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Abstract

Knowledge reasoning, helping overcome the001
incompleteness issue of knowledge graph(KG),002
significantly contributes to the development of003
large KG, which consists of relations and con-004
stants. Rule mining studies the problem of cap-005
turing interpretable patterns over KG, which is006
one of the key tasks of knowledge reasoning.007
However, previous works mainly focus on the008
combination of different relations, and are lim-009
ited for ignoring the importance of constants.010
In this paper, we propose that constants should011
be considered in rule mining process, and in-012
troduce an Elegant Differentiable rUle learn-013
ing with Constant mEthod (EduCe). Based014
on soft constant operator and dynamic weight,015
the model we proposed can mine more diverse016
and accurate logical rules while controlling the017
number of parameters, which is also a great018
challenge to this problem. Experiment results019
on several benchmark datasets demonstrate the020
effectiveness and accuracy of our approach.021

1 Introduction022

Vast amounts of knowledge based on web about ab-023

stract and real-world is always a major component024

of Artificial Intelligence (AI). One way to repre-025

sent knowledge is Knowledge Graph (KG), and026

there are well known KGs such as Wordnet (Miller,027

1995) and Freebase (Bollacker et al., 2008) have028

been built. Such KGs represent facts as a graph of029

constants(e.g., iPhone, Apple) connected by rela-030

tions(e.g., brandIs), which could be formally rep-031

resented as a set of binary grounded atoms, called032

triplets or facts, such as brandIs(iPhone, Apple).033

Due to the incompleteness of KGs, many meth-034

ods have been proposed to KG completion in-035

cluding knowledge graph embedding(KGE) (Wang036

et al., 2017; Bordes et al., 2013; Lin et al., 2015;037

Yang et al., 2015; Trouillon et al., 2016; Dettmers038

et al., 2018; Sun et al., 2019), graph neural net-039

works (Schlichtkrull et al., 2018; Vashishth et al.,040

2020; Nathani et al., 2019; Bansal et al., 2019) and041
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Figure 1: Examples of rules with and without constant.

rule learning (Meilicke et al., 2019; Ortona et al., 042

2018a; Chen et al., 2016; Galárraga et al., 2013). 043

Compared to deep learning approaches like KGE, 044

rule learning is preferred due to its interpretabil- 045

ity and robustness in transfer tasks. To mine the 046

structure and confidence of rules at the same time 047

in a fast way, differentiable rule learning methods 048

(Yang et al., 2017; Sadeghian et al., 2019) are intro- 049

duced and attract many research interests in recent 050

years. 051

Existing work such as Neural-LP (Yang et al., 052

2017) and DRUM (Sadeghian et al., 2019) learn 053

to sequentially compose the primitive operations 054

which are inspired by TensoLog (Cohen, 2016) 055

with gradient-based optimization. At each stage 056

of computation, they ’softly’ choose a subset of 057

TensorLog’s operation with high weight, which is 058

used to connect rule application with matrix multi- 059

plication. While their target is learning chain-like 060

logical rules such as livesIn(X, Y)← worksAt(X, Z) 061

∧ locatedIn(Z, Y), and the model only focuses on 062

choosing suitable parameters of every relation for 063

each step. 064

But suppose we add another limitation factor to 065

the above rule and make it livesIn(X, Y)← work- 066

sAt(X, Z) ∧ locatedIn(Z, Y) ∧ isA(Z, HighSchool). 067
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Obviously, the confidence is higher than the first068

