Structured Matrix Basis for Multivariate Time Series Forecasting with Interpretable Dynamics

Xiaodan Chen¹, Xiucheng Li² (🖂), Xinyang Chen², Zhijun Li¹ (🖂)

¹ School of Computer Science and Technology, Harbin Institute of Technology
 ² School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen {21B303004@stu., lixiucheng@, chenxinyang@, lizhijun_os@}hit.edu.cn

Abstract

Multivariate time series forecasting is of central importance in modern intelligent decision systems. The dynamics of multivariate time series are jointly characterized by temporal dependencies and spatial correlations. Hence, it is equally important to build the forecasting models from both perspectives. The real-world multivariate time series data often presents spatial correlations that show structures and evolve dynamically. To capture such dynamic spatial structures, the existing forecasting approaches often rely on a two-stage learning process (learning dynamic series representations and then generating spatial structures), which is sensitive to the small time-window input data and has high variance. To address this, we propose a novel forecasting model with a structured matrix basis. At its core is a dynamic spatial structure generation function whose output space is well-constrained and the generated structures have lower variance, meanwhile, it is more expressive and can offer interpretable dynamics. This is achieved via a novel structured parameterization and imposing structure regularization on the matrix basis. The resulting forecasting model can achieve up to 8.5% improvements over the existing methods on six benchmark datasets, and meanwhile, it enables us to gain insights into the dynamics of underlying systems.

1 Introduction

Multivariate time series forecasting plays a pivotal role in a wide range of fields, such as traffic flow management, electricity consumption, and weather prediction. Multivariate time series data records quantities of interest from N series spanning over T time steps, and its underlying dynamics are jointly characterized by the temporal correlations (intra-series dependencies) and spatial structures (inter-series dependencies). Inspired by the advancements in Natural Language Processing, substantial research has been proposed to apply RNNs and Transformers to capture the underlying temporal dependencies [41, 32, 44, 45, 30]. Besides, the convolution paradigm also exhibits promising temporal correlation modeling capability and excels in long-term forecasting [33, 36, 29].

As the underlying dynamics are jointly described by the intra- and inter-correlations, it is equally important to explore the spatial structures for an ideal forecasting model design. Many proposals employ dense connection to capture the spatial correlations implicitly [31, 24]. However, the dense connection lacks clear structures and is prone to introduce noise from uncorrelated spatial dimensions. The development of Graph Neural Networks (GNNs) [18, 17, 7] offers an effective solution to model non-Euclidean structure data. DCRNN [22] builds graphs based on spatial proximity and conducts graph convolution to capture spatial correlations for traffic forecasting. To apply GNNs to more general scenarios where graph structures are unavailable, the forecasting methods propose to learn the graph adaptively through learnable node embeddings [37, 1, 38, 15], which significantly enhances the forecasting performance.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Despite the progress achieved, the spatial structures remain static across time steps for the aforementioned forecasting methods, which may not reflect the actual inter-series correlation. Because in many scenarios, the spatial correlations are also changing dynamically, for example, the traffic speeds of certain road segments manifest correlation only in peak hours. To relax this restriction, many dynamic graph-based methods have been proposed [43, 39, 42, 28, 34] to learn the spatial structures within a short time window. The intuition is that the spatial correlations in real-world applications often evolve continuously and tend to be stable over a short period of time. The general idea is to learn each series a dynamic representation via a nonlinear transformation $f_{\rm dynm}$ by taking as input the current time window data, and it then generates the spatial structures by pairwise interacting the dynamic representations via a transformation f_{pair} , the composition of two transformations forms the spatial structure generation function $f_{\text{spatial}} = f_{\text{pair}} \circ f_{\text{dynm}}$. The dynamic representation function f_{dynm} is often implemented as MLP ([43, 42, 28, 34]) or RNN ([39]) whereas f_{pair} is mostly instantiated by attention mechanism or inner product. One severe issue of these methods is that the output space of $f_{\rm dynm}$ is not well constrained and unbounded, this makes the learned dynamic representations very sensitive to the short time window input data and the unboundedness will be exaggerated by the inner product operation in f_{pair} , which will lead to the outputs of $f_{spatial}$ fluctuate drastically and have high variance. The issue becomes even more severe in the presence of anomaly patterns. To reduce the variance, TPGNN [26] first learns a static spatial structure A (adjacency matrix) and then generates the dynamic spatial structures with a matrix polynomial $\sum_{m=1}^{M} \alpha_m \mathbf{A}^m$ where α_m is determined by the timestamps of the current time window. However, it has two drawbacks: 1) the coefficient α_m solely depends on the timestamps and cannot adapt to the current window data, and 2) the matrix power basis $\hat{\mathbf{A}}, \mathbf{A}^2, \dots, \mathbf{A}^M$ is overly restricted and has limited expressive capability. In addition, the existing forecasting methods often lack interpretable dynamics.

In this paper, we propose a dynamic multivariate time series forecasting model with a structured matrix basis. Instead of relying on the two-stage spatial structure learning process (learning dynamic series representations and then generating spatial structures), we directly parameterize f_{spatial} with a learnable matrix basis $\mathbf{B}_1, \mathbf{B}_2, \ldots, \mathbf{B}_M$ and represent any spatial structure with a convex combination $\sum_{m=1}^{M} \alpha_m \mathbf{B}_m, \alpha_m \ge 0$ and $\sum_{m=1}^{M} \alpha_m = 1$. To learn the matrix basis effectively, we propose a novel structured matrix parameterization method and impose structure regularization on the basis to enhance parameter efficiency and reduce complexity. In contrast to the two-stage spatial structure learning methods, the output space of our proposed f_{spatial} is well constrained. Consequently, the generated spatial structures have lower variance and the resulting model is easier to learn. In comparison to TPGNN, our matrix basis is more expressive since it is not limited by the matrix power constraint; the coefficient α can also be computed adaptively via the interaction of current time-window data and the basis. In addition, the coefficient α offers a fashion to track the spatial structure evolution and enables us to gain insights into the underlying dynamics. Thus, the resulting model is more interpretable.

In summary, our proposed f_{spatial} has the following appealing properties: 1) lower variance and easier to learn, 2) it is more expressive, and 3) it can yield more interpretable results. This is achieved through a novel structured matrix parameterization and structure regularization. By integrating f_{spatial} into the forecasting framework, we evaluate the efficacy of the proposed method on six benchmark datasets, it achieves up to 8.5% improvements over existing forecasting methods across various prediction lengths and can also offer interpretable dynamics.

2 Related Work

Temporal Dependency Modeling Early deep sequential methods adopt recurrent neural networks to capture nonlinear temporal dynamics [41, 32, 5]. Motivated by the wide receptive fields of attention mechanism, various Transformer-based methods have been developed to capture the long-term temporal dependencies in forecasting. To reduce the quadratic complexity of the vanilla attention, LogTrans [21], Informer [44], Autoformer [35], and FEDformer [45] have been proposed successively. Non-stationary Transformer [27] attempts to mitigate the difficulties caused by non-stationarity in modeling temporal correlation. PatchTST [30] explores the strategies of patch-level semantic modeling and channel-independence. VQ-MTM [13] explores the well-defined semantic units for the Transformer architecture in time series modeling. In state-space models, the transition matrix is employed to model long-term temporal dependencies, and their recent representative works include Hippo [10], LSSL [11]. To reduce the computational complexity, S4 [12] and Mamba [9]

have been proposed successively. The convolution-based methods have also shown promising results in time series modeling. MICN [33] explores isometric convolution to capture non-local temporal patterns. TimesNet [36] reshapes 1D signals into 2D by aligning according to inherent multiple periodicity and it then employs the 2D kernels to capture both intraperiod- and interperiod-variations. ModernTCN [29] utilizes large kernels to model long-term dependencies. In addition, the Fourier basis parameterization has also been proposed to model long-term dependencies in time series imputation [25].

Static Spatial Correlation Modeling The spatial correlation plays an equally important role in time series modeling. DeepAR [31] and Pyraformer [24] employ dense connection to model the spatial dependencies. However, the dense connection fails to explore the underlying structure and may introduce noises from unrelated series. The advancement of GNNs offers an effective way to model non-Euclidean structure data. DCRNN [22] constructs the graph by using spatial proximity and proposes to fuse the spatial information via graph convolution operation, and thus it is only applicable when the underlying graph structures are easily accessible. To sidestep this limitation, the adaptive GNNs-based methods [1, 38, 15, 14, 16] propose to learn each series a representation and then generate the spatial structure via the interaction of the representations. BiTGraph [4] further develops the method to account for missing patterns in message passing to handle the time series with missing values. However, these approaches implicitly assume the series representations are shared across the entire time steps, and hence the underlying spatial graphs remain static over time.

Dynamic Spatial Correlation Modeling In real-world applications, the inter-series correlations or spatial structures are often evolving dynamically. To adapt to these scenarios, many dynamic spatial structure methods are proposed, which share a similar two-stage spatial structure learning process as the static adaptive GNNs-based methods (as discussed in Section 1). The difference is that the series representations are generated by conditioning a small time window rather than the entire timeline data, and hence, the underlying spatial structures can change dynamically over time. GMAN [43], iTransformer [28], Crossformer [42], and Card [34] implement the dynamic node representation function via MLP, whereas ESG [39] adopts the RNN. As the output spaces of their f_{spatial} are not well constrained, the learned spatial structures are very sensitive to the change of time-window data and hence have high variance. To reduce the variance, TPGNN [26] proposes to represent the dynamic graphs with matrix polynomial. As the polynomial coefficients are solely determined by the timestamps, such a method fails to utilize the current time-window data. Moreover, the matrix power basis is overly restricted and has weak expressive capability. The proposals [40, 8] attempt to build dynamic graphs by merging temporal and spatial dimensions. Nevertheless, the entanglement of temporal correlations and spatial dependencies makes the models hard to optimize. In addition, the existing multivariate time series forecasting methods also lack interpretability regarding the underlying dynamics.

3 Methodology

Notation From a generative perspective, the multivariate time series $\mathbf{X} \in \mathbb{R}^{N \times T \times D}$ records a D-dimensional physical quantities of interest generated by N series (i.e., sensors or instances) over T time steps. We use $\mathbf{X}^{(n)} \in \mathbb{R}^{T \times D}$ to represent the observations from n-th sensor and $\mathbf{X}_t \in \mathbb{R}^{N \times D}$ to indicate the observations at the t-th timestamp. The slice notation $\mathbf{X}_{t-H:t} \in \mathbb{R}^{N \times H \times D}$ denotes the values within a window spanning from the time interval [t-H, t). The operator diag : $\mathbb{R}^{N \times N} \mapsto \mathbb{R}^N$ takes the diagonal elements of a square matrix and returns it as a vector, the operator vec reshapes a matrix or tensor into a vector.

Overview and Pipeline Figure 1-(a) presents the architecture of our proposed Sumba (dynamic multivariate time series forecasting with structured matrix basis), which comprises *L* blocks. Each block contains two primary modules: the Multi-Scale TCN and Dynamic GCN modules. The Multi-Scale TCN module in the ℓ -th block takes as the input $\mathbf{Z}_{t_0-H:t_0}^{(\ell-1)} \in \mathbb{R}^{N \times H \times D_i^{(\ell-1)}}$ and generates the intermediate representation $\mathbf{Z}_{t_0-H:t_0}^{\prime(\ell-1)} \in \mathbb{R}^{N \times H \times D_o^{(\ell-1)}}$, which is fed to the Dynamic GCN module to produce $\mathbf{Z}_{t_0-H:t_0}^{(\ell)} \in \mathbb{R}^{N \times H \times D_o^{(\ell)}}$. The Multi-Scale TCN captures the temporal dependencies by performing multi-scale temporal convolution operation in a channel-independent manner, we choose the kernel sizes 1×2 , 1×3 , 1×6 , and 1×7 in this paper. The Dynamic GCN module comprises two functions, namely, the spatial structure generation function f_{spatial} and graph convolution function f_{spatial} and graph convolution function f_{spatial} and graph convolution function function

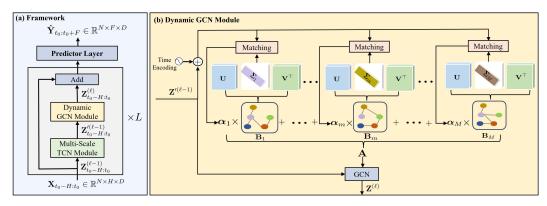


Figure 1: (a) The framework of our proposed Sumba. (b) the detailed structure of the Dynamic GCN module.

by conditioning on the intermediate representation $\mathbf{Z}_{t}^{\prime(\ell-1)} \in \mathbb{R}^{N \times D_{o}^{(\ell-1)}}$ at time step $t \in [t_{0} - H, t_{0})$, which is obtained by transforming the current time-window data $\mathbf{X}_{t_{0}-H:t_{0}}$. Given the generated dynamic graph \mathbf{A}_{t} , f_{gcn} further fuses the spatial information of $\mathbf{Z}_{t}^{\prime(\ell-1)}$ across different series to yield $\mathbf{Z}_{t}^{(\ell)}$ by performing the graph convolution operation. Note that the spatial and temporal dimensions are kept unchanged during the entire transformation in the *L* blocks.

3.1 Adaptive Dynamic Spatial Structure Generation

The core layer of our proposed forecasting method is the spatial structure generation function f_{spatial} . It serves to infer the optimal graph structure \mathbf{A}_t that best characterizes the present spatial correlations from the intermediate representation \mathbf{Z}'_t (we drop the layer index ℓ to keep the notation uncluttered in this subsection). As mentioned in Section 1, the existing methods all adopt the two-stage learning process, which results in unconstrained output function space and high graph structure variance. To address this, we propose to directly parameterize a learnable matrix basis $\mathcal{B} = {\{\mathbf{B}_m\}}_{m=1}^M$ of dimension M where $\mathbf{B}_m \in \mathbb{R}^{N \times N}$ and define the spatial structure generation function as

$$f_{\text{spatial}}(\mathbf{Z}'_{t}) \triangleq \sum_{m=1}^{M} \alpha_{t,m} \mathbf{B}_{m}, \quad \alpha_{t,m} \ge 0, \sum_{m=1}^{M} \alpha_{t,m} = 1.$$
(1)

Here, we choose the convex combination instead of the linear combination to better control the output space. This is reasonable since the basis \mathcal{B} is free to optimize in the training stage. The intuition behind Eq. 1 is that the basis \mathcal{B} can be shared and optimized globally across different time windows, and to infer the spatial structure dynamically, we only need to adaptively compute the coefficient $\alpha_t \in \mathbb{R}^M$ by conditioning on \mathbf{Z}'_t .

However, two challenges remain in adopting the spatial structure generation function in Eq. 1. 1) The number of parameters to be learned equals MN^2 , which grows quadratically to N. As these M matrices lack connection and constraints, learning by brute force will sooner become infeasible even for medium-size N. This actually is the reason why the existing methods resort to the two-stage learning process, i.e., learning each series an embedding whose learnable parameters are ND with D being the embedding dimension. 2) Intuitively, the best α_m should be simultaneously determined by \mathbf{Z}' and \mathbf{B}_m , but identifying \mathbf{B}_m with N^2 parameters will make α_m hard to compute when N is large.

Structured Parameterization and Regularization To circumvent the two challenges, we propose to parameterize the basis matrices in a structured manner and impose additional structure regularization on the basis. The idea is to represent each basis matrix \mathbf{B}_m in its SVD (singular value decomposition) factor product form $\mathbf{B}_m = \mathbf{U}_m \Sigma_m \mathbf{V}_m^{\top}$ and then parameterize the factors \mathbf{U}_m , Σ_m , \mathbf{V}_m , where $\mathbf{U}_m, \mathbf{V}_m \in \mathbb{R}^{N \times N}$ are orthogonal matrices, and Σ_m is a diagonal matrix consisting of the singular values of \mathbf{B}_m . One benefit of such structured parameterization is that it permits us to establish connections between the basis matrices and impose constraints, and consequently, enhance the parameter efficiency and ease of the model learning. To be specific, we impose the constraint that all \mathbf{B}_m for $m = 1, 2, \ldots, M$ share the same parameterized orthogonal matrices \mathbf{U}, \mathbf{V} and each matrix has its unique Σ_m , i.e.,

$$\mathcal{B} \triangleq \left\{ \mathbf{U} \Sigma_1 \mathbf{V}^\top, \mathbf{U} \Sigma_2 \mathbf{V}^\top, \dots, \mathbf{U} \Sigma_M \mathbf{V}^\top \right\}.$$
(2)

The rationality behind such a choice stems from the geometry interpretation of orthogonal matrixvector multiplication, i.e., left multiplying a vector by an orthogonal matrix is equivalent to coordinate transformation, which is provided in Appendix A.1. Hence, we implicitly require that all basis matrices share the same pair of coordinate transformations, which can be considered a sort of implicit regularization since it reduces extra freedom and guides the model to find the coordinate transformations (U and V) that best suit the basis.

Dynamic Coefficient Generation Such a parameter sharing regularization mechanism along with the structured parameterization also brings **another benefit**, it allows us to treat $\operatorname{diag}(\Sigma_m) \in \mathbb{R}^N$ as a fingerprint to identify each \mathbf{B}_m . Hence, we can compute the α_t to infer the dynamic spatial structure by simultaneously conditioning on \mathbf{Z}'_t and $\operatorname{diag}(\Sigma_m)$. To this end, we design an adaptive matching module that takes as input $\mathbf{Z}'_t \in \mathbb{R}^{N \times D_o}$ and $[\operatorname{diag}(\Sigma_1), \operatorname{diag}(\Sigma_2), \ldots, \operatorname{diag}(\Sigma_M)]$, and it yields the coefficient α_t at the *t* time step, as follows.

$$\mathbf{D} \triangleq [\operatorname{diag}(\Sigma_1), \operatorname{diag}(\Sigma_2), \dots, \operatorname{diag}(\Sigma_M)] \in \mathbb{R}^{N \times M}$$
$$\mathbf{z} \triangleq \operatorname{vec}(\mathbf{Z}'_t) + \operatorname{TimeEncoding}(t) \in \mathbb{R}^{ND_o}$$
$$\boldsymbol{\alpha}_t = \operatorname{softmax}\left((\mathbf{W}_d \mathbf{D})^\top \mathbf{W}_z \mathbf{z} / \sqrt{d} \right) \in \mathbb{R}^M$$
(3)

where TimeEncoding is the timestamp encoding function, \mathbf{W}_d and \mathbf{W}_z are used to match the dimension, i.e., mapping **D** and **z** into the \mathbb{R}^d space. Given the structured basis in Eq. 2, each α_t represents a dynamic spatial structure or graph at step t as

$$\mathbf{A}_{t} = f_{\text{spatial}}(\mathbf{Z}'_{t}) = \sum_{m=1}^{M} \alpha_{t,m} \mathbf{U} \Sigma_{m} \mathbf{V}^{\top}.$$
(4)

Given \mathbf{A}_t at each time step, we can perform graph convolution operation to aggregate information from the spatial dimension. The process is illustrated in Figure 1-(b). The output space of f_{spatial} is well constrained on the premise that Σ_m are well bounded, which is given by the following theorem.

Theorem 3.1. The output space of f_{spatial} in Eq. 4 is bounded by the sum of the maximum of Σ_m (the maximum singular value of \mathbf{B}_m) for m = 1, 2, ..., M in terms of the ℓ_2 norm i.e., $||f_{\text{spatial}}||_2 \leq \sum_{m=1}^M \max(\Sigma_m)$.

The proof is presented in Appendix A.2 and Theorem 3.1 states that the variance of the learned structures is controllable by restricting the maximum value of Σ_m , which is easy to achieve since Σ_m can simply be parameterized by a vector with nonnegative values. Besides, by tracking the change of α_t over time, our proposed method enables us to gain insight into the underlying dynamics of the system, and thus offers additional interpretability, as we will show in Section 4.4.

Orthogonality To impose the orthogonal constraint, one may attempt to apply an orthogonality penalty, i.e., by adding the penalty term $\|\mathbf{U}^{\top}\mathbf{U} - \mathbf{I}\| + \|\mathbf{V}^{\top}\mathbf{V} - \mathbf{I}\|$ to the optimized objective. However, such a hard penalty cannot guarantee genuine orthogonality and the extra penalty term also increases the learning difficulty. Hence, rather than relying on the hard penalty, we opt for the orthogonal parameterization. In particular, we restrict our attention to the special orthogonal group

$$\operatorname{SO}(N) \triangleq \left\{ \mathbf{A} \in \mathbb{R}^{N \times N} \mid \mathbf{A}^{\top} \mathbf{A} = \mathbf{I}, \det(\mathbf{A}) = 1 \right\},$$
 (5)

which are flexible enough to represent the coordinate transformation. A nice property of SO(N) is that it is both a compact Lie group and a smooth manifold [6]. The tangent space of the Lie group at the identity forms a vector space equipped with a Lie bracket operation, namely, its Lie algebra. The Lie algebra of SO(N) is the set of all skew-symmetric matrices, denoted by $\mathfrak{so}(N)$, i.e.,

$$\mathfrak{so}(N) \triangleq \left\{ \mathbf{A} \in \mathbb{R}^{N \times N} \mid \mathbf{A}^{\top} = -\mathbf{A} \right\}.$$
(6)

In differentiable manifold and Lie group, a well-known result is that the matrix exponential exp : $\mathfrak{so} \mapsto SO$ establishes the connection between a Lie group and its Lie algebra, i.e., for any $\mathfrak{g} \in \mathfrak{so}(N)$ we have $\exp(\mathfrak{g}) \in SO(N)$. The matrix exponential is defined as

$$\exp(\mathbf{A}) \triangleq \sum_{k=0}^{\infty} \frac{1}{k} \mathbf{A}^{k} = \mathbf{I} + \mathbf{A} + \frac{1}{2} \mathbf{A}^{2} + \dots$$
(7)

The computation of the matrix exponential map is costly but for the special orthogonal group it has a cheap first order approximation, also known as the Clay map [3, 2],

$$\phi(\mathbf{A}) \triangleq \left(\mathbf{I} + \frac{1}{2}\mathbf{A}\right) \left(\mathbf{I} - \frac{1}{2}\mathbf{A}\right)^{-1}.$$
(8)

The Clay map can be implemented in parallel by the Gaussian elimination algorithm in a numerically stable way.

Low Rank Approximation By using the Clay map, the number of parameters required to parameterize U and V is N(N-1) (two skew-symmetric matrices N(N-1)/2 + N(N-1)/2). Thus the total number of parameters required by the basis in Eq. 2 is N(N-1) + MN. To further reduce the parameter count, we can apply the low rank approximation. In real-world applications, the spatial structures (adjacency matrices) of multivariate time series are often low-ranked. Suppose the rank is K, we can only preserve the first K columns of U and V as well as parameterize each Σ_m with a length K vector, which leads to a parameter count upper bound NK + MK. Since K is often much less than N in practice, the low rank approximation can enhance both the parameter and computation efficiency when N is large.

3.2 Hierarchical Architecture

By stacking *L* blocks, the Sumba significantly enhances its capability to model temporal correlations and spatial dependencies effectively. We initialize $\mathbf{Z}^{(0)}$ with the original input $\mathbf{X} \in \mathbb{R}^{N \times H \times D}$. The output of *L*-th block $\mathbf{Z}^{(L)} \in \mathbb{R}^{N \times H \times D^{(L)}}$ produces the multi-step prediction $\hat{\mathbf{Y}}_{t_0:t_0+F}$ through a linear transformation. The model is optimized by minimizing mean absolute error (MAE):

$$\mathcal{L}_{\text{MAE}}(\mathbf{Y}_{t_0:t_0+F}, \hat{\mathbf{Y}}_{t_0:t_0+F}) \triangleq \frac{\sum_{n=1}^{N} \sum_{t=t_0}^{t_0+F-1} |\hat{y}_t^{(n)} - y_t^{(n)}|}{N \times F}.$$
(9)

4 Experiments

In this section, we evaluate our approach Sumba against 15 time series forecasting methods on six benchmark datasets (Section 4.2 and Appendix C). The ablation studies are presented in Section 4.3. We demonstrate the interpretability of our method with case studies in Section 4.4. The sensitivity of hyperparameters is provided in Section 4.5 and Appendix D; the computational cost is empirically studied in Appendix E. The code of Sumba is available at: https://github.com/chenxiaodanhit/Sumba/.

4.1 Experimental Setup

Datasets We conduct experiments on six commonly adopted public datasets including: (1) **Electricity** [44] contains hourly electricity consumption of 321 clients. (2) **Weather** [35] includes 21 meteorological factors collected every 10 minutes from the weather station of the Max Planck Biogeochemistry Institute. (3) **PEMS** [23] records traffic data of 358 variates in California sampled every 5 minutes. (4) **ETTh2** [44] contains hourly data from 7 electricity transformers. (5) **Traffic** [35] measures the hourly road occupancy rates of 862 sensors on San Francisco Bay area freeways. (6) **Solar-Energy** [20] records the solar power production, which is sampled every 10 minutes from 137 PV plants.

Baselines We compare our method with the following baselines: (1) TCN-based methods: MICN [33], ModernTCN [29]; (2) Transformer-based methods: PatchTST [30], FEDformer [45], Autoformer [35], Reformer [19]; (3) Static graphs-based methods: MTGNN [38], MegaCRN [15]; (4) Dynamic graphs-based methods: iTransformer [28], Crossformer [42], Card [34], ESG [39], TPGNN [26], FourierGNN [40]; (5) Structured State Space model: S4 [12]. More details of baselines are provided in Appendix B.

Implementation details The number of blocks L of Sumba is set to 3, the dimension of structured basis M is set to 5, and the rank K is set to $\min(N, 30)$ in all our experiments. The batch size is 32, the learning rate is 0.0001. We split the datasets into training, validation, and test datasets with the ratio 0.6/0.2/0.2 chronologically. The future window size F is set to 3, 6, 12, and 24 for all

