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Abstract

Multivariate time series forecasting is of central importance in modern intelligent
decision systems. The dynamics of multivariate time series are jointly characterized
by temporal dependencies and spatial correlations. Hence, it is equally important
to build the forecasting models from both perspectives. The real-world multivariate
time series data often presents spatial correlations that show structures and evolve
dynamically. To capture such dynamic spatial structures, the existing forecasting
approaches often rely on a two-stage learning process (learning dynamic series
representations and then generating spatial structures), which is sensitive to the
small time-window input data and has high variance. To address this, we propose a
novel forecasting model with a structured matrix basis. At its core is a dynamic
spatial structure generation function whose output space is well-constrained and
the generated structures have lower variance, meanwhile, it is more expressive
and can offer interpretable dynamics. This is achieved via a novel structured
parameterization and imposing structure regularization on the matrix basis. The
resulting forecasting model can achieve up to 8.5% improvements over the existing
methods on six benchmark datasets, and meanwhile, it enables us to gain insights
into the dynamics of underlying systems.

1 Introduction

Multivariate time series forecasting plays a pivotal role in a wide range of fields, such as traffic flow
management, electricity consumption, and weather prediction. Multivariate time series data records
quantities of interest from N series spanning over T time steps, and its underlying dynamics are
jointly characterized by the temporal correlations (intra-series dependencies) and spatial structures
(inter-series dependencies). Inspired by the advancements in Natural Language Processing, substantial
research has been proposed to apply RNNs and Transformers to capture the underlying temporal
dependencies [41, 32, 44, 45, 30]. Besides, the convolution paradigm also exhibits promising
temporal correlation modeling capability and excels in long-term forecasting [33, 36, 29].

As the underlying dynamics are jointly described by the intra- and inter-correlations, it is equally
important to explore the spatial structures for an ideal forecasting model design. Many proposals
employ dense connection to capture the spatial correlations implicitly [31, 24]. However, the dense
connection lacks clear structures and is prone to introduce noise from uncorrelated spatial dimensions.
The development of Graph Neural Networks (GNNs) [18, 17, 7] offers an effective solution to model
non-Euclidean structure data. DCRNN [22] builds graphs based on spatial proximity and conducts
graph convolution to capture spatial correlations for traffic forecasting. To apply GNNs to more
general scenarios where graph structures are unavailable, the forecasting methods propose to learn
the graph adaptively through learnable node embeddings [37, 1, 38, 15], which significantly enhances
the forecasting performance.
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Despite the progress achieved, the spatial structures remain static across time steps for the aforemen-
tioned forecasting methods, which may not reflect the actual inter-series correlation. Because in many
scenarios, the spatial correlations are also changing dynamically, for example, the traffic speeds of
certain road segments manifest correlation only in peak hours. To relax this restriction, many dynamic
graph-based methods have been proposed [43, 39, 42, 28, 34] to learn the spatial structures within
a short time window. The intuition is that the spatial correlations in real-world applications often
evolve continuously and tend to be stable over a short period of time. The general idea is to learn each
series a dynamic representation via a nonlinear transformation fdynm by taking as input the current
time window data, and it then generates the spatial structures by pairwise interacting the dynamic
representations via a transformation fpair, the composition of two transformations forms the spatial
structure generation function fspatial = fpair ◦ fdynm. The dynamic representation function fdynm is
often implemented as MLP ([43, 42, 28, 34]) or RNN ([39]) whereas fpair is mostly instantiated by
attention mechanism or inner product. One severe issue of these methods is that the output space
of fdynm is not well constrained and unbounded, this makes the learned dynamic representations
very sensitive to the short time window input data and the unboundedness will be exaggerated by
the inner product operation in fpair, which will lead to the outputs of fspatial fluctuate drastically
and have high variance. The issue becomes even more severe in the presence of anomaly patterns.
To reduce the variance, TPGNN [26] first learns a static spatial structure A (adjacency matrix) and
then generates the dynamic spatial structures with a matrix polynomial

∑M
m=1 αmAm where αm is

determined by the timestamps of the current time window. However, it has two drawbacks: 1) the
coefficient αm solely depends on the timestamps and cannot adapt to the current window data, and 2)
the matrix power basis A,A2, . . . ,AM is overly restricted and has limited expressive capability. In
addition, the existing forecasting methods often lack interpretable dynamics.

In this paper, we propose a dynamic multivariate time series forecasting model with a structured
matrix basis. Instead of relying on the two-stage spatial structure learning process (learning dynamic
series representations and then generating spatial structures), we directly parameterize fspatial with a
learnable matrix basis B1,B2, . . . ,BM and represent any spatial structure with a convex combination∑M

m=1 αmBm, αm ≥ 0 and
∑M

m=1 αm = 1. To learn the matrix basis effectively, we propose a
novel structured matrix parameterization method and impose structure regularization on the basis to
enhance parameter efficiency and reduce complexity. In contrast to the two-stage spatial structure
learning methods, the output space of our proposed fspatial is well constrained. Consequently,
the generated spatial structures have lower variance and the resulting model is easier to learn. In
comparison to TPGNN, our matrix basis is more expressive since it is not limited by the matrix
power constraint; the coefficient α can also be computed adaptively via the interaction of current
time-window data and the basis. In addition, the coefficient α offers a fashion to track the spatial
structure evolution and enables us to gain insights into the underlying dynamics. Thus, the resulting
model is more interpretable.

In summary, our proposed fspatial has the following appealing properties: 1) lower variance and
easier to learn, 2) it is more expressive, and 3) it can yield more interpretable results. This is achieved
through a novel structured matrix parameterization and structure regularization. By integrating
fspatial into the forecasting framework, we evaluate the efficacy of the proposed method on six
benchmark datasets, it achieves up to 8.5% improvements over existing forecasting methods across
various prediction lengths and can also offer interpretable dynamics.

2 Related Work

Temporal Dependency Modeling Early deep sequential methods adopt recurrent neural networks
to capture nonlinear temporal dynamics [41, 32, 5]. Motivated by the wide receptive fields of
attention mechanism, various Transformer-based methods have been developed to capture the long-
term temporal dependencies in forecasting. To reduce the quadratic complexity of the vanilla
attention, LogTrans [21], Informer [44], Autoformer [35], and FEDformer [45] have been proposed
successively. Non-stationary Transformer [27] attempts to mitigate the difficulties caused by non-
stationarity in modeling temporal correlation. PatchTST [30] explores the strategies of patch-level
semantic modeling and channel-independence. VQ-MTM [13] explores the well-defined semantic
units for the Transformer architecture in time series modeling. In state-space models, the transition
matrix is employed to model long-term temporal dependencies, and their recent representative works
include Hippo [10], LSSL [11]. To reduce the computational complexity, S4 [12] and Mamba [9]
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have been proposed successively. The convolution-based methods have also shown promising results
in time series modeling. MICN [33] explores isometric convolution to capture non-local temporal
patterns. TimesNet [36] reshapes 1D signals into 2D by aligning according to inherent multiple
periodicity and it then employs the 2D kernels to capture both intraperiod- and interperiod-variations.
ModernTCN [29] utilizes large kernels to model long-term dependencies. In addition, the Fourier
basis parameterization has also been proposed to model long-term dependencies in time series
imputation [25].