rule, since a high school is commonly located in069

one city, while it is not the case for many large070

companies because they usually have multiple of-071

fices located in different cities, such as Google, and072

usually there is only one city that a person lives in.073

The atom isA(Z, HighSchool) is called a constant074

atom which has one variable and a constant (High-075

School), and the rules with such atoms are rules076

with constants. Our goal in this paper is to enable077

differentiable learning of rules with constants in078

knowledge graphs, to facilitate higher completion079

results and more accurate rule learning.080

However, ensuring efficiency of this problem is081

difficult. On the one hand, a KG usually contains082

hundreds or even thousands of times as many con-083

stants than relations, which makes the search space084

for constant atoms much larger than variable atoms.085

On the other hand, not only one constant atom is086

possibly added in each step, which also leads to087

higher time complexity.088

In this paper, we propose a differentiable frame-089

work named EduCe that can mine logical rules with090

constants. In EduCe, we define a relevant operator091

to select constants, a ’soft’ way to use it, and dy-092

namic weight mechanism to reduce the amount of093

parameters.094

Experimentally, we apply EduCe to several095

knowledge graph datasets, and evaluate the capabil-096

ity of EduCe on both link prediction and rule min-097

ing tasks. The results show that EduCe is able to098

recover rules containing constants and yield more099

accurate prediction results compared to previous100

differentiable rule learning methods, and even some101

embedding methods. At the same time, the results102

also show that rules with constants usually have103

higher quality.104

Thus our contributions are as follows:105

• We draw attention to expanding the diversity106

of target rules for differentiable rule learning107

method and emphasize the importance of con-108

stants to rule.109

• We propose EduCe, a new end-to-end differ-110

entiable rule learning method mining rules111

with constants.112

• We experimentally demonstrate that EduCe113

outperforms existing differentiable rule learn-114

ing methods, and even some embedding meth-115

ods on link prediction task and successfully116

outputs high quality symbolic rules with con- 117

stants. 118

2 Related work 119

2.1 Symbolic-based rule learning and 120

reasoning 121

The problem of learning collection of relational 122

rules is a type of statistical relational learning 123

(Koller et al., 2007), and it can also be called induc- 124

tive logic programming (ILP) (Muggleton, 1995) 125

when the learning process involves proposing new 126

logical rules. Although ILP methods can learn from 127

relational data, most methods in this field require 128

negative examples and can’t handle modern large 129

knowledge graph. 130

AMIE (Galárraga et al., 2013) concentrates on 131

association rule mining following two steps. The 132

first step is rule extending, which extends candidate 133

rules by several kinds of operations. The second 134

step is rule pruning according to the predefined 135

evaluation metrics like confidence. AMIE+ (Galár- 136

raga et al., 2015) revises the rule extending process 137

and improves evaluation method. They suffer from 138

the predefined metrics and discrete counting. 139

Rudik (Ortona et al., 2018b) mine positive and 140

negative rules in knowledge graph, while the for- 141

mer class infers new facts in KG, and the latter 142

class is crucial for other tasks, such as detecting 143

erroneous triples. Anyburl (Meilicke et al., 2019) 144

propose an efficient way to mine rules, but the rule 145

it mined is hard to transfer to other KG. 146

2.2 Neural-based rule learning and reasoning 147

A common neural-based reasoning method for KG 148

is Knowledge Graph Embeddings (KGEs) (Wang 149

et al., 2017), which has been proved to be effective 150

for KGC. These methods embed entities and rela- 151

tions into vectors space and measure the true value 152

of triplets via calculation in vector space. Most 153

KGEs like TransE (Bordes et al., 2013), TransD 154

(Ji et al., 2015), TransH (Wang et al., 2014) and 155

DistMult (Yang et al., 2015), concentrate on en- 156

coding the true value of triplets constructed with 157

two entities and one relation. And KR-EAR (Lin 158

et al., 2016) propose to distinguish attributes and 159

relations in KG since attributes and relations ex- 160

hibit rather distinct characteristics, like entity set 161

size. It also inspires us to learn rules with constants 162

because attributes are more likely to participate in 163

partially grounded atoms in rules. Some of the 164

KGEs such as DistMult (Yang et al., 2015) are also 165
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used for rule learning based on well-trained relation166