Method		Electricity			Weather	
(F=3)	MAE	RMSE	MAPE(%)	MAE	RMSE	MAPE(%)
MICN [33]	0.217 ± 0.001	0.323 ± 0.001	2.380 ± 0.012	0.0812 ± 0.001	0.217 ± 0.002	1.563 ± 0.017
ModernTCN [29]	0.172 ± 0.001	0.259 ± 0.001	1.629 ± 0.008	0.0727 ± 0.000	0.213 ± 0.001	1.695 ± 0.056
PatchTST [30]	0.173 ± 0.001	0.266 ± 0.002	1.359 ± 0.006	0.0642 ± 0.000	0.214 ± 0.000	2.511 ± 0.223
FEDformer [45]	0.268 ± 0.002	0.380 ± 0.002	2.454 ± 0.011	0.236 ± 0.001	0.364 ± 0.001	4.832 ± 0.039
Autoformer [35]	0.271 ± 0.003	0.383 ± 0.001	2.543 ± 0.005	0.238 ± 0.001	0.386 ± 0.002	7.133 ± 0.693
Reformer [19]	0.324 ± 0.002	0.452 ± 0.002	2.921 ± 0.010	0.0821 ± 0.001	0.220 ± 0.002	1.533 ± 0.022
S4 [12]	0.331 ± 0.002	0.479 ± 0.002	2.792 ± 0.015	0.0921 ± 0.001	0.292 ± 0.003	4.782 ± 0.055
MTGNN [38]	0.153 ± 0.001	0.245 ± 0.002	1.340 ± 0.004	0.0693 ± 0.000	0.219 ± 0.001	1.624 ± 0.018
MegaCRN [15]	0.272 ± 0.001	0.394 ± 0.002	$\frac{1000}{2.429 \pm 0.026}$	0.0674 ± 0.000	0.215 ± 0.001	1.458 ± 0.032
iTransformer [28]	0.158 ± 0.001	0.248 ± 0.000	1.472 ± 0.007	0.0644 ± 0.000	0.216 ± 0.001	1.628 ± 0.026
CrossFormer [42]	0.156 ± 0.000	0.246 ± 0.001	1.370 ± 0.008	0.0643 ± 0.002	0.210 ± 0.003	1.417 ± 0.035
Card [34]	0.150 ± 0.000 0.152 ± 0.001	0.244 ± 0.001	1.460 ± 0.013	0.0641 ± 0.0002	$\frac{0.210 \pm 0.000}{0.215 \pm 0.001}$	$\frac{1.111 \pm 0.000}{1.523 \pm 0.007}$
ESG [39]	$\frac{0.102 \pm 0.001}{0.153 \pm 0.002}$	$\frac{0.241 \pm 0.001}{0.247 \pm 0.001}$	1.434 ± 0.005	$\frac{0.0011 \pm 0.000}{0.0753 \pm 0.000}$	0.215 ± 0.001 0.215 ± 0.001	1.837 ± 0.072
FourierGNN [40]	0.213 ± 0.002	0.327 ± 0.001	1.619 ± 0.006	0.0859 ± 0.000	0.229 ± 0.002	1.732 ± 0.031
TPGNN [26]	0.219 ± 0.002 0.206 ± 0.003	0.324 ± 0.003 0.324 ± 0.001	1.677 ± 0.009	0.0653 ± 0.000 0.0652 ± 0.000	0.219 ± 0.002 0.219 ± 0.001	1.538 ± 0.024
Sumba	0.148 ± 0.001	$\textbf{0.237} \pm \textbf{0.000}$	1.331 ± 0.005	0.0587 ± 0.000	$\textbf{0.208} \pm \textbf{0.000}$	$\textbf{1.381} \pm \textbf{0.011}$
Method		ETTh2			Traffic	
(F = 3)	MAE	RMSE	MAPE(%)	MAE	RMSE	MAPE(%)
MICN [33]	0.225 ± 0.002	0.341 ± 0.001	1.126 ± 0.008	0.253 ± 0.001	0.577 ± 0.001	2.794 ± 0.013
ModernTCN [29]	0.242 ± 0.002 0.242 ± 0.002	0.340 ± 0.002	1.153 ± 0.013	0.239 ± 0.001 0.239 ± 0.002	0.562 ± 0.002	3.210 ± 0.036
PatchTST [30]	0.182 ± 0.002 0.182 ± 0.001	0.340 ± 0.002 0.285 ± 0.001	0.854 ± 0.003	0.235 ± 0.002 0.226 ± 0.001	0.502 ± 0.002 0.532 ± 0.002	2.440 ± 0.009
FEDformer [45]	$\frac{0.182 \pm 0.001}{0.332 \pm 0.012}$	0.285 ± 0.001 0.480 ± 0.006	$\frac{0.034 \pm 0.003}{1.522 \pm 0.023}$	0.346 ± 0.006	0.002 ± 0.002 0.714 ± 0.009	4.010 ± 0.003
Autoformer [35]	$\begin{array}{c} 0.332 \pm 0.012 \\ 0.299 \pm 0.003 \end{array}$	0.430 ± 0.000 0.438 ± 0.004	1.322 ± 0.023 1.344 ± 0.017	0.340 ± 0.000 0.361 ± 0.003	0.714 ± 0.009 0.728 ± 0.005	4.010 ± 0.041 3.956 ± 0.026
	0.299 ± 0.003 0.442 ± 0.006		1.344 ± 0.017 2.091 ± 0.025	0.301 ± 0.003 0.322 ± 0.007		
Reformer [19] S4 [12]		0.663 ± 0.011			$\begin{array}{c} 0.757 \pm 0.014 \\ 0.734 \pm 0.003 \end{array}$	3.351 ± 0.038 2.647 ± 0.011
	0.441 ± 0.004	0.617 ± 0.018	2.749 ± 0.017	0.295 ± 0.003		
MTGNN [38]	0.185 ± 0.001	0.289 ± 0.001	0.855 ± 0.004	0.203 ± 0.002	0.525 ± 0.003	2.332 ± 0.008
MegaCRN [15]	0.237 ± 0.002	0.352 ± 0.001	1.177 ± 0.005	0.326 ± 0.002	0.735 ± 0.007	4.054 ± 0.028
iTransformer [28]	0.188 ± 0.000	0.294 ± 0.002	0.906 ± 0.001	0.195 ± 0.001	$\textbf{0.492} \pm \textbf{0.001}$	2.155 ± 0.007
CrossFormer [42]	0.206 ± 0.001	0.325 ± 0.002	0.927 ± 0.003	0.198 ± 0.002	0.602 ± 0.006	2.079 ± 0.021
Card [34]	0.182 ± 0.000	0.287 ± 0.000	0.869 ± 0.006	0.197 ± 0.001	0.495 ± 0.001	2.147 ± 0.007
ESG [39]	0.217 ± 0.001	0.335 ± 0.009	0.909 ± 0.015	0.198 ± 0.001	0.588 ± 0.003	2.086 ± 0.004
FourierGNN [40]	0.232 ± 0.003	0.376 ± 0.005	1.436 ± 0.016	0.264 ± 0.002	0.585 ± 0.002	2.934 ± 0.019
TPGNN [26]	0.207 ± 0.001	0.329 ± 0.002	0.986 ± 0.004	0.288 ± 0.003	0.665 ± 0.004	3.137 ± 0.022
Sumba	$\mid \textbf{0.179} \pm \textbf{0.000}$	0.286 ± 0.001	$\textbf{0.850} \pm \textbf{0.001}$	$ \textbf{ 0.192} \pm \textbf{0.001} $	0.521 ± 0.002	$\textbf{2.042} \pm \textbf{0.015}$
Method	 	Electricity		1		
Method $(F = 6)$	MAE	Electricity RMSE	MAPE(%)	1	Weather	
(F = 6)	MAE	RMSE	MAPE(%)	MAE	Weather RMSE	MAPE(%)
(F = 6) MICN [33]	0.235 ± 0.002	$\begin{array}{r} \text{RMSE} \\ \hline 0.317 \pm 0.001 \end{array}$	1.890 ± 0.009	MAE 0.111 ± 0.001	Weather RMSE 0.250 ± 0.001	MAPE(%) 2.886 ± 0.013
(F = 6) MICN [33] ModernTCN [29]	$\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \end{array}$	$\begin{array}{r} \text{RMSE} \\ 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \end{array}$	$\begin{array}{c} \text{MAE} \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \end{array}$	Weather RMSE 0.250 ± 0.001 0.241 ± 0.001	$\begin{array}{c} \text{MAPE(\%)} \\ 2.886 \pm 0.013 \\ \underline{1.712 \pm 0.020} \end{array}$
(F = 6) MICN [33] ModernTCN [29] PatchTST [30]	$\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \end{array}$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \end{array}$	$\begin{array}{c} \text{MAE} \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.0746 \pm 0.000 \end{array}$	Weather RMSE 0.250 ± 0.001 0.241 ± 0.001 0.239 ± 0.001	$\begin{array}{c} \text{MAPE(\%)} \\ 2.886 \pm 0.013 \\ \underline{1.712 \pm 0.020} \\ 3.138 \pm 0.096 \end{array}$
	$\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \end{array}$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \end{array}$	$\begin{array}{c} \textbf{MAE} \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.0746 \pm 0.000 \\ \hline 0.230 \pm 0.001 \end{array}$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} \text{MAPE(\%)}\\ \hline 2.886 \pm 0.013\\ \hline 1.712 \pm 0.020\\ \hline 3.138 \pm 0.096\\ \hline 4.118 \pm 0.027 \end{array}$
(F = 6) MICN [33] ModernTCN [29] PatchTST [30] FEDformer [45] Autoformer [35]	$\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \end{array}$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \end{array}$	$\begin{array}{c} \textbf{MAE} \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.0746 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \end{array}$	$\begin{tabular}{c} We ather \\ RMSE \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \end{tabular}$	$\begin{array}{c} \text{MAPE(\%)}\\ \hline 2.886 \pm 0.013\\ \hline 1.712 \pm 0.020\\ \hline 3.138 \pm 0.096\\ \hline 4.118 \pm 0.027\\ \hline 12.782 \pm 1.039 \end{array}$
(F = 6) MICN [33] ModernTCN [29] PatchTST [30] FEDformer [45] Autoformer [35] Reformer [19]		$\begin{array}{c} \textbf{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \end{array}$	$\begin{array}{c} \textbf{MAE} \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.0746 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ \hline 0.246 \pm 0.002 \\ \hline 0.117 \pm 0.001 \end{array}$	$\begin{tabular}{ c c c c c c c } \hline Weather \\ \hline RMSE \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \end{tabular}$	$\begin{array}{c} \text{MAPE(\%)} \\ \hline 2.886 \pm 0.013 \\ \hline 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ \hline 12.782 \pm 1.039 \\ \hline 3.611 \pm 0.025 \end{array}$
(F = 6) MICN [33] ModernTCN [29] PatchTST [30] FEDformer [45] Autoformer [19] S4 [12]	$\begin{array}{c} 0.235\pm 0.002\\ 0.191\pm 0.002\\ 0.188\pm 0.001\\ 0.271\pm 0.002\\ 0.269\pm 0.004\\ 0.348\pm 0.001\\ 0.341\pm 0.003\\ \end{array}$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \end{array}$	$\begin{array}{c} \textbf{MAE} \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.0746 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \end{array}$	$\begin{tabular}{ c c c c c } \hline Weather \\ \hline RMSE \\ \hline 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.399 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \end{tabular}$	$\frac{\text{MAPE(\%)}}{2.886 \pm 0.013} \\ \frac{1.712 \pm 0.020}{3.138 \pm 0.096} \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ \end{array}$
(F = 6) MICN [33] ModernTCN [29] PatchTST [30] FEDformer [45] Autoformer [19] S4 [12] MTGNN [38]		$\begin{array}{c} \textbf{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \end{array}$	$\begin{array}{c} \textbf{MAE} \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.236 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \end{array}$	$\begin{array}{c} \mbox{Weather} \\ \mbox{RMSE} \\ \hline 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.363 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \end{array}$	$\begin{array}{c} \textbf{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \end{array}$
(F = 6) MICN [33] ModernTCN [29] PatchTST [30] FEDformer [45] Autoformer [35] Reformer [19] S4 [12] MTGNN [38] MegaCRN [15]	$\begin{array}{c} 0.235\pm 0.002\\ 0.191\pm 0.002\\ 0.188\pm 0.001\\ 0.271\pm 0.002\\ 0.269\pm 0.004\\ 0.348\pm 0.001\\ 0.341\pm 0.003\\ 0.169\pm 0.001\\ 0.292\pm 0.002\\ \end{array}$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \end{array}$	$\begin{array}{c} \textbf{MAE} \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \end{array}$	$\begin{array}{c} \mbox{Weather} \\ \mbox{RMSE} \\ \hline 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \end{array}$	$\begin{array}{c} \textbf{MAPE(\%)}\\ \hline 2.886 \pm 0.013\\ 1.712 \pm 0.020\\ \hline 3.138 \pm 0.096\\ 4.118 \pm 0.027\\ 12.782 \pm 1.039\\ 3.611 \pm 0.025\\ 3.932 \pm 0.037\\ 1.987 \pm 0.017\\ 1.972 \pm 0.019 \end{array}$
$\begin{array}{c} (F=6)\\ \hline \\ MICN [33]\\ ModernTCN [29]\\ PatchTST [30]\\ FEDformer [45]\\ Autoformer [35]\\ Reformer [19]\\ S4 [12]\\ MTGNN [38]\\ MegaCRN [15]\\ iTransformer [28]\\ \end{array}$	$\begin{array}{c} 0.235\pm 0.002\\ 0.191\pm 0.002\\ 0.188\pm 0.001\\ 0.271\pm 0.002\\ 0.269\pm 0.004\\ 0.348\pm 0.001\\ 0.341\pm 0.003\\ 0.169\pm 0.001\\ 0.292\pm 0.002\\ 0.171\pm 0.002\\ \end{array}$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.219 \pm 0.002 \\ 0.269 \pm 0.001 \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \end{array}$	$\begin{array}{c} \textbf{MAE} \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \end{array}$	$\begin{array}{c} \mbox{Weather} \\ \mbox{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.243 \pm 0.002 \end{array}$	$\begin{array}{c} \textbf{MAPE(\%)}\\ \hline\\ 2.886 \pm 0.013\\ 1.712 \pm 0.020\\ 3.138 \pm 0.096\\ 4.118 \pm 0.027\\ 12.782 \pm 1.039\\ 3.611 \pm 0.025\\ 3.932 \pm 0.037\\ 1.987 \pm 0.017\\ 1.972 \pm 0.019\\ 1.774 \pm 0.023\\ \end{array}$
(F = 6) MICN [33] ModernTCN [29] PatchTST [30] FEDformer [45] Autoformer [35] Reformer [19] S4 [12] MTGNN [38] MegaCRN [15] iTransformer [28] CrossFormer [42]	$\begin{array}{c} 0.235\pm 0.002\\ 0.191\pm 0.002\\ 0.188\pm 0.001\\ 0.271\pm 0.002\\ 0.269\pm 0.004\\ 0.348\pm 0.001\\ 0.341\pm 0.003\\ 0.169\pm 0.001\\ 0.292\pm 0.002\\ 0.171\pm 0.002\\ 0.169\pm 0.001\\ \end{array}$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \end{array}$	$\begin{array}{c} \textbf{MAE} \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0934 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0882 \pm 0.000 \end{array}$	$\begin{array}{c} \mbox{Weather} \\ \mbox{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.243 \pm 0.002 \\ 0.237 \pm 0.002 \end{array}$	$\begin{array}{c} \textbf{MAPE(\%)} \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \end{array}$
(F = 6) MICN [33] ModernTCN [29] PatchTST [30] FEDformer [45] Autoformer [35] Reformer [19] S4 [12] MTGNN [38] MegaCRN [15] iTransformer [28] CrossFormer [42] Card [34]		$\begin{array}{c} \textbf{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.267 \pm 0.001 \\ \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ 1.576 \pm 0.002 \end{array}$	$\begin{array}{c} \textbf{MAE} \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0778 \pm 0.000 \end{array}$	$\begin{tabular}{ c c c c c } \hline Weather \\ \hline RMSE \\ \hline 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.245 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.243 \pm 0.002 \\ \hline 0.237 \pm 0.002 \\ \hline 0.242 \pm 0.00$	$\begin{array}{c} \textbf{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \end{array}$
(F = 6) MICN [33] ModernTCN [29] PatchTST [30] FEDformer [45] Autoformer [19] S4 [12] MTGNN [38] MegaCRN [15] iTransformer [28] CrossFormer [42] Card [34] ESG [39]	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.398 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.483 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.267 \pm 0.001 \\ \hline 0.275 \pm 0.003 \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.574 \pm 0.005 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \end{array}$	$\begin{array}{c} \textbf{MAE} \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0778 \pm 0.000 \\ 0.0932 \pm 0.005 \end{array}$	$\begin{array}{c} \mbox{Weather}\\ \mbox{RMSE}\\ \hline 0.250 \pm 0.001\\ 0.241 \pm 0.001\\ 0.239 \pm 0.003\\ 0.364 \pm 0.003\\ 0.263 \pm 0.002\\ 0.285 \pm 0.003\\ 0.256 \pm 0.001\\ 0.242 \pm 0.001\\ 0.243 \pm 0.002\\ 0.237 \pm 0.002\\ 0.242 \pm 0.002\\ 0.242 \pm 0.001\\ \end{array}$	$\begin{array}{c} \textbf{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.029 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \end{array}$
(F = 6) MICN [33] ModernTCN [29] PatchTST [30] FEDformer [45] Autoformer [35] Reformer [19] S4 [12] MTGNN [38] MegaCRN [15] iTransformer [28] CrossFormer [42] Card [34]		$\begin{array}{c} \textbf{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.267 \pm 0.001 \\ \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ 1.576 \pm 0.002 \end{array}$	$\begin{array}{c} \textbf{MAE} \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0778 \pm 0.000 \end{array}$	$\begin{tabular}{ c c c c c } \hline Weather \\ \hline RMSE \\ \hline 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.245 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.243 \pm 0.002 \\ \hline 0.237 \pm 0.002 \\ \hline 0.242 \pm 0.00$	$\begin{array}{c} \textbf{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \end{array}$
(F = 6) MICN [33] ModernTCN [29] PatchTST [30] FEDformer [45] Autoformer [19] S4 [12] MTGNN [38] MegaCRN [15] iTransformer [28] CrossFormer [42] Card [34] ESG [39]	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.398 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.483 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.267 \pm 0.001 \\ \hline 0.275 \pm 0.003 \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.574 \pm 0.005 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \end{array}$	$\begin{array}{c} \textbf{MAE} \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0778 \pm 0.000 \\ 0.0932 \pm 0.005 \end{array}$	$\begin{array}{c} \mbox{Weather}\\ \mbox{RMSE}\\ \hline 0.250 \pm 0.001\\ 0.241 \pm 0.001\\ 0.239 \pm 0.003\\ 0.364 \pm 0.003\\ 0.263 \pm 0.002\\ 0.285 \pm 0.003\\ 0.256 \pm 0.001\\ 0.242 \pm 0.001\\ 0.243 \pm 0.002\\ 0.237 \pm 0.002\\ 0.242 \pm 0.002\\ 0.242 \pm 0.001\\ \end{array}$	$\begin{array}{c} \textbf{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \end{array}$
$\begin{array}{c} (F=6) \\ \\ \mbox{MICN [33]} \\ \mbox{ModernTCN [29]} \\ \mbox{PatchTST [30]} \\ \mbox{February [45]} \\ \mbox{Autoformer [45]} \\ \mbox{Autoformer [19]} \\ \mbox{S4 [12]} \\ \mbox{MTGNN [38]} \\ \mbox{MegaCRN [15]} \\ \mbox{ITransformer [28]} \\ \mbox{CrossFormer [42]} \\ \mbox{Card [34]} \\ \mbox{ESG [39]} \\ \mbox{FourierGNN [40]} \end{array}$	$\begin{array}{c} 0.235\pm 0.002\\ 0.191\pm 0.002\\ 0.188\pm 0.001\\ 0.271\pm 0.002\\ 0.269\pm 0.004\\ 0.348\pm 0.001\\ 0.341\pm 0.003\\ 0.169\pm 0.001\\ 0.292\pm 0.002\\ 0.171\pm 0.002\\ 0.169\pm 0.001\\ 0.169\pm 0.001\\ 0.168\pm 0.002\\ 0.237\pm 0.003\\ \end{array}$	$\begin{array}{c} {\rm RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \end{array}$	$\begin{array}{c} \textbf{MAE} \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.078 \pm 0.000 \\ 0.0935 \pm 0.004 \end{array}$	$\begin{tabular}{ c c c c c } \hline Weather RMSE \\ \hline 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.003 \\ 0.364 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.243 \pm 0.002 \\ \hline 0.243 \pm 0.002 \\ \hline 0.242 \pm 0.002 \\ \hline 0.242 \pm 0.002 \\ 0.242 \pm 0.002 \\ \hline 0.242 \pm 0.002 \\ 0.242 \pm 0.001 \\ 0.257 \pm 0.002 \end{tabular}$	$\begin{array}{c} \textbf{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \end{array}$
(F = 6) MICN [33] ModernTCN [29] PatchTST [30] FEDformer [45] Autoformer [19] S4 [12] MTGNN [38] MegaCRN [15] iTransformer [28] CrossFormer [42] Card [34] ESG [39] FourierGNN [40] TPGNN [26]	$\begin{array}{c} 0.235\pm 0.002\\ 0.191\pm 0.002\\ 0.188\pm 0.001\\ 0.271\pm 0.002\\ 0.269\pm 0.004\\ 0.348\pm 0.001\\ 0.341\pm 0.003\\ 0.169\pm 0.001\\ 0.292\pm 0.002\\ 0.171\pm 0.002\\ 0.169\pm 0.001\\ \hline 0.166\pm 0.001\\ \hline 0.168\pm 0.002\\ 0.237\pm 0.003\\ 0.234\pm 0.002\\ \end{array}$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.574 \pm 0.005 \\ 1.576 \pm 0.002 \\ 1.579 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ 2.042 \pm 0.007 \\ \end{array}$	$\begin{array}{c} \textbf{MAE} \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0778 \pm 0.000 \\ 0.0932 \pm 0.005 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \end{array}$	$\begin{array}{c} \mbox{Weather}\\ \mbox{RMSE}\\ \hline 0.250 \pm 0.001\\ 0.241 \pm 0.001\\ 0.239 \pm 0.003\\ 0.364 \pm 0.003\\ 0.263 \pm 0.002\\ 0.285 \pm 0.003\\ 0.256 \pm 0.001\\ 0.242 \pm 0.001\\ 0.243 \pm 0.002\\ 0.237 \pm 0.002\\ 0.242 \pm 0.002\\ 0.246 \pm 0.002\\ 0.246 \pm 0.002\\ \end{array}$	$\begin{array}{c} \textbf{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \end{array}$
(F = 6) MICN [33] ModernTCN [29] PatchTST [30] FEDformer [45] Autoformer [19] S4 [12] MTGNN [38] MegaCRN [15] iTransformer [28] CrossFormer [42] Card [34] ESG [39] FourierGNN [40] TPGNN [26] Sumba Method	$\begin{array}{c} 0.235\pm 0.002\\ 0.191\pm 0.002\\ 0.188\pm 0.001\\ 0.271\pm 0.002\\ 0.269\pm 0.004\\ 0.348\pm 0.001\\ 0.341\pm 0.003\\ 0.169\pm 0.001\\ 0.292\pm 0.002\\ 0.171\pm 0.002\\ 0.169\pm 0.001\\ \hline 0.166\pm 0.001\\ \hline 0.168\pm 0.002\\ 0.237\pm 0.003\\ 0.234\pm 0.002\\ \end{array}$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.360 \pm 0.001 \\ \hline \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.574 \pm 0.005 \\ 1.576 \pm 0.002 \\ 1.579 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ 2.042 \pm 0.007 \\ \end{array}$	$\begin{array}{c} \textbf{MAE} \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0778 \pm 0.000 \\ 0.0932 \pm 0.005 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \end{array}$	$\begin{tabular}{ c c c c c c c } \hline Weather RMSE \\ \hline 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.242 \pm 0.002 \\ 0.244 \pm 0.002 \\ 0.246 \pm 0.002 \\ \hline 0.234 \pm 0.$	$\begin{array}{c} \textbf{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \end{array}$
(F = 6) MICN [33] ModernTCN [29] PatchTST [30] FEDformer [45] Autoformer [35] Reformer [19] S4 [12] MTGNN [38] MegaCRN [15] iTransformer [28] CrossFormer [42] Card [34] ESG [39] FourierGNN [40] TPGNN [26] Sumba	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \text{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ \hline \textbf{0.260} \pm \textbf{0.001} \\ \hline \textbf{0.270} \hline \textbf{0.001} \\ \hline \textbf{0.270} \pm \textbf{0.001} \\ \hline \textbf{0.270} $	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ 1.530 \pm 0.005 \\ \end{array}$	$\begin{array}{c} \textbf{MAE} \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.0746 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0932 \pm 0.005 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ \hline \textbf{0.0704 \pm 0.000} \\ \hline \textbf{0.0704 \pm 0.000} \\ \hline \end{array}$	$\begin{tabular}{l} \hline $Weather $RMSE$ \\ \hline 0.250 ± 0.001 \\ 0.241 ± 0.001 \\ 0.239 ± 0.001 \\ 0.364 ± 0.003 \\ 0.363 ± 0.002 \\ 0.285 ± 0.003 \\ 0.285 ± 0.003 \\ 0.285 ± 0.003 \\ 0.285 ± 0.001 \\ 0.242 ± 0.001 \\ 0.243 ± 0.002 \\ 0.242 ± 0.002 \\ 0.246 ± 0.002 \\ \hline 0.234 ± 0.002 \\ \hline 0.234 ± 0.002 \\ \hline $Traffic$ \end{tabular}$	$\begin{array}{r} \textbf{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \textbf{1.663 \pm 0.013} \\ \textbf{MAPE}(\%) \end{array}$
$\begin{array}{c} (F=6) \\ \\ \mbox{MICN [33]} \\ \mbox{ModernTCN [29]} \\ \mbox{PatchTST [30]} \\ \mbox{FeDformer [45]} \\ \mbox{Autoformer [13]} \\ \mbox{Autoformer [19]} \\ \mbox{S4 [12]} \\ \mbox{MTGNN [38]} \\ \mbox{MegaCRN [15]} \\ \mbox{irransformer [28]} \\ \mbox{CrossFormer [42]} \\ \mbox{Card [34]} \\ \mbox{ESG [39]} \\ \mbox{FourierGNN [40]} \\ \mbox{TPGNN [26]} \\ \hline \\ \mbox{Sumba} \\ \hline \\ \mbox{Method} \\ \mbox{(}F=6) \\ \\ \mbox{MICN [33]} \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline 0.235 \pm 0.002 \\ \hline 0.191 \pm 0.002 \\ \hline 0.191 \pm 0.002 \\ \hline 0.188 \pm 0.001 \\ \hline 0.271 \pm 0.002 \\ \hline 0.269 \pm 0.004 \\ \hline 0.348 \pm 0.001 \\ \hline 0.341 \pm 0.003 \\ \hline 0.169 \pm 0.001 \\ \hline 0.292 \pm 0.002 \\ \hline 0.169 \pm 0.001 \\ \hline \hline 0.166 \pm 0.001 \\ \hline 0.168 \pm 0.002 \\ \hline 0.237 \pm 0.003 \\ \hline 0.234 \pm 0.002 \\ \hline \hline 0.163 \pm 0.001 \\ \hline \hline MAE \\ \hline 0.281 \pm 0.001 \\ \hline \end{tabular}$	$\begin{array}{r} \text{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.001 \\ \hline \begin{array}{r} \text{ETTh2} \\ \text{RMSE} \\ 0.405 \pm 0.001 \\ \hline \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ \hline \textbf{1.530} \pm \textbf{0.005} \ \end{vmatrix}$	$\begin{tabular}{ c c c c c } \hline MAE \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.0746 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0932 \pm 0.000 \\ 0.0935 \pm 0.004 \\ 0.0778 \pm 0.000 \\ \hline 0.0784 \pm 0.000 \\ \hline 0.0784 \pm 0.000 \\ \hline 0.0764 \pm 0.000 \\ \hline MAE \\ \hline 0.275 \pm 0.002 \\ \hline \end{tabular}$	$\begin{tabular}{l} \hline $Weather $RMSE$ \\ \hline 0.250 ± 0.001 \\ \hline 0.241 ± 0.001 \\ \hline 0.239 ± 0.003 \\ \hline 0.364 ± 0.003 \\ \hline 0.363 ± 0.002 \\ \hline 0.265 ± 0.003 \\ \hline 0.256 ± 0.001 \\ \hline 0.242 ± 0.001 \\ \hline 0.242 ± 0.002 \\ \hline 0.246 ± 0.002 \\ \hline 0.234 ± 0.002 \\ \hline 0.234 ± 0.002 \\ \hline $Traffic$ $RMSE$ \\ \hline 0.571 ± 0.001 \\ \hline \end{tabular}$	$\begin{array}{r} \text{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \hline \textbf{1.663 \pm 0.013} \\ \hline \textbf{MAPE}(\%) \\ 3.369 \pm 0.019 \end{array}$
$\begin{array}{c} (F=6) \\ \\ \mbox{MICN [33]} \\ \mbox{ModernTCN [29]} \\ \mbox{PatchTST [30]} \\ \mbox{FeDformer [145]} \\ \mbox{Autoformer [35]} \\ \mbox{Reformer [19]} \\ \mbox{S4 [12]} \\ \mbox{MTGNN [38]} \\ \mbox{MegaCRN [15]} \\ \mbox{irransformer [28]} \\ \mbox{CrossFormer [42]} \\ \mbox{Card [34]} \\ \mbox{ESG [39]} \\ \mbox{FourierGNN [40]} \\ \mbox{TPGNN [26]} \\ \hline \\ \mbox{Sumba} \\ \hline \\ \mbox{Method} \\ \mbox{(}F=6) \\ \\ \mbox{MICN [33]} \\ \mbox{ModernTCN [29]} \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline 0.235 \pm 0.002 \\ \hline 0.191 \pm 0.002 \\ \hline 0.191 \pm 0.002 \\ \hline 0.188 \pm 0.001 \\ \hline 0.271 \pm 0.002 \\ \hline 0.269 \pm 0.004 \\ \hline 0.341 \pm 0.003 \\ \hline 0.341 \pm 0.003 \\ \hline 0.169 \pm 0.001 \\ \hline 0.292 \pm 0.002 \\ \hline 0.169 \pm 0.001 \\ \hline 0.166 \pm 0.001 \\ \hline 0.168 \pm 0.002 \\ \hline 0.237 \pm 0.003 \\ \hline 0.234 \pm 0.002 \\ \hline 0.163 \pm 0.001 \\ \hline 0.163 \pm 0.001 \\ \hline 0.281 \pm 0.001 \\ \hline 0.272 \pm 0.002 \\$	$\begin{array}{c} \text{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.365 \pm 0.002 \\ 0.365 \pm 0.002 \\ 0.365 \pm 0.001 \\ 0.380 \pm 0.003 \\ \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.576 \pm 0.002 \\ 1.576 \pm 0.002 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ 1.530 \pm 0.005 \\ \hline \\ $	$\begin{tabular}{ c c c c c } \hline MAE \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.0746 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.0226 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0778 \pm 0.000 \\ 0.0932 \pm 0.005 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ \hline 0.0764 \pm 0.000 \\ \hline 0.0764 \pm 0.000 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c } \hline Weather RMSE \\ \hline 0.250 \pm 0.001 \\ \hline 0.241 \pm 0.001 \\ \hline 0.239 \pm 0.003 \\ \hline 0.364 \pm 0.003 \\ \hline 0.363 \pm 0.002 \\ \hline 0.265 \pm 0.003 \\ \hline 0.256 \pm 0.001 \\ \hline 0.242 \pm 0.001 \\ \hline 0.242 \pm 0.002 \\ \hline 0.246 \pm 0.002 \\ \hline 0.234 \pm 0.002 \\ \hline 0.234 \pm 0.002 \\ \hline 0.571 \pm 0.001 \\ \hline 0.597 \pm 0.001 \\ \hline $	$\begin{array}{c} \text{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.321 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \textbf{1.663 \pm 0.013} \\ \hline \textbf{MAPE}(\%) \\ \hline 3.369 \pm 0.019 \\ 3.219 \pm 0.028 \end{array}$