Static Spatial Correlation Modeling The spatial correlation plays an equally important role in
time series modeling. DeepAR [31] and Pyraformer [24] employ dense connection to model the
spatial dependencies. However, the dense connection fails to explore the underlying structure and
may introduce noises from unrelated series. The advancement of GNNs offers an effective way to
model non-Euclidean structure data. DCRNN [22] constructs the graph by using spatial proximity
and proposes to fuse the spatial information via graph convolution operation, and thus it is only
applicable when the underlying graph structures are easily accessible. To sidestep this limitation, the
adaptive GNNs-based methods [1, 38, 15, 14, 16] propose to learn each series a representation and
then generate the spatial structure via the interaction of the representations. BiTGraph [4] further
develops the method to account for missing patterns in message passing to handle the time series with
missing values. However, these approaches implicitly assume the series representations are shared
across the entire time steps, and hence the underlying spatial graphs remain static over time.

Dynamic Spatial Correlation Modeling In real-world applications, the inter-series correlations or
spatial structures are often evolving dynamically. To adapt to these scenarios, many dynamic spatial
structure methods are proposed, which share a similar two-stage spatial structure learning process as
the static adaptive GNNs-based methods (as discussed in Section 1). The difference is that the series
representations are generated by conditioning a small time window rather than the entire timeline
data, and hence, the underlying spatial structures can change dynamically over time. GMAN [43],
iTransformer [28], Crossformer [42], and Card [34] implement the dynamic node representation
function via MLP, whereas ESG [39] adopts the RNN. As the output spaces of their fspatial are
not well constrained, the learned spatial structures are very sensitive to the change of time-window
data and hence have high variance. To reduce the variance, TPGNN [26] proposes to represent the
dynamic graphs with matrix polynomial. As the polynomial coefficients are solely determined by
the timestamps, such a method fails to utilize the current time-window data. Moreover, the matrix
power basis is overly restricted and has weak expressive capability. The proposals [40, 8] attempt to
build dynamic graphs by merging temporal and spatial dimensions. Nevertheless, the entanglement
of temporal correlations and spatial dependencies makes the models hard to optimize. In addition,
the existing multivariate time series forecasting methods also lack interpretability regarding the
underlying dynamics.

3 Methodology

Notation From a generative perspective, the multivariate time series X ∈ RN×T×D records a
D-dimensional physical quantities of interest generated by N series (i.e., sensors or instances) over T
time steps. We use X(n) ∈ RT×D to represent the observations from n-th sensor and Xt ∈ RN×D to
indicate the observations at the t-th timestamp. The slice notation Xt−H:t ∈ RN×H×D denotes the
values within a window spanning from the time interval [t−H, t). The operator diag : RN×N 7→ RN

takes the diagonal elements of a square matrix and returns it as a vector, the operator vec reshapes a
matrix or tensor into a vector.

Overview and Pipeline Figure 1-(a) presents the architecture of our proposed Sumba (dynamic
multivariate time series forecasting with structured matrix basis), which comprises L blocks. Each
block contains two primary modules: the Multi-Scale TCN and Dynamic GCN modules. The Multi-
Scale TCN module in the ℓ-th block takes as the input Z(ℓ−1)

t0−H:t0
∈ RN×H×D

(ℓ−1)
i and generates the

intermediate representation Z
′(ℓ−1)
t0−H:t0

∈ RN×H×D(ℓ−1)
o , which is fed to the Dynamic GCN module

to produce Z
(ℓ)
t0−H:t0

∈ RN×H×D
(ℓ)
i . The Multi-Scale TCN captures the temporal dependencies by

performing multi-scale temporal convolution operation in a channel-independent manner, we choose
the kernel sizes 1×2, 1×3, 1×6, and 1×7 in this paper. The Dynamic GCN module comprises two
functions, namely, the spatial structure generation function fspatial and graph convolution function
fgcn. Our proposed fspatial generates the dynamic spatial structure At ∈ RN×N (adjacency matrix)
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Figure 1: (a) The framework of our proposed Sumba. (b) the detailed structure of the Dynamic
GCN module.

by conditioning on the intermediate representation Z
′(ℓ−1)
t ∈ RN×D(ℓ−1)

o at time step t ∈ [t0−H, t0),
which is obtained by transforming the current time-window data Xt0−H:t0 . Given the generated
dynamic graph At, fgcn further fuses the spatial information of Z′(ℓ−1)

t across different series to yield
Z

(ℓ)
t by performing the graph convolution operation. Note that the spatial and temporal dimensions

are kept unchanged during the entire transformation in the L blocks.

3.1 Adaptive Dynamic Spatial Structure Generation

The core layer of our proposed forecasting method is the spatial structure generation function fspatial.
It serves to infer the optimal graph structure At that best characterizes the present spatial correlations
from the intermediate representation Z′

t (we drop the layer index ℓ to keep the notation uncluttered in
this subsection). As mentioned in Section 1, the existing methods all adopt the two-stage learning
process, which results in unconstrained output function space and high graph structure variance.
To address this, we propose to directly parameterize a learnable matrix basis B = {Bm}Mm=1 of
dimension M where Bm ∈ RN×N and define the spatial structure generation function as

fspatial(Z
′
t) ≜

M∑
m=1

αt,mBm, αt,m ≥ 0,

M∑
m=1

αt,m = 1. (1)

Here, we choose the convex combination instead of the linear combination to better control the output
space. This is reasonable since the basis B is free to optimize in the training stage. The intuition
behind Eq. 1 is that the basis B can be shared and optimized globally across different time windows,
and to infer the spatial structure dynamically, we only need to adaptively compute the coefficient
αt ∈ RM by conditioning on Z′

t.

However, two challenges remain in adopting the spatial structure generation function in Eq. 1. 1)
The number of parameters to be learned equals MN2, which grows quadratically to N . As these
M matrices lack connection and constraints, learning by brute force will sooner become infeasible
even for medium-size N . This actually is the reason why the existing methods resort to the two-stage
learning process, i.e., learning each series an embedding whose learnable parameters are ND with D
being the embedding dimension. 2) Intuitively, the best αm should be simultaneously determined by
Z′ and Bm, but identifying Bm with N2 parameters will make αm hard to compute when N is large.

Structured Parameterization and Regularization To circumvent the two challenges, we propose to
parameterize the basis matrices in a structured manner and impose additional structure regularization
on the basis. The idea is to represent each basis matrix Bm in its SVD (singular value decomposition)
factor product form Bm = UmΣmV⊤

m and then parameterize the factors Um, Σm, Vm, where
Um,Vm ∈ RN×N are orthogonal matrices, and Σm is a diagonal matrix consisting of the singular
values of Bm. One benefit of such structured parameterization is that it permits us to establish
connections between the basis matrices and impose constraints, and consequently, enhance the
parameter efficiency and ease of the model learning. To be specific, we impose the constraint that all
Bm for m = 1, 2, . . . ,M share the same parameterized orthogonal matrices U, V and each matrix
has its unique Σm, i.e.,

B ≜
{
UΣ1V

⊤,UΣ2V
⊤, . . . ,UΣMV⊤} . (2)

4



The rationality behind such a choice stems from the geometry interpretation of orthogonal matrix-
vector multiplication, i.e., left multiplying a vector by an orthogonal matrix is equivalent to coordinate
transformation, which is provided in Appendix A.1. Hence, we implicitly require that all basis
matrices share the same pair of coordinate transformations, which can be considered a sort of
implicit regularization since it reduces extra freedom and guides the model to find the coordinate
transformations (U and V) that best suit the basis.

Dynamic Coefficient Generation Such a parameter sharing regularization mechanism along with
the structured parameterization also brings another benefit, it allows us to treat diag(Σm) ∈ RN

as a fingerprint to identify each Bm. Hence, we can compute the αt to infer the dynamic spatial
structure by simultaneously conditioning on Z′

t and diag(Σm). To this end, we design an adaptive
matching module that takes as input Z′

t ∈ RN×Do and [diag(Σ1),diag(Σ2), . . . ,diag(ΣM )], and it
yields the coefficient αt at the t time step, as follows.