embeddings, while their performance is limited by167

the huge search space as the incremental of the rule168

length.169

Some neural-based methods such as KALE (Guo170

et al., 2016) and RUGE (Shu et al., 2017), learn the171

entity and relation embeddings not only based on172

triplets observed in KGs but also triplets inferred173

from rules that are learned from symbolic-based174

rule learning methods such as AMIE (Galárraga175

et al., 2013). They benefit from symbolic-based176

rule reasoning while they can’t conduct rule learn-177

ing. Thus IterE (Zhang et al., 2019) learns rules178

based on updated embedding at each iteration and179

injects new facts inferred by these rules into KGE.180

More recently, end-to-end differentiable rule181

learning methods based on TensorLog (Cohen,182

2016) are proposed. Neural-LP (Yang et al., 2017)183

is the first differentiable rule learning method aim-184

ing at learning probabilistic chain-like logic rules185

with learning parameters and structure of rules si-186

multaneously with the basic idea that expressing187

the logical relationships between two entities by188

matrix operations. Extensions based on Neural-189

LP like DRUM (Sadeghian et al., 2019) are also190

proposed. To extend the diversity of target rules,191

Neural Logic Inductive Learning (NLIL) (Yang192

and Song, 2019) tackles the non-chain-like rules by193

incorporating a primitive statement. Neural-Num-194

LP (Wang et al., 2019) extends Neural-LP to learn195

the numerical rules, which is a great inspiration for196

fully understanding the possible reasoning patterns.197

3 Problem Formulation198

Knowledge Graph G is composed by a set of199

grounded atoms like {r(e1, e2)|r ∈ R, e1,∈200

E , e2 ∈ E} where E is a countable set of constants,201

which is also called entities, andR is a set of binary202

relations, respectively.203

Rule is in the form of head ← body, where204

the head of rule is an atom and the body of rule205

is a conjunction of atoms. Each atom is defined206

as overR∪ E ∪ X , where X is a countable set of207

variables. Based on this, we define four kinds of208

atoms, r (e1, e2), r (X, e), r (e,X) and r (X,Y ),209

where upper-case letters are variables {X,Y } ∈ X ,210

and lower-case letters {e, e1, e2} ∈ E are constants.211

The first kind is also called fact that is barely used212

in rules, and we name the second and third kinds213

constant atom and the last one variable atom.214

Rules without constants is in the following215

form: 216

r (X, Y )← r1 (X, Z1) ∧ ... ∧ rT (ZT−1, Y ) 217

An example of chain-like rule is 218

livesIn(X,Y )← worksAt(X,Z)∧locatedIn(Z, Y ) 219

This type of rule is defined over only variable atoms 220

without taking constant atoms into consideration. 221

Rules with constants refer to rules whose body 222

is composed of variable atoms and constant atoms, 223

which is in the following form: 224

r (X, Y )← r1 (X, Z1) ∧

(
n1∧
i=1

ri1
(
Z1, ei1

))
︸ ︷︷ ︸

constant atoms for the 1st step︸ ︷︷ ︸
the 1st step

∧... 225

∧ rT (ZT−1, Y ) ∧

(
nT∧
i=1

riT
(
ZT , eiT

))
︸ ︷︷ ︸

constant atoms for the T th step︸ ︷︷ ︸
the T th step

226

where eit ∈ E are entities formed constant atoms. 227

T is the length of chain in the rule and ni is the 228

number of constant atoms related to each step of 229

the chain. More specifically, if T = 2, n1 = 2 and 230

n2 = 1, a rule with constants is like Figure 2(a). 231

Learning rules with constants is not easy since 232

the quantity of parameters to be learned could be 233

extremely large. In particular, for each step, there 234

are 2|R| possible relations to choose with automat- 235

ically inverse relations considered, and the number 236

of candidate constants to be chosen in constant 237

atoms is |E|. Thus intuitively, the time complexity 238

of learning rules with constants is 239

O
(
|R|T × (|R||E|)T

)
(1) 240

The first part in Equation 1 indicates selecting a 241

suitable relation to expand the path, and the second 242

part means choosing one or several constant atoms 243

for each step. As we can see, the time complex- 244

ity of this problem is enormous, which is a great 245

challenge to this problem. 246

4 Method 247

To enable differentiable rule learning of chain-like 248

rules, Neural-LP has reduced the first part in Equa- 249

tion 1 to O(T |R|). What we consider here is re- 250

ducing the complexity of constant atom selection, 251
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Figure 2: The form of rule with constants and Reasoning process of EduCe.