$\begin{array}{c} (F=6) \\ \\ \mbox{MICN [33]} \\ \mbox{ModernTCN [29]} \\ \mbox{PatchTST [30]} \\ \mbox{FeDformer [45]} \\ \mbox{Autoformer [19]} \\ \mbox{S4 [12]} \\ \mbox{MTGNN [38]} \\ \mbox{MegaCRN [15]} \\ \mbox{irransformer [28]} \\ \mbox{CrossFormer [42]} \\ \mbox{Card [34]} \\ \mbox{ESG [39]} \\ \mbox{FourierGNN [40]} \\ \mbox{TPGNN [26]} \\ \hline \\ \mbox{Sumba} \\ \hline \\ \mbox{Method} \\ \mbox{(}F=6) \\ \\ \mbox{MICN [33]} \\ \mbox{ModernTCN [29]} \\ \mbox{PatchTST [30]} \\ \hline \end{array}$	$\begin{tabular}{ c c c c c } \hline 0.235 \pm 0.002 \\ \hline 0.191 \pm 0.002 \\ \hline 0.191 \pm 0.002 \\ \hline 0.188 \pm 0.001 \\ \hline 0.271 \pm 0.002 \\ \hline 0.269 \pm 0.004 \\ \hline 0.341 \pm 0.003 \\ \hline 0.341 \pm 0.003 \\ \hline 0.169 \pm 0.001 \\ \hline 0.292 \pm 0.002 \\ \hline 0.169 \pm 0.001 \\ \hline 0.166 \pm 0.001 \\ \hline 0.168 \pm 0.002 \\ \hline 0.237 \pm 0.003 \\ \hline 0.237 \pm 0.003 \\ \hline 0.234 \pm 0.002 \\ \hline 0.163 \pm 0.001 \\ \hline 0.163 \pm 0.001 \\ \hline 0.272 \pm 0.002 \\ \hline 0.210 \pm 0.002 \\ \hline 0.002 \\ \hline 0.102 \pm 0.002 \\ \hline 0.210 \pm 0.002 \\ \hline 0.210 \pm 0.002 \\ \hline 0.102 \pm 0.002 \\ \hline 0.210 \pm 0.002 \\ \hline 0.210$	$\begin{array}{r} \text{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ \hline \textbf{0.260} \pm \textbf{0.001} \\ \hline \textbf{0.275} \textbf{0.001} \\ \hline \textbf{0.275} \textbf{0.001} \\ \hline \textbf{0.275} \textbf{0.001} \\ \hline \textbf{0.275} \textbf{0.002} \\ \hline \textbf{0.360} \pm \textbf{0.002} \\ \hline \textbf{0.360} \pm \textbf{0.001} \\ \hline \textbf{0.380} \pm 0.003 \\ 0.328 \pm 0.002 \\ \hline \textbf{0.328} \pm 0.$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ 2.042 \pm 0.007 \\ \hline \textbf{MAPE(\%)} \\ \hline \textbf{MAPE(\%)} \\ 1.692 \pm 0.006 \\ 1.819 \pm 0.015 \\ 0.956 \pm 0.005 \\ \hline \end{array}$	$\begin{tabular}{ c c c c c } \hline MAE \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.0934 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0935 \pm 0.000 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ \hline 0.0782 \pm 0.000 \\ \hline 0.0784 \pm 0.000 \\ \hline 0.0784 \pm 0.000 \\ \hline 0.075 \pm 0.002 \\ 0.261 \pm 0.002 \\ 0.231 \pm 0.001 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c } \hline Weather RMSE \\ \hline 0.250 \pm 0.001 \\ \hline 0.241 \pm 0.001 \\ \hline 0.241 \pm 0.001 \\ \hline 0.239 \pm 0.003 \\ \hline 0.364 \pm 0.003 \\ \hline 0.265 \pm 0.003 \\ \hline 0.265 \pm 0.003 \\ \hline 0.256 \pm 0.001 \\ \hline 0.242 \pm 0.001 \\ \hline 0.242 \pm 0.002 \\ \hline 0.245 \pm 0.002 \\ \hline 0.571 \pm 0.001 \\ \hline 0.554 \pm 0.002 \\ \hline 0.001 \\ \hline 0.001 \\ \hline 0.554 \pm 0.002 \\ \hline 0.001 \\ \hline 0.001 \\ \hline 0.554 \pm 0.002 \\ \hline 0.001 \\ \hline 0.001 \\ \hline 0.554 \pm 0.002 \\ \hline 0.001 \\ \hline 0.001 \\ \hline 0.554 \pm 0.002 \\ \hline 0.001 \\ \hline 0.001 \\ \hline 0.001 \\ \hline 0.554 \pm 0.002 \\ \hline 0.001 \\ \hline 0.001 \\ \hline 0.554 \pm 0.002 \\ \hline 0.001 \\ \hline 0.001 \\ \hline 0.554 \pm 0.002 \\ \hline 0.001 \\ \hline 0.554 \pm 0.002 \\ \hline 0.001 \\ \hline 0.001 \\ \hline 0.554 \pm 0.002 \\ \hline 0.001 \\ \hline 0.001 \\ \hline 0.554 \pm 0.002 \\ \hline 0.001 \\ $	$\begin{array}{r} \textbf{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \textbf{1.663 \pm 0.013} \\ \hline \textbf{MAPE}(\%) \\ \hline 3.369 \pm 0.019 \\ 3.219 \pm 0.028 \\ 2.465 \pm 0.012 \\ \hline \end{array}$
$\begin{array}{c} (F=6) \\ \\ \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \text{MTGNN [38]} \\ \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \text{ESG [39]} \\ \text{FourierGNN [40]} \\ \hline \text{TPGNN [26]} \\ \hline \\ $	$\begin{tabular}{ c c c c c } \hline 0.235 \pm 0.002 \\ \hline 0.191 \pm 0.002 \\ \hline 0.191 \pm 0.002 \\ \hline 0.188 \pm 0.001 \\ \hline 0.271 \pm 0.002 \\ \hline 0.269 \pm 0.004 \\ \hline 0.341 \pm 0.003 \\ \hline 0.341 \pm 0.003 \\ \hline 0.169 \pm 0.001 \\ \hline 0.292 \pm 0.002 \\ \hline 0.171 \pm 0.002 \\ \hline 0.169 \pm 0.001 \\ \hline 0.166 \pm 0.001 \\ \hline 0.166 \pm 0.002 \\ \hline 0.237 \pm 0.003 \\ \hline 0.234 \pm 0.002 \\ \hline 0.163 \pm 0.001 \\ \hline 0.272 \pm 0.002 \\ \hline 0.2172 \pm 0.002 \\ \hline 0.210 \pm 0.002 \\ \hline 0.210 \pm 0.002 \\ \hline 0.210 \pm 0.002 \\ \hline 0.349 \pm 0.006 \\ \hline \end{tabular}$	$\begin{array}{r} \text{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.267 \pm 0.001 \\ 0.267 \pm 0.002 \\ 0.367 \pm 0.002 \\ \hline \textbf{0.367} \pm 0.002 \\ \hline \textbf{0.360} \pm \textbf{0.001} \\ 0.380 \pm 0.003 \\ 0.328 \pm 0.002 \\ 0.508 \pm 0.007 \\ \hline \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.007 \\ 2.042 \pm 0.007 \\ 2.042 \pm 0.007 \\ 1.692 \pm 0.006 \\ 1.819 \pm 0.015 \\ 0.956 \pm 0.005 \\ 1.523 \pm 0.021 \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline MAE \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.0934 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0812 \pm 0.000 \\ 0.0822 \pm 0.000 \\ 0.0935 \pm 0.000 \\ 0.0935 \pm 0.004 \\ 0.0935 \pm 0.000 \\ \hline 0.0704 \pm 0.000 \\ \hline 0.0704 \pm 0.000 \\ \hline 0.0704 \pm 0.000 \\ \hline 0.275 \pm 0.002 \\ 0.261 \pm 0.002 \\ 0.231 \pm 0.001 \\ 0.344 \pm 0.003 \\ \hline \end{tabular}$	$\begin{tabular}{l} \hline $Weather $RMSE$ \\ \hline 0.250 ± 0.001 \\ 0.241 ± 0.001 \\ 0.241 ± 0.001 \\ 0.239 ± 0.003 \\ 0.399 ± 0.003 \\ 0.265 ± 0.003 \\ 0.265 ± 0.003 \\ 0.256 ± 0.001 \\ 0.242 ± 0.001 \\ 0.242 ± 0.001 \\ 0.242 ± 0.002 \\ 0.246 ± 0.002 \\ 0.234 ± 0.002 \\ \hline 0.234 ± 0.002 \\ \hline 0.571 ± 0.001 \\ 0.554 ± 0.002 \\ 0.554 ± 0.002 \\ 0.718 ± 0.007 \\ \hline \end{tabular}$	$\begin{array}{r} \textbf{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ \hline 3.611 \pm 0.025 \\ \hline 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \hline \textbf{I.663 \pm 0.013} \\ \hline \textbf{MAPE}(\%) \\ \hline 3.369 \pm 0.012 \\ 3.219 \pm 0.028 \\ 2.465 \pm 0.012 \\ 3.845 \pm 0.033 \\ \hline \end{array}$
$\begin{array}{c} (F=6) \\ \\ \mbox{MICN [33]} \\ \mbox{ModernTCN [29]} \\ \mbox{PatchTST [30]} \\ \mbox{FEDformer [45]} \\ \mbox{Autoformer [35]} \\ \mbox{Reformer [19]} \\ \mbox{S4 [12]} \\ \mbox{MTGNN [38]} \\ \mbox{MegaCRN [15]} \\ \mbox{ifransformer [28]} \\ \mbox{CrossFormer [42]} \\ \mbox{Card [34]} \\ \mbox{ESG [39]} \\ \mbox{Former [40]} \\ \mbox{Feddom [40]} \\ \mbox{TPGNN [26]} \\ \mbox{Sumba} \\ \\ \mbox{Method} \\ \mbox{(}F=6) \\ \mbox{Method} \\ \mbox{(}F=6) \\ \mbox{Method [75]} \\ \mbox{Method [29]} \\ \mbox{PatchTST [30]} \\ \mbox{PatchTST [30]} \\ \mbox{FeDformer [45]} \\ \mbox{Autoformer [35]} \\ \end{array}$	$\begin{array}{c} 0.235\pm 0.002\\ 0.191\pm 0.002\\ 0.191\pm 0.002\\ 0.188\pm 0.001\\ 0.271\pm 0.002\\ 0.269\pm 0.004\\ 0.348\pm 0.001\\ 0.341\pm 0.003\\ 0.169\pm 0.001\\ 0.292\pm 0.002\\ 0.171\pm 0.002\\ 0.171\pm 0.002\\ 0.169\pm 0.001\\ \hline 0.166\pm 0.001\\ \hline 0.168\pm 0.002\\ 0.237\pm 0.003\\ 0.234\pm 0.002\\ \hline 0.163\pm 0.001\\ \hline 0.272\pm 0.002\\ 0.210\pm 0.002\\ 0.210\pm 0.002\\ 0.210\pm 0.002\\ 0.349\pm 0.006\\ 0.322\pm 0.002\\ \hline \end{array}$	$\begin{array}{r} \text{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.369 \pm 0.002 \\ 0.360 \pm 0.001 \\ 0.380 \pm 0.002 \\ 0.380 \pm 0.002 \\ 0.508 \pm 0.002 \\ 0.473 \pm 0.003 \\ \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ 2.042 \pm 0.007 \\ \hline \textbf{MAPE(\%)} \\ \hline \textbf{MAPE(\%)} \\ \hline \textbf{MAPE(\%)} \\ 1.692 \pm 0.005 \\ 1.523 \pm 0.021 \\ 1.350 \pm 0.010 \\ \hline \end{array}$	$\begin{tabular}{ c c c c c } \hline MAE \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.0934 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ \hline 0.246 \pm 0.002 \\ \hline 0.117 \pm 0.001 \\ \hline 0.0926 \pm 0.001 \\ \hline 0.0926 \pm 0.000 \\ \hline 0.0819 \pm 0.000 \\ \hline 0.0819 \pm 0.000 \\ \hline 0.0822 \pm 0.000 \\ \hline 0.0788 \pm 0.000 \\ \hline 0.0788 \pm 0.000 \\ \hline 0.0782 \pm 0.000 \\ \hline 0.0932 \pm 0.005 \\ \hline 0.0935 \pm 0.004 \\ \hline 0.0782 \pm 0.000 \\ \hline 0.0764 \pm 0.000 \\ \hline \hline 0.0704 \pm 0.000 \\ \hline 0.251 \pm 0.002 \\ \hline 0.231 \pm 0.001 \\ \hline 0.344 \pm 0.003 \\ \hline 0.360 \pm 0.002 \\ \hline \end{tabular}$	$\begin{tabular}{l} \hline $Weather $RMSE$ \\ \hline 0.250 ± 0.001 \\ 0.241 ± 0.001 \\ 0.241 ± 0.001 \\ 0.239 ± 0.003 \\ 0.399 ± 0.003 \\ 0.399 ± 0.003 \\ 0.263 ± 0.002 \\ 0.285 ± 0.003 \\ 0.256 ± 0.001 \\ 0.242 ± 0.001 \\ 0.242 ± 0.002 \\ 0.245 ± 0.002 \\ 0.257 ± 0.002 \\ 0.234 ± 0.002 \\ \hline 0.234 ± 0.002 \\ \hline 0.571 ± 0.001 \\ 0.554 ± 0.002 \\ 0.718 ± 0.007 \\ 0.730 ± 0.003 \\ \hline 0.730 ± 0.003 \\ \hline \end{tabular}$	$\begin{array}{r} \textbf{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.972 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \hline \textbf{I.663 \pm 0.013} \\ \hline \textbf{MAPE}(\%) \\ 3.369 \pm 0.012 \\ 3.219 \pm 0.028 \\ 2.465 \pm 0.012 \\ 3.845 \pm 0.033 \\ 3.891 \pm 0.018 \\ \hline \textbf{MORE}(\%) \\ \hline \textbf{MORE}(\%) \\ \hline \textbf{MORE}(\%) \\ $
$\begin{array}{c} (F=6) \\ \hline MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \\ MTGNN [38] \\ MegaCRN [15] \\ iTransformer [28] \\ CrossFormer [42] \\ Card [34] \\ ESG [39] \\ FourierGNN [40] \\ TPGNN [26] \\ \hline Sumba \\ \hline Method \\ (F=6) \\ \hline MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ \end{array}$	$\begin{array}{c} 0.235\pm 0.002\\ 0.191\pm 0.002\\ 0.191\pm 0.002\\ 0.188\pm 0.001\\ 0.271\pm 0.002\\ 0.269\pm 0.004\\ 0.348\pm 0.001\\ 0.341\pm 0.003\\ 0.169\pm 0.001\\ 0.292\pm 0.002\\ 0.171\pm 0.002\\ 0.171\pm 0.002\\ 0.169\pm 0.001\\ \hline 0.166\pm 0.001\\ \hline 0.168\pm 0.002\\ 0.237\pm 0.003\\ 0.234\pm 0.002\\ \hline 0.163\pm 0.001\\ \hline 0.272\pm 0.002\\ 0.210\pm 0.002\\ 0.349\pm 0.006\\ 0.322\pm 0.002\\ 0.488\pm 0.012\\ \hline \end{array}$	$\begin{array}{r} \text{RMSE} \\ \hline \text{RMSE} \\ \hline 0.317 \pm 0.001 \\ \hline 0.286 \pm 0.001 \\ \hline 0.290 \pm 0.001 \\ \hline 0.368 \pm 0.001 \\ \hline 0.378 \pm 0.002 \\ \hline 0.483 \pm 0.001 \\ \hline 0.489 \pm 0.002 \\ \hline 0.268 \pm 0.003 \\ \hline 0.419 \pm 0.002 \\ \hline 0.269 \pm 0.001 \\ \hline 0.270 \pm 0.001 \\ \hline 0.270 \pm 0.001 \\ \hline 0.275 \pm 0.003 \\ \hline 0.369 \pm 0.002 \\ \hline 0.367 \pm 0.002 \\ \hline 0.367 \pm 0.002 \\ \hline 0.369 \pm 0.002 \\ \hline 0.369 \pm 0.001 \\ \hline 0.380 \pm 0.003 \\ \hline 0.380 \pm 0.003 \\ \hline 0.328 \pm 0.002 \\ \hline 0.508 \pm 0.007 \\ \hline 0.473 \pm 0.003 \\ \hline 0.690 \pm 0.007 \\ \hline \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ 2.042 \pm 0.007 \\ 1.692 \pm 0.006 \\ 1.819 \pm 0.015 \\ 0.956 \pm 0.005 \\ 1.523 \pm 0.021 \\ 1.350 \pm 0.011 \\ 1.350 \pm 0.011 \\ 0.2604 \pm 0.031 \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline MAE \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.0746 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.084 \pm 0.000 \\ 0.084 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0932 \pm 0.005 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ \hline 0.0782 \pm 0.000 \\ \hline 0.0782 \pm 0.000 \\ \hline 0.0764 \pm 0.000 \\ \hline 0.275 \pm 0.002 \\ 0.261 \pm 0.002 \\ 0.231 \pm 0.001 \\ 0.344 \pm 0.003 \\ 0.360 \pm 0.002 \\ \hline 0.338 \pm 0.002 \\ \hline \end{tabular}$	$\begin{tabular}{l} \hline $Weather $RMSE$ \\ \hline 0.250 ± 0.001 \\ \hline 0.241 ± 0.001 \\ \hline 0.239 ± 0.003 \\ \hline 0.364 ± 0.003 \\ \hline 0.363 ± 0.002 \\ \hline 0.265 ± 0.003 \\ \hline 0.256 ± 0.003 \\ \hline 0.256 ± 0.001 \\ \hline 0.242 ± 0.001 \\ \hline 0.242 ± 0.002 \\ \hline 0.246 ± 0.002 \\ \hline 0.571 ± 0.001 \\ \hline 0.597 ± 0.001 \\ \hline 0.554 ± 0.002 \\ \hline 0.718 ± 0.007 \\ \hline 0.730 ± 0.003 \\ \hline 0.775 ± 0.006 \\ \hline \end{tabular}$	$\begin{array}{r} \textbf{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ \hline 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \hline \textbf{1.663 \pm 0.013} \\ \hline \textbf{MAPE}(\%) \\ \hline 3.369 \pm 0.019 \\ 3.219 \pm 0.028 \\ 2.465 \pm 0.012 \\ 3.845 \pm 0.033 \\ 3.891 \pm 0.018 \\ 3.613 \pm 0.025 \\ \hline \end{array}$
$\begin{array}{c} (F=6) \\ \hline MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \\ MTGNN [38] \\ MegaCRN [15] \\ iTransformer [28] \\ CrossFormer [42] \\ Card [34] \\ ESG [39] \\ FourierGNN [40] \\ TPGNN [26] \\ \hline Sumba \\ \hline Method \\ (F=6) \\ \hline MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline 0.235 \pm 0.002 \\ \hline 0.191 \pm 0.002 \\ \hline 0.191 \pm 0.002 \\ \hline 0.188 \pm 0.001 \\ \hline 0.271 \pm 0.002 \\ \hline 0.269 \pm 0.004 \\ \hline 0.348 \pm 0.001 \\ \hline 0.341 \pm 0.003 \\ \hline 0.341 \pm 0.003 \\ \hline 0.169 \pm 0.001 \\ \hline 0.292 \pm 0.002 \\ \hline 0.169 \pm 0.001 \\ \hline 0.166 \pm 0.001 \\ \hline 0.168 \pm 0.002 \\ \hline 0.237 \pm 0.003 \\ \hline 0.237 \pm 0.003 \\ \hline 0.234 \pm 0.002 \\ \hline 0.163 \pm 0.001 \\ \hline 0.272 \pm 0.002 \\ \hline 0.210 \pm 0.002 \\ \hline 0.322 \pm 0.002 \\ \hline 0.488 \pm 0.012 \\ \hline 0.562 \pm 0.003 \\ \hline \end{tabular}$	$\begin{array}{r} \text{RMSE} \\ \hline \text{0.317} \pm 0.001 \\ \hline 0.286 \pm 0.001 \\ \hline 0.280 \pm 0.001 \\ \hline 0.290 \pm 0.001 \\ \hline 0.378 \pm 0.002 \\ \hline 0.483 \pm 0.002 \\ \hline 0.483 \pm 0.002 \\ \hline 0.483 \pm 0.002 \\ \hline 0.268 \pm 0.003 \\ \hline 0.419 \pm 0.002 \\ \hline 0.269 \pm 0.001 \\ \hline 0.270 \pm 0.001 \\ \hline 0.275 \pm 0.003 \\ \hline 0.275 \pm 0.003 \\ \hline 0.369 \pm 0.002 \\ \hline 0.367 \pm 0.002 \\ \hline 0.367 \pm 0.002 \\ \hline 0.367 \pm 0.001 \\ \hline 0.360 \pm 0.001 \\ \hline 0.380 \pm 0.003 \\ \hline 0.308 \pm 0.002 \\ \hline 0.308 \pm 0.002 \\ \hline 0.508 \pm 0.007 \\ \hline 0.473 \pm 0.003 \\ \hline 0.690 \pm 0.007 \\ \hline 0.747 \pm 0.009 \\ \hline \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.574 \pm 0.005 \\ 1.576 \pm 0.002 \\ 1.576 \pm 0.002 \\ 1.579 \pm 0.007 \\ 2.042 \pm 0.007 \\ 2.042 \pm 0.007 \\ 1.692 \pm 0.006 \\ 1.819 \pm 0.015 \\ 0.956 \pm 0.005 \\ 1.692 \pm 0.006 \\ 1.819 \pm 0.015 \\ 0.956 \pm 0.002 \\ 1.350 \pm 0.001 \\ 2.604 \pm 0.031 \\ 2.755 \pm 0.021 \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline MAE \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.0746 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.0226 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0778 \pm 0.000 \\ 0.0775 \pm 0.002 \\ 0.275 \pm 0.002 \\ 0.231 \pm 0.001 \\ 0.344 \pm 0.003 \\ 0.360 \pm 0.002 \\ 0.338 \pm 0.002 \\ 0.301 \pm 0.002 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c } \hline Weather RMSE \\ \hline 0.250 \pm 0.001 \\ \hline 0.241 \pm 0.001 \\ \hline 0.239 \pm 0.001 \\ \hline 0.239 \pm 0.003 \\ \hline 0.263 \pm 0.002 \\ \hline 0.265 \pm 0.003 \\ \hline 0.265 \pm 0.003 \\ \hline 0.256 \pm 0.001 \\ \hline 0.242 \pm 0.001 \\ \hline 0.242 \pm 0.002 \\ \hline 0.246 \pm 0.002 \\ \hline 0.234 \pm 0.002 \\ \hline 0.571 \pm 0.001 \\ \hline 0.597 \pm 0.001 \\ \hline 0.554 \pm 0.002 \\ \hline 0.718 \pm 0.002 \\ \hline 0.736 \pm 0.003 \\ \hline 0.775 \pm 0.003 \\ \hline 0.738 \pm 0.003 \\ \hline 0.758 \pm 0.003 \\ \hline 0.738 \pm 0.003 \\ \hline 0.758 \pm 0.003 \\ \hline 0.738 \pm 0.003 \\ \hline 0.758 \pm 0.003 \\ \hline 0.758 \pm 0.003 \\ \hline 0.758 \pm 0.003 \\ \hline 0.738 \pm 0.003 \\ \hline 0.758 \pm 0.003 \\ \hline $	$\begin{array}{c} \textbf{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ \hline 3.611 \pm 0.025 \\ \hline 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \hline \textbf{1.663 \pm 0.013} \\ \hline \textbf{MAPE}(\%) \\ \hline 3.369 \pm 0.019 \\ 3.219 \pm 0.028 \\ 2.465 \pm 0.012 \\ 3.891 \pm 0.018 \\ 3.613 \pm 0.025 \\ 2.952 \pm 0.020 \end{array}$
$\begin{array}{c} (F=6) \\ \\ \mbox{MICN [33]} \\ \mbox{ModernTCN [29]} \\ \mbox{PatchTST [30]} \\ \mbox{FeDformer [45]} \\ \mbox{Autoformer [35]} \\ \mbox{Reformer [19]} \\ \mbox{S4 [12]} \\ \mbox{MTGNN [38]} \\ \mbox{MegaCRN [15]} \\ \mbox{irransformer [28]} \\ \mbox{CrossFormer [42]} \\ \mbox{Card [34]} \\ \mbox{ESG [39]} \\ \mbox{FourierGNN [40]} \\ \mbox{TPGNN [26]} \\ \mbox{Sumba} \\ \hline \mbox{Method} \\ \mbox{(}F=6) \\ \mbox{MiCN [33]} \\ \mbox{ModernTCN [29]} \\ \mbox{PatchTST [30]} \\ \mbox{Feformer [19]} \\ \mbox{S4 [12]} \\ \mbox{MtGNN [38]} \\ \end{array}$	$\begin{array}{c} 0.235 \pm 0.002\\ 0.191 \pm 0.002\\ 0.191 \pm 0.002\\ 0.188 \pm 0.001\\ 0.271 \pm 0.002\\ 0.269 \pm 0.004\\ 0.348 \pm 0.001\\ 0.341 \pm 0.003\\ 0.169 \pm 0.001\\ 0.292 \pm 0.002\\ 0.171 \pm 0.002\\ 0.169 \pm 0.001\\ \hline 0.166 \pm 0.001\\ \hline 0.168 \pm 0.002\\ 0.237 \pm 0.003\\ 0.234 \pm 0.002\\ \hline 0.237 \pm 0.003\\ 0.234 \pm 0.002\\ \hline 0.210 \pm 0.002\\ 0.210 \pm 0.002\\ 0.349 \pm 0.002\\ 0.349 \pm 0.002\\ 0.349 \pm 0.002\\ 0.348 \pm 0.012\\ 0.562 \pm 0.003\\ 0.212 \pm 0.001\\ \hline \end{array}$	$\begin{array}{r} \text{RMSE} \\ \hline \text{RMSE} \\ \hline 0.317 \pm 0.001 \\ \hline 0.286 \pm 0.001 \\ \hline 0.290 \pm 0.001 \\ \hline 0.290 \pm 0.001 \\ \hline 0.378 \pm 0.002 \\ \hline 0.483 \pm 0.001 \\ \hline 0.483 \pm 0.002 \\ \hline 0.483 \pm 0.002 \\ \hline 0.489 \pm 0.002 \\ \hline 0.268 \pm 0.003 \\ \hline 0.419 \pm 0.002 \\ \hline 0.269 \pm 0.001 \\ \hline 0.275 \pm 0.003 \\ \hline 0.275 \pm 0.003 \\ \hline 0.369 \pm 0.002 \\ \hline 0.367 \pm 0.002 \\ \hline 0.367 \pm 0.001 \\ \hline 0.260 \pm 0.001 \\ \hline 0.380 \pm 0.003 \\ \hline 0.328 \pm 0.002 \\ \hline 0.508 \pm 0.003 \\ \hline 0.747 \pm 0.009 \\ \hline 0.323 \pm 0.002 \\ \hline \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.576 \pm 0.002 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ 2.042 \pm 0.007 \\ 1.692 \pm 0.006 \\ 1.819 \pm 0.015 \\ 0.956 \pm 0.005 \\ 1.523 \pm 0.021 \\ 1.350 \pm 0.010 \\ 2.604 \pm 0.031 \\ 2.755 \pm 0.021 \\ 0.994 \pm 0.006 \end{array}$	$\begin{tabular}{ c c c c c } \hline MAE \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.0746 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ \hline 0.246 \pm 0.002 \\ \hline 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ \hline 0.0926 \pm 0.001 \\ \hline 0.0817 \pm 0.000 \\ \hline 0.0819 \pm 0.000 \\ \hline 0.0804 \pm 0.000 \\ \hline 0.0882 \pm 0.000 \\ \hline 0.0778 \pm 0.000 \\ \hline 0.0932 \pm 0.005 \\ \hline 0.0935 \pm 0.004 \\ \hline 0.0782 \pm 0.000 \\ \hline 0.0764 \pm 0.000 \\ \hline \hline 0.0704 \pm 0.000 \\ \hline \hline 0.275 \pm 0.002 \\ \hline 0.231 \pm 0.001 \\ \hline 0.344 \pm 0.003 \\ \hline 0.360 \pm 0.002 \\ \hline 0.301 \pm 0.002 \\ \hline 0.301 \pm 0.002 \\ \hline 0.301 \pm 0.002 \\ \hline 0.227 \pm 0.002 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c } \hline Weather RMSE \\ \hline 0.250 \pm 0.001 \\ \hline 0.241 \pm 0.001 \\ \hline 0.239 \pm 0.001 \\ \hline 0.364 \pm 0.003 \\ \hline 0.364 \pm 0.003 \\ \hline 0.263 \pm 0.002 \\ \hline 0.285 \pm 0.003 \\ \hline 0.255 \pm 0.003 \\ \hline 0.242 \pm 0.001 \\ \hline 0.242 \pm 0.001 \\ \hline 0.242 \pm 0.002 \\ \hline 0.244 \pm 0.002 \\ \hline 0.246 \pm 0.002 \\ \hline 0.234 \pm 0.002 \\ \hline 0.571 \pm 0.001 \\ \hline 0.597 \pm 0.001 \\ \hline 0.597 \pm 0.001 \\ \hline 0.554 \pm 0.002 \\ \hline 0.738 \pm 0.003 \\ \hline 0.75 \pm 0.006 \\ \hline 0.738 \pm 0.003 \\ \hline 0.551 \pm 0.004 \\ \hline \end{tabular}$	$\begin{array}{c} \textbf{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ \hline 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \hline \textbf{1.663 \pm 0.013} \\ \hline \textbf{MAPE}(\%) \\ \hline 3.369 \pm 0.019 \\ 3.219 \pm 0.028 \\ 2.465 \pm 0.012 \\ 3.891 \pm 0.018 \\ 3.613 \pm 0.025 \\ 2.952 \pm 0.020 \\ 2.562 \pm 0.007 \\ \hline \end{array}$
$\begin{array}{c} (F=6) \\ \\ \mbox{MICN [33]} \\ \mbox{ModernTCN [29]} \\ \mbox{PatchTST [30]} \\ \mbox{FEDformer [45]} \\ \mbox{Autoformer [35]} \\ \mbox{Reformer [19]} \\ \mbox{S4 [12]} \\ \mbox{MegaCRN [15]} \\ \mbox{MegaCRN [15]} \\ \mbox{MegaCRN [15]} \\ \mbox{CrossFormer [42]} \\ \mbox{Card [34]} \\ \mbox{ESG [39]} \\ \mbox{FourierGNN [40]} \\ \mbox{TPGNN [26]} \\ \hline \\ \mbox{Sumba} \\ \hline \\ \mbox{Method} \\ \mbox{(}F=6) \\ \mbox{(}F=$	$\begin{array}{c} 0.235 \pm 0.002\\ 0.191 \pm 0.002\\ 0.191 \pm 0.002\\ 0.188 \pm 0.001\\ 0.271 \pm 0.002\\ 0.269 \pm 0.004\\ 0.348 \pm 0.001\\ 0.341 \pm 0.003\\ 0.169 \pm 0.001\\ 0.292 \pm 0.002\\ 0.171 \pm 0.002\\ 0.169 \pm 0.001\\ \hline 0.166 \pm 0.001\\ \hline 0.168 \pm 0.002\\ 0.237 \pm 0.003\\ 0.234 \pm 0.002\\ \hline 0.237 \pm 0.003\\ 0.234 \pm 0.002\\ \hline 0.163 \pm 0.001\\ \hline 0.272 \pm 0.002\\ 0.210 \pm 0.002\\ 0.349 \pm 0.006\\ 0.322 \pm 0.002\\ 0.349 \pm 0.006\\ 0.322 \pm 0.002\\ 0.488 \pm 0.012\\ 0.562 \pm 0.003\\ 0.212 \pm 0.001\\ 0.287 \pm 0.004\\ \hline \end{array}$	$\begin{array}{r} \text{RMSE} \\ \hline \text{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.002 \\ \hline \textbf{0.260} \pm \textbf{0.001} \\ \hline \textbf{0.275} \pm 0.003 \\ 0.369 \pm 0.002 \\ \hline \textbf{0.260} \pm \textbf{0.001} \\ \hline \textbf{0.275} \pm 0.002 \\ \hline \textbf{0.360} \pm \textbf{0.002} \\ \hline \textbf{0.260} \pm \textbf{0.001} \\ \hline \textbf{0.360} \pm \textbf{0.002} \\ \hline \textbf{0.368} \pm 0.002 \\ \hline \textbf{0.388} \pm 0.002 \\ 0.508 \pm 0.003 \\ 0.328 \pm 0.002 \\ 0.508 \pm 0.007 \\ 0.473 \pm 0.003 \\ 0.690 \pm 0.002 \\ \hline \textbf{0.323} \pm 0.002 \\ \hline \textbf{0.411} \pm 0.003 \\ \hline \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ 2.042 \pm 0.007 \\ 1.530 \pm 0.005 \\ 1.530 \pm 0.005 \\ 1.523 \pm 0.005 \\ 1.523 \pm 0.005 \\ 1.523 \pm 0.015 \\ 0.956 \pm 0.005 \\ 1.523 \pm 0.010 \\ 2.604 \pm 0.031 \\ 2.755 \pm 0.021 \\ 0.994 \pm 0.006 \\ 1.437 \pm 0.009 \\ 1.437 \pm 0.009 \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline MAE \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.0746 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ \hline 0.246 \pm 0.002 \\ \hline 0.117 \pm 0.000 \\ \hline 0.0926 \pm 0.001 \\ \hline 0.0926 \pm 0.001 \\ \hline 0.0817 \pm 0.000 \\ \hline 0.0817 \pm 0.000 \\ \hline 0.0882 \pm 0.000 \\ \hline 0.078 \pm 0.000 \\ \hline 0.078 \pm 0.000 \\ \hline 0.0935 \pm 0.004 \\ \hline 0.0935 \pm 0.004 \\ \hline 0.0935 \pm 0.004 \\ \hline 0.075 \pm 0.002 \\ \hline 0.0764 \pm 0.000 \\ \hline 0.0764 \pm 0.002 \\ \hline 0.261 \pm 0.002 \\ \hline 0.231 \pm 0.001 \\ \hline 0.346 \pm 0.002 \\ \hline 0.306 \pm 0.002 \\ \hline 0.301 \pm 0.002 \\ \hline 0.301 \pm 0.002 \\ \hline 0.227 \pm 0.002 \\ \hline 0.338 \pm 0.002 \\ \hline 0.338 \pm 0.002 \\ \hline 0.338 \pm 0.002 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c } \hline Weather RMSE \\ \hline 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.364 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.242 \pm 0.002 \\ 0.244 \pm 0.002 \\ 0.244 \pm 0.002 \\ 0.246 \pm 0.002 \\ 0.234 \pm 0.002 \\ 0.571 \pm 0.001 \\ 0.554 \pm 0.002 \\ 0.738 \pm 0.003 \\ 0.755 \pm 0.006 \\ 0.738 \pm 0.003 \\ 0.551 \pm 0.004 \\ 0.554 \pm 0.002 \\ 0.551 \pm 0.004 \\ 0.754 \pm 0.002 \\ \hline \end{tabular}$	$\begin{array}{c} \textbf{MAPE(\%)}\\ \hline 2.886 \pm 0.013\\ 1.712 \pm 0.020\\ \hline 3.138 \pm 0.096\\ 4.118 \pm 0.027\\ 12.782 \pm 1.033\\ \hline 3.611 \pm 0.025\\ \hline 3.932 \pm 0.037\\ 1.987 \pm 0.017\\ 1.972 \pm 0.019\\ 1.774 \pm 0.023\\ 2.931 \pm 0.059\\ \hline 2.322 \pm 0.026\\ \hline 2.869 \pm 0.038\\ 1.731 \pm 0.030\\ \hline \textbf{1.663 \pm 0.013}\\ \hline \textbf{MAPE(\%)}\\ \hline 3.369 \pm 0.019\\ \hline 3.219 \pm 0.028\\ 2.465 \pm 0.012\\ \hline 3.845 \pm 0.033\\ \hline 3.891 \pm 0.012\\ \hline 3.845 \pm 0.025\\ 2.952 \pm 0.026\\ 2.952 \pm 0.026\\ \hline 3.994 \pm 0.015\\ \hline \end{array}$
$\begin{array}{c} (F=6) \\ \\ \mbox{MICN [33]} \\ \mbox{ModernTCN [29]} \\ \mbox{PatchTST [30]} \\ \mbox{FEDformer [45]} \\ \mbox{Autoformer [35]} \\ \mbox{Reformer [19]} \\ \mbox{S4 [12]} \\ \mbox{MtgaCRN [38]} \\ \mbox{MegaCRN [15]} \\ \mbox{ifransformer [28]} \\ \mbox{CrossFormer [42]} \\ \mbox{Card [34]} \\ \mbox{ESG [39]} \\ \mbox{FourierGNN [40]} \\ \mbox{TPGNN [26]} \\ \mbox{Sumba} \\ \hline \mbox{Method} \\ \mbox{(}F=6) \\ \mbox{Mthod} \\ \mbox{(}F=6) \\ \mbox{Method} \\ \mbox{(}F=6) \\ \mbox{Method} \\ \mbox{(}F=6) \\ \mbox{Method} \\ \mbox{FEDformer [45]} \\ \mbox{Autoformer [35]} \\ \mbox{Reformer [19]} \\ \mbox{S4 [12]} \\ \mbox{MtGNN [38]} \\ \mbox{MegaCRN [15]} \\ \mbox{ifransformer [28]} \\ \end{array}$	$\begin{array}{c} 0.235\pm 0.002\\ 0.191\pm 0.002\\ 0.191\pm 0.002\\ 0.188\pm 0.001\\ 0.271\pm 0.002\\ 0.269\pm 0.004\\ 0.348\pm 0.001\\ 0.341\pm 0.003\\ 0.169\pm 0.001\\ 0.341\pm 0.002\\ 0.171\pm 0.002\\ 0.171\pm 0.002\\ 0.171\pm 0.002\\ 0.168\pm 0.001\\ \hline 0.168\pm 0.001\\ \hline 0.168\pm 0.002\\ 0.237\pm 0.003\\ 0.234\pm 0.002\\ \hline 0.163\pm 0.001\\ \hline 0.212\pm 0.001\\ 0.281\pm 0.002\\ 0.349\pm 0.002\\ 0.322\pm 0.002\\ 0.488\pm 0.012\\ 0.562\pm 0.003\\ 0.212\pm 0.001\\ 0.287\pm 0.001\\ \end{array}$	$\begin{array}{r} \text{RMSE} \\ \hline \text{RMSE} \\ \hline 0.317 \pm 0.001 \\ \hline 0.286 \pm 0.001 \\ \hline 0.290 \pm 0.001 \\ \hline 0.286 \pm 0.001 \\ \hline 0.378 \pm 0.002 \\ \hline 0.483 \pm 0.002 \\ \hline 0.483 \pm 0.002 \\ \hline 0.268 \pm 0.003 \\ \hline 0.419 \pm 0.002 \\ \hline 0.269 \pm 0.001 \\ \hline 0.270 \pm 0.001 \\ \hline 0.270 \pm 0.001 \\ \hline 0.275 \pm 0.003 \\ \hline 0.369 \pm 0.002 \\ \hline 0.367 \pm 0.002 \\ \hline 0.367 \pm 0.002 \\ \hline 0.367 \pm 0.002 \\ \hline 0.360 \pm 0.001 \\ \hline 0.260 \pm 0.001 \\ \hline 0.380 \pm 0.003 \\ \hline 0.328 \pm 0.002 \\ \hline 0.508 \pm 0.007 \\ \hline 0.473 \pm 0.003 \\ \hline 0.690 \pm 0.007 \\ \hline 0.473 \pm 0.003 \\ \hline 0.690 \pm 0.007 \\ \hline 0.323 \pm 0.002 \\ \hline 0.329 \pm 0.001 \\ \hline \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ 2.042 \pm 0.007 \\ 1.530 \pm 0.005 \\ \hline \end{array}$	$\begin{tabular}{ c c c c c } \hline MAE \\ \hline 0.1111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.0746 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ \hline 0.246 \pm 0.002 \\ \hline 0.117 \pm 0.001 \\ \hline 0.0926 \pm 0.001 \\ \hline 0.0926 \pm 0.001 \\ \hline 0.0817 \pm 0.000 \\ \hline 0.0819 \pm 0.000 \\ \hline 0.0822 \pm 0.000 \\ \hline 0.078 \pm 0.000 \\ \hline 0.0932 \pm 0.005 \\ \hline 0.0935 \pm 0.004 \\ \hline 0.0935 \pm 0.004 \\ \hline 0.0752 \pm 0.000 \\ \hline 0.0704 \pm 0.000 \\ \hline \hline 0.0704 \pm 0.000 \\ \hline 0.0704 \pm 0.000 \\ \hline 0.0704 \pm 0.002 \\ \hline 0.261 \pm 0.002 \\ \hline 0.231 \pm 0.001 \\ \hline 0.344 \pm 0.003 \\ \hline 0.360 \pm 0.002 \\ \hline 0.338 \pm 0.002 \\ \hline 0.327 \pm 0.002 \\ \hline 0.227 \pm 0.002 \\ \hline 0.227 \pm 0.002 \\ \hline 0.221 \pm 0.002 \\ \hline 0.211 \pm 0.002 \\ \hline \end{tabular}$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{r} \textbf{MAPE(\%)}\\ \hline 2.886 \pm 0.013\\ 1.712 \pm 0.020\\ 3.138 \pm 0.096\\ 4.118 \pm 0.027\\ 12.782 \pm 1.033\\ 3.611 \pm 0.025\\ 3.932 \pm 0.037\\ 1.987 \pm 0.017\\ 1.972 \pm 0.019\\ 1.774 \pm 0.023\\ 2.931 \pm 0.059\\ 2.322 \pm 0.026\\ 2.869 \pm 0.038\\ 1.731 \pm 0.030\\ \textbf{1.663 \pm 0.013}\\ \textbf{MAPE(\%)}\\ \hline 3.369 \pm 0.019\\ 3.219 \pm 0.028\\ 2.465 \pm 0.012\\ 3.845 \pm 0.033\\ 3.891 \pm 0.018\\ 3.613 \pm 0.025\\ 2.952 \pm 0.002\\ 2.562 \pm 0.007\\ 3.994 \pm 0.015\\ 2.269 \pm 0.005\\ \hline \end{array}$