D ≜ [diag(Σ1),diag(Σ2), . . . ,diag(ΣM )] ∈ RN×M

z ≜ vec(Z′
t) + TimeEncoding(t) ∈ RNDo (3)

αt = softmax
(
(WdD)

⊤
Wzz/

√
d
)

∈ RM

where TimeEncoding is the timestamp encoding function, Wd and Wz are used to match the
dimension, i.e., mapping D and z into the Rd space. Given the structured basis in Eq. 2, each αt

represents a dynamic spatial structure or graph at step t as

At = fspatial(Z
′
t) =

M∑
m=1

αt,mUΣmV⊤. (4)

Given At at each time step, we can perform graph convolution operation to aggregate information
from the spatial dimension. The process is illustrated in Figure 1-(b). The output space of fspatial is
well constrained on the premise that Σm are well bounded, which is given by the following theorem.

Theorem 3.1. The output space of fspatial in Eq. 4 is bounded by the sum of the maximum of Σm(the
maximum singular value of Bm) for m = 1, 2, . . . ,M in terms of the ℓ2 norm i.e., ∥fspatial∥2 ≤∑M

m=1 max(Σm).

The proof is presented in Appendix A.2 and Theorem 3.1 states that the variance of the learned
structures is controllable by restricting the maximum value of Σm, which is easy to achieve since Σm

can simply be parameterized by a vector with nonnegative values. Besides, by tracking the change of
αt over time, our proposed method enables us to gain insight into the underlying dynamics of the
system, and thus offers additional interpretability, as we will show in Section 4.4.

Orthogonality To impose the orthogonal constraint, one may attempt to apply an orthogonality
penalty, i.e., by adding the penalty term ∥U⊤U − I∥ + ∥V⊤V − I∥ to the optimized objective.
However, such a hard penalty cannot guarantee genuine orthogonality and the extra penalty term
also increases the learning difficulty. Hence, rather than relying on the hard penalty, we opt for the
orthogonal parameterization. In particular, we restrict our attention to the special orthogonal group

SO(N) ≜
{
A ∈ RN×N | A⊤A = I,det(A) = 1

}
, (5)

which are flexible enough to represent the coordinate transformation. A nice property of SO(N) is
that it is both a compact Lie group and a smooth manifold [6]. The tangent space of the Lie group at
the identity forms a vector space equipped with a Lie bracket operation, namely, its Lie algebra. The
Lie algebra of SO(N) is the set of all skew-symmetric matrices, denoted by so(N), i.e.,

so(N) ≜
{
A ∈ RN×N | A⊤ = −A

}
. (6)

In differentiable manifold and Lie group, a well-known result is that the matrix exponential exp :
so 7→ SO establishes the connection between a Lie group and its Lie algebra, i.e., for any g ∈ so(N)
we have exp(g) ∈ SO(N). The matrix exponential is defined as

exp(A) ≜
∞∑
k=0

1

k
Ak = I+A+

1

2
A2 + . . . (7)
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The computation of the matrix exponential map is costly but for the special orthogonal group it has a
cheap first order approximation, also known as the Clay map [3, 2],

ϕ(A) ≜

(
I+

1

2
A

)(
I− 1

2
A

)−1

. (8)

The Clay map can be implemented in parallel by the Gaussian elimination algorithm in a numerically
stable way.

Low Rank Approximation By using the Clay map, the number of parameters required to parame-
terize U and V is N(N − 1) (two skew-symmetric matrices N(N − 1)/2 +N(N − 1)/2). Thus
the total number of parameters required by the basis in Eq. 2 is N(N − 1) +MN . To further reduce
the parameter count, we can apply the low rank approximation. In real-world applications, the spatial
structures (adjacency matrices) of multivariate time series are often low-ranked. Suppose the rank is
K, we can only preserve the first K columns of U and V as well as parameterize each Σm with a
length K vector, which leads to a parameter count upper bound NK +MK. Since K is often much
less than N in practice, the low rank approximation can enhance both the parameter and computation
efficiency when N is large.

3.2 Hierarchical Architecture

By stacking L blocks, the Sumba significantly enhances its capability to model temporal correlations
and spatial dependencies effectively. We initialize Z(0) with the original input X ∈ RN×H×D. The
output of L-th block Z(L) ∈ RN×H×D(L)

produces the multi-step prediction Ŷt0:t0+F through a
linear transformation. The model is optimized by minimizing mean absolute error (MAE):

LMAE(Yt0:t0+F , Ŷt0:t0+F ) ≜

∑N
n=1

∑t0+F−1
t=t0

|ŷ(n)t − y
(n)
t |

N × F
. (9)

4 Experiments

In this section, we evaluate our approach Sumba against 15 time series forecasting methods
on six benchmark datasets (Section 4.2 and Appendix C). The ablation studies are presented
in Section 4.3. We demonstrate the interpretability of our method with case studies in Sec-
tion 4.4. The sensitivity of hyperparameters is provided in Section 4.5 and Appendix D; the
computational cost is empirically studied in Appendix E. The code of Sumba is available at:
https://github.com/chenxiaodanhit/Sumba/.

4.1 Experimental Setup

Datasets We conduct experiments on six commonly adopted public datasets including: (1) Elec-
tricity [44] contains hourly electricity consumption of 321 clients. (2) Weather [35] includes 21
meteorological factors collected every 10 minutes from the weather station of the Max Planck Biogeo-
chemistry Institute. (3) PEMS [23] records traffic data of 358 variates in California sampled every
5 minutes. (4) ETTh2 [44] contains hourly data from 7 electricity transformers. (5) Traffic [35]
measures the hourly road occupancy rates of 862 sensors on San Francisco Bay area freeways. (6)
Solar-Energy [20] records the solar power production, which is sampled every 10 minutes from 137
PV plants.

Baselines We compare our method with the following baselines: (1) TCN-based methods:
MICN [33], ModernTCN [29]; (2) Transformer-based methods: PatchTST [30], FEDformer [45],
Autoformer [35], Reformer [19]; (3) Static graphs-based methods: MTGNN [38], MegaCRN [15];
(4) Dynamic graphs-based methods: iTransformer [28], Crossformer [42], Card [34], ESG [39],
TPGNN [26], FourierGNN [40]; (5) Structured State Space model: S4 [12]. More details of
baselines are provided in Appendix B.