which is shown as the second part in Equation 1,252

to facilitate constant rule learning. By using con-253

stant operator and dynamic weight in EduCe frame-254

work, we successfully reduced the complexity to255

O(2T |R|). Next, we will introduce the details of256

EduCe, including the operators we define, model257

architecture and training objectives, and describe258

how to decode symbolic rules based on well-trained259

EduCe.260

4.1 Operators261

Given a KG G = {r(e1, e2)|r ∈ R, e1,∈ E , e2 ∈262

E} , we firstly represent each entity ei as an one-263

hot vector vei ∈ {0, 1}|E|, and represent each rela-264

tion rk as an adjacent matrix Mrk ∈ {0, 1}|E|×|E|
265

where Mrk
ij = 1 if rk(ei, ej) ∈ G, else Mrk

ij = 0.266

For an inference query r(e1, ?) to predict the tail267

entity with head entity e1 and relation r, in order to268

conduct inference process, two kinds of operations269

are necessary. One is path operator which maps one270

entity to other entities following a certain relation,271

the other one is constant operator selecting entities272

that satisfy a specific constant atom.273

Path Operator OP is already defined by274

TensorLog and applied in previous works like275

(Yang et al., 2017):276

OP (v
i,Mrk) = viMrk (2)277

Via recursively applying path operators, path278

queries could be answered by expanding path with279

path operator.280

Constant Operator OC is an operator we de-281

fine, with variables vector vi, a constant vector vc282

and a relation matrix Mrk as input and output vari-283

ables satisfying given constant. For constant atom284

(X, rk, c) where X ∈ X , r ∈ R and c ∈ E , with285

X = ei, the constant operator could be framed as 286

OC(vi,Mrk ,vc) = vi ◦ (vc(Mrk)⊤)︸ ︷︷ ︸
uck

(3) 287

where ◦ stands for Hadamard product. As we can 288

see, a constant operator is determined by a relation 289

and a constant. vc(Mrk)⊤ could be computed in 290

advance, and we can rewrite it as uck. 291

4.2 EduCe 292

With the two operators we mentioned before, a 293

naive framework, EduceN (naive version EduCe), 294

can be proposed that softly uses path and con- 295

stant operator, and rules can be learned in theory. 296

Specifically, suppose target rules are with T steps, 297

EduceN is defined as a recurrent architecture with 298

the following function for step t: 299

zt = OC
β (OP

α (zt−1)) (4) 300

where OP
α is a soft function of path operator OP 301

with α as parameters and OC
β is a soft function of 302

constant operator OC with β as parameters. 303

Soft path operator OP
α is defined the same as 304

DRUM and Neural-LP which softly choose rela- 305

tions along the path in each step: 306

z′t = zt−1 ×
|R|+1∑
i=1

αi
tM

ri (5) 307

where Mri is the adjacent matrix of relation ri ∈ R 308

as introduced before. Consider that we want to 309

mine rules with maximum length of T , we add 310

a new relation r|R|+1 with an identity adjacency 311

matrix. αi
t is a scalar representing the possibility of 312

the relation ri as the relation in rules at step t, and 313
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z′t ∈ R|E|×1 could be interpreted as entities that314

could be reached after soft path operator in step t.315

Soft constant operator OC
β is defined with z′t316

as input to choose necessary constants in step t,317

which could be written as318

z′′t =

|R|∑
k=0

|E|∑
i=1

βik
t × z′t ◦ uik (6)319

where βik
t is the weight for constant operator320

OC(z′t,u
ik) that should be learned in step t. Note321

that maybe no constant should be considered for a322

step, we also add a special relation r0 with ui0(i=1)323

which is all-one vector.324

Using soft path operator to learn chain-like325

rules can successfully reduce the parameters from326

O
(
|R|T

)
to O(T |R|). Similarly, the complexity327

in Equation 1 can be reduced to O(T |R|+T |R||E|)328

with soft path operator and soft constant operator.329

This is what EduceN does.330

Unfortunately, this naive way is not applicable331

because the number of constants in G is large. Al-332

though we have greatly reduced the time complex-333

ity, the number of learnable parameters of EduceN334

is still huge for direct optimization because of the335

limited number of data samples. Considering all336

types, the number of βt, i.e. |R| × |E|, is much337

larger than |R|, making the problem more difficult.338

The next thing we need to consider is to fur-339

ther reduce the amount of βt and thus we propose340

EduCe. As we mentioned before, a constant op-341

erator is determined by a relation and a constant.342

The parameters βt indicate relation selection and343

constant selection in a step, so Equation 6 can be344

redefined as Equation 7:345

z′′t =

|R|∑
k=1

βk
t

|E|∑
i=1

bikt × z′t ◦ uik (7)346

where βik
t is replaced by βk

t and bikt , which indicate347

selecting relations and constants.348

Now instead of regarding bikt as parameter to349

be learned, we propose dynamic weight, which350

computes bikt as below by utilizing intermediate351

inference results:352

bikt = z′t · uik (8)353

In this case, bikt indicates the relevance between354

z′t and constant ei via relation rk. It will be larger355

if they are connected and smaller if not. Since it’s356

computed from the reasoning process, we name it357

dynamic weight. The key idea behind this is to use 358

the intermediate entities to select constants, and 359

then the constants can be used to select entities. 360

Thus, Equation 6 can be rewrite as 361

zt+1 = z′t ◦
|R|∑
k=0

βk
t Scale(

|Ek|∑
i=1

z′t · uik × uik) (9) 362

where Scale(x) means scaling vector x to range 363

(0, 1) by dividing by the maximum value of x, and 364

Ek stands for the tail entity of rk. 365

Generating weights α and β. We estimate 366

weights α and β via a BiLSTM function F and 367

fully-connected layers. Given the embedding of 368

head relation r, denoted as r which is initialized 369

randomly, BiLSTM aims to sequentially generate 370

αt and βt for step t. 371

h0,h
′
2T = F(r) (10) 372

ht =F(r,ht−1, ), t > 0 (11) 373

h′
2T−t−1 = F(r,h′

2T−t), t > 0 (12) 374

With the vectors output from BiLSTM , two types 375

of fully-connected layers are applied to generate α 376

and β : 377

αt = S(fa(ht + h′
t)), t = 1, 3, ..., 2T − 1 (13) 378

βt = S(fb(ht + h′
t)), t = 2, 4, ..., 2T (14) 379

where fa and fb are fully connected neural network, 380

and S is a softmax function. 381

The final score of a target triplet (h, r, t) is the 382

similarity between the predicted vector zT and the 383

answer vector vt 384

ϕ(t|h, r) = vt · log[zT , γ]+ (15) 385

where [x, γ]+ denotes the maximum value between 386

each element of x and γ. The objective of EduCe 387

is 388

min

− ∑
(h,r,t)∈G

ϕ(t|h, r)

