

The final score of a target triplet (h,r, t) is the
similarity between the predicted vector z7 and the
answer vector v*

o(tlh, ) = v - loglzr,~]+ (15)

where [x, 7]+ denotes the maximum value between
each element of x and ~y. The objective of EduCe
is

min (16)

— > o(tlhr)

(h,rt)eG
4.3 Rule Decoder of EduCe

To decode symbolic rules from the neural network
of EduCe, we propose a rule parsing algorithm us-
ing the parameters learned from training process.
The basic idea is to select appropriate relations and
constants with high weight. Specifically, we re-
cover possible rules for each triplet via parameters
a, 3, b and output symbolic rules with high confi-
dence for each query. The detailed procedure is
shown in Algorithm 1.
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Algorithm 1 Decode symbolic logical rules from

EduCe
Input: path operator attention {a:|t = 1,2..7}, con-
stant operator attention{8:|t = 1,2...T'}, dynamic
weight{b:|t = 1,2..T'}
Initialize: R = {([P;, Pe, P,]J,w)}, P, =0, P, =0, P. =
head entity, « = 1 represents confidence
for t=1:T do

for r, € oy > thrl do
for ([P, P., P,],w) € Rdo
// Expand the path if possible
if P.[—1] can link other entity n via v, then
Flag = False
for r. € B > thr2 do
for con € by > thr3 do
// a new path with constant
w' =w x a;? x (14 B7° x b))
if w’ > thr_rule then
add ([P-+1p, Pe+n, P, + (rc, con)], w")
Flag = True
end
end
end
if Flag=False then
// a new path without constant
w' =w x a;?
add ([P + rp, Pe +n, Py + 0],a")
end
end
Delete ([P, P., P,], w) from R
end
end
end

The thr in this algorithm is not simply manu-
ally pre-defined, but also related to the maximum
weight of this step. Because there might be sev-
eral operator choices within a step, but because of
the softmax function we use in equation 13, their
weights might all be relatively small.

We use this algorithm for one query triplet, and
the output includes all rules used in the inferring
process. After all triplets are input into the decoder,
most of the rules will repeat many times. For a
repeated rule r, the average confidence Zgl w;
will be computed. Also, the number of occurrence
of arule is considered to revise confidence, to avoid
overfitting rules.

5 Experiment

5.1 Datasets and Experiment Setting

Our experiments were conducted on four different
datasets which are introduced as follows, and Table
1 summarizes the data statistics.

* Constant is a synthetic dataset. We define
several different rules which are divided into
several groups, and the body of each rule in

the same group contains a special constant
that distinguishes it from others, and the other
part is the same. This only difference leads to
a different head relation of the rule.

* Family-gender contains the bloodline relation-
ships between individuals of multiple families,
and we add gender of each person.

* UMLS (Kok and Domingos, 2007): Unified
Medical Language System, is a set that brings
together many health and biomedical vocabu-
laries and standards.

e FBI5K-237 (Toutanova et al., 2015): This
dataset contains knowledge base relation
triplets and textual mentions of Freebase en-

tity pairs.
Dataset #Triple #Relation #Entity
Constant 30000 10 18363
Family-gender 29854 12 3008
UMLS 5960 46 135
FB15K237 310116 237 14541

Table 1: Knowledge base completion datasets statistics.

For each dataset, we split it into four parts: fact,
train, valid and test. Fact set is a subset, which is
randomly extracted about 70% from the original
train set. We use it to construct the path operator
and constant operator and but don’t use the data to
train the model.

We implement our model with Pytorch frame-
work and train our model on RTX3090 GPU. The
ADAM optimizer was used to parameter tune with
learning rate of 0.0001. Batch size is different for
every dataset, respectively. We set both the hid-
den state dimension of BiILSTM and head relation
vector size to 256.

5.2 Link Prediction

We compare EduCe to several embedding meth-
ods and rule mining methods, which include
TransE(Bordes et al., 2013), RotatE(Sun et al.,
2019), ConvE(Dettmers et al., 2018), Dist-
Mult(Yang et al., 2015), ComplEx(Trouillon et al.,
2016) for embedding methods and Neural-LP(Yang
et al., 2017), DRUM(Sadeghian et al., 2019) for
differentiable rule mining methods on link predic-
tion task. Meanwhile, experiments were conducted
with Educe that just utilizes soft path operator.