Implementation details The number of blocks L of Sumba is set to 3, the dimension of structured
basis M is set to 5, and the rank K is set to min(N, 30) in all our experiments. The batch size is
32, the learning rate is 0.0001. We split the datasets into training, validation, and test datasets with
the ratio 0.6/0.2/0.2 chronologically. The future window size F is set to 3, 6, 12, and 24 for all
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Table 1: The forecasting results with prediction horizons of 3 and 6 on Electricity, Weather, etc.
Method Electricity Weather
(F = 3) MAE RMSE MAPE(%) MAE RMSE MAPE(%)
MICN [33] 0.217± 0.001 0.323± 0.001 2.380± 0.012 0.0812± 0.001 0.217± 0.002 1.563± 0.017
ModernTCN [29] 0.172± 0.001 0.259± 0.001 1.629± 0.008 0.0727± 0.000 0.213± 0.001 1.695± 0.056
PatchTST [30] 0.173± 0.001 0.266± 0.002 1.359± 0.006 0.0642± 0.000 0.214± 0.000 2.511± 0.223
FEDformer [45] 0.268± 0.002 0.380± 0.002 2.454± 0.011 0.236± 0.001 0.364± 0.001 4.832± 0.039
Autoformer [35] 0.271± 0.003 0.383± 0.001 2.543± 0.005 0.238± 0.001 0.386± 0.002 7.133± 0.693
Reformer [19] 0.324± 0.002 0.452± 0.002 2.921± 0.010 0.0821± 0.001 0.220± 0.002 1.533± 0.022
S4 [12] 0.331± 0.002 0.479± 0.002 2.792± 0.015 0.0921± 0.001 0.292± 0.003 4.782± 0.055
MTGNN [38] 0.153± 0.001 0.245± 0.002 1.340± 0.004 0.0693± 0.000 0.219± 0.001 1.624± 0.018
MegaCRN [15] 0.272± 0.001 0.394± 0.002 2.429± 0.026 0.0674± 0.000 0.215± 0.001 1.458± 0.032
iTransformer [28] 0.158± 0.001 0.248± 0.000 1.472± 0.007 0.0644± 0.000 0.216± 0.001 1.628± 0.026
CrossFormer [42] 0.156± 0.000 0.246± 0.001 1.370± 0.008 0.0643± 0.002 0.210± 0.003 1.417± 0.035
Card [34] 0.152± 0.001 0.244± 0.001 1.460± 0.013 0.0641± 0.000 0.215± 0.001 1.523± 0.007
ESG [39] 0.153± 0.002 0.247± 0.001 1.434± 0.005 0.0753± 0.000 0.215± 0.001 1.837± 0.072
FourierGNN [40] 0.213± 0.002 0.327± 0.003 1.619± 0.006 0.0859± 0.000 0.229± 0.002 1.732± 0.031
TPGNN [26] 0.206± 0.003 0.324± 0.001 1.677± 0.009 0.0652± 0.000 0.219± 0.001 1.538± 0.024

Sumba 0.148 ± 0.001 0.237 ± 0.000 1.331 ± 0.005 0.0587 ± 0.000 0.208 ± 0.000 1.381 ± 0.011

Method ETTh2 Traffic
(F = 3) MAE RMSE MAPE(%) MAE RMSE MAPE(%)
MICN [33] 0.225± 0.002 0.341± 0.001 1.126± 0.008 0.253± 0.001 0.577± 0.001 2.794± 0.013
ModernTCN [29] 0.242± 0.002 0.340± 0.002 1.153± 0.013 0.239± 0.002 0.562± 0.002 3.210± 0.036
PatchTST [30] 0.182± 0.001 0.285 ± 0.001 0.854± 0.003 0.226± 0.001 0.532± 0.002 2.440± 0.009
FEDformer [45] 0.332± 0.012 0.480± 0.006 1.522± 0.023 0.346± 0.006 0.714± 0.009 4.010± 0.041
Autoformer [35] 0.299± 0.003 0.438± 0.004 1.344± 0.017 0.361± 0.003 0.728± 0.005 3.956± 0.026
Reformer [19] 0.442± 0.006 0.663± 0.011 2.091± 0.025 0.322± 0.007 0.757± 0.014 3.351± 0.038
S4 [12] 0.441± 0.004 0.617± 0.018 2.749± 0.017 0.295± 0.003 0.734± 0.003 2.647± 0.011
MTGNN [38] 0.185± 0.001 0.289± 0.001 0.855± 0.004 0.203± 0.002 0.525± 0.003 2.332± 0.008
MegaCRN [15] 0.237± 0.002 0.352± 0.001 1.177± 0.005 0.326± 0.002 0.735± 0.007 4.054± 0.028
iTransformer [28] 0.188± 0.000 0.294± 0.002 0.906± 0.001 0.195± 0.001 0.492 ± 0.001 2.155± 0.007
CrossFormer [42] 0.206± 0.001 0.325± 0.002 0.927± 0.003 0.198± 0.002 0.602± 0.006 2.079± 0.021
Card [34] 0.182± 0.000 0.287± 0.000 0.869± 0.006 0.197± 0.001 0.495± 0.001 2.147± 0.007
ESG [39] 0.217± 0.001 0.335± 0.009 0.909± 0.015 0.198± 0.001 0.588± 0.003 2.086± 0.004
FourierGNN [40] 0.232± 0.003 0.376± 0.005 1.436± 0.016 0.264± 0.002 0.585± 0.002 2.934± 0.019
TPGNN [26] 0.207± 0.001 0.329± 0.002 0.986± 0.004 0.288± 0.003 0.665± 0.004 3.137± 0.022

Sumba 0.179 ± 0.000 0.286± 0.001 0.850 ± 0.001 0.192 ± 0.001 0.521± 0.002 2.042 ± 0.015

Method Electricity Weather
(F = 6) MAE RMSE MAPE(%) MAE RMSE MAPE(%)
MICN [33] 0.235± 0.002 0.317± 0.001 1.890± 0.009 0.111± 0.001 0.250± 0.001 2.886± 0.013
ModernTCN [29] 0.191± 0.002 0.286± 0.001 1.719± 0.005 0.0934± 0.000 0.241± 0.001 1.712± 0.020
PatchTST [30] 0.188± 0.001 0.290± 0.001 1.547± 0.009 0.0746± 0.000 0.239± 0.001 3.138± 0.096
FEDformer [45] 0.271± 0.002 0.384± 0.001 2.541± 0.008 0.230± 0.001 0.364± 0.003 4.118± 0.027
Autoformer [35] 0.269± 0.004 0.378± 0.002 2.643± 0.007 0.246± 0.002 0.399± 0.003 12.782± 1.039
Reformer [19] 0.348± 0.001 0.483± 0.001 3.189± 0.006 0.117± 0.001 0.263± 0.002 3.611± 0.025
S4 [12] 0.341± 0.003 0.489± 0.002 3.265± 0.009 0.0926± 0.001 0.285± 0.003 3.932± 0.037
MTGNN [38] 0.169± 0.001 0.268± 0.003 1.636± 0.003 0.0817± 0.000 0.256± 0.001 1.987± 0.017
MegaCRN [15] 0.292± 0.002 0.419± 0.002 2.743± 0.011 0.0819± 0.000 0.242± 0.001 1.972± 0.019
iTransformer [28] 0.171± 0.002 0.269± 0.001 1.578± 0.005 0.0804± 0.000 0.243± 0.002 1.774± 0.023
CrossFormer [42] 0.169± 0.001 0.270± 0.001 1.541± 0.006 0.0882± 0.000 0.237± 0.002 2.931± 0.059
Card [34] 0.166± 0.001 0.267± 0.001 1.576± 0.002 0.0778± 0.000 0.242± 0.002 1.748± 0.009
ESG [39] 0.168± 0.002 0.275± 0.003 1.549± 0.003 0.0932± 0.005 0.242± 0.001 2.322± 0.026
FourierGNN [40] 0.237± 0.003 0.369± 0.002 1.978± 0.007 0.0935± 0.004 0.257± 0.002 2.869± 0.038
TPGNN [26] 0.234± 0.002 0.367± 0.002 2.042± 0.007 0.0782± 0.000 0.246± 0.002 1.731± 0.030

Sumba 0.163 ± 0.001 0.260 ± 0.001 1.530 ± 0.005 0.0704 ± 0.000 0.234 ± 0.002 1.663 ± 0.013