 (16) 389

4.3 Rule Decoder of EduCe 390

To decode symbolic rules from the neural network 391

of EduCe, we propose a rule parsing algorithm us- 392

ing the parameters learned from training process. 393

The basic idea is to select appropriate relations and 394

constants with high weight. Specifically, we re- 395

cover possible rules for each triplet via parameters 396

α, β, b and output symbolic rules with high confi- 397

dence for each query. The detailed procedure is 398

shown in Algorithm 1. 399
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Algorithm 1 Decode symbolic logical rules from
EduCe
Input: path operator attention {αt|t = 1, 2...T}, con-

stant operator attention{βt|t = 1, 2...T}, dynamic
weight{bt|t = 1, 2...T}

Initialize: R = {([Pr, Pe, Pv], w)} , Pr = ∅, Pv = ∅, Pe =
head entity, α = 1 represents confidence

for t=1:T do
for rp ∈ αt > thr1 do

for ([Pr, Pe, Pv], w) ∈ R do
// Expand the path if possible

1 if Pe[−1] can link other entity n via rp then
2 Flag = False
3 for rc ∈ βt > thr2 do
4 for con ∈ bt > thr3 do

// a new path with constant
5 w′ = w × α

rp
t × (1 + βrc

t × brccont ])
6 if w′ > thr_rule then
7 add ([Pr+rp, Pe+n, Pv+(rc, con)], w

′)
8 Flag = True
9 end

10 end
11 end
12 if Flag=False then

// a new path without constant
13 w′ = w × α

rp
t

14 add ([Pr + rp, Pe + n, Pv + ∅], α′′)
15 end
16 end
17 Delete ([Pr, Pe, Pv], w) from R

end
end

end

The thr in this algorithm is not simply manu-400

ally pre-defined, but also related to the maximum401

weight of this step. Because there might be sev-402

eral operator choices within a step, but because of403

the softmax function we use in equation 13, their404

weights might all be relatively small.405

We use this algorithm for one query triplet, and406

the output includes all rules used in the inferring407

process. After all triplets are input into the decoder,408

most of the rules will repeat many times. For a409

repeated rule r, the average confidence
∑|r|

i=1wi410

will be computed. Also, the number of occurrence411

of a rule is considered to revise confidence, to avoid412

overfitting rules.413

5 Experiment414

5.1 Datasets and Experiment Setting415

Our experiments were conducted on four different416

datasets which are introduced as follows, and Table417

1 summarizes the data statistics.418

• Constant is a synthetic dataset. We define419

several different rules which are divided into420

several groups, and the body of each rule in421

the same group contains a special constant 422

that distinguishes it from others, and the other 423

part is the same. This only difference leads to 424

a different head relation of the rule. 425

• Family-gender contains the bloodline relation- 426

ships between individuals of multiple families, 427

and we add gender of each person. 428

• UMLS (Kok and Domingos, 2007): Unified 429

Medical Language System, is a set that brings 430

together many health and biomedical vocabu- 431

laries and standards. 432

• FB15K-237 (Toutanova et al., 2015): This 433

dataset contains knowledge base relation 434

triplets and textual mentions of Freebase en- 435

tity pairs. 436

Dataset #Triple #Relation #Entity
Constant 30000 10 18363
Family-gender 29854 12 3008
UMLS 5960 46 135
FB15K237 310116 237 14541

Table 1: Knowledge base completion datasets statistics.

For each dataset, we split it into four parts: fact, 437

train, valid and test. Fact set is a subset, which is 438

randomly extracted about 70% from the original 439

train set. We use it to construct the path operator 440

and constant operator and but don’t use the data to 441

train the model. 442

We implement our model with Pytorch frame- 443

work and train our model on RTX3090 GPU. The 444

ADAM optimizer was used to parameter tune with 445

learning rate of 0.0001. Batch size is different for 446

every dataset, respectively. We set both the hid- 447

den state dimension of BiLSTM and head relation 448

vector size to 256. 449

5.2 Link Prediction 450

We compare EduCe to several embedding meth- 451

ods and rule mining methods, which include 452

TransE(Bordes et al., 2013), RotatE(Sun et al., 453

2019), ConvE(Dettmers et al., 2018), Dist- 454

Mult(Yang et al., 2015), ComplEx(Trouillon et al., 455

2016) for embedding methods and Neural-LP(Yang 456

et al., 2017), DRUM(Sadeghian et al., 2019) for 457

differentiable rule mining methods on link predic- 458

tion task. Meanwhile, experiments were conducted 459

with EduceN that just utilizes soft path operator. 460

6



Category Methods
UMLS FB15K-237

Hit Hit
MRR @1 @3 @10 MRR @1 @3 @10

TransE(Bordes et al., 2013) 0.668 0.468 0.845 0.930 0.290 0.199 - 0.471
ConvE(Dettmers et al., 2018) 0.908 0.862 0.944 0.981 0.325 0.237 0.356 0.501
DistMult(Yang et al., 2015) 0.753 0.651 0.821 0.930 0.241 0.155 0.263 0.419