UMLS FB15K-237

Category Methods Hit Hit
MRR @1 @3 @10 MRR @1 @3 @10
TransE(Bordes et al., 2013) 0.668 0.468 0.845 0.930 0.290 0.199 - 0.471
ConvE(Dettmers et al., 2018) 0.908 0.862 0944 0.981 0.325 0.237 0.356 0.501
KGE DistMult(Yang et al., 2015) 0.753 0.651 0.821 0.930 0.241 0.155 0.263 0419
ComplEx(Trouillon et al., 2016) 0.961 0.935 0985 0.992 0.247 0.158 0.275 0.428
RotatE(Sun et al., 2019) 0.948 0914 0.980 0.994 0.338 0.241 0.375 0.533
Neural-LP(Yang et al., 2017) 075 0.62 0.86 092 0.240 - - 0.362
DRUM(T=2)(Sadeghian et al., 2019) 0.81 0.67 094 098 0250 0.187 0.271 0.373
Differentiable DRUM(T=3)(Sadeghian et al., 2019) 0.80 0.66 0.92 097 0.343 0.255 0.378 0.516
Rule Learning EduCe(T=2) 0.852 0.745 0957 0.975 0.368 0.275 0.414 0.546
EduCe(T=3) 0.857 0.789 0911 0.965 0419 0314 0.471 0.619
Educen (T=2) 0.805 0.669 0930 0.976 0.243 0.179 0.266 0.368
Educen (T=3) 0.821 0.688 0946 0.975 0.345 0.258 0.378 0.516

Table 2: Link prediction results on UMLS and FB15K-237.

Constant Family-gender
MRR Hit@1/3/10 MRR Hit@1/3/10

Neural-LP .52 .43/.50/ .67 .87 .79/ .93/.99
DRUM(T=2) .38 .28/.49/.50 .95 .92/.98/.99
DRUM(T=3) .58 .36/.77/.99 .95 .92/.98/.99
EduCe(T=2) 45 .41/.49/.50 .96 .94/.98/.99
EduCe(T=3) .76 .62/.88/1.0 .94 .91/.97/.99

Table 3: Link prediction results on Constant and Family-
gender.

Following the evaluation method in (Bordes et al.,
2013), hitl, hit3, hit10 and MRR(Mean Reciprocal
Rank) was reported after filtered ranking.

As the Tables 2 and 3 show, EduCe significantly
outperforms other rule mining methods on the syn-
thetic dataset Constant as expected, which proves
the ability of EduCe to utilize constants. More
convincing is that EduCe also outperforms other
differentiable rule mining methods for all metrics
on both real-world datasets obviously. Meanwhile,
the result of EduCe with different length of rule is
closer than DRUM, and we think it’s because con-
stants make the rules more accurate. Notably, our
approach is able to achieve better results than some
pure embedding methods, especially on FBI5K-
237. On dataset UMLS, it is also competitive. We
have to point out that EduCe can provide symbolic
logical rules with Algorithm 1, which is an advan-
tage to pure embedding methods.

Performance of Educe; is close to DRUM, and
we analyzed the parameters [ of soft constant op-
erator and found out almost all weight is assigned
to the special relation 7y that we introduced before,
which means in the optimization process, Educey
cannot handle too many constants, so a compro-
mise option is selected, which is ignoring constants.

This optimization failure proves the necessity of
dynamic weight.

The results also show that previous rule-based
methods get worse performance than embedding
methods on this task generally, but the effectiveness
of EduCe proves the promising future of neural-
symbolic method. Also, the most important thing
is it proves constants play an important role in in-
ferring, taking this part of KG into consideration
will significantly improve the results of reasoning.

0.9 0.8
0.85 ‘
08 A encmcncrnna] 0.6 :
S i a5 1
0.75 | 07 :
0.7 : E
| —DRUM —EduCe ! —~DRUM—EduCe
0.65, ' 0.5
0 200 400 600 0 200 400 600

Time/ mins Time/ mins

Figure 3: Behaviour of DRUM and EduCe on UMLS.

We also recorded the training time and repre-
sented the results in Figure 3, and each epoch is
marked as a point on the curve. The figure shows
EduCe starts at a high level and improves more
quickly than DRUM within the same epoch. Al-
though the training time of one epoch is longer,
EduCe converge with fewer epochs. Also, at 200
minute, DRUM nearly achieves its best perfor-
mance, and EduCe can achieve same or better ac-
curacy at the same time. This proves the efficiency
of our model.

5.3 Rule Decoding and Quality Evaluation

As we stated in the previous sections, the key advan-
tage of rule-based methods is the interpretability
of inferring process. In order to have an intuitive
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Figure 5: Number of rules on different datasets.

understanding of the results of rule mining. We
performed Algorithm 1 on the datasets(Constant,
Family-gender, UMLS, FBI5K-237), and every
dataset yielded useful results.