Method ETTh2 Traffic
(F = 6) MAE RMSE MAPE(%) MAE RMSE MAPE(%)
MICN [33] 0.281± 0.001 0.405± 0.001 1.692± 0.006 0.275± 0.002 0.571± 0.001 3.369± 0.019
ModernTCN [29] 0.272± 0.002 0.380± 0.003 1.819± 0.015 0.261± 0.002 0.597± 0.001 3.219± 0.028
PatchTST [30] 0.210± 0.002 0.328± 0.002 0.956± 0.005 0.231± 0.001 0.554± 0.002 2.465± 0.012
FEDformer [45] 0.349± 0.006 0.508± 0.007 1.523± 0.021 0.344± 0.003 0.718± 0.007 3.845± 0.033
Autoformer [35] 0.322± 0.002 0.473± 0.003 1.350± 0.010 0.360± 0.002 0.730± 0.003 3.891± 0.018
Reformer [19] 0.488± 0.012 0.690± 0.007 2.604± 0.031 0.338± 0.002 0.775± 0.006 3.613± 0.025
S4 [12] 0.562± 0.003 0.747± 0.009 2.755± 0.021 0.301± 0.002 0.738± 0.003 2.952± 0.020
MTGNN [38] 0.212± 0.001 0.323± 0.002 0.994± 0.006 0.227± 0.002 0.551± 0.004 2.562± 0.007
MegaCRN [15] 0.287± 0.004 0.411± 0.003 1.437± 0.009 0.338± 0.002 0.754± 0.002 3.994± 0.015
iTransformer [28] 0.212± 0.001 0.329± 0.001 1.029± 0.003 0.211± 0.002 0.524 ± 0.001 2.269± 0.005
CrossFormer [42] 0.249± 0.002 0.387± 0.001 1.097± 0.006 0.216± 0.002 0.634± 0.003 2.140 ± 0.014
Card [34] 0.209± 0.001 0.319 ± 0.001 0.951± 0.004 0.215± 0.001 0.545± 0.002 2.341± 0.006
ESG [39] 0.254± 0.006 0.371± 0.013 1.027± 0.012 0.221± 0.002 0.626± 0.002 2.248± 0.003
FourierGNN [40] 0.265± 0.002 0.393± 0.006 1.933± 0.008 0.291± 0.001 0.665± 0.002 3.608± 0.028
TPGNN [26] 0.236± 0.001 0.379± 0.003 1.092± 0.012 0.268± 0.002 0.726± 0.004 3.185± 0.035

Sumba 0.204 ± 0.001 0.323± 0.001 0.935 ± 0.003 0.210 ± 0.002 0.529± 0.002 2.196± 0.013
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Table 2: The forecasting results with prediction horizons of 3 and 6 on PEMS and Solar datasets.

Method PEMS Solar-Energy
(F = 3) MAE RMSE MAPE(%) MAE RMSE MAPE(%)
MICN [33] 0.155± 0.001 0.228± 0.002 1.180± 0.004 0.077± 0.000 0.136± 0.001 0.782± 0.003
ModernTCN [29] 0.143± 0.001 0.211± 0.000 1.102± 0.003 0.065± 0.000 0.125± 0.001 0.608± 0.002
PatchTST [30] 0.179± 0.001 0.242± 0.001 1.137± 0.003 0.082± 0.000 0.142± 0.001 0.647± 0.002
FEDformer [45] 0.246± 0.002 0.349± 0.003 1.765± 0.005 0.169± 0.001 0.247± 0.001 1.224± 0.006
Autoformer [35] 0.462± 0.003 0.670± 0.002 2.446± 0.008 0.213± 0.001 0.290± 0.002 1.340± 0.004
Reformer [19] 0.190± 0.001 0.300± 0.002 1.506± 0.003 0.068± 0.000 0.147± 0.001 0.818± 0.004
S4 [12] 0.232± 0.002 0.331± 0.003 2.029± 0.007 0.092± 0.001 0.139± 0.001 0.974± 0.003
MTGNN [38] 0.145± 0.000 0.215± 0.000 1.127± 0.004 0.060± 0.000 0.135± 0.001 0.629± 0.002
MegaCRN [15] 0.154± 0.001 0.232± 0.003 1.209± 0.004 0.057± 0.000 0.129± 0.001 0.658± 0.002
iTransformer [28] 0.146± 0.001 0.215± 0.001 1.147± 0.007 0.060± 0.000 0.126± 0.001 0.609± 0.002
CrossFormer [42] 0.144± 0.001 0.219± 0.001 1.139± 0.002 0.047± 0.000 0.116± 0.001 0.553± 0.003
Card [34] 0.155± 0.001 0.226± 0.001 1.139± 0.002 0.057± 0.000 0.134± 0.001 0.684± 0.002
ESG [39] 0.142± 0.001 0.212± 0.001 1.089± 0.003 0.050± 0.000 0.122± 0.001 0.606± 0.002
FourierGNN [40] 0.154± 0.001 0.236± 0.002 1.292± 0.003 0.063± 0.000 0.129± 0.002 0.647± 0.003
TPGNN [26] 0.149± 0.001 0.230± 0.001 1.157± 0.005 0.059± 0.000 0.138± 0.002 0.612± 0.002

Sumba 0.137 ± 0.001 0.204 ± 0.000 1.060 ± 0.002 0.046 ± 0.000 0.114 ± 0.002 0.541 ± 0.002

Method PEMS Solar-Energy
(F = 6) MAE RMSE MAPE(%) MAE RMSE MAPE(%)
MICN [33] 0.176± 0.001 0.239± 0.001 1.355± 0.003 0.094± 0.000 0.175± 0.001 0.889± 0.003
ModernTCN [29] 0.154± 0.001 0.228± 0.003 1.218± 0.006 0.086± 0.000 0.161± 0.002 0.796± 0.003
PatchTST [30] 0.189± 0.001 0.262± 0.002 1.226± 0.003 0.096± 0.000 0.183± 0.001 0.841± 0.002
FEDformer [45] 0.244± 0.001 0.348± 0.002 1.761± 0.002 0.169± 0.001 0.253± 0.001 1.305± 0.002
Autoformer [35] 0.515± 0.002 0.729± 0.004 2.881± 0.003 0.246± 0.002 0.333± 0.002 1.528± 0.002
Reformer [19] 0.202± 0.001 0.316± 0.002 1.655± 0.003 0.083± 0.000 0.175± 0.001 0.919± 0.004
S4 [12] 0.244± 0.003 0.344± 0.005 2.177± 0.006 0.101± 0.001 0.158± 0.002 1.156± 0.004
MTGNN [38] 0.158± 0.001 0.234± 0.001 1.229± 0.003 0.083± 0.000 0.169± 0.001 0.810± 0.002
MegaCRN [15] 0.167± 0.002 0.254± 0.003 1.356± 0.005 0.087± 0.000 0.172± 0.002 0.924± 0.005
iTransformer [28] 0.157± 0.001 0.233± 0.002 1.241± 0.003 0.071± 0.000 0.163± 0.001 0.823± 0.002
CrossFormer [42] 0.151± 0.001 0.233± 0.002 1.234± 0.002 0.063± 0.001 0.156± 0.002 0.739± 0.003
Card [34] 0.152± 0.002 0.228± 0.003 1.182± 0.004 0.062± 0.000 0.160± 0.002 0.775± 0.003
ESG [39] 0.151± 0.001 0.226± 0.001 1.159± 0.004 0.068± 0.000 0.158± 0.001 0.757± 0.005
FourierGNN [40] 0.182± 0.003 0.267± 0.002 1.327± 0.003 0.096± 0.001 0.177± 0.002 0.872± 0.002
TPGNN [26] 0.169± 0.001 0.256± 0.002 1.292± 0.003 0.090± 0.000 0.196± 0.002 0.872± 0.002

Sumba 0.147 ± 0.001 0.222 ± 0.002 1.155 ± 0.002 0.062 ± 0.000 0.147 ± 0.001 0.734 ± 0.002

methods, and the history window size H is set to 168. All methods are trained on Nvidia V100 GPUs.
Our method is implemented with PyTorch 2.0 and we use the source codes publicly released by the
authors for all baseline methods. We adjust the hyperparameters of baseline methods to obtain the
best performance on each dataset, and evaluate the performance of different methods in terms of
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage
Error (MAPE).