ComplEx(Trouillon et al., 2016) 0.961 0.935 0.985 0.992 0.247 0.158 0.275 0.428
KGE

RotatE(Sun et al., 2019) 0.948 0.914 0.980 0.994 0.338 0.241 0.375 0.533
Neural-LP(Yang et al., 2017) 0.75 0.62 0.86 0.92 0.240 - - 0.362

Differentiable
DRUM(T=2)(Sadeghian et al., 2019) 0.81 0.67 0.94 0.98 0.250 0.187 0.271 0.373

Rule Learning

DRUM(T=3)(Sadeghian et al., 2019) 0.80 0.66 0.92 0.97 0.343 0.255 0.378 0.516
EduCe(T=2) 0.852 0.745 0.957 0.975 0.368 0.275 0.414 0.546
EduCe(T=3) 0.857 0.789 0.911 0.965 0.419 0.314 0.471 0.619
EduceN (T=2) 0.805 0.669 0.930 0.976 0.243 0.179 0.266 0.368
EduceN (T=3) 0.821 0.688 0.946 0.975 0.345 0.258 0.378 0.516

Table 2: Link prediction results on UMLS and FB15K-237.

Constant Family-gender
MRR Hit@1/3/10 MRR Hit@1/3/10

Neural-LP .52 .43/ .50/ .67 .87 .79/ .93/ .99
DRUM(T=2) .38 .28/ .49/ .50 .95 .92/ .98/ .99
DRUM(T=3) .58 .36/ .77/ .99 .95 .92/ .98/ .99

EduCe(T=2) .45 .41/ .49/ .50 .96 .94/ .98/.99
EduCe(T=3) .76 .62/ .88/ 1.0 .94 .91/ .97/ .99

Table 3: Link prediction results on Constant and Family-
gender.

Following the evaluation method in (Bordes et al.,461

2013), hit1, hit3, hit10 and MRR(Mean Reciprocal462

Rank) was reported after filtered ranking.463

As the Tables 2 and 3 show, EduCe significantly464

outperforms other rule mining methods on the syn-465

thetic dataset Constant as expected, which proves466

the ability of EduCe to utilize constants. More467

convincing is that EduCe also outperforms other468

differentiable rule mining methods for all metrics469

on both real-world datasets obviously. Meanwhile,470

the result of EduCe with different length of rule is471

closer than DRUM, and we think it’s because con-472

stants make the rules more accurate. Notably, our473

approach is able to achieve better results than some474

pure embedding methods, especially on FB15K-475

237. On dataset UMLS, it is also competitive. We476

have to point out that EduCe can provide symbolic477

logical rules with Algorithm 1, which is an advan-478

tage to pure embedding methods.479

Performance of EduceN is close to DRUM, and480

we analyzed the parameters β of soft constant op-481

erator and found out almost all weight is assigned482

to the special relation r0 that we introduced before,483

which means in the optimization process, EduceN484

cannot handle too many constants, so a compro-485

mise option is selected, which is ignoring constants.486

This optimization failure proves the necessity of 487

dynamic weight. 488

The results also show that previous rule-based 489

methods get worse performance than embedding 490

methods on this task generally, but the effectiveness 491

of EduCe proves the promising future of neural- 492

symbolic method. Also, the most important thing 493

is it proves constants play an important role in in- 494

ferring, taking this part of KG into consideration 495

will significantly improve the results of reasoning. 496

Figure 3: Behaviour of DRUM and EduCe on UMLS.

We also recorded the training time and repre- 497

sented the results in Figure 3, and each epoch is 498

marked as a point on the curve. The figure shows 499

EduCe starts at a high level and improves more 500

quickly than DRUM within the same epoch. Al- 501

though the training time of one epoch is longer, 502

EduCe converge with fewer epochs. Also, at 200 503

minute, DRUM nearly achieves its best perfor- 504

mance, and EduCe can achieve same or better ac- 505

curacy at the same time. This proves the efficiency 506

of our model. 507

5.3 Rule Decoding and Quality Evaluation 508

As we stated in the previous sections, the key advan- 509

tage of rule-based methods is the interpretability 510

of inferring process. In order to have an intuitive 511
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Figure 4: Rules examples learned by EduCe on UMLS.
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Figure 5: Number of rules on different datasets.