$\begin{array}{c} (F=6) \\ \\ \mbox{MICN [33]} \\ \mbox{ModernTCN [29]} \\ \mbox{PatchTST [30]} \\ \mbox{FEDformer [13]} \\ \mbox{Autoformer [35]} \\ \mbox{Reformer [19]} \\ \mbox{S4 [12]} \\ \mbox{MTGNN [38]} \\ \mbox{MegaCRN [15]} \\ \mbox{irransformer [28]} \\ \mbox{CrossFormer [42]} \\ \mbox{Card [34]} \\ \mbox{ESG [39]} \\ \mbox{Former [42]} \\ \mbox{Card [34]} \\ \mbox{ESG [39]} \\ \mbox{Former [42]} \\ \mbox{Card [34]} \\ \mbox{Reformer [42]} \\ \mbox{Card [34]} \\ \mbox{Reformer [42]} \\ \mbox{Method} \\ \mbox{(}F=6) \\ \mbox{MICN [33]} \\ \mbox{ModernTCN [29]} \\ \mbox{PatchTST [30]} \\ \mbox{FeDformer [45]} \\ \mbox{Autoformer [35]} \\ \mbox{Reformer [19]} \\ \mbox{S4 [12]} \\ \mbox{MegaCRN [15]} \\ \mbox{irransformer [28]} \\ \mbox{CrossFormer [42]} \\ \mbox{CrossFormer [42]} \\ \end{tabular}$	$\begin{array}{c} 0.235 \pm 0.002\\ 0.191 \pm 0.002\\ 0.191 \pm 0.002\\ 0.188 \pm 0.001\\ 0.271 \pm 0.002\\ 0.269 \pm 0.004\\ 0.348 \pm 0.001\\ 0.341 \pm 0.003\\ 0.169 \pm 0.001\\ 0.292 \pm 0.002\\ 0.171 \pm 0.002\\ 0.171 \pm 0.002\\ 0.169 \pm 0.001\\ \hline 0.166 \pm 0.001\\ \hline 0.168 \pm 0.002\\ 0.237 \pm 0.003\\ 0.234 \pm 0.002\\ \hline 0.163 \pm 0.001\\ \hline 0.210 \pm 0.002\\ 0.349 \pm 0.002\\ 0.349 \pm 0.002\\ 0.349 \pm 0.002\\ 0.348 \pm 0.012\\ 0.562 \pm 0.003\\ 0.212 \pm 0.001\\ 0.249 \pm 0.002\\ \end{array}$	$\begin{array}{r} \text{RMSE} \\ \hline \text{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.368 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.483 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.367 \pm 0.002 \\ 0.368 \pm 0.002 \\ 0.368 \pm 0.002 \\ 0.380 \pm 0.003 \\ 0.328 \pm 0.002 \\ 0.508 \pm 0.002 \\ 0.508 \pm 0.007 \\ 0.473 \pm 0.003 \\ 0.690 \pm 0.007 \\ 0.747 \pm 0.009 \\ 0.323 \pm 0.002 \\ 0.329 \pm 0.001 \\ 0.387 \pm 0.001 \\ 0.387 \pm 0.001 \\ 0.387 \pm 0.001 \\ \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ 2.042 \pm 0.007 \\ 2.042 \pm 0.007 \\ 1.692 \pm 0.006 \\ 1.819 \pm 0.015 \\ 0.956 \pm 0.005 \\ 1.523 \pm 0.021 \\ 1.350 \pm 0.010 \\ 2.604 \pm 0.031 \\ 2.755 \pm 0.021 \\ 0.994 \pm 0.006 \\ 1.437 \pm 0.009 \\ 1.029 \pm 0.003 \\ 1.097 \pm 0.006 \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline MAE \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.0746 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0926 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0788 \pm 0.000 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ \hline 0.0782 \pm 0.000 \\ \hline 0.0764 \pm 0.000 \\ \hline 0.275 \pm 0.002 \\ 0.231 \pm 0.001 \\ 0.344 \pm 0.003 \\ 0.360 \pm 0.002 \\ 0.338 \pm 0.002 \\ 0.338 \pm 0.002 \\ 0.211 \pm 0.002 \\ 0.211 \pm 0.002 \\ \hline 0.216 \pm 0.002 \\ \hline 0.000 \\ $	$\begin{tabular}{ c c c c } \hline Weather RMSE \\ \hline 0.250 \pm 0.001 \\ \hline 0.241 \pm 0.001 \\ \hline 0.239 \pm 0.003 \\ \hline 0.399 \pm 0.003 \\ \hline 0.399 \pm 0.003 \\ \hline 0.263 \pm 0.002 \\ \hline 0.285 \pm 0.003 \\ \hline 0.256 \pm 0.001 \\ \hline 0.242 \pm 0.001 \\ \hline 0.242 \pm 0.002 \\ \hline 0.246 \pm 0.002 \\ \hline 0.237 \pm 0.002 \\ \hline 0.234 \pm 0.002 \\ \hline 0.571 \pm 0.001 \\ \hline 0.597 \pm 0.001 \\ \hline 0.554 \pm 0.002 \\ \hline 0.718 \pm 0.003 \\ \hline 0.738 \pm 0.003 \\ \hline 0.75 \pm 0.004 \\ \hline 0.754 \pm 0.001 \\ \hline 0.551 \pm 0.004 \\ \hline 0.754 \pm 0.001 \\ \hline 0.551 \pm 0.004 \\ \hline 0.754 \pm 0.002 \\ \hline 0.524 \pm 0.001 \\ \hline 0.634 \pm 0.003 \\ \hline 0$	$\begin{array}{r} \textbf{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ \hline 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \hline \textbf{1.663 \pm 0.013} \\ \hline \textbf{MAPE}(\%) \\ \hline 3.369 \pm 0.019 \\ 3.219 \pm 0.028 \\ 2.465 \pm 0.012 \\ 3.845 \pm 0.033 \\ 3.891 \pm 0.018 \\ 3.613 \pm 0.025 \\ 2.952 \pm 0.020 \\ 2.562 \pm 0.007 \\ 2.952 \pm 0.020 \\ 2.562 \pm 0.005 \\ 2.269 \pm 0.005 \\ 2.140 \pm 0.014 \\ \hline \textbf{0.014} \\ \hline $
$\begin{array}{c} (F=6) \\ \hline MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \\ MTGNN [38] \\ MegaCRN [15] \\ iTransformer [28] \\ CrossFormer [42] \\ Card [34] \\ ESG [39] \\ FourierGNN [40] \\ TPGNN [26] \\ \hline Sumba \\ \hline Method \\ (F=6) \\ \hline MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \\ MTGNN [38] \\ MegaCRN [15] \\ iTransformer [28] \\ CrossFormer [42] \\ CrossFormer [42] \\ Sumba \\ \hline Method [15] \\ iTransformer [42] \\ CrossFormer [42] \\ CrossFormer [42] \\ Crad [34] \\ \hline \end{array}$	$\begin{array}{c} 0.235 \pm 0.002\\ 0.191 \pm 0.002\\ 0.191 \pm 0.002\\ 0.188 \pm 0.001\\ 0.271 \pm 0.002\\ 0.269 \pm 0.004\\ 0.348 \pm 0.001\\ 0.341 \pm 0.003\\ 0.169 \pm 0.001\\ 0.292 \pm 0.002\\ 0.171 \pm 0.002\\ 0.169 \pm 0.001\\ \hline 0.166 \pm 0.001\\ \hline 0.166 \pm 0.002\\ 0.237 \pm 0.003\\ 0.234 \pm 0.002\\ \hline 0.237 \pm 0.003\\ 0.234 \pm 0.002\\ \hline 0.163 \pm 0.001\\ \hline 0.272 \pm 0.002\\ 0.210 \pm 0.002\\ 0.322 \pm 0.002\\ 0.349 \pm 0.006\\ 0.322 \pm 0.002\\ 0.488 \pm 0.012\\ 0.562 \pm 0.003\\ 0.212 \pm 0.001\\ 0.287 \pm 0.004\\ 0.212 \pm 0.001\\ 0.287 \pm 0.004\\ 0.212 \pm 0.001\\ 0.249 \pm 0.002\\ \hline 0.209 \pm 0.001\\ \hline \end{array}$	$\begin{array}{r} \text{RMSE} \\ \hline \text{0.317} \pm 0.001 \\ \hline 0.286 \pm 0.001 \\ \hline 0.280 \pm 0.001 \\ \hline 0.290 \pm 0.001 \\ \hline 0.378 \pm 0.002 \\ \hline 0.483 \pm 0.001 \\ \hline 0.483 \pm 0.002 \\ \hline 0.483 \pm 0.002 \\ \hline 0.268 \pm 0.003 \\ \hline 0.419 \pm 0.002 \\ \hline 0.269 \pm 0.001 \\ \hline 0.270 \pm 0.001 \\ \hline 0.270 \pm 0.001 \\ \hline 0.275 \pm 0.003 \\ \hline 0.369 \pm 0.002 \\ \hline 0.367 \pm 0.002 \\ \hline 0.367 \pm 0.002 \\ \hline 0.369 \pm 0.001 \\ \hline 0.380 \pm 0.003 \\ \hline 0.380 \pm 0.003 \\ \hline 0.380 \pm 0.003 \\ \hline 0.508 \pm 0.003 \\ \hline 0.508 \pm 0.007 \\ \hline 0.473 \pm 0.003 \\ \hline 0.690 \pm 0.001 \\ \hline 0.323 \pm 0.002 \\ \hline 0.317 \pm 0.001 \\ \hline 0.387 \pm 0.001 \\ \hline 0.387 \pm 0.001 \\ \hline 0.319 \pm 0.001 \\ \hline 0.319 \pm 0.001 \\ \hline \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ 2.042 \pm 0.007 \\ 1.692 \pm 0.006 \\ 1.819 \pm 0.015 \\ 0.956 \pm 0.005 \\ 1.523 \pm 0.021 \\ 1.350 \pm 0.011 \\ 2.755 \pm 0.021 \\ 0.994 \pm 0.006 \\ 1.437 \pm 0.009 \\ 1.029 \pm 0.003 \\ 1.097 \pm 0.006 \\ 1.097 \pm 0.004 \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline MAE \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.0746 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.0226 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0812 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0778 \pm 0.000 \\ 0.0932 \pm 0.005 \\ 0.0935 \pm 0.004 \\ 0.0778 \pm 0.000 \\ 0.0778 \pm 0.000 \\ \hline 0.0764 \pm 0.000 \\ \hline 0.0764 \pm 0.000 \\ \hline 0.275 \pm 0.002 \\ 0.231 \pm 0.001 \\ 0.338 \pm 0.002 \\ 0.338 \pm 0.002 \\ 0.227 \pm 0.002 \\ 0.211 \pm 0.002 \\ 0.216 \pm 0.002 \\ 0.215 \pm 0.001 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c } \hline Weather RMSE \\ \hline 0.250 \pm 0.001 \\ \hline 0.241 \pm 0.001 \\ \hline 0.239 \pm 0.003 \\ \hline 0.239 \pm 0.003 \\ \hline 0.263 \pm 0.002 \\ \hline 0.265 \pm 0.003 \\ \hline 0.256 \pm 0.001 \\ \hline 0.242 \pm 0.001 \\ \hline 0.242 \pm 0.001 \\ \hline 0.242 \pm 0.002 \\ \hline 0.246 \pm 0.002 \\ \hline 0.234 \pm 0.002 \\ \hline 0.571 \pm 0.001 \\ \hline 0.597 \pm 0.001 \\ \hline 0.554 \pm 0.002 \\ \hline 0.718 \pm 0.002 \\ \hline 0.738 \pm 0.003 \\ \hline 0.75 \pm 0.006 \\ \hline 0.738 \pm 0.003 \\ \hline 0.551 \pm 0.004 \\ \hline 0.554 \pm 0.002 \\ \hline 0.524 \pm 0.001 \\ \hline 0.634 \pm 0.003 \\ \hline 0.554 \pm 0.002 \\ \hline 0.524 \pm 0.001 \\ \hline 0.634 \pm 0.003 \\ \hline 0.545 \pm 0.002 \\ \hline 0$	$\begin{array}{r} \textbf{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ \hline 3.611 \pm 0.025 \\ \hline 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.029 \\ \hline 2.322 \pm 0.026 \\ \hline 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \hline \textbf{1.663 \pm 0.013} \\ \hline \textbf{MAPE}(\%) \\ \hline 3.369 \pm 0.019 \\ \hline 3.219 \pm 0.028 \\ \hline 2.465 \pm 0.012 \\ \hline 3.845 \pm 0.033 \\ \hline 3.613 \pm 0.025 \\ \hline 2.952 \pm 0.020 \\ \hline 2.562 \pm 0.007 \\ \hline 3.994 \pm 0.014 \\ \hline 2.341 \pm 0.006 \\ \hline \end{array}$
$\begin{array}{c} (F=6) \\ \\ \mbox{MICN [33]} \\ \mbox{ModernTCN [29]} \\ \mbox{PatchTST [30]} \\ \mbox{FeDformer [19]} \\ \mbox{Autoformer [19]} \\ \mbox{S4 [12]} \\ \mbox{MTGNN [38]} \\ \mbox{MegaCRN [15]} \\ \mbox{irransformer [28]} \\ \mbox{CrossFormer [42]} \\ \mbox{Card [34]} \\ \mbox{ESG [39]} \\ \mbox{FourierGNN [40]} \\ \mbox{TPGNN [26]} \\ \mbox{Sumba} \\ \hline \mbox{Method} \\ \mbox{(}F=6) \\ \mbox{MICN [33]} \\ \mbox{ModernTCN [29]} \\ \mbox{PatchTST [30]} \\ \mbox{Feformer [19]} \\ \mbox{S4 [12]} \\ \mbox{Mtoformer [35]} \\ \mbox{Reformer [19]} \\ \mbox{S4 [12]} \\ \mbox{MTGNN [38]} \\ \mbox{MegaCRN [15]} \\ \mbox{irransformer [28]} \\ \mbox{CrossFormer [42]} \\ \mbox{Card [34]} \\ \mbox{ESG [39]} \\ \end{array}$	$\begin{array}{c} 0.235\pm 0.002\\ 0.191\pm 0.002\\ 0.191\pm 0.002\\ 0.188\pm 0.001\\ 0.271\pm 0.002\\ 0.269\pm 0.004\\ 0.348\pm 0.001\\ 0.341\pm 0.003\\ 0.169\pm 0.001\\ 0.292\pm 0.002\\ 0.171\pm 0.002\\ 0.171\pm 0.002\\ 0.169\pm 0.001\\ \hline 0.166\pm 0.001\\ \hline 0.168\pm 0.002\\ 0.237\pm 0.003\\ 0.234\pm 0.002\\ \hline 0.163\pm 0.001\\ \hline 0.212\pm 0.002\\ 0.349\pm 0.002\\ 0.322\pm 0.002\\ 0.349\pm 0.002\\ 0.322\pm 0.002\\ 0.348\pm 0.012\\ 0.562\pm 0.003\\ 0.212\pm 0.001\\ 0.212\pm 0.001\\ 0.212\pm 0.001\\ 0.212\pm 0.001\\ 0.212\pm 0.001\\ 0.212\pm 0.001\\ 0.249\pm 0.002\\ \end{array}$	$\begin{array}{r} \text{RMSE} \\ \hline \text{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.368 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.483 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.367 \pm 0.002 \\ 0.368 \pm 0.002 \\ 0.368 \pm 0.002 \\ 0.380 \pm 0.003 \\ 0.328 \pm 0.002 \\ 0.508 \pm 0.002 \\ 0.508 \pm 0.007 \\ 0.473 \pm 0.003 \\ 0.690 \pm 0.007 \\ 0.747 \pm 0.009 \\ 0.323 \pm 0.002 \\ 0.329 \pm 0.001 \\ 0.387 \pm 0.001 \\ 0.387 \pm 0.001 \\ 0.387 \pm 0.001 \\ \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ 2.042 \pm 0.007 \\ 2.042 \pm 0.007 \\ 1.692 \pm 0.006 \\ 1.819 \pm 0.015 \\ 0.956 \pm 0.005 \\ 1.523 \pm 0.021 \\ 1.350 \pm 0.010 \\ 2.604 \pm 0.031 \\ 2.755 \pm 0.021 \\ 0.994 \pm 0.006 \\ 1.437 \pm 0.009 \\ 1.029 \pm 0.003 \\ 1.097 \pm 0.006 \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline MAE \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.0746 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0926 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0788 \pm 0.000 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ \hline 0.0782 \pm 0.000 \\ \hline 0.0764 \pm 0.000 \\ \hline 0.275 \pm 0.002 \\ 0.231 \pm 0.001 \\ 0.344 \pm 0.003 \\ 0.360 \pm 0.002 \\ 0.338 \pm 0.002 \\ 0.338 \pm 0.002 \\ 0.211 \pm 0.002 \\ 0.211 \pm 0.002 \\ \hline 0.216 \pm 0.002 \\ \hline 0.000 \\ $	$\begin{tabular}{ c c c c } \hline Weather RMSE \\ \hline 0.250 \pm 0.001 \\ \hline 0.241 \pm 0.001 \\ \hline 0.239 \pm 0.003 \\ \hline 0.399 \pm 0.003 \\ \hline 0.399 \pm 0.003 \\ \hline 0.263 \pm 0.002 \\ \hline 0.285 \pm 0.003 \\ \hline 0.256 \pm 0.001 \\ \hline 0.242 \pm 0.001 \\ \hline 0.242 \pm 0.002 \\ \hline 0.246 \pm 0.002 \\ \hline 0.237 \pm 0.002 \\ \hline 0.234 \pm 0.002 \\ \hline 0.571 \pm 0.001 \\ \hline 0.597 \pm 0.001 \\ \hline 0.554 \pm 0.002 \\ \hline 0.718 \pm 0.003 \\ \hline 0.738 \pm 0.003 \\ \hline 0.75 \pm 0.004 \\ \hline 0.754 \pm 0.001 \\ \hline 0.551 \pm 0.004 \\ \hline 0.754 \pm 0.001 \\ \hline 0.551 \pm 0.004 \\ \hline 0.754 \pm 0.002 \\ \hline 0.524 \pm 0.001 \\ \hline 0.634 \pm 0.003 \\ \hline 0$	$\begin{array}{r} \textbf{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ \hline 3.611 \pm 0.025 \\ \hline 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.029 \\ \hline 2.322 \pm 0.026 \\ \hline 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \hline \textbf{1.663 \pm 0.013} \\ \hline \textbf{MAPE}(\%) \\ \hline 3.369 \pm 0.019 \\ \hline 3.219 \pm 0.028 \\ \hline 2.465 \pm 0.012 \\ \hline 3.845 \pm 0.033 \\ \hline 3.613 \pm 0.025 \\ \hline 2.952 \pm 0.020 \\ \hline 2.562 \pm 0.007 \\ \hline 3.994 \pm 0.018 \\ \hline 2.269 \pm 0.005 \\ \hline 2.269 \pm 0.005 \\ \hline 2.269 \pm 0.005 \\ \hline 2.404 \pm 0.014 \\ \hline 2.341 \pm 0.006 \\ \hline \end{array}$
$\begin{array}{c} (F=6) \\ \\ \mbox{MICN [33]} \\ \mbox{ModernTCN [29]} \\ \mbox{PatchTST [30]} \\ \mbox{FEDformer [130]} \\ \mbox{FEDformer [13]} \\ \mbox{Autoformer [35]} \\ \mbox{MedgaCRN [38]} \\ \mbox{MegaCRN [15]} \\ \mbox{irransformer [28]} \\ \mbox{CrossFormer [42]} \\ \mbox{Card [34]} \\ \mbox{ESG [39]} \\ \mbox{FourierGNN [40]} \\ \mbox{TPGNN [26]} \\ \mbox{Sumba} \\ \hline \mbox{Method} \\ \mbox{(}F=6) \\ \mbox{MICN [33]} \\ \mbox{ModernTCN [29]} \\ \mbox{PatchTST [30]} \\ \mbox{FEDformer [45]} \\ \mbox{Autoformer [35]} \\ \mbox{Reformer [19]} \\ \mbox{S4 [12]} \\ \mbox{MegaCRN [15]} \\ \mbox{irransformer [28]} \\ \mbox{CrossFormer [42]} \\ \mbox{CrossFormer [42]} \\ \mbox{CrossFormer [42]} \\ \mbox{CrossFormer [42]} \\ \mbox{Card [34]} \\ \end{array}$	$\begin{array}{c} 0.235 \pm 0.002\\ 0.191 \pm 0.002\\ 0.191 \pm 0.002\\ 0.188 \pm 0.001\\ 0.271 \pm 0.002\\ 0.269 \pm 0.004\\ 0.348 \pm 0.001\\ 0.341 \pm 0.003\\ 0.169 \pm 0.001\\ 0.292 \pm 0.002\\ 0.171 \pm 0.002\\ 0.169 \pm 0.001\\ \hline 0.166 \pm 0.001\\ \hline 0.166 \pm 0.002\\ 0.237 \pm 0.003\\ 0.234 \pm 0.002\\ \hline 0.237 \pm 0.003\\ 0.234 \pm 0.002\\ \hline 0.163 \pm 0.001\\ \hline 0.272 \pm 0.002\\ 0.210 \pm 0.002\\ 0.322 \pm 0.002\\ 0.349 \pm 0.006\\ 0.322 \pm 0.002\\ 0.488 \pm 0.012\\ 0.562 \pm 0.003\\ 0.212 \pm 0.001\\ 0.287 \pm 0.004\\ 0.212 \pm 0.001\\ 0.287 \pm 0.004\\ 0.212 \pm 0.001\\ 0.249 \pm 0.002\\ \hline 0.209 \pm 0.001\\ \hline \end{array}$	$\begin{array}{r} \text{RMSE} \\ \hline \text{0.317} \pm 0.001 \\ \hline 0.286 \pm 0.001 \\ \hline 0.280 \pm 0.001 \\ \hline 0.290 \pm 0.001 \\ \hline 0.378 \pm 0.002 \\ \hline 0.483 \pm 0.001 \\ \hline 0.483 \pm 0.002 \\ \hline 0.483 \pm 0.002 \\ \hline 0.268 \pm 0.003 \\ \hline 0.419 \pm 0.002 \\ \hline 0.269 \pm 0.001 \\ \hline 0.270 \pm 0.001 \\ \hline 0.270 \pm 0.001 \\ \hline 0.275 \pm 0.003 \\ \hline 0.369 \pm 0.002 \\ \hline 0.367 \pm 0.002 \\ \hline 0.367 \pm 0.002 \\ \hline 0.369 \pm 0.001 \\ \hline 0.380 \pm 0.003 \\ \hline 0.380 \pm 0.003 \\ \hline 0.380 \pm 0.003 \\ \hline 0.508 \pm 0.003 \\ \hline 0.508 \pm 0.007 \\ \hline 0.473 \pm 0.003 \\ \hline 0.690 \pm 0.001 \\ \hline 0.323 \pm 0.002 \\ \hline 0.317 \pm 0.001 \\ \hline 0.387 \pm 0.001 \\ \hline 0.387 \pm 0.001 \\ \hline 0.319 \pm 0.001 \\ \hline 0.319 \pm 0.001 \\ \hline \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ 2.042 \pm 0.007 \\ 1.692 \pm 0.006 \\ 1.819 \pm 0.015 \\ 0.956 \pm 0.005 \\ 1.523 \pm 0.021 \\ 1.350 \pm 0.011 \\ 2.755 \pm 0.021 \\ 0.994 \pm 0.006 \\ 1.437 \pm 0.009 \\ 1.029 \pm 0.003 \\ 1.097 \pm 0.006 \\ 1.097 \pm 0.004 \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline MAE \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.0746 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.0226 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0812 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0778 \pm 0.000 \\ 0.0932 \pm 0.005 \\ 0.0935 \pm 0.004 \\ 0.0778 \pm 0.000 \\ 0.0778 \pm 0.000 \\ \hline 0.0764 \pm 0.000 \\ \hline 0.0764 \pm 0.000 \\ \hline 0.275 \pm 0.002 \\ 0.231 \pm 0.001 \\ 0.338 \pm 0.002 \\ 0.338 \pm 0.002 \\ 0.227 \pm 0.002 \\ 0.211 \pm 0.002 \\ 0.216 \pm 0.002 \\ 0.215 \pm 0.001 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c } \hline Weather RMSE \\ \hline 0.250 \pm 0.001 \\ \hline 0.241 \pm 0.001 \\ \hline 0.239 \pm 0.003 \\ \hline 0.239 \pm 0.003 \\ \hline 0.263 \pm 0.002 \\ \hline 0.265 \pm 0.003 \\ \hline 0.256 \pm 0.001 \\ \hline 0.242 \pm 0.001 \\ \hline 0.242 \pm 0.001 \\ \hline 0.242 \pm 0.002 \\ \hline 0.246 \pm 0.002 \\ \hline 0.234 \pm 0.002 \\ \hline 0.571 \pm 0.001 \\ \hline 0.597 \pm 0.001 \\ \hline 0.554 \pm 0.002 \\ \hline 0.718 \pm 0.002 \\ \hline 0.738 \pm 0.003 \\ \hline 0.75 \pm 0.006 \\ \hline 0.738 \pm 0.003 \\ \hline 0.551 \pm 0.004 \\ \hline 0.554 \pm 0.002 \\ \hline 0.524 \pm 0.001 \\ \hline 0.634 \pm 0.003 \\ \hline 0.554 \pm 0.002 \\ \hline 0.524 \pm 0.001 \\ \hline 0.634 \pm 0.003 \\ \hline 0.545 \pm 0.002 \\ \hline 0$	$\begin{array}{r} \textbf{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \textbf{1.663 \pm 0.013} \\ \hline \textbf{MAPE}(\%) \\ \hline 3.369 \pm 0.019 \\ 3.219 \pm 0.028 \\ 2.465 \pm 0.012 \\ 3.891 \pm 0.018 \\ 3.613 \pm 0.025 \\ 2.952 \pm 0.020 \\ 2.562 \pm 0.007 \\ 3.994 \pm 0.015 \\ 2.269 \pm 0.005 \\ \textbf{2.140 \pm 0.014} \\ 2.341 \pm 0.006 \\ 2.248 \pm 0.003 \end{array}$
$\begin{array}{c} (F=6) \\ \\ \mbox{MICN [33]} \\ \mbox{ModernTCN [29]} \\ \mbox{PatchTST [30]} \\ \mbox{FeDformer [19]} \\ \mbox{Autoformer [19]} \\ \mbox{S4 [12]} \\ \mbox{MTGNN [38]} \\ \mbox{MegaCRN [15]} \\ \mbox{irransformer [28]} \\ \mbox{CrossFormer [42]} \\ \mbox{Card [34]} \\ \mbox{ESG [39]} \\ \mbox{FourierGNN [40]} \\ \mbox{TPGNN [26]} \\ \mbox{Sumba} \\ \hline \mbox{Method} \\ \mbox{(}F=6) \\ \mbox{MICN [33]} \\ \mbox{ModernTCN [29]} \\ \mbox{PatchTST [30]} \\ \mbox{Feformer [19]} \\ \mbox{S4 [12]} \\ \mbox{Mtoformer [35]} \\ \mbox{Reformer [19]} \\ \mbox{S4 [12]} \\ \mbox{MTGNN [38]} \\ \mbox{MegaCRN [15]} \\ \mbox{irransformer [28]} \\ \mbox{CrossFormer [42]} \\ \mbox{Card [34]} \\ \mbox{ESG [39]} \\ \end{array}$	$\begin{array}{c} 0.235 \pm 0.002\\ 0.191 \pm 0.002\\ 0.191 \pm 0.002\\ 0.188 \pm 0.001\\ 0.271 \pm 0.002\\ 0.269 \pm 0.004\\ 0.348 \pm 0.001\\ 0.341 \pm 0.003\\ 0.169 \pm 0.001\\ 0.292 \pm 0.002\\ 0.171 \pm 0.002\\ 0.169 \pm 0.001\\ \hline 0.166 \pm 0.001\\ \hline 0.168 \pm 0.002\\ 0.237 \pm 0.003\\ 0.234 \pm 0.002\\ \hline 0.237 \pm 0.003\\ 0.234 \pm 0.002\\ \hline 0.210 \pm 0.002\\ 0.210 \pm 0.002\\ 0.349 \pm 0.002\\ 0.349 \pm 0.002\\ 0.349 \pm 0.002\\ 0.349 \pm 0.002\\ 0.322 \pm 0.002\\ 0.349 \pm 0.002\\ 0.212 \pm 0.001\\ 0.287 \pm 0.004\\ 0.212 \pm 0.001\\ 0.249 \pm 0.002\\ 0.209 \pm 0.001\\ \hline 0.254 \pm 0.006\\ \hline \end{array}$	$\begin{array}{r} \text{RMSE} \\ \hline \text{RMSE} \\ \hline 0.317 \pm 0.001 \\ \hline 0.286 \pm 0.001 \\ \hline 0.290 \pm 0.001 \\ \hline 0.290 \pm 0.001 \\ \hline 0.378 \pm 0.002 \\ \hline 0.483 \pm 0.002 \\ \hline 0.483 \pm 0.002 \\ \hline 0.483 \pm 0.002 \\ \hline 0.268 \pm 0.003 \\ \hline 0.419 \pm 0.002 \\ \hline 0.269 \pm 0.001 \\ \hline 0.270 \pm 0.001 \\ \hline 0.275 \pm 0.003 \\ \hline 0.275 \pm 0.003 \\ \hline 0.369 \pm 0.002 \\ \hline 0.367 \pm 0.002 \\ \hline 0.367 \pm 0.001 \\ \hline 0.380 \pm 0.002 \\ \hline 0.380 \pm 0.003 \\ \hline 0.328 \pm 0.002 \\ \hline 0.508 \pm 0.007 \\ \hline 0.473 \pm 0.003 \\ \hline 0.690 \pm 0.007 \\ \hline 0.473 \pm 0.003 \\ \hline 0.690 \pm 0.007 \\ \hline 0.473 \pm 0.003 \\ \hline 0.323 \pm 0.002 \\ \hline 0.319 \pm 0.001 \\ \hline 0.387 \pm 0.001 \\ \hline 0.387 \pm 0.001 \\ \hline 0.371 \pm 0.013 \\ \hline 0.371 \pm 0.013 \\ \hline \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.576 \pm 0.002 \\ 1.576 \pm 0.002 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ 2.042 \pm 0.007 \\ 1.692 \pm 0.006 \\ 1.819 \pm 0.015 \\ 0.956 \pm 0.005 \\ 1.523 \pm 0.021 \\ 1.350 \pm 0.011 \\ 0.956 \pm 0.001 \\ 2.604 \pm 0.031 \\ 2.755 \pm 0.021 \\ 0.994 \pm 0.006 \\ 1.437 \pm 0.009 \\ 1.029 \pm 0.003 \\ 1.097 \pm 0.006 \\ 1.437 \pm 0.009 \\ 1.029 \pm 0.003 \\ 1.097 \pm 0.004 \\ 1.027 \pm 0.012 \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline MAE \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.0746 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.0226 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0778 \pm 0.000 \\ 0.0935 \pm 0.004 \\ 0.0778 \pm 0.000 \\ 0.0778 \pm 0.000 \\ 0.0778 \pm 0.000 \\ 0.0778 \pm 0.000 \\ 0.0775 \pm 0.002 \\ 0.275 \pm 0.002 \\ 0.231 \pm 0.001 \\ 0.344 \pm 0.003 \\ 0.360 \pm 0.002 \\ 0.338 \pm 0.002 \\ 0.338 \pm 0.002 \\ 0.211 \pm 0.002 \\ 0.215 \pm 0.001 \\ 0.215 \pm 0.001 \\ 0.221 \pm 0.002 \\ \hline 0.211 \pm 0.002 \\ 0.215 \pm 0.001 \\ 0.221 \pm 0.002 \\ \hline 0.211 \pm 0.002 \\ \hline 0.221 \pm 0.002 \\ \hline 0.221 \pm 0.002 \\ \hline 0.221 \pm 0.002 \\ \hline 0.000 $	$\begin{tabular}{ c c c c } \hline RMSE \\ \hline RMSE \\ \hline 0.250 \pm 0.001 \\ \hline 0.241 \pm 0.001 \\ \hline 0.239 \pm 0.003 \\ \hline 0.263 \pm 0.002 \\ \hline 0.265 \pm 0.003 \\ \hline 0.265 \pm 0.003 \\ \hline 0.265 \pm 0.003 \\ \hline 0.256 \pm 0.001 \\ \hline 0.242 \pm 0.002 \\ \hline 0.246 \pm 0.002 \\ \hline 0.234 \pm 0.002 \\ \hline 0.571 \pm 0.001 \\ \hline 0.597 \pm 0.001 \\ \hline 0.554 \pm 0.002 \\ \hline 0.718 \pm 0.007 \\ \hline 0.730 \pm 0.003 \\ \hline 0.755 \pm 0.003 \\ \hline 0.754 \pm 0.002 \\ \hline 0.754 \pm 0.002 \\ \hline 0.551 \pm 0.004 \\ \hline 0.754 \pm 0.002 \\ \hline 0.524 \pm 0.001 \\ \hline 0.634 \pm 0.003 \\ \hline 0.545 \pm 0.002 \\ \hline 0.626 \pm 0.002 \\ \hline 0.626 \pm 0.002 \\ \hline \end{tabular}$	$\begin{array}{r} \textbf{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \textbf{1.663 \pm 0.013} \\ \hline \textbf{MAPE}(\%) \\ \hline 3.369 \pm 0.019 \\ 3.219 \pm 0.028 \\ 2.465 \pm 0.012 \\ 3.845 \pm 0.033 \\ 3.891 \pm 0.018 \\ 3.613 \pm 0.025 \\ 2.952 \pm 0.020 \\ 2.562 \pm 0.007 \\ 3.994 \pm 0.015 \\ 2.269 \pm 0.0015 \\ 2.269 \pm 0.003 \\ 3.608 \pm 0.028 \\ 3.608 \pm 0.028 \\ 3.608 \pm 0.028 \\ \hline \end{array}$
$\begin{array}{c} (F=6) \\ \\ \mbox{MICN [33]} \\ \mbox{ModernTCN [29]} \\ \mbox{PatchTST [30]} \\ \mbox{FEDformer [45]} \\ \mbox{Autoformer [35]} \\ \mbox{Reformer [19]} \\ \mbox{S4 [12]} \\ \mbox{MegaCRN [15]} \\ \mbox{irransformer [28]} \\ \mbox{CrossFormer [42]} \\ \mbox{Card [34]} \\ \mbox{ESG [39]} \\ \mbox{FourierGNN [40]} \\ \mbox{TPGNN [26]} \\ \mbox{Method} \\ \mbox{(}F=6) \\ \mbox{Method} \\ \mbox{FEDformer [45]} \\ \mbox{Autoformer [35]} \\ \mbox{Reformer [19]} \\ \mbox{S4 [12]} \\ \mbox{MTGNN [38]} \\ \mbox{MegaCRN [15]} \\ \mbox{irransformer [28]} \\ \mbox{Card [34]} \\ \mbox{ESG [39]} \\ \mbox{FourierGNN [40]} \\ \$	$\begin{array}{c} 0.235 \pm 0.002\\ 0.191 \pm 0.002\\ 0.191 \pm 0.002\\ 0.188 \pm 0.001\\ 0.271 \pm 0.002\\ 0.269 \pm 0.004\\ 0.348 \pm 0.001\\ 0.341 \pm 0.003\\ 0.169 \pm 0.001\\ 0.292 \pm 0.002\\ 0.171 \pm 0.002\\ 0.169 \pm 0.001\\ \hline 0.166 \pm 0.001\\ \hline 0.168 \pm 0.002\\ 0.237 \pm 0.003\\ 0.234 \pm 0.002\\ \hline 0.237 \pm 0.003\\ 0.234 \pm 0.002\\ \hline 0.237 \pm 0.003\\ 0.234 \pm 0.002\\ \hline 0.163 \pm 0.001\\ \hline 0.272 \pm 0.002\\ 0.210 \pm 0.002\\ 0.349 \pm 0.002\\ 0.349 \pm 0.002\\ 0.349 \pm 0.002\\ 0.348 \pm 0.012\\ 0.562 \pm 0.003\\ 0.212 \pm 0.001\\ 0.212 \pm 0.001\\ 0.212 \pm 0.001\\ 0.212 \pm 0.001\\ 0.249 \pm 0.002\\ 0.209 \pm 0.002\\ 0.209 \pm 0.002\\ \hline 0.265 \pm 0.002\\ \hline \end{array}$	$\begin{array}{r} \text{RMSE} \\ \hline \text{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.002 \\ \hline 0.367 \pm 0.002 \\ \hline 0.260 \pm 0.001 \\ 0.360 \pm 0.002 \\ 0.368 \pm 0.002 \\ 0.328 \pm 0.002 \\ 0.328 \pm 0.002 \\ 0.508 \pm 0.003 \\ 0.328 \pm 0.002 \\ 0.532 \pm 0.002 \\ 0.473 \pm 0.003 \\ 0.690 \pm 0.001 \\ 0.371 \pm 0.003 \\ 0.393 \pm 0.006 \\ \hline \end{array}$	$\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.576 \pm 0.002 \\ 1.576 \pm 0.002 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ 2.042 \pm 0.007 \\ 1.692 \pm 0.006 \\ 1.819 \pm 0.015 \\ 0.956 \pm 0.005 \\ 1.523 \pm 0.021 \\ 1.350 \pm 0.010 \\ 2.604 \pm 0.031 \\ 2.755 \pm 0.021 \\ 0.994 \pm 0.006 \\ 1.437 \pm 0.009 \\ 1.027 \pm 0.012 \\ 1.027 \pm 0.012 \\ 1.933 \pm 0.008 \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline MAE \\ \hline 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ \hline 0.0746 \pm 0.000 \\ \hline 0.230 \pm 0.001 \\ \hline 0.246 \pm 0.002 \\ \hline 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ \hline 0.0926 \pm 0.001 \\ \hline 0.0817 \pm 0.000 \\ \hline 0.0819 \pm 0.000 \\ \hline 0.0804 \pm 0.000 \\ \hline 0.0882 \pm 0.000 \\ \hline 0.0932 \pm 0.005 \\ \hline 0.0935 \pm 0.004 \\ \hline 0.0778 \pm 0.000 \\ \hline 0.0778 \pm 0.000 \\ \hline 0.0778 \pm 0.000 \\ \hline 0.0774 \pm 0.000 \\ \hline 0.0704 \pm 0.002 \\ \hline 0.231 \pm 0.001 \\ \hline 0.344 \pm 0.003 \\ \hline 0.338 \pm 0.002 \\ \hline 0.338 \pm 0.002 \\ \hline 0.215 \pm 0.001 \\ \hline 0.221 \pm 0.002 \\ \hline 0.291 \pm 0.001 \\ \hline 0.0001 \\ \hline 0.001 \\ $	$\begin{tabular}{ c c c c } \hline Weather RMSE \\ \hline 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.364 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.242 \pm 0.002 \\ 0.244 \pm 0.002 \\ 0.246 \pm 0.002 \\ 0.234 \pm 0.002 \\ 0.571 \pm 0.001 \\ 0.597 \pm 0.001 \\ 0.597 \pm 0.001 \\ 0.597 \pm 0.001 \\ 0.554 \pm 0.002 \\ 0.718 \pm 0.003 \\ 0.755 \pm 0.006 \\ 0.738 \pm 0.003 \\ 0.754 \pm 0.003 \\ 0.551 \pm 0.004 \\ 0.754 \pm 0.002 \\ 0.626 \pm 0.002 \\ 0.626 \pm 0.002 \\ 0.665 \pm 0.002 \\ 0.665 \pm 0.002 \\ 0.665 \pm 0.002 \\ 0.665 \pm 0.002 \\ 0.626 \pm 0.002 \\ 0.665 \pm 0.002 \\ 0.665 \pm 0.002 \\ 0.665 \pm 0.002 \\ 0.626 \pm 0.002 \\ 0.626 \pm 0.002 \\ 0.665 \pm 0.002 \\ 0.626 \pm 0.002 \\ 0.665 \pm 0.002 \\ 0.626 \pm 0.002 \\ 0.665 \pm 0.002 \\ 0.65 \pm 0.002 \\$	$\begin{array}{r} \textbf{MAPE}(\%) \\ \hline 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ \hline 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \hline \textbf{1.663 \pm 0.013} \\ \hline \textbf{MAPE}(\%) \\ \hline 3.369 \pm 0.019 \\ 3.219 \pm 0.028 \\ 2.465 \pm 0.012 \\ 3.891 \pm 0.018 \\ 3.613 \pm 0.025 \\ 2.952 \pm 0.020 \\ 2.562 \pm 0.007 \\ 3.994 \pm 0.015 \\ 2.269 \pm 0.005 \\ 2.140 \pm 0.014 \\ 2.341 \pm 0.006 \\ 2.248 \pm 0.003 \end{array}$