4.2 Forecasting Performance

Table 1 and 2 present the forecasting performance with F ∈ {3, 6} on six benchmark datasets,
with results evaluated using three different random seeds. The best results are highlighted in bold,
while the second-best results are underlined. PatchTST and ModernTCN demonstrate the best
performance among methods without explicitly modeling spatial correlations. Besides, graph-based
spatio-temporal methods yield better results than those that do not account for spatial structures. In
addition, Card, Crossformer, iTransformer, and ESG outperform static graph-based methods such
as MTGNN and MegaCRN, highlighting the significance of explicitly modeling dynamic spatial
structures. Our method Sumba achieves state-of-the-art performance in most cases, demonstrating
an improvement up to 8.5% over the best baseline on the Weather dataset. This superior performance
is attributed to its capability to produce dynamic graph structures with low variance and high
expressiveness using the proposed structured matrix basis. The forecasting results for additional
prediction horizons are provided in Appendix C.
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Table 3: Ablation study.

F = 3
Electricity Weather PEMS

MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)
w/o. dynamic 0.153 0.245 1.340 0.0693 0.219 1.624 0.145 0.215 1.127
w/. Um,Vm 0.148 0.238 1.251 0.0659 0.214 2.255 0.138 0.205 1.054
w/o. orthogonality 0.151 0.242 1.337 0.0633 0.213 1.605 0.142 0.209 1.094

Sumba 0.148 0.237 1.331 0.0587 0.208 1.381 0.137 0.204 1.060

F = 6
Electricity Weather PEMS

MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)
w/o. dynamic 0.169 0.268 1.636 0.0817 0.256 1.987 0.158 0.234 1.229
w/. Um, Vm 0.164 0.262 1.537 0.0722 0.234 2.116 0.149 0.227 1.162
w/o. orthogonality 0.167 0.265 1.578 0.0706 0.239 1.690 0.151 0.226 1.179

Sumba 0.163 0.260 1.530 0.0704 0.234 1.663 0.147 0.222 1.155

Figure 2: The change of α over one week.

4.3 Ablation Study

We conduct the ablation study on the Electricity, Weather, and PEMS datasets with prediction horizons
F of 3 and 6 to verify the efficacy of the proposed modules. In particular, we consider the following
variants of our proposed model: (1) w/o. dynamic: we replace the Dynamic GCN module with
the vanilla GCN module in [38]. (2) w/. Um,Vm: we use distinct Um, Vm for each basis matrix
Bm. (3) w/o. orthogonality: we remove the orthogonal parameterization on U and V. As shown in
Table 3, the performance of w/o. dynamic declines rapidly by up to 13.83%, 8.59%, and 16.31%
on three metrics, which verifies the efficacy of the proposed dynamic GCN model. The absence
of structure regularization (w/. Um,Vm) and the elimination of orthogonal parameterization (w/o.
orthogonality) on structured matrix basis lead to averaged performance drops of 4.95% and 3.05%,
respectively. This proves the effectiveness of the proposed structure regularization and orthogonal
constraint strategy.

4.4 Interpretable Dynamics

As discussed in Section 3.1, one appealing feature of our proposed Sumba is that it enables us to
gain insights into the underlying time series dynamics by tracking the change of the matrix basis
coefficient α over time. To verify this, we present the heatmap of the change of α on two datasets—
Solar-Energy and Electricity in Figure 2, in which the x-axis denotes the time (hourly), the y-axis
represents the no. of 5 basis matrices, and the color indicates the weight of α. It can be observed
that most of the weights are concentrated on two basis matrices, no. 1 and no. 4, which implies that
there are two dominant spatial structures on the two datasets. Furthermore, the two dominant spatial
structures appear alternatively and regularly, which actually corresponds to the day and night for
the Solar-Energy dataset. This aligns well with our intuition that solar energy observations should
manifest different spatial correlations as the light intensity varies. For the Electricity dataset, there
is a spatial correlation (no. 4) that spans two hours and only emerges in midnight, this reveals an
interesting electricity consumption pattern, which is unnoticed by previous methods. Therefore, our
proposed method is able to offer more interpretable dynamics of the underlying systems through
tracking α.
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Figure 3: The sensitivity of the dimension of basis M .

4.5 Parameter Sensitivity Analysis

We evaluate the impact of M on performance of our model, where the M ranges from 1, 2, 5, to
10. M = 1 corresponds to the static graph. As shown in Figure 3, the performance of our model
improves significantly when M > 1. When M = 2, our method achieves the best performance on
Electricity and Solar-Energy datasets, this coincides with the fact that the two datasets have two
dominant spatial structure patterns, i.e., day and night. The experiments empirically show that the
best setting of M is 5 on ETTh2, Traffic, and PEMS datasets and 10 on the Weather dataset. We
hypothesize this is due to the Weather dataset having more complex dynamics, and thus it requires
more basis matrices to cover the various patterns. The sensitivity analysis of L, K and H is presented
in Appendix D.

5 Conclusion

In this paper, we propose a time series forecasting method with the structured matrix basis, Sumba,
to capture dynamic spatial structures. To this end, we propose a novel structured parameterization
and impose structure regularization on the basis to enhance parameter efficiency, the output space
of the spatial structure function is thus well constrained and the generated spatial structures have
lower variance. Our proposed method offers us a manner to gain insights into the dynamics of the
underlying systems, and thus it is more interpretable. The experiments on six benchmark datasets
verify the superiority of our proposed method. Our extensive ablation studies prove the effectiveness
of each proposed component. In addition, the case study shows that our method can offer desirable
interpretability. In the future, we would like to explore how to better regularize the learned matrix
vector space and set the dimension of basis M in a data-driven manner. We will also explore the
possibility of integrating our proposed spatial structure modeling with other temporal encoders such
as Transformers, and Structured State Space models, and apply our interpretable dynamics into more
datasets to discover more interesting and hidden patterns.
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A Background and Proof of the Theorem

A.1 Geometry Interpretation of Matrix Multiplication

Recall that given a matrix A = UΣV⊤, the multiplication Ax can be interpreted as 1) transforming
x into the new coordinate system x′ ≜ V⊤x, 2) doing the elementwise product in the new coordinate
y′ = Σx′, and 3) transforming the coordinate system again y = Uy′.

Ax = UΣV⊤x = UΣx′ = Uy′. (10)

A.2 Proof of the Theorem

Theorem A.1. The output space of fspatial in Eq. 4 is bounded by the sum of the maximum of Σm(the
maximum singular value of Bm) for m = 1, 2, . . . ,M in terms of the ℓ2 norm i.e., ∥fspatial∥2 ≤∑M

m=1 max(Σm).

Proof.

∥fspatial∥2 =

∥∥∥∥∥
M∑

m=1

αmUΣmV⊤

∥∥∥∥∥
2

(11)

≤
M∑

m=1

αm

∥∥UΣmV⊤∥∥
2

(triangle inequality) (12)

=

M∑
m=1

∥∥UΣmV⊤∥∥
2

(0 < αm < 1) (13)

=

M∑
m=1

∥U∥2∥Σm∥2∥V⊤∥2 (14)

=

M∑
m=1

∥Σm∥2 (U,V are orthogonal matrices) (15)

=

M∑
m=1

max(Σm). (16)

The proof is completed.