understanding of the results of rule mining. We512

performed Algorithm 1 on the datasets(Constant,513

Family-gender, UMLS, FB15K-237), and every514

dataset yielded useful results.515

We counted the statistical number that is rep-516

resented in Figure 5. The rules are sorted by the517

assigned confidence of Algorithm 1, and the figure518

shows different numbers of rules with different con-519

fidence. We use the highest and lowest confidence520

of rules on each dataset as standard, and divide521

this interval into three parts according to the ratio522

of 3:3:4, which is represented by the horizontal523

axis. On all datasets, the model has parsed out an524

appropriate number of rules.525

Methods UMLS FB15K-237
Top 50/100/200 Top 50/200/500

Neural-LP(T=2) .228/.239/.221 .020/.044/.033
Neural-LP(T=3) .104/.145/.153 .020/.031/.034

DRUM(T=2) .400/.350/.303 .058/.036/.048
DRUM(T=3) .340/.284/.202 .020/.039/.027
EduCe(T=2) .541/.482/.446 .363/.339/.278
EduCe(T=3) .546/.386/.424 .405/.383/.399

Table 4: Average confidence of ranked rules on UMLS
and FB15K-237.

To reach an objective assessment of the rule526

quality, the rules with higher confidence, which527

is calculated by decoding algorithm, are selected,528

and we calculated the average Standard Confi-529

dence (Galárraga et al., 2013) of rules. The result530

is shown in Table 4. We can see that with constant,531

the quality of rules improves a lot.532

For demonstration purpose, examples of the rule533

mined by EduCe on UMLS are shown in Figure 4.534

We choose four rules of different types, which ap-535

pear frequently in the inference process. These 536

examples illustrate the diversity of the rules we 537

mined. Note that even though all of the examples 538

are with constants, EduCe can also mine rules with- 539

out constants. 540

Like the first example, the rule is Uses(X, 541

Y) ← PropertyOf(Z1, X)∧ PropertyOf(Z1, Z2)∧ 542

Produce(Z2, Y )∧ IssueIn(Y, Biomedical Occupa- 543

tion or Discipline). In the dataset, Y, as the tail 544

entity of relation Uses, can only be an instance of 545

medicine or medical device. However, the tail en- 546

tity set of the third relation Produce contains other 547

type entities like Regular or Law and Age Group, 548

so the rule uses IssueIn(Y, Biomedical Occupation 549

or Discipline) to choose eligible entities from the 550

candidate set, which is medicine or medical de- 551

vice here. The standard confidence (SC) of rule 552

removing constant from the body is also calculated. 553

Specifically, without constants, it is 0.818 for the 554

first example, and it will be improved to 1.00 with 555

constants considered. 556

It is worth to mention that on dataset Constant, 557

the pre-defined rules, which are used to build the 558

dataset, are parsed by EduCe precisely. Figure 5 559

illustrates on this dataset, there are 5 rules in the 560

range of high confidence, which includes the pre- 561

defined rules we use. 562

6 Conclusion 563

In this article, we addressed the problem of learning 564

rules with constants from KGs. In particular, we 565

considered rules in a new form which is based on 566

the constant operator and dynamic weight and pro- 567

posed a rule mining model, EduCe, which allows 568

us to learn such rules from KGs effectively in a dif- 569

ferentiable way. The experiment result shows that 570

our approach is superior to previous works, which 571

do not take constants into consideration, both in 572

terms of the consequence of link prediction task 573

and quality evaluation of rule mining. Future re- 574

search may focus on further expansion of current 575

method by designing more complex forms of rule. 576
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Appendices733

Definition of Standard Confidence734

As stated in (Galárraga et al., 2013), the standard735

confidence measure regards facts that are not in736

KG as false, in an other word, it implements a737

closed world setting. Based on this, the standard738

confidence of a rule is defined as:739

conf(B→ r(x, y)) =
supp(B→ r(x, y))

(x, y) : ∃z1, . . . , zm : B
740

where B is rule body, z are the variables in the741

rule body apart from x and y according to (Galár-742

raga et al., 2013), and we expand them to variables743

and constants. This indicates the ratio of its predic-744

tions that are in KG. supp(B→ r(x, y)) is defined745

as follows:746

supp(B→ r(x, y)) = (x, y) : ∃z1, ..., zm : B ∧ r(x, y)747

More Details about Datasets748

In the previous section, we introduced that dataset749

Constant is constructed based on different groups750

of pre-defined rules. Here is an example of one751

group.752

C

GrandfatherOf

ParentOf ParentOf

C: male

C

GrandmatherOf

ParentOf ParentOf

C: female

Figure 6: Rule example in Constant.