Table 1: The forecasting results with prediction horizons of 3 and 6 on Electricity, Weather, etc.

Method		PEMS			Solar-Energy	
(F = 3)	MAE	RMSE	MAPE(%)	MAE	RMSE	MAPE(%)
MICN [33]	0.155 ± 0.001	0.228 ± 0.002	1.180 ± 0.004	0.077 ± 0.000	0.136 ± 0.001	0.782 ± 0.003
ModernTCN [29]	0.143 ± 0.001	0.211 ± 0.000	1.102 ± 0.003	0.065 ± 0.000	0.125 ± 0.001	0.608 ± 0.002
PatchTST [30]	0.179 ± 0.001	$\overline{0.242\pm0.001}$	1.137 ± 0.003	0.082 ± 0.000	0.142 ± 0.001	0.647 ± 0.002
FEDformer [45]	0.246 ± 0.002	0.349 ± 0.003	1.765 ± 0.005	0.169 ± 0.001	0.247 ± 0.001	1.224 ± 0.006
Autoformer [35]	0.462 ± 0.003	0.670 ± 0.002	2.446 ± 0.008	0.213 ± 0.001	0.290 ± 0.002	1.340 ± 0.004
Reformer [19]	0.190 ± 0.001	0.300 ± 0.002	1.506 ± 0.003	0.068 ± 0.000	0.147 ± 0.001	0.818 ± 0.004
S4 [12]	0.232 ± 0.002	0.331 ± 0.003	2.029 ± 0.007	0.092 ± 0.001	0.139 ± 0.001	0.974 ± 0.003
MTGNN [38]	0.145 ± 0.000	0.215 ± 0.000	1.127 ± 0.004	0.060 ± 0.000	0.135 ± 0.001	0.629 ± 0.002
MegaCRN [15]	0.154 ± 0.001	0.232 ± 0.003	1.209 ± 0.004	0.057 ± 0.000	0.129 ± 0.001	0.658 ± 0.002
iTransformer [28]	0.146 ± 0.001	0.215 ± 0.001	1.147 ± 0.007	0.060 ± 0.000	0.126 ± 0.001	0.609 ± 0.002
CrossFormer [42]	0.144 ± 0.001	0.219 ± 0.001	1.139 ± 0.002	0.047 ± 0.000	0.116 ± 0.001	0.553 ± 0.003
Card [34]	0.155 ± 0.001	0.226 ± 0.001	1.139 ± 0.002	0.057 ± 0.000	$\overline{0.134\pm0.001}$	$\overline{0.684\pm0.002}$
ESG [39]	0.142 ± 0.001	0.212 ± 0.001	1.089 ± 0.003	0.050 ± 0.000	0.122 ± 0.001	0.606 ± 0.002
FourierGNN [40]	$\overline{0.154\pm0.001}$	0.236 ± 0.002	$\overline{1.292\pm0.003}$	0.063 ± 0.000	0.129 ± 0.002	0.647 ± 0.003
TPGNN [26]	0.149 ± 0.001	0.230 ± 0.001	1.157 ± 0.005	0.059 ± 0.000	0.138 ± 0.002	0.612 ± 0.002
Sumba	$\textbf{0.137} \pm \textbf{0.001}$	$\textbf{0.204} \pm \textbf{0.000}$	$\textbf{1.060} \pm \textbf{0.002}$	$\mid \textbf{ 0.046} \pm \textbf{ 0.000}$	$\textbf{0.114} \pm \textbf{0.002}$	$\textbf{0.541} \pm \textbf{0.002}$
Method		PEMS			Solar-Energy	
$\begin{array}{l} \text{Method} \\ (F=6) \end{array}$	MAE	PEMS RMSE	MAPE(%)	MAE	Solar-Energy RMSE	MAPE(%)
	MAE 0.176 ± 0.001		MAPE(%) 1.355 ± 0.003	$MAE = 0.094 \pm 0.000$		MAPE(%) 0.889 ± 0.003
(F = 6)		RMSE			RMSE	. ,
(F = 6) MICN [33]	0.176 ± 0.001	$\frac{\text{RMSE}}{0.239 \pm 0.001}$	1.355 ± 0.003	0.094 ± 0.000	$\frac{\text{RMSE}}{0.175 \pm 0.001}$	0.889 ± 0.003
(F = 6) MICN [33] ModernTCN [29]	$ \begin{vmatrix} 0.176 \pm 0.001 \\ 0.154 \pm 0.001 \end{vmatrix} $	$\begin{array}{c} \text{RMSE} \\ 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \end{array}$	$\begin{array}{c} 1.355 \pm 0.003 \\ 1.218 \pm 0.006 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\text{RMSE}}{0.175 \pm 0.001} \\ 0.161 \pm 0.002$	$\begin{array}{c} 0.889 \pm 0.003 \\ 0.796 \pm 0.003 \end{array}$
(F = 6) MICN [33] ModernTCN [29] PatchTST [30]	$\begin{array}{c} 0.176 \pm 0.001 \\ 0.154 \pm 0.001 \\ 0.189 \pm 0.001 \end{array}$	$\begin{array}{c} \text{RMSE} \\ 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \\ 0.262 \pm 0.002 \end{array}$	$\begin{array}{c} 1.355 \pm 0.003 \\ 1.218 \pm 0.006 \\ 1.226 \pm 0.003 \end{array}$	$ \begin{vmatrix} 0.094 \pm 0.000 \\ 0.086 \pm 0.000 \\ 0.096 \pm 0.000 \end{vmatrix} $	$\begin{array}{c} \text{RMSE} \\ \hline 0.175 \pm 0.001 \\ 0.161 \pm 0.002 \\ 0.183 \pm 0.001 \end{array}$	$\begin{array}{c} 0.889 \pm 0.003 \\ 0.796 \pm 0.003 \\ 0.841 \pm 0.002 \end{array}$
(F = 6) MICN [33] ModernTCN [29] PatchTST [30] FEDformer [45] Autoformer [35] Reformer [19]	$\begin{array}{c} 0.176 \pm 0.001 \\ 0.154 \pm 0.001 \\ 0.189 \pm 0.001 \\ 0.244 \pm 0.001 \\ 0.515 \pm 0.002 \\ 0.202 \pm 0.001 \end{array}$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \\ 0.262 \pm 0.002 \\ 0.348 \pm 0.002 \\ 0.729 \pm 0.004 \\ 0.316 \pm 0.002 \end{array}$	$\begin{array}{c} 1.355 \pm 0.003 \\ 1.218 \pm 0.006 \\ 1.226 \pm 0.003 \\ 1.761 \pm 0.002 \\ 2.881 \pm 0.003 \\ 1.655 \pm 0.003 \end{array}$		$\begin{array}{c} \textbf{RMSE} \\ \hline 0.175 \pm 0.001 \\ 0.161 \pm 0.002 \\ 0.183 \pm 0.001 \\ 0.253 \pm 0.001 \\ 0.333 \pm 0.002 \\ 0.175 \pm 0.001 \end{array}$	$\begin{array}{c} 0.889 \pm 0.003 \\ 0.796 \pm 0.003 \\ 0.841 \pm 0.002 \\ 1.305 \pm 0.002 \\ 1.528 \pm 0.002 \\ 0.919 \pm 0.004 \end{array}$
$\begin{array}{c} (F=6) \\ \hline MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \end{array}$		$\begin{array}{c} \textbf{RMSE} \\ 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \\ 0.262 \pm 0.002 \\ 0.348 \pm 0.002 \\ 0.729 \pm 0.004 \\ 0.316 \pm 0.002 \\ 0.344 \pm 0.005 \end{array}$	$\begin{array}{c} 1.355 \pm 0.003 \\ 1.218 \pm 0.006 \\ 1.226 \pm 0.003 \\ 1.761 \pm 0.002 \\ 2.881 \pm 0.003 \\ 1.655 \pm 0.003 \\ 2.177 \pm 0.006 \end{array}$		$\begin{array}{c} \textbf{RMSE} \\ \hline 0.175 \pm 0.001 \\ 0.161 \pm 0.002 \\ 0.183 \pm 0.001 \\ 0.253 \pm 0.001 \\ 0.333 \pm 0.002 \\ 0.175 \pm 0.001 \\ 0.158 \pm 0.002 \end{array}$	$\begin{array}{c} 0.889 \pm 0.003 \\ 0.796 \pm 0.003 \\ 0.841 \pm 0.002 \\ 1.305 \pm 0.002 \\ 1.528 \pm 0.002 \end{array}$
$\begin{array}{c} (F=6) \\ \hline \\ MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \\ MTGNN [38] \end{array}$	$\begin{array}{c} 0.176\pm 0.001\\ 0.154\pm 0.001\\ 0.154\pm 0.001\\ 0.244\pm 0.001\\ 0.515\pm 0.002\\ 0.202\pm 0.001\\ 0.244\pm 0.003\\ 0.158\pm 0.001\\ \end{array}$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \\ 0.262 \pm 0.002 \\ 0.348 \pm 0.002 \\ 0.729 \pm 0.004 \\ 0.316 \pm 0.002 \\ 0.344 \pm 0.005 \\ 0.234 \pm 0.001 \end{array}$	$\begin{array}{c} 1.355\pm 0.003\\ 1.218\pm 0.006\\ 1.226\pm 0.003\\ 1.761\pm 0.002\\ 2.881\pm 0.003\\ 1.655\pm 0.003\\ 2.177\pm 0.006\\ 1.229\pm 0.003 \end{array}$	$\begin{array}{c} 0.094 \pm 0.000 \\ 0.086 \pm 0.000 \\ 0.096 \pm 0.000 \\ 0.169 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.083 \pm 0.000 \\ 0.101 \pm 0.001 \\ 0.083 \pm 0.000 \end{array}$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.175 \pm 0.001 \\ 0.161 \pm 0.002 \\ 0.183 \pm 0.001 \\ 0.253 \pm 0.001 \\ 0.333 \pm 0.002 \\ 0.175 \pm 0.001 \\ 0.158 \pm 0.002 \\ 0.169 \pm 0.001 \end{array}$	$\begin{array}{c} 0.889 \pm 0.003 \\ 0.796 \pm 0.003 \\ 0.841 \pm 0.002 \\ 1.305 \pm 0.002 \\ 1.528 \pm 0.002 \\ 0.919 \pm 0.004 \\ 1.156 \pm 0.004 \\ 0.810 \pm 0.002 \end{array}$
$(F = 6) \\ \hline MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \\ MTGNN [38] \\ MegaCRN [15] \\ \hline \end{tabular}$	$\begin{array}{c} 0.176\pm 0.001\\ 0.154\pm 0.001\\ 0.154\pm 0.001\\ 0.244\pm 0.001\\ 0.515\pm 0.002\\ 0.202\pm 0.001\\ 0.244\pm 0.003\\ 0.158\pm 0.001\\ 0.167\pm 0.002\\ \end{array}$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \\ 0.262 \pm 0.002 \\ 0.348 \pm 0.002 \\ 0.729 \pm 0.004 \\ 0.316 \pm 0.002 \\ 0.344 \pm 0.005 \\ 0.234 \pm 0.001 \\ 0.254 \pm 0.003 \end{array}$	$\begin{array}{c} 1.355\pm 0.003\\ 1.218\pm 0.006\\ 1.226\pm 0.003\\ 1.761\pm 0.002\\ 2.881\pm 0.003\\ 1.655\pm 0.003\\ 2.177\pm 0.006\\ 1.229\pm 0.003\\ 1.356\pm 0.005 \end{array}$	$\begin{array}{c} 0.094 \pm 0.000 \\ 0.086 \pm 0.000 \\ 0.096 \pm 0.000 \\ 0.169 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.083 \pm 0.000 \\ 0.101 \pm 0.001 \\ 0.083 \pm 0.000 \\ 0.087 \pm 0.000 \end{array}$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.175 \pm 0.001 \\ 0.161 \pm 0.002 \\ 0.183 \pm 0.001 \\ 0.253 \pm 0.001 \\ 0.333 \pm 0.002 \\ 0.175 \pm 0.001 \\ 0.158 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.172 \pm 0.002 \end{array}$	$\begin{array}{c} 0.889 \pm 0.003 \\ 0.796 \pm 0.003 \\ 0.841 \pm 0.002 \\ 1.305 \pm 0.002 \\ 1.528 \pm 0.002 \\ 0.919 \pm 0.004 \\ 1.156 \pm 0.004 \end{array}$
$(F = 6) \\ \hline MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \\ MTGNN [38] \\ MegaCRN [15] \\ iTransformer [28] \\ \hline \end{tabular}$	$\begin{array}{c} 0.176\pm 0.001\\ 0.154\pm 0.001\\ 0.154\pm 0.001\\ 0.244\pm 0.001\\ 0.515\pm 0.002\\ 0.202\pm 0.001\\ 0.244\pm 0.003\\ 0.158\pm 0.001\\ 0.167\pm 0.002\\ 0.157\pm 0.001\\ \end{array}$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \\ 0.262 \pm 0.002 \\ 0.348 \pm 0.002 \\ 0.729 \pm 0.004 \\ 0.316 \pm 0.002 \\ 0.344 \pm 0.005 \\ 0.234 \pm 0.001 \\ 0.254 \pm 0.003 \\ 0.233 \pm 0.002 \end{array}$	$\begin{array}{c} 1.355\pm 0.003\\ 1.218\pm 0.006\\ 1.226\pm 0.003\\ 1.761\pm 0.002\\ 2.881\pm 0.003\\ 1.655\pm 0.003\\ 2.177\pm 0.006\\ 1.229\pm 0.003\\ 1.356\pm 0.005\\ 1.241\pm 0.003 \end{array}$	$\begin{array}{c} 0.094\pm 0.000\\ 0.086\pm 0.000\\ 0.096\pm 0.000\\ 0.169\pm 0.001\\ 0.246\pm 0.002\\ 0.083\pm 0.000\\ 0.101\pm 0.001\\ 0.083\pm 0.000\\ 0.087\pm 0.000\\ 0.071\pm 0.000\\ \end{array}$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.175 \pm 0.001 \\ 0.161 \pm 0.002 \\ 0.183 \pm 0.001 \\ 0.253 \pm 0.001 \\ 0.333 \pm 0.002 \\ 0.175 \pm 0.001 \\ 0.158 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.172 \pm 0.002 \\ 0.163 \pm 0.001 \end{array}$	$\begin{array}{c} 0.889 \pm 0.003\\ 0.796 \pm 0.003\\ 0.841 \pm 0.002\\ 1.305 \pm 0.002\\ 1.528 \pm 0.002\\ 1.528 \pm 0.004\\ 1.156 \pm 0.004\\ 0.810 \pm 0.002\\ 0.924 \pm 0.005\\ 0.823 \pm 0.002 \end{array}$
$(F = 6) \\ \hline MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \\ MTGNN [38] \\ MegaCRN [15] \\ iTransformer [28] \\ CrossFormer [42] \\ \hline \end{tabular}$	$ \begin{array}{c} 0.176 \pm 0.001 \\ 0.154 \pm 0.001 \\ 0.154 \pm 0.001 \\ 0.244 \pm 0.001 \\ 0.515 \pm 0.002 \\ 0.202 \pm 0.001 \\ 0.244 \pm 0.003 \\ 0.158 \pm 0.001 \\ 0.167 \pm 0.002 \\ 0.157 \pm 0.001 \\ 0.151 \pm 0.001 \\ \end{array} $	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \\ 0.262 \pm 0.002 \\ 0.348 \pm 0.002 \\ 0.729 \pm 0.004 \\ 0.316 \pm 0.002 \\ 0.344 \pm 0.005 \\ 0.234 \pm 0.001 \\ 0.254 \pm 0.001 \\ 0.233 \pm 0.002 \\ 0.233 \pm 0.002 \end{array}$	$\begin{array}{c} 1.355 \pm 0.003 \\ 1.218 \pm 0.006 \\ 1.226 \pm 0.003 \\ 1.761 \pm 0.002 \\ 2.881 \pm 0.003 \\ 1.655 \pm 0.003 \\ 2.177 \pm 0.006 \\ 1.229 \pm 0.003 \\ 1.356 \pm 0.005 \\ 1.241 \pm 0.003 \\ 1.234 \pm 0.002 \end{array}$		$\begin{array}{c} \textbf{RMSE} \\ \hline 0.175 \pm 0.001 \\ 0.161 \pm 0.002 \\ 0.183 \pm 0.001 \\ 0.253 \pm 0.001 \\ 0.333 \pm 0.002 \\ 0.175 \pm 0.001 \\ 0.158 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.172 \pm 0.002 \\ 0.163 \pm 0.001 \\ 0.156 \pm 0.001 \\ 0.156 \pm 0.002 \end{array}$	$\begin{array}{c} 0.889 \pm 0.003\\ 0.796 \pm 0.003\\ 0.841 \pm 0.002\\ 1.305 \pm 0.002\\ 1.528 \pm 0.002\\ 0.919 \pm 0.004\\ 1.156 \pm 0.004\\ 0.810 \pm 0.002\\ 0.924 \pm 0.005\\ 0.823 \pm 0.002\\ 0.739 \pm 0.003\\ \end{array}$
$\begin{array}{c} (F=6) \\ \hline \\ MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \\ MTGNN [38] \\ MegaCRN [15] \\ iTransformer [28] \\ CrossFormer [42] \\ Card [34] \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \\ 0.262 \pm 0.002 \\ 0.348 \pm 0.002 \\ 0.729 \pm 0.004 \\ 0.316 \pm 0.002 \\ 0.344 \pm 0.005 \\ 0.234 \pm 0.001 \\ 0.254 \pm 0.003 \\ 0.233 \pm 0.002 \\ 0.233 \pm 0.002 \\ 0.228 \pm 0.003 \end{array}$	$\begin{array}{c} 1.355\pm0.003\\ 1.218\pm0.006\\ 1.226\pm0.003\\ 1.761\pm0.002\\ 2.881\pm0.003\\ 1.655\pm0.003\\ 2.177\pm0.006\\ 1.229\pm0.003\\ 1.356\pm0.005\\ 1.241\pm0.003\\ 1.234\pm0.002\\ 1.182\pm0.004 \end{array}$		$\begin{array}{c} \textbf{RMSE} \\ \hline 0.175 \pm 0.001 \\ 0.161 \pm 0.002 \\ 0.183 \pm 0.001 \\ 0.253 \pm 0.001 \\ 0.333 \pm 0.002 \\ 0.175 \pm 0.001 \\ 0.158 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.172 \pm 0.002 \\ 0.163 \pm 0.001 \\ 0.163 \pm 0.001 \\ 0.156 \pm 0.002 \\ 0.160 \pm 0.002 \end{array}$	$\begin{array}{c} 0.889 \pm 0.003\\ 0.796 \pm 0.003\\ 0.841 \pm 0.002\\ 1.305 \pm 0.002\\ 1.528 \pm 0.002\\ 0.919 \pm 0.004\\ 1.156 \pm 0.004\\ 0.810 \pm 0.002\\ 0.924 \pm 0.005\\ 0.823 \pm 0.002\\ 0.739 \pm 0.003\\ \overline{0.775 \pm 0.003} \end{array}$
$\begin{array}{c} (F=6) \\ \hline \\ MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \\ MTGNN [38] \\ MegaCRN [15] \\ iTransformer [28] \\ CrossFormer [42] \\ Card [34] \\ ESG [39] \end{array}$	$\begin{array}{c} 0.176\pm 0.001\\ 0.154\pm 0.001\\ 0.154\pm 0.001\\ 0.244\pm 0.001\\ 0.202\pm 0.001\\ 0.202\pm 0.001\\ 0.202\pm 0.001\\ 0.244\pm 0.003\\ 0.158\pm 0.001\\ 0.167\pm 0.002\\ 0.157\pm 0.001\\ 0.151\pm 0.001\\ 0.151\pm 0.001\\ 0.151\pm 0.001\\ \end{array}$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \\ 0.262 \pm 0.002 \\ 0.348 \pm 0.002 \\ 0.729 \pm 0.004 \\ 0.316 \pm 0.002 \\ 0.344 \pm 0.005 \\ 0.234 \pm 0.001 \\ 0.254 \pm 0.003 \\ 0.233 \pm 0.002 \\ 0.233 \pm 0.002 \\ 0.228 \pm 0.003 \\ 0.226 \pm 0.001 \end{array}$	$\begin{array}{c} 1.355 \pm 0.003\\ 1.218 \pm 0.006\\ 1.226 \pm 0.003\\ 1.761 \pm 0.002\\ 2.881 \pm 0.003\\ 1.655 \pm 0.003\\ 2.177 \pm 0.006\\ 1.229 \pm 0.003\\ 1.356 \pm 0.005\\ 1.241 \pm 0.003\\ 1.234 \pm 0.002\\ 1.182 \pm 0.004\\ 1.159 \pm 0.004 \end{array}$	$\begin{array}{c} 0.094 \pm 0.000 \\ 0.086 \pm 0.000 \\ 0.096 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.083 \pm 0.000 \\ 0.101 \pm 0.001 \\ 0.083 \pm 0.000 \\ 0.087 \pm 0.000 \\ 0.087 \pm 0.000 \\ 0.063 \pm 0.001 \\ 0.063 \pm 0.001 \\ 0.068 \pm 0.000 \end{array}$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.175 \pm 0.001 \\ 0.161 \pm 0.002 \\ 0.183 \pm 0.001 \\ 0.253 \pm 0.001 \\ 0.333 \pm 0.002 \\ 0.175 \pm 0.001 \\ 0.158 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.172 \pm 0.002 \\ 0.163 \pm 0.001 \\ 0.156 \pm 0.002 \\ 0.160 \pm 0.002 \\ 0.158 \pm 0.001 \end{array}$	$\begin{array}{c} 0.889 \pm 0.003\\ 0.796 \pm 0.003\\ 0.841 \pm 0.002\\ 1.305 \pm 0.002\\ 1.528 \pm 0.002\\ 0.919 \pm 0.004\\ 1.156 \pm 0.004\\ 0.810 \pm 0.002\\ 0.924 \pm 0.005\\ 0.823 \pm 0.002\\ 0.739 \pm 0.003\\ 0.775 \pm 0.003\\ 0.757 \pm 0.005 \end{array}$
$\begin{array}{c} (F=6) \\ \hline \\ MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \\ MTGNN [38] \\ MegaCRN [15] \\ \hline \\ ITransformer [28] \\ CrossFormer [42] \\ Card [34] \\ ESG [39] \\ FourierGNN [40] \end{array}$	$\begin{array}{c} 0.176 \pm 0.001 \\ 0.154 \pm 0.001 \\ 0.154 \pm 0.001 \\ 0.244 \pm 0.001 \\ 0.244 \pm 0.002 \\ 0.202 \pm 0.001 \\ 0.244 \pm 0.003 \\ 0.158 \pm 0.001 \\ 0.167 \pm 0.002 \\ 0.157 \pm 0.001 \\ \hline 0.157 \pm 0.001 \\ \hline 0.152 \pm 0.002 \\ \hline 0.151 \pm 0.001 \\ \hline 0.182 \pm 0.003 \\ \end{array}$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \\ 0.262 \pm 0.002 \\ 0.348 \pm 0.002 \\ 0.729 \pm 0.004 \\ 0.316 \pm 0.002 \\ 0.344 \pm 0.005 \\ 0.234 \pm 0.001 \\ 0.254 \pm 0.003 \\ 0.233 \pm 0.002 \\ 0.233 \pm 0.002 \\ 0.228 \pm 0.003 \\ 0.226 \pm 0.003 \\ 0.226 \pm 0.001 \\ 0.267 \pm 0.002 \end{array}$	$\begin{array}{c} 1.355 \pm 0.003\\ 1.218 \pm 0.006\\ 1.226 \pm 0.003\\ 1.761 \pm 0.002\\ 2.881 \pm 0.003\\ 1.655 \pm 0.003\\ 2.177 \pm 0.006\\ 1.229 \pm 0.003\\ 1.356 \pm 0.005\\ 1.241 \pm 0.003\\ 1.234 \pm 0.002\\ 1.182 \pm 0.004\\ 1.159 \pm 0.004\\ 1.327 \pm 0.003\\ \end{array}$		$\begin{array}{c} \textbf{RMSE} \\ \hline 0.175 \pm 0.001 \\ 0.161 \pm 0.002 \\ 0.183 \pm 0.001 \\ 0.253 \pm 0.001 \\ 0.333 \pm 0.002 \\ 0.175 \pm 0.001 \\ 0.175 \pm 0.001 \\ 0.158 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.172 \pm 0.002 \\ 0.163 \pm 0.001 \\ 0.156 \pm 0.002 \\ 0.160 \pm 0.002 \\ 0.158 \pm 0.001 \\ 0.177 \pm 0.002 \end{array}$	$\begin{array}{c} 0.889 \pm 0.003\\ 0.796 \pm 0.003\\ 0.796 \pm 0.002\\ 1.305 \pm 0.002\\ 1.305 \pm 0.002\\ 1.528 \pm 0.002\\ 0.919 \pm 0.004\\ 1.156 \pm 0.004\\ 1.156 \pm 0.004\\ 0.810 \pm 0.002\\ 0.924 \pm 0.005\\ 0.823 \pm 0.002\\ 0.775 \pm 0.003\\ 0.775 \pm 0.003\\ 0.757 \pm 0.002\\ 0.872 \pm 0.002\\ \end{array}$
$\begin{array}{c} (F=6) \\ \hline \\ MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \\ MTGNN [38] \\ MegaCRN [15] \\ iTransformer [28] \\ CrossFormer [42] \\ Card [34] \\ ESG [39] \end{array}$	$\begin{array}{c} 0.176\pm 0.001\\ 0.154\pm 0.001\\ 0.154\pm 0.001\\ 0.244\pm 0.001\\ 0.202\pm 0.001\\ 0.202\pm 0.001\\ 0.202\pm 0.001\\ 0.244\pm 0.003\\ 0.158\pm 0.001\\ 0.167\pm 0.002\\ 0.157\pm 0.001\\ 0.151\pm 0.001\\ 0.151\pm 0.001\\ 0.151\pm 0.001\\ \end{array}$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \\ 0.262 \pm 0.002 \\ 0.348 \pm 0.002 \\ 0.729 \pm 0.004 \\ 0.316 \pm 0.002 \\ 0.344 \pm 0.005 \\ 0.234 \pm 0.001 \\ 0.254 \pm 0.003 \\ 0.233 \pm 0.002 \\ 0.233 \pm 0.002 \\ 0.228 \pm 0.003 \\ 0.226 \pm 0.001 \end{array}$	$\begin{array}{c} 1.355 \pm 0.003 \\ 1.218 \pm 0.006 \\ 1.226 \pm 0.003 \\ 1.761 \pm 0.002 \\ 2.881 \pm 0.003 \\ 1.655 \pm 0.003 \\ 2.177 \pm 0.006 \\ 1.229 \pm 0.003 \\ 1.356 \pm 0.005 \\ 1.241 \pm 0.003 \\ 1.234 \pm 0.002 \\ 1.182 \pm 0.004 \\ 1.159 \pm 0.004 \end{array}$	$\begin{array}{c} 0.094 \pm 0.000 \\ 0.086 \pm 0.000 \\ 0.096 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.083 \pm 0.000 \\ 0.101 \pm 0.001 \\ 0.083 \pm 0.000 \\ 0.087 \pm 0.000 \\ 0.087 \pm 0.000 \\ 0.063 \pm 0.001 \\ 0.063 \pm 0.001 \\ 0.068 \pm 0.000 \end{array}$	$\begin{array}{c} \textbf{RMSE} \\ \hline 0.175 \pm 0.001 \\ 0.161 \pm 0.002 \\ 0.183 \pm 0.001 \\ 0.253 \pm 0.001 \\ 0.333 \pm 0.002 \\ 0.175 \pm 0.001 \\ 0.158 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.172 \pm 0.002 \\ 0.163 \pm 0.001 \\ 0.156 \pm 0.002 \\ 0.160 \pm 0.002 \\ 0.158 \pm 0.001 \end{array}$	$\begin{array}{c} 0.889 \pm 0.003\\ 0.796 \pm 0.003\\ 0.841 \pm 0.002\\ 1.305 \pm 0.002\\ 1.528 \pm 0.002\\ 0.919 \pm 0.004\\ 1.156 \pm 0.004\\ 0.810 \pm 0.002\\ 0.924 \pm 0.005\\ 0.823 \pm 0.002\\ 0.739 \pm 0.003\\ 0.775 \pm 0.003\\ 0.757 \pm 0.005 \end{array}$