B Implementation Details

B.1 Baselines

In our experiments, we compare our proposed Sumba with state-of-the-art (SOTA) baseline models.

• MICN: It utilizes temporal convolution networks and isometric convolution networks to
capture local and global temporal correlations, respectively.

• ModernTCN: It leverages large kernels to build long-term temporal dependencies.
• PatchTST: It introduces a patch-based attention mechanism and channel-independent

strategy to establish long-term temporal correlations.
• FEDformer: It leverages frequency-enhanced attention to capture long-term temporal

dependencies and employs frequency sampling to reduce the complexity.
• Autoformer: It designs auto-correlation module to discover the sub-series similarity based

on periodicity and aggregates similar sub-series from underlying periods.
• Reformer: It utilizes locality sensitive hashing strategy to reduce the complexity of the

attention mechanism.
• S4: It captures long-term temporal dependencies via structured transition matrices.
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• MTGNN: It builds an adaptive directed graph using learnable node embedding and aggre-
gates information along spatial dimensions through mix-hop propagation.

• MegaCRN: It exploits memory-enhanced node embedding to build the graph structure.

• iTransformer: It embeds the whole time series into a spatial token and captures spatial
correlations using the self-attention mechanism.

• Crossformer: It constructs both temporal and spatial dependencies using the attention
mechanism and introduces a router mechanism to decrease the complexity of the spatial
attention module.

• Card: It introduces summarized spatial tokens to decrease the complexity of the spatial
attention module and employs a token blend mechanism in the temporal attention module to
extract local temporal correlations.

• ESG: It designs multi-scale evolving node embedding based on Gated Recurrent Unit to
capture dynamic spatial dependencies.

• FourierGNN: It builds dynamic graphs by merging spatial and temporal dimensions and
designs the Fourier Graph Operator to decrease complexity.

• TPGNN: It regards the dynamic spatial correlations as the matrix polynomial graph where
the time-varying coefficients are determined by timestamps.

B.2 Metrics

The evaluation metrics including MAE, RMSE, and MAPE are as follows:

MAE =

∑
ij∈Ω |yij − ŷij |

|Ω|
RMSE =

√∑
ij∈Ω(yij − ŷij)2

|Ω|
MAPE =

∑
ij∈Ω

|yij − ŷij |
|Ω| · |yij |

(17)

where Ω denotes the index set along temporal and spatial dimensions.

C More Forecasting Results

Table 4 provides the results with prediction lengths of 12 and 24. The results underscore the significant
role of explicitly capturing spatial correlations in improving forecasting accuracy. Furthermore,
dynamic graphs exhibit a greater ability to enhance the forecasting performance than modeling static
spatial correlations. Among the baseline methods, Card, Crossformer, and ESG demonstrate
superior forecasting accuracy. Notably, our model achieves state-of-the-art performance, yielding
improvements more than 20% in terms of MAE and 25% in terms of MAPE over the existing methods
on the Solar-Energy dataset. In addition, we conduct experiments with a forecasting horizon of 96,
and as Table 5 shows, Sumba gives rise to favorable performance in comparison to PatchTST,
FEDformer, and iTransformer which are designed specifically for long-term forecasting.

D Hyperparameters Sensitivity

We evaluate the sensitivity of hyperparameters including the number of blocks L, the rank K, and
the history window size H . Number of Blocks: As shown in Figure 4, Sumba achieves its best
performance when L = 3. Further increasing L does not lead to performance improvements. We
hypothesize that this is due to the over-smoothing issue associated with Graph Neural Networks.
Rank: Figure 5 shows how performance varies as the rank K changes from 20 to 50. The optimal
setting for K is 30 for the Electricity, PEMS, and Solar-Energy datasets, while K = 50 yields the best
results for the Traffic dataset. We propose that this is attributed to the larger number of nodes in the
Traffic dataset, which requires a higher rank to effectively represent the dynamic spatial correlations.
History window: Figure 6 demonstrates that increasing the history window size enhances model
performance, especially for the Electricity dataset.
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Table 4: The forecasting results under forecasting length 12 and 24.

Method Electricity Weather PEMS
(F = 12) MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)
MICN [33] 0.278 0.390 2.633 0.123 0.276 2.970 0.277 0.404 2.021
ModernTCN [29] 0.202 0.307 1.796 0.111 0.268 4.541 0.169 0.252 1.368
PatchTST [30] 0.201 0.311 1.765 0.0958 0.270 6.108 0.211 0.293 1.426
FEDformer [45] 0.274 0.390 2.535 0.251 0.394 6.789 0.262 0.369 1.931
Autoformer [35] 0.284 0.402 2.822 0.216 0.368 8.119 0.585 0.732 2.736
Reformer [19] 0.376 0.521 3.495 0.185 0.349 4.815 0.217 0.338 1.801
S4 [12] 0.361 0.512 3.314 0.213 0.347 5.443 0.246 0.346 2.184
MTGNN [38] 0.184 0.292 1.704 0.0899 0.275 4.549 0.177 0.263 1.391
MegaCRN [15] 0.366 0.520 2.715 0.115 0.279 3.757 0.188 0.286 1.572
iTransformer [28] 0.188 0.296 1.703 0.0978 0.273 4.879 0.173 0.258 1.402
CrossFormer [42] 0.183 0.289 1.715 0.122 0.270 4.656 0.164 0.256 1.370
Card [34] 0.186 0.285 1.610 0.0892 0.268 3.829 0.168 0.254 1.347
ESG [39] 0.189 0.295 1.691 0.0969 0.264 3.513 0.164 0.248 1.313
FourierGNN [40] 0.275 0.396 2.694 0.121 0.276 4.932 0.199 0.305 1.832
TPGNN [26] 0.259 0.308 2.165 0.104 0.282 2.898 0.186 0.287 1.577

Sumba 0.178 0.283 1.560 0.0884 0.263 3.794 0.162 0.245 1.295

Method ETTh2 Traffic Solar-Energy
(F = 12) MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)
MICN [33] 0.290 0.414 1.492 0.281 0.629 3.479 0.105 0.207 1.000
ModernTCN [29] 0.320 0.445 1.564 0.271 0.612 3.219 0.118 0.210 0.974
PatchTST [30] 0.237 0.374 1.135 0.250 0.582 2.559 0.122 0.243 1.054
FEDformer [45] 0.349 0.512 1.550 0.350 0.727 3.840 0.204 0.292 1.289
Autoformer [35] 0.360 0.526 1.481 0.361 0.735 4.007 0.309 0.414 1.680
Reformer [19] 0.579 0.728 4.289 0.354 0.789 3.608 0.113 0.229 1.125
S4 [12] 0.634 0.846 2.768 0.307 0.749 3.079 0.137 0.210 1.585
MTGNN [38] 0.245 0.381 1.172 0.247 0.577 2.762 0.0975 0.214 1.007
MegaCRN [15] 0.332 0.465 1.519 0.367 0.784 4.397 0.116 0.226 1.088
iTransformer [28] 0.242 0.376 1.121 0.237 0.559 2.582 0.0974 0.211 0.991
CrossFormer [42] 0.307 0.446 1.467 0.238 0.666 2.497 0.0881 0.197 0.936
Card [34] 0.238 0.378 1.076 0.228 0.576 2.455 0.0850 0.210 0.996
ESG [39] 0.313 0.454 1.179 0.269 0.667 2.868 0.0935 0.204 0.962
FourierGNN [40] 0.309 0.454 1.551 0.382 0.792 4.159 0.119 0.208 1.098
TPGNN [26] 0.269 0.427 1.283 0.302 0.780 2.507 0.107 0.205 0.976