We counted the statistical number that is rep-
resented in Figure 5. The rules are sorted by the
assigned confidence of Algorithm 1, and the figure
shows different numbers of rules with different con-
fidence. We use the highest and lowest confidence
of rules on each dataset as standard, and divide
this interval into three parts according to the ratio
of 3:3:4, which is represented by the horizontal
axis. On all datasets, the model has parsed out an
appropriate number of rules.

Methods UMLS FB15K-237

Top 50/100/200  Top 50/200/500

Neural-LP(T=2)  .228/.239/.221 .020/.044/.033
Neural-LP(T=3)  .104/.145/.153 .020/.031/.034
DRUM(T=2) .400/.350/.303 .058/.036/.048
DRUM(T=3) .340/.284/.202 .020/.039/.027
EduCe(T=2) .541/.482/.446 .363/.339/.278
EduCe(T=3) .546/.386/.424 .405/.383/.399

Table 4: Average confidence of ranked rules on UMLS
and FB15K-237.

To reach an objective assessment of the rule
quality, the rules with higher confidence, which
is calculated by decoding algorithm, are selected,
and we calculated the average Standard Confi-
dence (Galarraga et al., 2013) of rules. The result
is shown in Table 4. We can see that with constant,
the quality of rules improves a lot.

For demonstration purpose, examples of the rule
mined by EduCe on UMLS are shown in Figure 4.
We choose four rules of different types, which ap-

pear frequently in the inference process. These
examples illustrate the diversity of the rules we
mined. Note that even though all of the examples
are with constants, EduCe can also mine rules with-
out constants.

Like the first example, the rule is Uses(X,
Y) < PropertyOfiZi, X))\ PropertyOfiZy, Z)\
Produce(Zz, Y )\ Issueln(Y, Biomedical Occupa-
tion or Discipline). In the dataset, Y, as the tail
entity of relation Uses, can only be an instance of
medicine or medical device. However, the tail en-
tity set of the third relation Produce contains other
type entities like Regular or Law and Age Group,
so the rule uses Issueln(Y, Biomedical Occupation
or Discipline) to choose eligible entities from the
candidate set, which is medicine or medical de-
vice here. The standard confidence (SC) of rule
removing constant from the body is also calculated.
Specifically, without constants, it is 0.818 for the
first example, and it will be improved to 1.00 with
constants considered.

It is worth to mention that on dataset Constant,
the pre-defined rules, which are used to build the
dataset, are parsed by EduCe precisely. Figure 5
illustrates on this dataset, there are 5 rules in the
range of high confidence, which includes the pre-
defined rules we use.

6 Conclusion

In this article, we addressed the problem of learning
rules with constants from KGs. In particular, we
considered rules in a new form which is based on
the constant operator and dynamic weight and pro-
posed a rule mining model, EduCe, which allows
us to learn such rules from KGs effectively in a dif-
ferentiable way. The experiment result shows that
our approach is superior to previous works, which
do not take constants into consideration, both in
terms of the consequence of link prediction task
and quality evaluation of rule mining. Future re-
search may focus on further expansion of current
method by designing more complex forms of rule.
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Appendices

Definition of Standard Confidence

As stated in (Galdrraga et al., 2013), the standard
confidence measure regards facts that are not in
KG as false, in an other word, it implements a
closed world setting. Based on this, the standard
confidence of a rule is defined as:

supp(B — r(z,y))
(r,y):32z1,...,2m : B

conf(B = r(x,y)) =

where B is rule body, z are the variables in the
rule body apart from z and y according to (Galar-
raga et al., 2013), and we expand them to variables
and constants. This indicates the ratio of its predic-
tions that are in KG. supp(B — r(z,y)) is defined
as follows:

supp(B = r(x,y)) = (z,y) : Iz1, ..., 2m : BAT(2,7)

More Details about Datasets

In the previous section, we introduced that dataset
Constant is constructed based on different groups
of pre-defined rules. Here is an example of one
group.

GrandmatherOf,

ParentOf ParentOf  ParentOf ParentOf

C: male C: female

Figure 6: Rule example in Constant.

The only difference in the body of these two
rules is the constant, which we mean male and
female here. There are several such groups of rules
used in Constant.

We use OpenKE (Han et al., 2018) to get the
results of embedding methods on link prediction
task about UMLS, and the results of FBI5K-237
are from (Sadeghian et al., 2019).