Table 2: The forecasting results with prediction horizons of 3 and 6 on PEMS and Solar datasets.

methods, and the history window size H is set to 168. All methods are trained on Nvidia V100 GPUs. Our method is implemented with PyTorch 2.0 and we use the source codes publicly released by the authors for all baseline methods. We adjust the hyperparameters of baseline methods to obtain the best performance on each dataset, and evaluate the performance of different methods in terms of Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE).

4.2 Forecasting Performance

Table 1 and 2 present the forecasting performance with $F \in \{3, 6\}$ on six benchmark datasets, with results evaluated using three different random seeds. The best results are highlighted in **bold**, while the second-best results are <u>underlined</u>. PatchTST and ModernTCN demonstrate the best performance among methods without explicitly modeling spatial correlations. Besides, graph-based spatio-temporal methods yield better results than those that do not account for spatial structures. In addition, Card, Crossformer, iTransformer, and ESG outperform static graph-based methods such as MTGNN and MegaCRN, highlighting the significance of explicitly modeling dynamic spatial structures. Our method Sumba achieves state-of-the-art performance in most cases, demonstrating an improvement up to 8.5% over the best baseline on the Weather dataset. This superior performance is attributed to its capability to produce dynamic graph structures with low variance and high expressiveness using the proposed structured matrix basis. The forecasting results for additional prediction horizons are provided in Appendix C.

	Electricity			Weather			PEMS		
F = 3	MAE	RMSE	MAPE(%)	MAE	RMSE	MAPE(%)	MAE	RMSE	MAPE(%)
w/o. dynamic	0.153	0.245	1.340	0.0693	0.219	1.624	0.145	0.215	1.127
w/. $\mathbf{U}_m, \mathbf{V}_m$	0.148	0.238	1.251	0.0659	0.214	2.255	0.138	0.205	1.054
w/o. orthogonality	0.151	0.242	1.337	0.0633	0.213	1.605	0.142	0.209	1.094
Sumba	0.148	0.237	1.331	0.0587	0.208	1.381	0.137	0.204	1.060
				-			•		
E C		Electric	ity		Weathe	er		PEMS	S
F = 6	MAE	Electric RMSE	ty MAPE(%)	MAE	Weathe RMSE	er MAPE(%)	MAE	PEMS RMSE	S MAPE(%)
F = 6 w/o. dynamic	MAE 0.169		2	MAE		-	MAE 0.158		-
w/o. dynamic w/. $\mathbf{U}_m, \mathbf{V}_m$		RMSE	MAPE(%)		RMSE	MAPE(%)		RMSE	MAPE(%)
w/o. dynamic	0.169	RMSE 0.268	MAPE(%) 1.636	0.0817	RMSE 0.256	MAPE(%) 1.987	0.158	RMSE 0.234	MAPE(%) 1.229

Table 3: Ablation study.

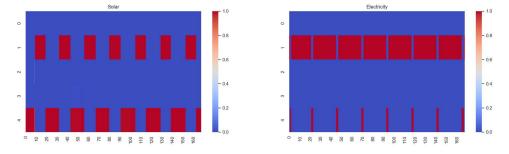


Figure 2: The change of α over one week.

4.3 Ablation Study

We conduct the ablation study on the Electricity, Weather, and PEMS datasets with prediction horizons F of 3 and 6 to verify the efficacy of the proposed modules. In particular, we consider the following variants of our proposed model: (1) **w/o. dynamic**: we replace the Dynamic GCN module with the vanilla GCN module in [38]. (2) **w/.** U_m , V_m : we use distinct U_m , V_m for each basis matrix B_m . (3) **w/o. orthogonality**: we remove the orthogonal parameterization on U and V. As shown in Table 3, the performance of **w/o. dynamic** declines rapidly by up to 13.83%, 8.59%, and 16.31% on three metrics, which verifies the efficacy of the proposed dynamic GCN model. The absence of structure regularization (**w/.** U_m , V_m) and the elimination of orthogonal parameterization (**w/o. orthogonality**) on structured matrix basis lead to averaged performance drops of 4.95% and 3.05%, respectively. This proves the effectiveness of the proposed structure regularization and orthogonal constraint strategy.

4.4 Interpretable Dynamics

As discussed in Section 3.1, one appealing feature of our proposed Sumba is that it enables us to gain insights into the underlying time series dynamics by tracking the change of the matrix basis coefficient α over time. To verify this, we present the heatmap of the change of α on two datasets—Solar-Energy and Electricity in Figure 2, in which the x-axis denotes the time (hourly), the y-axis represents the no. of 5 basis matrices, and the color indicates the weight of α . It can be observed that most of the weights are concentrated on two basis matrices, no. 1 and no. 4, which implies that there are two dominant spatial structures on the two datasets. Furthermore, the two dominant spatial structures appear alternatively and regularly, which actually corresponds to the day and night for the Solar-Energy dataset. This aligns well with our intuition that solar energy observations should manifest different spatial correlations as the light intensity varies. For the Electricity dataset, there is a spatial correlation (no. 4) that spans two hours and only emerges in midnight, this reveals an interesting electricity consumption pattern, which is unnoticed by previous methods. Therefore, our proposed method is able to offer more interpretable dynamics of the underlying systems through tracking α .

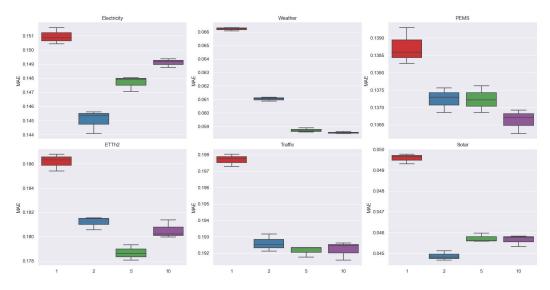


Figure 3: The sensitivity of the dimension of basis M.

4.5 Parameter Sensitivity Analysis

We evaluate the impact of M on performance of our model, where the M ranges from 1, 2, 5, to 10. M = 1 corresponds to the static graph. As shown in Figure 3, the performance of our model improves significantly when M > 1. When M = 2, our method achieves the best performance on Electricity and Solar-Energy datasets, this coincides with the fact that the two datasets have two dominant spatial structure patterns, i.e., day and night. The experiments empirically show that the best setting of M is 5 on ETTh2, Traffic, and PEMS datasets and 10 on the Weather dataset. We hypothesize this is due to the Weather dataset having more complex dynamics, and thus it requires more basis matrices to cover the various patterns. The sensitivity analysis of L, K and H is presented in Appendix D.

5 Conclusion

In this paper, we propose a time series forecasting method with the structured matrix basis, Sumba, to capture dynamic spatial structures. To this end, we propose a novel structured parameterization and impose structure regularization on the basis to enhance parameter efficiency, the output space of the spatial structure function is thus well constrained and the generated spatial structures have lower variance. Our proposed method offers us a manner to gain insights into the dynamics of the underlying systems, and thus it is more interpretable. The experiments on six benchmark datasets verify the superiority of our proposed method. Our extensive ablation studies prove the effectiveness of each proposed component. In addition, the case study shows that our method can offer desirable interpretability. In the future, we would like to explore how to better regularize the learned matrix vector space and set the dimension of basis M in a data-driven manner. We will also explore the possibility of integrating our proposed spatial structure modeling with other temporal encoders such as Transformers, and Structured State Space models, and apply our interpretable dynamics into more datasets to discover more interesting and hidden patterns.

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 62206074, Grant No. 62306085, Grant No. 62072137, Shenzhen College Stability Support Plan under Grant No. GXWD20220811173233001, and the National Key R&D Program of China under Grant No. 2023YFB4503100.

References

- Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional recurrent network for traffic forecasting. In Advances in Neural Information Processing Systems (NeurIPS), 2020.
- [2] Mario Lezcano Casado. Trivializations for gradient-based optimization on manifolds. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2019.
- [3] Mario Lezcano Casado and David Martínez-Rubio. Cheap orthogonal constraints in neural networks: A simple parametrization of the orthogonal and unitary group. In *International Conference on Machine Learning (ICML)*, 2019.
- [4] Xiaodan Chen, Xiucheng Li, Bo Liu, and Zhijun Li. Biased temporal convolution graph network for time series forecasting with missing values. In *International Conference on Learning Representations (ICLR)*, 2023.
- [5] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.
- [6] Jean Gallier and Jocelyn Quaintance. *Differential Geometry and Lie Groups: A Computational Perspective*. Springer, 2020.
- [7] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph neural networks meet personalized pagerank. In *International Conference on Learning Representations (ICLR)*, 2019.
- [8] Jake Grigsby, Zhe Wang, Nam Nguyen, and Yanjun Qi. Long-range transformers for dynamic spatiotemporal forecasting. *arXiv preprint arXiv:2109.12218*, 2021.
- [9] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv preprint arXiv:2312.00752*, 2023.
- [10] Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory with optimal polynomial projections. In Advances in Neural Information Processing Systems (NeurIPS), 2020.
- [11] Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Combining recurrent, convolutional, and continuous-time models with linear state space layers. In Advances in Neural Information Processing Systems (NeurIPS), 2021.
- [12] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state spaces. In *International Conference on Learning Representations (ICLR)*, 2022.
- [13] Haokun Gui, Xiucheng Li, and Xinyang Chen. Vector quantization pretraining for eeg time series with random projection and phase alignment. In *International Conference on Machine Learning (ICML)*, 2024.
- [14] Shengnan Guo, Youfang Lin, Huaiyu Wan, Xiucheng Li, and Gao Cong. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. *IEEE Trans. Knowl. Data Eng.*, 2022.
- [15] Renhe Jiang, Zhaonan Wang, Jiawei Yong, Puneet Jeph, Quanjun Chen, Yasumasa Kobayashi, Xuan Song, Shintaro Fukushima, and Toyotaro Suzumura. Spatio-temporal meta-graph learning for traffic forecasting. In Association for the Advancement of Artificial Intelligence (AAAI), 2023.
- [16] Yue Jiang, Xiucheng Li, Yile Chen, Shuai Liu, Weilong Kong, Antonis F. Lentzakis, and Gao Cong. A scalable adaptive graph diffusion forecasting network for multivariate time series forecasting. In *40th IEEE International Conference on Data Engineering (ICDE)*, 2024.
- [17] Gilmer Justin, S. Schoenholz Samuel, F. Riley Patrick, Vinyals Oriol, and E. Dahl George. Neural message passing for quantum chemistry. In *International Conference on Machine Learning (ICML)*, 2017.