The only difference in the body of these two753

rules is the constant, which we mean male and754

female here. There are several such groups of rules755

used in Constant.756

We use OpenKE (Han et al., 2018) to get the757

results of embedding methods on link prediction758

task about UMLS, and the results of FB15K-237759

are from (Sadeghian et al., 2019).760
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More cases of mined rulesMore cases on UMLS

Causes(A,D)

Produces(B,A), Performs(B,C), Associated with(C,D), Associated with(Research Activity,D), As-
sociated with(Health Care Activity,D),Associated with(Finding,D),Associated with(Geographic
Area,D),Associated with(Daily or Recreational Activity,D),Associated with(Laboratory Procedure,
D),Associated with(Therapeutic or Preventive Procedure,D)
Produces(B,A),Performs(B,C),Associated with(C,D),Associated with(Research Activity,D), Asso-
ciated with(Finding,D),Associated with(Daily or Recreational Activity,D),Associated with (Labo-
ratory Procedure,D)
Produces(B,A),Performs(B,C),Associated with(C,D), Associated with(Research Activity,D), Asso-
ciated with(Finding,D), Associated with(Daily or Recreational Activity,D)
Produces(B,A),Performs(B,C),Associated with(C,D), Associated with(Daily or Recreational Act-
ivity,D)
Produces(B,A),Property of(Group Attribute,B),Performs(B,C),Associated with(C,D),Associated
with(Research Activity,D),Associated with(Health Care Activity,D),Associated with(Finding,D),
Associated with(Geographic Area,D),Associated with(Daily or Recreational Activity,D), Associ-
ated with(Laboratory Procedure,D), Associated with(Therapeutic or Preventive Procedure,D)
Produces(B,A),Property of(Group Attribute,B),Performs(B,C),Associated with(C,D),Associated
with(Research Activity,D),Associated with(Finding,D),Associated with(Daily or Recreational Ac-
tivity,D),Associated with(Laboratory Procedure,D)

Consists of(A,D) Produces(A,B),Produces(C,B),Produces(C,D),Issue in(D,Occupation or Discipline),Issue in(D,Bio
medical Occupation or Discipline)

Ingredient of(D,A) Produces(B,A), Property of(Group Attribute,B), Performs(B,C), Analyzes(C,D)
Produces(B,A), Property of(Group Attribute,B), Produces(C,B), Complicates(D,C)

Ingredient of(A,D)

Causes(A,B),Occurs in(B,Patient or Disabled Group),Occurs in(B,Family Group),Occurs in(B,Pop
ulation Group),Occurs in(B,Professional or Occupational Group),Occurs in(B,Group),Produces(B,
C), Ingredient of(C,D)
Causes(A,B),Occurs in(B,Patient or Disabled Group),Occurs in(B,Family Group),Occurs in(B,Age
Group), Occurs in(B,Population Group), Occurs in(B,Professional or Occupational Group), Oc-

curs in(B,Group), Produces(B,C), Ingredient of(C,D)
Produces(B,A),Produces(B,C),Produces(C,D),Issue in(D,Occupation or Discipline),Issue in(D,Bio-
medical Occupation or Discipline)

Isa(A,D) Performs(B,A), Property of(Group Attribute,B), Performs(B,C), Isa(C,D)
Issue in(A,D) Produces(B,A), Property of(Group Attribute,B), Performs(B,C), Issue in(C,D)

Measures(D,A)

Property of(A,B), Property of(Organism Attribute,B), Causes(B,C), Measures(D,C), Isa(D,Event),
Isa(D,Activity)
Property of(A,B),Property of(Organism Attribute,B),Property of(Clinical Attribute,B),Causes(B,C),
Isa(C,Natural Phenomenon or Process), Isa(C,Biologic Function), Measures(D,C), Isa(D,Event),
Isa(D,Activity)

Occurs in(A,D)
Prevents(B,A),Prevents(B,C),Co-occurs with(D,C),Associated with(Educational Activity,D), As-
sociated with(Health Care Activity,D), Associated with(Geographic Area,D),Associated with(Daily
or Recreational Activity,D), Associated with(Therapeutic or Preventive Procedure,D)

Treats(A,D)

Produces(B,A), Performs(B,C), Associated with(C,D), Associated with(Research Activity,D), As-
sociated with(Health Care Activity,D), Associated with(Daily or Recreational Activity,D), Asso-
ciated with(Therapeutic or Preventive Procedure,D)
Produces(B,A), Performs(B,C), Associated with(C,D), Associated with(Research Activity,D), As-
sociated with(Daily or Recreational Activity,D)

Treats(A,D) Produces(B,A),Performs(B,C),Associated with(C,D),Associated with(Daily or Recreational Activity
,D)

Uses(A,D)
Property of(B,A), Property of(B,C), Property of(Group Attribute,C), Produces(C,D)
Property of(B,A),Property of(B,C),Property of(Group,C), Produces(C,D),Issue in(D,Occupation or
Discipline), Issue in(D,Biomedical Occupation or Discipline)
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