11



More cases of mined rules

Causes(A,D)

Produces(B,A), Performs(B,C), Associated_with(C,D), Associated_with(Research_Activity,D), As-
sociated_with(Health_Care_Activity,D),Associated_with(Finding,D),Associated_with(Geographic_
Area,D),Associated_with(Daily_or_Recreational _Activity,D),Associated _with(Laboratory Procedure,
D),Associated_with(Therapeutic_or_Preventive_Procedure,D)

Produces(B,A),Performs(B,C),Associated_with(C,D),Associated_with(Research_Activity,D), Asso-
ciated_with(Finding,D),Associated_with(Daily_or_Recreational _Activity,D),Associated_with (Labo-
ratory _Procedure,D)

Produces(B,A),Performs(B,C),Associated_with(C,D), Associated_with(Research_Activity,D), Asso-
ciated_with(Finding,D), Associated_with(Daily_or_Recreational _Activity,D)

Produces(B,A),Performs(B,C),Associated_with(C,D), Associated_with(Daily_or_Recreational Act-
ivity,D)

Produces(B,A),Property _of(Group_Attribute,B),Performs(B,C),Associated_with(C,D),Associated -
with(Research_Activity,D),Associated_with(Health_Care_Activity,D),Associated_with(Finding,D),
Associated_with(Geographic_Area,D),Associated_with(Daily_or_Recreational _Activity,D), Associ-
ated_with(Laboratory_Procedure,D), Associated_with(Therapeutic_or_Preventive_Procedure,D)

Produces(B,A),Property_of(Group_Attribute,B),Performs(B,C),Associated_with(C,D),Associated
with(Research_Activity,D),Associated_with(Finding,D),Associated_with(Daily_or_Recreational Ac-
tivity,D),Associated_with(Laboratory_Procedure,D)

Consists_of(A,D)

Produces(A,B),Produces(C,B),Produces(C,D),Issue_in(D,Occupation_or_Discipline),Issue_in(D,Bio
medical_Occupation_or_Discipline)

Ingredient_of(D,A)

Produces(B,A), Property_of(Group_Attribute,B), Performs(B,C), Analyzes(C,D)

Produces(B,A), Property_of(Group_Attribute,B), Produces(C,B), Complicates(D,C)

Ingredient_of(A,D)

Causes(A,B),Occurs_in(B,Patient_or_Disabled_Group),Occurs_in(B,Family_Group),Occurs_in(B,Pop
ulation_Group),Occurs_in(B,Professional_or_Occupational_Group),Occurs_in(B,Group),Produces(B,
C), Ingredient_of(C,D)

Causes(A,B),Occurs_in(B,Patient_or_Disabled_Group),Occurs_in(B,Family_Group),Occurs_in(B,Age
_Group), Occurs_in(B,Population_Group), Occurs_in(B,Professional_or_Occupational - Group), Oc-
curs_in(B,Group), Produces(B,C), Ingredient_of(C,D)

Produces(B,A),Produces(B,C),Produces(C,D),Issue_in(D,Occupation_or_Discipline),Issue_in(D,Bio-
medical_Occupation_or_Discipline)

Isa(A,D)

Performs(B,A), Property_of(Group_Attribute,B), Performs(B,C), Isa(C,D)

Issue_in(A,D)

Produces(B,A), Property_of(Group_Attribute,B), Performs(B,C), Issue_in(C,D)

Measures(D,A)

Property_of(A,B), Property_of(Organism_Attribute,B), Causes(B,C), Measures(D,C), Isa(D,Event),
Isa(D,Activity)

Property_of(A,B),Property_of(Organism_Attribute,B),Property _of(Clinical _Attribute,B),Causes(B,C),
Isa(C,Natural_Phenomenon_or_Process), Isa(C,Biologic_Function), Measures(D,C), Isa(D,Event),
Isa(D,Activity)

Occurs_in(A,D)

Prevents(B,A),Prevents(B,C),Co-occurs_with(D,C),Associated_with(Educational _Activity,D), As-
sociated_with(Health_Care_Activity,D), Associated_with(Geographic_Area,D),Associated_with(Daily
_or_Recreational _Activity,D), Associated_with(Therapeutic_or_Preventive_Procedure,D)

Treats(A,D)

Produces(B,A), Performs(B,C), Associated_with(C,D), Associated_with(Research_Activity,D), As-
sociated_with(Health_Care_Activity,D), Associated_with(Daily_or_Recreational_Activity,D), Asso-
ciated_with(Therapeutic_or_Preventive_Procedure,D)

Produces(B,A), Performs(B,C), Associated_with(C,D), Associated_with(Research_Activity,D), As-
sociated_with(Daily_or_Recreational _Activity,D)

Treats(A,D)

Produces(B,A),Performs(B,C),Associated_with(C,D),Associated_with(Daily_or_Recreational _Activity
7D)

Uses(A,D)

Property_of(B,A), Property_of(B,C), Property_of(Group_Attribute,C), Produces(C,D)

Property_of(B,A),Property_of(B,C),Property _of(Group,C), Produces(C,D),Issue_in(D,Occupation_or_
Discipline), Issue_in(D,Biomedical_Occupation_or_Discipline)
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