- [18] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In *International Conference on Learning Representations (ICLR)*, 2016.
- [19] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In International Conference on Learning Representations (ICLR), 2020.
- [20] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term temporal patterns with deep neural networks. In *International ACM SIGIR conference on research & development in information retrieval*, 2018.
- [21] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. In Advances in neural information processing systems (NeurIPS), 2019.
- [22] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. In *International Conference on Learning Representations* (ICLR), 2018.
- [23] Minhao LIU, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia LAI, Lingna Ma, and Qiang Xu. Scinet: Time series modeling and forecasting with sample convolution and interaction. In Advances in Neural Information Processing Systems (NeurIPS), 2022.
- [24] Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and forecasting. In *International Conference on Learning Representations (ICLR)*, 2021.
- [25] Shuai Liu, Xiucheng Li, Gao Cong, Yile Chen, and Yue Jiang. Multivariate time-series imputation with disentangled temporal representations. In *International Conference on Learning Representations (ICLR)*, 2023.
- [26] Yijing Liu, Qinxian Liu, Jian-Wei Zhang, Haozhe Feng, Zhongwei Wang, Zihan Zhou, and Wei Chen. Multivariate time-series forecasting with temporal polynomial graph neural networks. In Advances in Neural Information Processing Systems (NeurIPS), 2022.
- [27] Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring the stationarity in time series forecasting. In Advances in Neural Information Processing Systems (NeurIPS), 2022.
- [28] Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long. itransformer: Inverted transformers are effective for time series forecasting. In *International Conference on Learning Representations (ICLR)*, 2024.
- [29] Donghao Luo and Xue Wang. Moderntcn: A modern pure convolution structure for general time series analysis. In *International Conference on Learning Representations (ICLR)*, 2024.
- [30] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words: Long-term forecasting with transformers. In *International Conference on Learning Representations (ICLR)*, 2023.
- [31] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic forecasting with autoregressive recurrent networks. *International Journal of Forecasting*, 2020.
- [32] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. Lstm neural networks for language modeling. In *Interspeech*, 2012.
- [33] Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. Micn: Multi-scale local and global context modeling for long-term series forecasting. In *International Conference on Learning Representations (ICLR)*, 2023.
- [34] Xue Wang, Tian Zhou, Qingsong Wen, Jinyang Gao, Bolin Ding, and Rong Jin. Card: Channel aligned robust blend transformer for time series forecasting. In *International Conference on Learning Representations (ICLR)*, 2024.

- [35] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2021.
- [36] Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:temporal 2d-variation modeling for general time series analysis. In *International Conference* on Learning Representations (ICLR), 2023.
- [37] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep spatial-temporal graph modeling. In *International Joint Conference on Artificial Intelligence (IJCAI)*, 2019.
- [38] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Connecting the dots: Multivariate time series forecasting with graph neural networks. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD), 2020.
- [39] Junchen Ye, Zihan Liu, Bowen Du, Leilei Sun, Weimiao Li, Yanjie Fu, and Hui Xiong. Learning the evolutionary and multi-scale graph structure for multivariate time series forecasting. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD), 2022.
- [40] Kun Yi, Qi Zhang, Wei Fan, Hui He, Liang Hu, Pengyang Wang, Ning An, Longbing Cao, and Zhendong Niu. Fouriergnn: Rethinking multivariate time series forecasting from a pure graph perspective. In Advances in Neural Information Processing Systems (NeurIPS), 2023.
- [41] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization. *arXiv preprint arXiv:1409.2329*, 2014.
- [42] Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting. In *International Conference on Learning Representations (ICLR)*, 2023.
- [43] Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. Gman: A graph multiattention network for traffic prediction. In *Association for the Advancement of Artificial Intelligence (AAAI)*, 2020.
- [44] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In Association for the Advancement of Artificial Intelligence (AAAI), 2021.
- [45] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting. In *International Conference on Machine Learning (ICML)*, 2022.

A Background and Proof of the Theorem

A.1 Geometry Interpretation of Matrix Multiplication

Recall that given a matrix $\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^{\top}$, the multiplication $\mathbf{A}\mathbf{x}$ can be interpreted as 1) transforming \mathbf{x} into the new coordinate system $\mathbf{x}' \triangleq \mathbf{V}^{\top}\mathbf{x}$, 2) doing the elementwise product in the new coordinate $\mathbf{y}' = \Sigma\mathbf{x}'$, and 3) transforming the coordinate system again $\mathbf{y} = \mathbf{U}\mathbf{y}'$.

$$\mathbf{A}\mathbf{x} = \mathbf{U}\Sigma\mathbf{V}^{\top}\mathbf{x} = \mathbf{U}\Sigma\mathbf{x}' = \mathbf{U}\mathbf{y}'.$$
 (10)

A.2 Proof of the Theorem

Theorem A.1. The output space of f_{spatial} in Eq. 4 is bounded by the sum of the maximum of Σ_m (the maximum singular value of \mathbf{B}_m) for m = 1, 2, ..., M in terms of the ℓ_2 norm i.e., $||f_{\text{spatial}}||_2 \leq \sum_{m=1}^M \max(\Sigma_m)$.

Proof.

$$\|f_{\text{spatial}}\|_{2} = \left\|\sum_{m=1}^{M} \alpha_{m} \mathbf{U} \Sigma_{m} \mathbf{V}^{\top}\right\|_{2}$$
(11)

$$\leq \sum_{m=1}^{M} \alpha_m \left\| \mathbf{U} \Sigma_m \mathbf{V}^\top \right\|_2 \quad \text{(triangle inequality)} \tag{12}$$

$$= \sum_{m=1}^{M} \left\| \mathbf{U} \Sigma_m \mathbf{V}^\top \right\|_2 \qquad (0 < \alpha_m < 1)$$
(13)

$$=\sum_{m=1}^{M} \|\mathbf{U}\|_{2} \|\Sigma_{m}\|_{2} \|\mathbf{V}^{\top}\|_{2}$$
(14)

$$= \sum_{\substack{m=1\\M}}^{M} \|\Sigma_m\|_2 \qquad (\mathbf{U}, \mathbf{V} \text{ are orthogonal matrices}) \qquad (15)$$

$$=\sum_{m=1}^{M}\max(\Sigma_m).$$
(16)

The proof is completed.

B Implementation Details

B.1 Baselines

In our experiments, we compare our proposed Sumba with state-of-the-art (SOTA) baseline models.

- MICN: It utilizes temporal convolution networks and isometric convolution networks to capture local and global temporal correlations, respectively.
- ModernTCN: It leverages large kernels to build long-term temporal dependencies.
- PatchTST: It introduces a patch-based attention mechanism and channel-independent strategy to establish long-term temporal correlations.
- FEDformer: It leverages frequency-enhanced attention to capture long-term temporal dependencies and employs frequency sampling to reduce the complexity.
- Autoformer: It designs auto-correlation module to discover the sub-series similarity based on periodicity and aggregates similar sub-series from underlying periods.
- Reformer: It utilizes locality sensitive hashing strategy to reduce the complexity of the attention mechanism.
- S4: It captures long-term temporal dependencies via structured transition matrices.

- MTGNN: It builds an adaptive directed graph using learnable node embedding and aggregates information along spatial dimensions through mix-hop propagation.
- MegaCRN: It exploits memory-enhanced node embedding to build the graph structure.
- iTransformer: It embeds the whole time series into a spatial token and captures spatial correlations using the self-attention mechanism.
- Crossformer: It constructs both temporal and spatial dependencies using the attention mechanism and introduces a router mechanism to decrease the complexity of the spatial attention module.
- Card: It introduces summarized spatial tokens to decrease the complexity of the spatial attention module and employs a token blend mechanism in the temporal attention module to extract local temporal correlations.
- ESG: It designs multi-scale evolving node embedding based on Gated Recurrent Unit to capture dynamic spatial dependencies.
- FourierGNN: It builds dynamic graphs by merging spatial and temporal dimensions and designs the Fourier Graph Operator to decrease complexity.
- TPGNN: It regards the dynamic spatial correlations as the matrix polynomial graph where the time-varying coefficients are determined by timestamps.

B.2 Metrics

The evaluation metrics including MAE, RMSE, and MAPE are as follows:

$$MAE = \frac{\sum_{ij\in\Omega} |y_{ij} - \hat{y}_{ij}|}{|\Omega|} \quad RMSE = \sqrt{\frac{\sum_{ij\in\Omega} (y_{ij} - \hat{y}_{ij})^2}{|\Omega|}} \quad MAPE = \sum_{ij\in\Omega} \frac{|y_{ij} - \hat{y}_{ij}|}{|\Omega| \cdot |y_{ij}|}$$
(17)

where Ω denotes the index set along temporal and spatial dimensions.

C More Forecasting Results

Table 4 provides the results with prediction lengths of 12 and 24. The results underscore the significant role of explicitly capturing spatial correlations in improving forecasting accuracy. Furthermore, dynamic graphs exhibit a greater ability to enhance the forecasting performance than modeling static spatial correlations. Among the baseline methods, Card, Crossformer, and ESG demonstrate superior forecasting accuracy. Notably, our model achieves state-of-the-art performance, yielding improvements more than 20% in terms of MAE and 25% in terms of MAPE over the existing methods on the Solar-Energy dataset. In addition, we conduct experiments with a forecasting horizon of 96, and as Table 5 shows, Sumba gives rise to favorable performance in comparison to PatchTST, FEDformer, and iTransformer which are designed specifically for long-term forecasting.

D Hyperparameters Sensitivity

We evaluate the sensitivity of hyperparameters including the number of blocks L, the rank K, and the history window size H. Number of Blocks: As shown in Figure 4, Sumba achieves its best performance when L = 3. Further increasing L does not lead to performance improvements. We hypothesize that this is due to the over-smoothing issue associated with Graph Neural Networks. **Rank**: Figure 5 shows how performance varies as the rank K changes from 20 to 50. The optimal setting for K is 30 for the Electricity, PEMS, and Solar-Energy datasets, while K = 50 yields the best results for the Traffic dataset. We propose that this is attributed to the larger number of nodes in the Traffic dataset, which requires a higher rank to effectively represent the dynamic spatial correlations. **History window**: Figure 6 demonstrates that increasing the history window size enhances model performance, especially for the Electricity dataset.

Table 4: The forecasting results under forecasting length 12 and 24.