Sumba 0.234 0.369 1.045 0.225 0.569 2.358 0.0845 0.191 0.897

Method Electricity Weather PEMS
(F = 24) MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)
MICN [33] 0.261 0.375 2.595 0.149 0.309 5.026 0.197 0.292 1.646
ModernTCN [29] 0.222 0.331 1.945 0.151 0.306 7.100 0.197 0.290 1.582
PatchTST [30] 0.211 0.329 1.859 0.128 0.309 10.480 0.246 0.345 1.611
FEDformer [45] 0.281 0.400 2.782 0.254 0.407 10.152 0.282 0.394 1.983
Autoformer [35] 0.278 0.398 2.932 0.234 0.389 9.728 0.455 0.601 2.277
Reformer [19] 0.402 0.554 3.829 0.248 0.422 8.590 0.263 0.400 2.435
S4 [12] 0.348 0.499 3.258 0.269 0.429 8.225 0.259 0.361 2.403
MTGNN [38] 0.194 0.311 1.777 0.119 0.331 8.730 0.209 0.307 1.617
MegaCRN [15] 0.337 0.483 2.593 0.144 0.311 7.949 0.230 0.343 1.937
iTransformer [28] 0.195 0.310 1.774 0.126 0.313 8.254 0.200 0.296 1.552
CrossFormer [42] 0.196 0.310 1.944 0.160 0.309 7.186 0.189 0.283 1.565
Card [34] 0.197 0.315 1.746 0.115 0.303 8.007 0.196 0.294 1.528
ESG [39] 0.196 0.314 1.729 0.127 0.294 5.227 0.182 0.296 1.507
FourierGNN [40] 0.316 0.396 2.409 0.133 0.259 11.606 0.245 0.367 1.518
TPGNN [26] 0.262 0.355 2.121 0.125 0.296 5.238 0.226 0.319 1.903

Sumba 0.189 0.303 1.696 0.115 0.295 8.593 0.186 0.281 1.488

Method ETTh2 Traffic Solar-Energy
(F = 24) MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)
MICN [33] 0.313 0.464 1.345 0.294 0.693 3.107 0.146 0.284 1.216
ModernTCN [29] 0.479 0.631 3.095 0.281 0.626 3.261 0.160 0.279 1.176
PatchTST [30] 0.281 0.440 1.233 0.258 0.594 2.613 0.166 0.310 1.219
FEDformer [45] 0.368 0.542 1.651 0.353 0.740 4.142 0.229 0.345 1.533
Autoformer [35] 0.398 0.579 1.690 0.354 0.743 3.519 0.355 0.502 1.929
Reformer [19] 0.754 0.955 5.485 0.378 0.815 3.982 0.189 0.328 1.585
S4 [12] 0.6378 0.841 2.844 0.313 0.754 3.291 0.174 0.272 2.124
MTGNN [38] 0.288 0.452 1.267 0.266 0.602 3.117 0.138 0.286 1.224
MegaCRN [15] 0.363 0.516 1.738 0.415 0.833 4.990 0.151 0.296 1.508
iTransformer [28] 0.276 0.436 1.251 0.247 0.577 2.762 0.137 0.290 1.210
CrossFormer [42] 0.407 0.588 1.774 0.248 0.676 2.675 0.121 0.278 1.121
Card [34] 0.274 0.439 1.196 0.247 0.578 2.481 0.122 0.294 1.278
ESG [39] 0.308 0.457 1.271 0.275 0.689 2.715 0.124 0.271 1.166
FourierGNN [40] 0.326 0.515 1.374 0.427 0.794 4.189 0.162 0.307 1.571
TPGNN [26] 0.293 0.445 1.271 0.349 0.728 3.319 0.140 0.277 1.253

Sumba 0.273 0.433 1.217 0.243 0.589 2.669 0.121 0.264 1.119
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Table 5: The results with forecasting horizon 96.

Method Electricity Weather PEMS
MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)

PatchTST [30] 0.241 0.378 2.383 0.206 0.404 13.692 0.354 0.497 1.906
FEDformer [45] 0.308 0.438 3.223 0.346 0.525 8.949 0.482 0.631 3.182
Autoformer [35] 0.303 0.433 2.923 0.339 0.518 21.389 0.721 0.927 3.447
Reformer [19] 0.389 0.549 3.675 0.470 0.695 11.815 0.403 0.534 3.151
iTransformer [28] 0.229 0.367 2.248 0.213 0.411 13.009 0.311 0.446 2.055
Crossformer [42] 0.232 0.366 2.465 0.211 0.384 7.745 0.271 0.405 2.421
Card [34] 0.225 0.364 2.310 0.191 0.389 9.293 0.283 0.414 1.871

Sumba 0.234 0.373 2.675 0.185 0.383 11.561 0.253 0.377 1.700

Figure 4: The sensitivity of our method to the number of blocks L.

Figure 5: The sensitivity of our method to rank K.

Figure 6: The sensitivity of our method to the history window H .
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Figure 7: The training curves on Electricity and Weather datasets with prediction length F = 3.

Table 6: The complexity of different methods.

Method Complexity

MTGNN [38] O(N2D)
MegaCRN [15] O(N2D)
iTransformer [28] O(N2D)
CrossFormer [42] O(NrD)
Card [34] O(NrD)
ESG [39] O(N2D)
FourierGNN [40] O(NHlog(NH))
TPGNN [26] O(N2D)

w/o. Common U-V basis O(MNKD)
Sumba O(NKD)

E Convergence Speed and Computational Complexity

Convergence Speed Figure 7 illustrates the training curves for the first 10 epochs on the Electricity
and Weather datasets. Sumba, ModernTCN, and ESG exhibit fast convergence, achieving it within
5 epochs. In contrast, methods such as Card, FourierGNN, and TPGNN take several tens of epochs
to reach convergence.

Computational Complexity As shown in Table 6, we analyze the computational complexity of
different methods in capturing spatial dependencies, where N is the number of nodes, M is the
dimension of the matrix basis, D is the dimension of node embedding or hidden representation,
r ≪ N and K ≪ N . MTGNN, MegaCRN, iTransformer, ESG, and TPGNN build the graph
structure via inner product of static or dynamic node embedding, leading to a computation com-
plexity of O(N2D). Crossformer and Card employ router mechanism and summarized token,
respectively, in spatial correlation modeling, reducing the complexity to O(Nrd). FourierGNN
has complexity of O(NHlog(NH)) due to building a hypervariable graph. Our proposed Sumba
leverages low-rank approximation and common coordinate transformations strategy, achieving the
complexity of O(KND) whereas the computational cost for the model without a common U-V basis
is O(MKND). Thus, our model has low complexity, especially when N is large.

F Limitations

Although our proposed Sumba demonstrates superior performance in multivariate time series
forecasting, the dimension of matrix basis M is empirically tuned in our experiments. Besides, the
long-term forecasting capability of the proposed model requires further enhancement.

G Broader Impact

In this paper, we propose a novel time series forecasting method to capture dynamic spatial corre-
lations with a structured matrix basis. Our research aims to contribute to the advancement of the
relevant community without any negative social impact.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix F.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Appendix A.2.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 3 and Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Our code is available at: https://anonymous.4open.science/r/Sumba/.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 4 and Appendix B
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We repeat each experiment 3 times and report the mean results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We make sure to preserve anonymity.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix G.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited, and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package or dataset. See
Section 2 and Section 4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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