Method		Electric	ity		Weath	er		PEM	s
(F = 12)	MAE	RMSE	MAPE(%)	MAE	RMSE	MAPE(%)	MAE	RMSE	MAPE(%)
MICN [33]	0.278	0.390	2.633	0.123	0.276	2.970	0.277	0.404	2.021
ModernTCN [29]	0.202	0.307	1.796	0.111	0.268	4.541	0.169	0.252	1.368
PatchTST [30]	0.201	0.311	1.765	0.0958	0.270	6.108	0.211	0.293	1.426
FEDformer [45]	0.274	0.390	2.535	0.251	0.394	6.789	0.262	0.369	1.931
Autoformer [35]	0.284	0.402	2.822	0.216	0.368	8.119	0.585	0.732	2.736
Reformer [19]	0.376	0.521	3.495	0.185	0.349	4.815	0.217	0.338	1.801
S4 [12]	0.361	0.512	3.314	0.213	0.347	5.443	0.246	0.346	2.184
MTGNN [38]	0.184	0.292	1.704	0.0899	0.275	4.549	0.177	0.263	1.391
MegaCRN [15]	0.366	0.520	2.715	0.115	0.279	3.757	0.188	0.286	1.572
iTransformer [28]	0.188	0.296	1.703	0.0978	0.273	4.879	0.100	0.258	1.402
CrossFormer [42]	0.183	0.290	1.715	0.0778	0.270	4.656	0.175	0.256	1.370
Card [34]	$\frac{0.185}{0.186}$	0.285	1.610	0.0892	0.268	3.829	0.168	0.250	1.347
	0.180	$\frac{0.285}{0.295}$	$\frac{1.010}{1.691}$	$\frac{0.0892}{0.0969}$	0.268	3.513	0.163		1.347
ESG [39]							$0.104 \\ 0.199$	$\frac{0.248}{0.205}$	
FourierGNN [40] TPGNN [26]	0.275 0.259	0.396 0.308	2.694 2.165	0.121 0.104	0.276 0.282	4.932 2.898		$0.305 \\ 0.287$	1.832 1.577
	0.239	0.508	2.103	0.104	0.282	2.090	0.186	0.287	1.377
Sumba	0.178	0.283	1.560	0.0884	0.263	3.794	0.162	0.245	1.295
M d 1		ETTI (<u> </u>		T. (C	i		0 1 E	
Method	NAT	ETTh			Traffic			Solar-En	
(F = 12)	MAE	RMSE	MAPE(%)	MAE	RMSE	MAPE(%)	MAE	RMSE	MAPE(%)
MICN [33]	0.290	0.414	1.492	0.281	0.629	3.479	0.105	0.207	1.000
ModernTCN [29]	0.320	0.445	1.564	0.271	0.612	3.219	0.118	0.210	0.974
PatchTST [30]	0.237	0.374	1.135	0.250	0.582	2.559	0.122	0.243	1.054
FEDformer [45]	0.349	0.512	1.550	0.350	0.727	3.840	0.204	0.292	1.289
Autoformer [35]	0.360	0.526	1.481	0.361	0.735	4.007	0.309	0.414	1.680
Reformer [19]	0.579	0.728	4.289	0.354	0.789	3.608	0.113	0.229	1.125
S4 [12]	0.634	0.846	2.768	0.307	0.749	3.079	0.137	0.210	1.585
MTGNN [38]	0.245	0.381	1.172	0.247	0.577	2.762	0.0975	0.210	1.007
MegaCRN [15]	0.332	0.381	1.519	0.247	0.784	4.397	0.116	0.214	1.088
iTransformer [28]	0.332	0.376	1.121	0.237	0.559	2.582	0.0974	0.220	0.991
CrossFormer [42]	0.242	0.370	1.467	0.237	0.666	2.382	0.0974	0.197	0.936
Card [34]	0.307	0.440	<u>1.407</u>	0.238	0.000	2.497	0.0850	$\frac{0.197}{0.210}$	0.996
ESG [39]	0.313	0.454	1.179	0.269	0.667	2.868	0.0935	0.204	0.962
FourierGNN [40]	0.309	0.454	1.551	0.382	0.792	4.159	0.119	0.208	1.098
TPGNN [26]	0.269	0.427	1.283	0.302	0.780	2.507	0.107	0.205	0.976
Sumba	0.234	0.369	1.045	0.225	0.569	2.358	0.0845	0.191	0.897
Mathad	1	Flootnic		1	Waath		1	DEM	<u>c</u>
Method $(F - 24)$	MAE	Electric		MAE	Weath		MAE	PEM	
(F = 24)	MAE	RMSE	MAPE(%)	MAE	RMSE	MAPE(%)	MAE	RMSE	MAPE(%)
(F = 24) MICN [33]	0.261	RMSE 0.375	MAPE(%) 2.595	0.149	RMSE 0.309	MAPE(%) 5.026	0.197	RMSE 0.292	MAPE(%) 1.646
(F = 24) MICN [33] ModernTCN [29]	0.261	RMSE 0.375 0.331	MAPE(%) 2.595 1.945	0.149	RMSE 0.309 0.306	MAPE(%) 5.026 7.100	0.197	RMSE 0.292 0.290	MAPE(%) 1.646 1.582
(F = 24) MICN [33] ModernTCN [29] PatchTST [30]	0.261 0.222 0.211	RMSE 0.375	MAPE(%) 2.595	0.149 0.151 0.128	RMSE 0.309 0.306 0.309	MAPE(%) 5.026 7.100 10.480	0.197	RMSE 0.292	MAPE(%) 1.646 1.582 1.611
	0.261 0.222 0.211 0.281	RMSE 0.375 0.331 0.329 0.400	MAPE(%) 2.595 1.945 1.859 2.782	0.149	RMSE 0.309 0.306 0.309 0.407	MAPE(%) 5.026 7.100 10.480 10.152	0.197 0.197 0.246 0.282	RMSE 0.292 0.290 0.345 0.394	MAPE(%) 1.646 1.582 1.611 1.983
(F = 24) MICN [33] ModernTCN [29] PatchTST [30]	0.261 0.222 0.211	RMSE 0.375 0.331 0.329	MAPE(%) 2.595 1.945 1.859	0.149 0.151 0.128	RMSE 0.309 0.306 0.309	MAPE(%) 5.026 7.100 10.480	0.197 0.197 0.246	RMSE 0.292 0.290 0.345	MAPE(%) 1.646 1.582 1.611
	0.261 0.222 0.211 0.281	RMSE 0.375 0.331 0.329 0.400	MAPE(%) 2.595 1.945 1.859 2.782	0.149 0.151 0.128 0.254	RMSE 0.309 0.306 0.309 0.407	MAPE(%) 5.026 7.100 10.480 10.152	0.197 0.197 0.246 0.282	RMSE 0.292 0.290 0.345 0.394	MAPE(%) 1.646 1.582 1.611 1.983
(F = 24) $MICN [33]$ $ModernTCN [29]$ $PatchTST [30]$ $FEDformer [45]$ $Autoformer [35]$ $Reformer [19]$	0.261 0.222 0.211 0.281 0.278	RMSE 0.375 0.331 0.329 0.400 0.398	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829	0.149 0.151 0.128 0.254 0.234	RMSE 0.309 0.306 0.309 0.407 0.389	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590	0.197 0.197 0.246 0.282 0.455	RMSE 0.292 0.290 0.345 0.394 0.601 0.400	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435
(F = 24) MICN [33] ModernTCN [29] PatchTST [30] FEDformer [45] Autoformer [35] Reformer [19] S4 [12]	0.261 0.222 0.211 0.281 0.278 0.402 0.348	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.499	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258	0.149 0.151 0.128 0.254 0.234 0.248 0.269	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225	0.197 0.197 0.246 0.282 0.455 0.263 0.259	RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403
	0.261 0.222 0.211 0.281 0.278 0.402 0.348 0.194	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777	0.149 0.151 0.128 0.254 0.234 0.248 0.269 0.119	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730	0.197 0.197 0.246 0.282 0.455 0.263 0.259 0.209	RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c} 0.261 \\ 0.222 \\ 0.211 \\ 0.281 \\ 0.278 \\ 0.402 \\ 0.348 \\ \underline{0.194} \\ 0.337 \end{array} $	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593	0.149 0.151 0.128 0.254 0.234 0.248 0.269 0.119 0.144	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949	0.197 0.197 0.246 0.282 0.455 0.263 0.259 0.209 0.230	RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937
(F = 24) MICN [33] ModernTCN [29] PatchTST [30] FEDformer [45] Autoformer [35] Reformer [19] S4 [12] MTGNN [38] MegaCRN [15] iTransformer [28]		RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774	0.149 0.151 0.128 0.254 0.234 0.248 0.269 0.119 0.144 0.126	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254	0.197 0.246 0.282 0.455 0.263 0.259 0.209 0.230 0.200	RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552
$\begin{tabular}{ c c c c c } \hline (F=24) \\ \hline MICN [33] \\ \hline ModernTCN [29] \\ \hline PatchTST [30] \\ \hline FEDformer [45] \\ \hline Autoformer [35] \\ \hline Reformer [19] \\ S4 [12] \\ \hline MTGNN [38] \\ \hline MegaCRN [15] \\ \hline iTransformer [28] \\ \hline CrossFormer [42] \\ \hline \end{tabular}$		RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944	0.149 0.151 0.128 0.254 0.234 0.248 0.269 0.119 0.144 0.126 0.160	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.313 0.309	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186	0.197 0.197 0.246 0.282 0.455 0.263 0.259 0.209 0.230 0.200 0.189	RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565
$\begin{tabular}{ c c c c c } \hline (F=24) \\ \hline MICN [33] \\ \hline ModernTCN [29] \\ \hline PatchTST [30] \\ \hline FEDformer [45] \\ \hline Autoformer [45] \\ \hline Autoformer [19] \\ S4 [12] \\ \hline MTGNN [38] \\ \hline MegaCRN [15] \\ \hline iTransformer [28] \\ \hline CrossFormer [42] \\ \hline Card [34] \\ \hline \end{tabular}$	$\begin{array}{c} 0.261\\ 0.222\\ 0.211\\ 0.281\\ 0.278\\ 0.402\\ 0.348\\ \underline{0.194}\\ 0.337\\ 0.195\\ 0.196\\ 0.197\\ \end{array}$	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.310	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746	0.149 0.151 0.128 0.254 0.234 0.248 0.269 0.119 0.144 0.126 0.160 0.115	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.4231 0.311 0.313 0.309 0.303	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007	$\begin{array}{c} 0.197\\ 0.197\\ 0.246\\ 0.282\\ 0.455\\ 0.263\\ 0.259\\ 0.209\\ 0.230\\ 0.200\\ 0.189\\ 0.196\\ \end{array}$	RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.343 0.296 0.283 0.294	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528
$\begin{array}{c} (F=24) \\ \hline MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \\ MTGNN [38] \\ MegaCRN [15] \\ iTransformer [28] \\ CrossFormer [42] \\ Card [34] \\ ESG [39] \end{array}$	$\begin{array}{c} 0.261\\ 0.222\\ 0.211\\ 0.281\\ 0.278\\ 0.402\\ 0.348\\ \underline{0.194}\\ 0.337\\ 0.195\\ 0.196\\ 0.197\\ 0.196\\ \end{array}$	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.310 0.315 0.314	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729	0.149 0.151 0.128 0.254 0.234 0.248 0.269 0.119 0.144 0.126 0.160 0.115 0.127	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.311 0.311 0.309 0.303 0.294	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 <u>5.227</u>	0.197 0.197 0.246 0.282 0.455 0.263 0.259 0.209 0.230 0.200 0.189 0.196 0.182	RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507
$\begin{array}{c} (F=24) \\ \hline MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \\ MTGNN [38] \\ MegaCRN [15] \\ iTransformer [28] \\ CrossFormer [42] \\ Card [34] \\ ESG [39] \\ FourierGNN [40] \end{array}$	$\begin{array}{c} 0.261\\ 0.222\\ 0.211\\ 0.281\\ 0.278\\ 0.402\\ 0.348\\ \underline{0.194}\\ 0.337\\ 0.195\\ 0.196\\ 0.197\\ 0.196\\ 0.316\\ \end{array}$	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409	0.149 0.151 0.128 0.254 0.234 0.248 0.269 0.119 0.144 0.126 0.160 0.115 0.127 0.133	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.311 0.313 0.303 0.294 0.259	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 <u>5.227</u> 11.606	0.197 0.197 0.246 0.282 0.455 0.263 0.259 0.209 0.209 0.200 0.200 0.200 0.189 0.196 0.182 0.245	RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.294 0.296 0.367	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 <u>1.507</u> 1.518
$\begin{array}{c} (F=24) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \text{MTGNN [38]} \\ \\ \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \\ \text{ESG [39]} \\ \\ \text{FourierGNN [40]} \\ \\ \text{TPGNN [26]} \end{array}$	$ \begin{array}{c} 0.261\\ 0.222\\ 0.211\\ 0.281\\ 0.278\\ 0.402\\ 0.348\\ \hline 0.195\\ 0.195\\ 0.196\\ 0.197\\ 0.196\\ 0.316\\ 0.262\\ \end{array} $	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 <u>0.310</u> 0.315 0.314 0.396 0.355	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409 2.121	0.149 0.151 0.128 0.254 0.234 0.248 0.269 0.119 0.144 0.126 0.160 0.115 0.127 0.133 0.125	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.311 0.313 0.309 0.303 0.294 0.296	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 <u>5.227</u> 11.606 5.238	0.197 0.197 0.246 0.282 0.455 0.263 0.209 0.200 0.200 0.200 0.200 0.189 0.196 0.182 0.245 0.245	RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.294 0.296 0.367 0.319	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 <u>1.507</u> 1.518 1.903
$\begin{array}{c} (F=24) \\ \hline MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \\ MTGNN [38] \\ MegaCRN [15] \\ iTransformer [28] \\ CrossFormer [42] \\ Card [34] \\ ESG [39] \\ FourierGNN [40] \end{array}$	$\begin{array}{c} 0.261\\ 0.222\\ 0.211\\ 0.281\\ 0.278\\ 0.402\\ 0.348\\ \underline{0.194}\\ 0.337\\ 0.195\\ 0.196\\ 0.197\\ 0.196\\ 0.316\\ \end{array}$	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409	0.149 0.151 0.128 0.254 0.234 0.248 0.269 0.119 0.144 0.126 0.160 0.115 0.127 0.133	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.311 0.313 0.303 0.294 0.259	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 <u>5.227</u> 11.606	0.197 0.197 0.246 0.282 0.455 0.263 0.259 0.209 0.209 0.200 0.200 0.200 0.189 0.196 0.182 0.245	RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.294 0.296 0.367	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 <u>1.507</u> 1.518
$\begin{array}{r} (F=24) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \hline \text{CrossFormer [42]} \\ \hline \text{Card [34]} \\ \hline \text{ESG [39]} \\ \hline \text{FourierGNN [40]} \\ \hline \text{TPGNN [26]} \\ \hline \end{array}$	$ \begin{array}{c} 0.261\\ 0.222\\ 0.211\\ 0.281\\ 0.278\\ 0.402\\ 0.348\\ \hline 0.195\\ 0.195\\ 0.196\\ 0.197\\ 0.196\\ 0.316\\ 0.262\\ \end{array} $	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355 0.303	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409 2.121 1.696	0.149 0.151 0.128 0.254 0.234 0.248 0.269 0.119 0.144 0.126 0.160 0.115 0.127 0.133 0.125	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.422 0.4231 0.311 0.313 0.309 0.303 0.294 0.295	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 <u>5.227</u> 11.606 5.238 8.593	0.197 0.197 0.246 0.282 0.455 0.263 0.209 0.200 0.200 0.200 0.200 0.189 0.196 0.182 0.245 0.245	RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319 0.281	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518 1.903 1.488
$\begin{array}{r} (F=24) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \hline \text{CrossFormer [42]} \\ \hline \text{Card [34]} \\ \text{ESG [39]} \\ \hline \text{FourierGNN [40]} \\ \hline \mbox{TPGNN [26]} \\ \hline \\ $	0.261 0.222 0.211 0.281 0.278 0.402 0.348 0.194 0.337 0.195 0.196 0.316 0.316 0.316 0.262	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355 0.303 ETTh	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409 2.121 1.696 2	0.149 0.151 0.128 0.254 0.234 0.248 0.269 0.119 0.144 0.126 0.160 0.115 0.127 0.133 0.125	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.422 0.331 0.311 0.313 0.309 0.303 0.294 0.295 Traff	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 <u>5.227</u> 11.606 5.238 8.593 ic	0.197 0.197 0.246 0.282 0.455 0.263 0.259 0.209 0.230 0.200 0.189 0.196 0.182 0.226	RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.367 0.394 0.296 0.367 0.319 0.281	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 <u>1.507</u> 1.518 1.903 1.488 ergy
$\begin{array}{r} (F=24) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \hline \text{CrossFormer [42]} \\ \hline \text{Card [34]} \\ \hline \text{ESG [39]} \\ \hline \text{FourierGNN [40]} \\ \hline \hline \text{TPGNN [26]} \\ \hline \\ \hline \text{Sumba} \\ \hline \hline \\ \hline \end{array}$	0.261 0.222 0.211 0.281 0.278 0.402 0.348 0.194 0.337 0.195 0.196 0.316 0.262 0.189 MAE	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.409 0.311 0.483 0.310 0.315 0.314 0.396 0.355 0.303 ETTh RMSE	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409 2.121 1.696 2 MAPE(%)	0.149 0.151 0.128 0.254 0.234 0.248 0.269 0.119 0.144 0.126 0.160 0.115 0.127 0.133 0.125 0.115 MAE	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.423 0.311 0.313 0.309 0.303 0.294 0.296 0.295 Traff RMSE	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593 ic MAPE(%)	0.197 0.197 0.246 0.282 0.455 0.263 0.259 0.209 0.200 0.189 0.196 0.182 0.245 0.266 0.186	RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.367 0.394 0.296 0.367 0.319 0.281 Solar-En RMSE	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518 1.903 1.488 ergy MAPE(%)
$\begin{array}{r} (F=24) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \hline \text{CrossFormer [42]} \\ \hline \text{Card [34]} \\ \text{ESG [39]} \\ \hline \text{FourierGNN [40]} \\ \hline \text{TPGNN [26]} \\ \hline \\ \hline \text{Sumba} \\ \hline \hline \\ \hline $	0.261 0.222 0.211 0.281 0.278 0.402 0.348 0.194 0.337 0.195 0.196 0.316 0.262 0.313	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.409 0.311 0.483 0.310 0.315 0.314 0.3955 0.303 ETTh RMSE 0.464	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409 2.121 1.696 ⁽²⁾ MAPE(%) 1.345	0.149 0.151 0.128 0.254 0.234 0.248 0.249 0.114 0.126 0.115 0.127 0.123 0.125 0.115 MAE 0.294	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.423 0.311 0.313 0.309 0.303 0.294 0.295 Traff RMSE 0.693	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593 ic MAPE(%) 3.107	0.197 0.197 0.246 0.282 0.455 0.263 0.209 0.209 0.200 0.230 0.200 0.189 0.196 0.196 0.226 0.245 0.226 0.226 0.186 0.186	RMSE 0.292 0.290 0.345 0.394 0.601 0.361 0.307 0.343 0.296 0.367 0.394 0.296 0.367 0.319 0.281 Solar-En RMSE 0.284	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 <u>1.507</u> 1.518 1.903 1.488 ergy MAPE(%) 1.216
$\begin{array}{r} (F=24) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \text{MTGNN [38]} \\ \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \text{ESG [39]} \\ \text{FourierGNN [40]} \\ \hline \text{TPGNN [26]} \\ \hline \\ $	0.261 0.222 0.211 0.281 0.278 0.402 0.348 0.194 0.337 0.195 0.196 0.197 0.196 0.316 0.262 0.189 MAE 0.313 0.479	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.409 0.311 0.483 0.310 0.315 0.314 0.396 0.355 0.303 ETTh RMSE 0.464 0.631	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409 2.121 1.696 2 MAPE(%) 1.345 3.095	0.149 0.151 0.128 0.254 0.234 0.248 0.249 0.119 0.144 0.126 0.127 0.133 0.125 0.115 MAE 0.294 0.281	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.311 0.313 0.309 0.303 0.294 0.295 Traff RMSE 0.693 0.626	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 <u>5.227</u> 11.606 5.238 8.593 ic MAPE(%) 3.107 3.261	0.197 0.197 0.246 0.282 0.455 0.263 0.259 0.200 0.196 0.196 0.182 0.226 0.186	RMSE 0.292 0.290 0.345 0.394 0.601 0.301 0.3031 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319 0.281 Solar-En RMSE 0.284 0.279	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 <u>1.507</u> 1.518 1.903 1.488 ergy MAPE(%) 1.216 1.176
$\begin{array}{c} (F=24) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \text{MTGNN [38]} \\ \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \text{ESG [39]} \\ \text{FourierGNN [40]} \\ \hline \text{TPGNN [26]} \\ \hline \\ $	0.261 0.222 0.211 0.281 0.278 0.402 0.348 0.194 0.337 0.195 0.196 0.197 0.196 0.316 0.262 0.189 MAE 0.313 0.479 0.281	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355 0.303 ETTh RMSE 0.464 0.631 0.440	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409 2.121 1.696 2 MAPE(%) 1.345 3.095 1.233	0.149 0.151 0.128 0.254 0.234 0.248 0.249 0.119 0.149 0.119 0.126 0.160 0.115 0.125 0.125 0.125 0.115 MAE 0.294 0.258	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.311 0.313 0.309 0.303 0.294 0.295 Traff RMSE 0.693 0.594	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593 ic MAPE(%) 3.107 3.261 2.613	0.197 0.197 0.246 0.282 0.455 0.263 0.209 0.200 0.196 0.196 0.226 0.245 0.226 0.182 0.245 0.226 0.186 MAE 0.146 0.160	RMSE 0.292 0.290 0.345 0.394 0.601 0.307 0.361 0.307 0.343 0.296 0.296 0.367 0.319 0.281 Solar-En RMSE 0.284 0.279 0.310	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 <u>1.507</u> 1.518 1.903 1.488 ergy MAPE(%) 1.216 1.176 1.219
$\begin{array}{c} (F=24) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \text{MTGNN [38]} \\ \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \text{ESG [39]} \\ \text{FourierGNN [40]} \\ \hline \text{TPGNN [26]} \\ \hline \\ $	0.261 0.222 0.211 0.281 0.278 0.402 0.348 0.194 0.337 0.195 0.196 0.197 0.196 0.316 0.262 0.316 0.262 0.313 0.479 0.281 0.313	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.311 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355 0.303 ETTh RMSE 0.464 0.631 0.440 0.542	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409 2.121 1.696 2 MAPE(%) 1.345 3.095 1.233 1.651	0.149 0.151 0.128 0.254 0.234 0.248 0.249 0.119 0.149 0.119 0.126 0.127 0.133 0.125 0.115 0.125 0.115 0.125 0.125	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.311 0.313 0.309 0.303 0.294 0.295 Traff RMSE 0.626 0.594 0.740	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 <u>5.227</u> 11.606 5.238 8.593 ic MAPE(%) 3.107 3.261 <u>2.613</u> 4.142	0.197 0.197 0.246 0.282 0.455 0.263 0.209 0.200 0.200 0.200 0.189 0.196 0.182 0.245 0.226 0.186 0.186 0.146 0.160 0.166 0.229	RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319 0.281 Solar-En RMSE 0.284 0.279 0.310 0.345	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 <u>1.507</u> 1.518 1.903 1.488 ergy MAPE(%) 1.216 1.176 1.219 1.533
$\begin{array}{c} (F=24) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \text{MTGNN [38]} \\ \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \text{ESG [39]} \\ \text{FourierGNN [40]} \\ \hline \text{TPGNN [26]} \\ \hline \\ $	0.261 0.222 0.211 0.281 0.278 0.402 0.348 0.194 0.337 0.195 0.196 0.197 0.196 0.316 0.262 0.189 MAE 0.313 0.479 0.281 0.368 0.398	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.311 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355 0.303 ETTh RMSE 0.464 0.631 0.440 0.542 0.579	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409 2.121 1.696 2 MAPE(%) 1.345 3.095 1.233 1.651 1.690	0.149 0.151 0.128 0.254 0.234 0.248 0.249 0.119 0.149 0.119 0.126 0.127 0.133 0.125 0.115 0.125 0.115 0.125 0.125 0.125	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.311 0.313 0.309 0.303 0.294 0.295 Traff RMSE 0.693 0.693 0.594 0.740 0.743	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 <u>5.227</u> 11.606 5.238 8.593 ic MAPE(%) 3.107 3.261 <u>2.613</u> 4.142 3.519	0.197 0.197 0.246 0.282 0.455 0.263 0.259 0.200 0.200 0.200 0.200 0.200 0.189 0.196 0.182 0.245 0.226 0.186 0.186 0.166 0.166 0.229 0.355	RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319 0.281 Solar-En RMSE 0.284 0.270 0.310 0.345 0.502	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 <u>1.507</u> 1.518 1.903 1.488 ergy MAPE(%) 1.216 1.176 1.219 1.533 1.929
$\begin{array}{c} (F=24) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \text{MTGNN [38]} \\ \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \text{ESG [39]} \\ \text{FourierGNN [40]} \\ \hline \text{TPGNN [26]} \\ \hline \\ $	0.261 0.222 0.211 0.281 0.278 0.402 0.348 0.194 0.337 0.195 0.196 0.197 0.196 0.316 0.262 0.189 MAE 0.313 0.479 0.281 0.368 0.398 0.754	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.409 0.311 0.483 0.310 0.315 0.314 0.396 0.355 0.303 ETTh RMSE 0.464 0.631 0.440 0.542 0.579 0.955	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409 2.121 1.696 1.345 3.095 1.233 1.651 1.690 5.485	0.149 0.151 0.151 0.128 0.254 0.234 0.248 0.269 0.119 0.126 0.126 0.127 0.133 0.125 0.115 0.125 0.115 0.294 0.294 0.281 0.258 0.353 0.354 0.378	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.311 0.313 0.309 0.303 0.294 0.295 Traff RMSE 0.693 0.626 0.594 0.740 0.743 0.815	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593 ic MAPE(%) 3.107 3.261 2.613 4.142 3.519 3.982	0.197 0.197 0.246 0.282 0.455 0.263 0.259 0.200 0.200 0.200 0.200 0.200 0.189 0.196 0.182 0.245 0.226 0.186 0.146 0.146 0.166 0.229 0.355 0.189	RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.303 0.296 0.294 0.296 0.367 0.319 0.281 Solar-En RMSE 0.284 0.279 0.315 0.502 0.328	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 <u>1.507</u> 1.518 1.903 1.488 ergy MAPE(%) 1.216 1.176 1.219 1.533 1.929 1.585
$\begin{array}{c} (F=24) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \hline \text{CrossFormer [42]} \\ \hline \text{Card [34]} \\ \text{ESG [39]} \\ \hline \text{FourierGNN [40]} \\ \hline \text{TPGNN [26]} \\ \hline \hline \\ \hline \text{Sumba} \\ \hline \hline \\ \hline $	0.261 0.222 0.211 0.281 0.278 0.402 0.348 0.194 0.337 0.195 0.196 0.197 0.196 0.316 0.262 0.189 MAE 0.313 0.479 0.281 0.368 0.398 0.368 0.398	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355 0.303 ETTh RMSE 0.464 0.631 0.440 0.542 0.579 0.955 0.841	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409 2.121 1.696 2 MAPE(%) 1.345 3.095 1.233 1.651 1.690 5.485 2.844	0.149 0.151 0.128 0.254 0.234 0.248 0.269 0.119 0.144 0.126 0.115 0.127 0.133 0.125 0.115 0.125 0.115 0.125 0.115 0.294 0.294 0.258 0.353 0.354 0.378 0.313	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.423 0.311 0.313 0.309 0.303 0.294 0.295 Traff RMSE 0.693 0.626 0.594 0.743 0.743 0.754	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593 ic MAPE(%) 3.107 3.261 2.613 4.142 3.519 3.982 3.291	0.197 0.197 0.246 0.282 0.455 0.263 0.209 0.209 0.200 0.230 0.200 0.189 0.196 0.182 0.245 0.226 0.245 0.226 0.186 MAE 0.146 0.160 0.166 0.229 0.355 0.189 0.174	RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.367 0.319 0.281 Solar-En RMSE 0.284 0.279 0.310 0.345 0.502 0.328 0.272	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 <u>1.507</u> 1.518 1.903 1.488 ergy MAPE(%) 1.216 1.176 1.219 1.533 1.929 1.585 2.124
$\begin{array}{c} (F=24) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \text{MTGNN [38]} \\ \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \text{ESG [39]} \\ \text{FourierGNN [40]} \\ \hline \text{TPGNN [26]} \\ \hline \\ $	0.261 0.222 0.211 0.281 0.278 0.402 0.348 0.194 0.337 0.195 0.196 0.197 0.196 0.316 0.262 0.189 MAE 0.313 0.479 0.281 0.368 0.398 0.754	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355 0.303 ETTh RMSE 0.464 0.631 0.440 0.542 0.579 0.955 0.841 0.452	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409 2.121 1.696 1.345 3.095 1.233 1.651 1.690 5.485	0.149 0.151 0.128 0.254 0.234 0.248 0.249 0.119 0.144 0.126 0.127 0.123 0.125 0.115 0.125 0.115 0.125 0.115 0.125 0.115 MAE 0.294 0.258 0.353 0.354 0.373 0.266	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.4231 0.311 0.313 0.309 0.303 0.294 0.295 Traff RMSE 0.693 0.626 0.594 0.740 0.743 0.814	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593 ic MAPE(%) 3.107 3.261 2.613 4.142 3.519 3.982 3.291 3.117	0.197 0.197 0.246 0.282 0.455 0.263 0.259 0.200 0.200 0.200 0.200 0.200 0.189 0.196 0.182 0.245 0.226 0.186 0.146 0.146 0.166 0.229 0.355 0.189	RMSE 0.292 0.290 0.345 0.394 0.601 0.301 0.361 0.307 0.343 0.296 0.294 0.296 0.367 0.319 0.281 Solar-En RMSE 0.284 0.279 0.310 0.345 0.502 0.328 0.272	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 <u>1.507</u> 1.518 <u>1.903</u> 1.488 ergy MAPE(%) 1.216 1.176 1.219 1.533 1.929 1.585 2.124 1.224
$\begin{array}{c} (F=24) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \hline \text{CrossFormer [42]} \\ \hline \text{Card [34]} \\ \text{ESG [39]} \\ \hline \text{FourierGNN [40]} \\ \hline \text{TPGNN [26]} \\ \hline \hline \\ \hline \text{Sumba} \\ \hline \hline \\ \hline $	0.261 0.222 0.211 0.281 0.278 0.402 0.348 0.194 0.337 0.195 0.196 0.197 0.196 0.316 0.262 0.189 MAE 0.313 0.479 0.281 0.368 0.398 0.368 0.398	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355 0.303 ETTh RMSE 0.464 0.631 0.440 0.542 0.579 0.955 0.841	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409 2.121 1.696 2 MAPE(%) 1.345 3.095 1.233 1.651 1.690 5.485 2.844	0.149 0.151 0.128 0.254 0.234 0.248 0.269 0.119 0.144 0.126 0.115 0.127 0.133 0.125 0.115 0.125 0.115 0.125 0.115 0.294 0.294 0.258 0.353 0.354 0.378 0.313	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.423 0.311 0.313 0.309 0.303 0.294 0.295 Traff RMSE 0.693 0.626 0.594 0.743 0.743 0.754	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593 ic MAPE(%) 3.107 3.261 2.613 4.142 3.519 3.982 3.291	0.197 0.197 0.246 0.282 0.455 0.263 0.209 0.209 0.200 0.230 0.200 0.189 0.196 0.182 0.245 0.226 0.245 0.226 0.186 MAE 0.146 0.160 0.166 0.229 0.355 0.189 0.174	RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.367 0.319 0.281 Solar-En RMSE 0.284 0.279 0.310 0.345 0.502 0.328 0.272	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 <u>1.507</u> 1.518 1.903 1.488 ergy MAPE(%) 1.216 1.176 1.219 1.533 1.929 1.585 2.124
$\begin{array}{c} (F=24) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \hline \text{CrossFormer [42]} \\ \hline \text{Card [34]} \\ \text{ESG [39]} \\ \hline \text{FourierGNN [40]} \\ \hline \text{TPGNN [26]} \\ \hline \hline \text{Sumba} \\ \hline \hline \\ \hline $	0.261 0.222 0.211 0.281 0.278 0.402 0.348 0.194 0.337 0.195 0.196 0.316 0.262 0.189 0.262 0.189 MAE 0.313 0.479 0.281 0.368 0.398 0.754 0.6378 0.288	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355 0.303 ETTh RMSE 0.464 0.631 0.440 0.542 0.579 0.955 0.841 0.452	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409 2.121 1.696 2 MAPE(%) 1.345 3.095 1.233 1.651 1.690 5.485 2.844 1.267	0.149 0.151 0.128 0.254 0.234 0.248 0.249 0.119 0.144 0.126 0.127 0.123 0.125 0.115 0.125 0.115 0.125 0.115 0.125 0.115 MAE 0.294 0.258 0.353 0.354 0.373 0.266	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.4231 0.311 0.313 0.309 0.303 0.294 0.295 Traff RMSE 0.693 0.626 0.594 0.740 0.743 0.814	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593 ic MAPE(%) 3.107 3.261 2.613 4.142 3.519 3.982 3.291 3.117	0.197 0.197 0.246 0.282 0.455 0.263 0.259 0.200 0.230 0.200 0.189 0.196 0.196 0.226 0.245 0.226 0.245 0.226 0.245 0.226 0.188 0.146 0.160 0.166 0.166 0.166 0.169 0.355 0.189 0.174 0.389	RMSE 0.292 0.290 0.345 0.394 0.601 0.301 0.361 0.307 0.343 0.296 0.294 0.296 0.367 0.319 0.281 Solar-En RMSE 0.284 0.279 0.310 0.345 0.502 0.328 0.272	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 <u>1.507</u> 1.518 1.903 1.488 ergy MAPE(%) 1.216 1.176 1.219 1.533 1.929 1.585 2.124 1.224
$\begin{array}{r} (F=24) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \hline \text{CrossFormer [42]} \\ \hline \text{Card [34]} \\ \hline \text{ESG [39]} \\ \hline \text{FourierGNN [40]} \\ \hline \text{TPGNN [26]} \\ \hline \hline \\ \hline \text{Sumba} \\ \hline \hline \\ \hline $	0.261 0.222 0.211 0.281 0.278 0.402 0.313 0.195 0.196 0.197 0.196 0.316 0.262 0.189 MAE 0.313 0.479 0.261 0.368 0.398 0.7378 0.281 0.363	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.398 0.554 0.400 0.398 0.554 0.400 0.398 0.554 0.310 0.310 0.315 0.314 0.396 0.355 0.303 ETTh RMSE 0.464 0.631 0.464 0.631 0.464 0.631 0.464 0.631 0.464 0.631 0.464 0.631 0.452 0.579 0.841 0.452 0.516	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409 2.121 1.696 2 MAPE(%) 1.345 3.095 1.233 1.651 1.690 5.485 2.844 1.267 1.738	0.149 0.151 0.128 0.254 0.234 0.248 0.249 0.119 0.144 0.126 0.127 0.133 0.125 0.115 0.125 0.115 0.125 0.115 0.125 0.115 0.125 0.115 0.258 0.353 0.354 0.378 0.313 0.266 0.415	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.311 0.313 0.309 0.303 0.294 0.295 Traff RMSE 0.693 0.626 0.594 0.740 0.743 0.815 0.740 0.833	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 <u>5.227</u> 11.606 5.238 8.593 ic MAPE(%) 3.107 3.261 <u>2.613</u> 4.142 3.519 3.982 3.291 3.117 4.990	0.197 0.197 0.246 0.282 0.455 0.263 0.209 0.200 0.196 0.196 0.182 0.245 0.226 0.182 0.245 0.226 0.186 MAE 0.146 0.166 0.229 0.355 0.138 0.174 0.138 0.151	RMSE 0.292 0.290 0.345 0.394 0.601 0.301 0.3031 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319 0.281 Solar-En RMSE 0.284 0.279 0.310 0.345 0.502 0.3272 0.286 0.296	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 <u>1.507</u> 1.518 1.903 1.488 ergy MAPE(%) 1.216 1.176 1.219 1.533 1.929 1.585 2.124 1.224 1.508
$\begin{array}{c} (F=24) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \text{MTGNN [38]} \\ \\ \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \\ \text{ESG [39]} \\ \text{FourierGNN [40]} \\ \\ \text{TPGNN [26]} \\ \hline \\ \hline \\ \text{Sumba} \\ \hline \\ \hline \\ \hline \\ \text{Method} \\ (F=24) \\ \hline \\ \hline \\ \\ \text{Method} \\ (F=24) \\ \hline \\ \hline \\ \\ \hline \\ \text{Method} \\ (F=24) \\ \hline \\ \hline \\ \\ \hline \\ \\ \text{Method} \\ (F=24) \\ \hline \\ \hline \\ \\ \hline \\ \\ \text{Method} \\ (F=24) \\ \hline \\ \hline \\ \\ \hline \\ \\ \text{Method} \\ (F=24) \\ \hline \\ \hline \\ \\ \hline \\ \\ \text{Method} \\ (F=24) \\ \hline \\ \hline \\ \\ \hline \\ \\ \text{Method} \\ (F=24) \\ \hline \\ \hline \\ \\ \hline \\ \\ \text{Method} \\ (F=24) \\ \hline \\ \hline \\ \\ \hline \\ \\ \text{Mathod} \\ \hline \\ \\ \hline \\ \\ \text{Method} \\ (F=24) \\ \hline \\ \hline \\ \\ \hline \\ \\ \text{Mathod} \\ \hline \\ \\ \hline \\ \\ \text{Method} \\ (F=24) \\ \hline \\ \hline \\ \\ \hline \\ \\ \text{Mathod} \\ \hline \\ \hline \\ \\ \\ \text{Mathod} \\ \hline \\ \hline \\ \\ \text{Mathod} \\ \hline \\ \\ \hline \\ \\ \text{Mathod} \\ \hline \\ \hline \\ \\ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \$	0.261 0.222 0.211 0.281 0.278 0.402 0.313 0.195 0.196 0.197 0.196 0.316 0.262 0.189 MAE 0.313 0.479 0.281 0.368 0.398 0.754 0.263 0.276	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.315 0.314 0.396 0.355 0.303 ETTh RMSE 0.464 0.631 0.440 0.542 0.579 0.955 0.841 0.452 0.516 0.436	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409 2.121 1.696 2 MAPE(%) 1.345 3.095 1.233 1.651 1.690 5.485 2.844 1.267 1.738 1.251	0.149 0.151 0.128 0.254 0.234 0.248 0.249 0.119 0.144 0.126 0.160 0.115 0.127 0.133 0.125 0.115 0.125 0.115 0.125 0.115 0.125 0.115 0.294 0.294 0.353 0.354 0.378 0.313 0.266 0.415 0.247	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.311 0.313 0.309 0.303 0.294 0.295 Traff RMSE 0.693 0.626 0.594 0.740 0.743 0.815 0.754 0.6023 0.833 0.577	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593 ic MAPE(%) 3.107 3.261 2.613 4.142 3.519 3.982 3.291 3.117 4.990 2.762	0.197 0.197 0.246 0.282 0.455 0.263 0.209 0.200 0.196 0.196 0.196 0.182 0.245 0.226 0.186 MAE 0.146 0.160 0.166 0.229 0.355 0.189 0.176 0.138 0.138 0.138	RMSE 0.292 0.290 0.345 0.394 0.601 0.307 0.361 0.307 0.343 0.296 0.296 0.296 0.367 0.319 0.281 Solar-En RMSE 0.284 0.279 0.310 0.345 0.502 0.328 0.296 0.296	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 <u>1.507</u> 1.518 1.903 1.488 ergy MAPE(%) 1.216 1.176 1.219 1.533 1.929 1.585 2.124 1.224 1.508 1.210
$\begin{array}{c} (F=24) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \text{ESG [39]} \\ \hline \text{FourierGNN [40]} \\ \hline \text{TPGNN [26]} \\ \hline \\ $	0.261 0.222 0.211 0.281 0.278 0.402 0.348 0.194 0.337 0.195 0.196 0.197 0.196 0.316 0.262 0.189 0.262 0.313 0.479 0.281 0.368 0.398 0.274 0.6378 0.288 0.398 0.274	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.310 0.315 0.314 0.396 0.355 0.303 ETTh RMSE 0.464 0.631 0.464 0.631 0.464 0.631 0.464 0.631 0.464 0.631 0.464 0.631 0.464 0.631 0.452 0.579 0.955 0.841 0.436 0.588 0.439	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409 2.121 1.696 2 MAPE(%) 1.345 3.095 1.233 1.651 1.690 5.485 2.844 1.267 1.738 1.251 1.774 1.196	0.149 0.151 0.128 0.254 0.234 0.248 0.249 0.119 0.149 0.126 0.126 0.127 0.133 0.125 0.115 0.125 0.115 0.125 0.125 0.125 0.125 0.125 0.294 0.258 0.353 0.354 0.378 0.313 0.2666 0.415 0.247 0.248 0.247	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.311 0.313 0.309 0.303 0.294 0.295 Traff RMSE 0.626 0.594 0.740 0.743 0.815 0.754 0.602 0.877 0.676 0.578	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 <u>5.227</u> 11.606 5.238 8.593 ic MAPE(%) 3.107 3.261 <u>2.613</u> 4.142 3.519 3.982 3.291 3.117 4.990 2.762 2.675 2.481	0.197 0.197 0.246 0.282 0.455 0.263 0.259 0.209 0.200 0.200 0.200 0.189 0.196 0.182 0.245 0.226 0.186 0.186 0.186 0.166 0.166 0.166 0.166 0.166 0.166 0.166 0.167 0.138 0.171 0.137 0.121 0.122	RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319 0.281 Solar-En RMSE 0.284 0.279 0.310 0.345 0.502 0.328 0.272 0.286 0.290 0.278 0.294	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 <u>1.507</u> 1.518 1.903 1.488 ergy MAPE(%) 1.216 1.176 1.219 1.533 1.929 1.585 2.124 1.208 1.210 <u>1.121</u> 1.278
$\begin{array}{c} (F=24) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \hline \text{CrossFormer [42]} \\ \hline \text{Card [34]} \\ \text{ESG [39]} \\ \hline \text{FourierGNN [40]} \\ \hline \text{TPGNN [26]} \\ \hline \hline \\ \hline \text{Sumba} \\ \hline \hline \\ \hline $	0.261 0.222 0.211 0.281 0.278 0.402 0.348 0.194 0.337 0.195 0.196 0.196 0.316 0.262 0.197 0.196 0.316 0.262 0.189 0.316 0.313 0.479 0.281 0.368 0.368 0.3754 0.6378 0.263 0.276 0.407 0.274 0.308	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.400 0.398 0.554 0.409 0.311 0.483 0.310 0.315 0.314 0.396 0.355 0.303 ETTh RMSE 0.464 0.631 0.440 0.542 0.579 0.955 0.841 0.452 0.516 0.436 0.588 0.439	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409 2.121 1.696 2 MAPE(%) 1.345 3.095 1.233 1.651 1.690 5.485 2.844 1.267 1.778 1.251 1.774 1.196 1.271	0.149 0.151 0.128 0.254 0.234 0.248 0.269 0.119 0.144 0.126 0.119 0.144 0.126 0.115 0.127 0.133 0.125 0.115 MAE 0.294 0.258 0.353 0.354 0.378 0.313 0.266 0.415 0.247 0.247 0.247	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.423 0.421 0.311 0.313 0.309 0.331 0.311 0.313 0.303 0.294 0.295 Traff RMSE 0.693 0.626 0.594 0.743 0.815 0.754 0.602 0.833 0.577 0.669	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 <u>5.227</u> 11.606 5.238 8.593 ic MAPE(%) 3.107 3.261 <u>2.613</u> 4.142 3.519 3.982 3.291 3.117 4.990 2.762 2.675 2.481 2.715	0.197 0.197 0.246 0.282 0.455 0.263 0.259 0.200 0.200 0.200 0.200 0.189 0.196 0.182 0.245 0.226 0.186 0.186 0.186 0.166 0.166 0.166 0.166 0.166 0.165 0.174 0.138 0.151 0.137 0.121 0.122 0.124	RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.367 0.310 0.294 0.296 0.367 0.319 0.281 Solar-En RMSE 0.284 0.279 0.310 0.328 0.272 0.286 0.294 0.294 0.271	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 <u>1.507</u> 1.518 1.903 1.488 ergy MAPE(%) 1.216 1.176 1.219 1.533 1.929 1.585 2.124 1.224 1.508 1.210 <u>1.121</u> 1.278 1.166
$\begin{array}{c} (F=24) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \text{ESG [39]} \\ \hline \text{FourierGNN [40]} \\ \hline \text{TPGNN [26]} \\ \hline \hline \text{Sumba} \\ \hline \hline \\ \hline $	0.261 0.222 0.211 0.281 0.278 0.402 0.313 0.195 0.196 0.316 0.262 0.197 0.196 0.316 0.262 0.189 MAE 0.313 0.479 0.281 0.368 0.368 0.363 0.276 0.407 0.276 0.308 0.326	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.400 0.398 0.554 0.409 0.311 0.483 0.310 0.315 0.314 0.396 0.355 0.303 ETTh RMSE 0.464 0.631 0.440 0.542 0.579 0.955 0.841 0.452 0.516 0.436 0.588 0.439 0.457 0.515	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409 2.121 1.696 2 MAPE(%) 1.345 3.095 1.233 1.651 1.690 5.485 2.844 1.267 1.738 1.251 1.774 1.196 1.271 1.374	0.149 0.151 0.151 0.128 0.254 0.234 0.248 0.249 0.119 0.144 0.126 0.127 0.133 0.125 0.115 MAE 0.294 0.294 0.258 0.353 0.354 0.374 0.247 0.247 0.247 0.247	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.423 0.422 0.331 0.311 0.313 0.303 0.294 0.295 Traff RMSE 0.693 0.626 0.594 0.740 0.740 0.740 0.754 0.602 0.833 0.577 0.6766 0.578 0.689 0.794	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 <u>5.227</u> 11.606 5.238 8.593 ic MAPE(%) 3.107 3.261 <u>2.613</u> 4.142 3.519 3.982 3.291 3.117 4.990 2.762 2.675 2.481 2.715 4.189	0.197 0.197 0.246 0.282 0.455 0.263 0.209 0.209 0.200 0.189 0.196 0.196 0.226 0.245 0.226 0.245 0.226 0.245 0.226 0.188 0.146 0.160 0.166 0.160 0.166 0.160 0.166 0.189 0.355 0.189 0.174 0.137 0.121 0.122 0.124 0.124	RMSE 0.292 0.290 0.345 0.394 0.601 0.45 0.394 0.601 0.345 0.394 0.307 0.361 0.307 0.343 0.296 0.367 0.319 0.281 Solar-En RMSE 0.284 0.279 0.345 0.345 0.328 0.228 0.228 0.228 0.228 0.228 0.228 0.272 0.286 0.290 0.278 0.291 0.271 0.307	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 <u>1.507</u> 1.518 1.903 1.488 ergy MAPE(%) 1.216 1.176 1.219 1.533 1.929 1.585 2.124 1.224 1.508 1.210 <u>1.211</u> 1.278 1.166 1.571
$\begin{array}{c} (F=24) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \text{ESG [39]} \\ \hline \text{FourierGNN [40]} \\ \hline \text{TPGNN [26]} \\ \hline \hline \\ \hline $	0.261 0.222 0.211 0.281 0.278 0.402 0.348 0.194 0.337 0.195 0.196 0.197 0.196 0.316 0.262 0.313 0.479 0.281 0.313 0.479 0.281 0.368 0.398 0.754 0.398 0.368 0.398 0.754 0.6378 0.281 0.308 0.276 0.407 0.274 0.308 0.326 0.293	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.310 0.315 0.314 0.396 0.303 ETTh RMSE 0.464 0.631 0.464 0.631 0.440 0.579 0.955 0.841 0.452 0.516 0.436 0.588 0.439 0.457 0.515 0.445	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409 2.121 1.696 2 MAPE(%) 1.345 3.095 1.233 1.651 1.690 5.485 2.844 1.267 1.738 1.251 1.774 1.196 1.271 1.374 1.271	0.149 0.151 0.128 0.254 0.234 0.248 0.269 0.119 0.126 0.127 0.133 0.125 0.115 0.127 0.133 0.125 0.115 0.125 0.127 0.133 0.125 0.115 0.294 0.294 0.288 0.353 0.354 0.378 0.313 0.266 0.427 0.275 0.427 0.247 0.247 0.349	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.311 0.313 0.309 0.313 0.309 0.303 0.294 0.295 Traff RMSE 0.693 0.626 0.594 0.740 0.743 0.815 0.754 0.676 0.578 0.689 0.794 0.728	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 <u>5.227</u> 11.606 <u>5.238</u> 8.593 ic MAPE(%) 3.107 3.261 <u>2.613</u> 4.142 3.519 3.982 3.291 3.117 4.990 2.762 2.675 2.481 2.715 4.189 3.319	0.197 0.197 0.246 0.282 0.455 0.263 0.209 0.200 0.200 0.200 0.200 0.189 0.196 0.182 0.245 0.226 0.182 0.245 0.226 0.186 0.166 0.166 0.166 0.166 0.168 0.174 0.138 0.151 0.137 0.121 0.122 0.124 0.122 0.124	RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319 0.281 Solar-En RMSE 0.284 0.279 0.310 0.345 0.502 0.328 0.272 0.286 0.290 0.271 0.307 0.271	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 <u>1.507</u> 1.518 1.903 1.488 ergy MAPE(%) 1.216 1.176 1.219 1.533 1.929 1.585 2.124 1.224 1.508 1.210 <u>1.121</u> 1.278 1.166 1.571 1.253
$\begin{array}{c} (F=24) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \text{ESG [39]} \\ \hline \text{FourierGNN [40]} \\ \hline \text{TPGNN [26]} \\ \hline \hline \text{Sumba} \\ \hline \hline \\ \hline $	0.261 0.222 0.211 0.281 0.278 0.402 0.313 0.195 0.196 0.316 0.262 0.197 0.196 0.316 0.262 0.189 MAE 0.313 0.479 0.281 0.368 0.368 0.363 0.276 0.407 0.276 0.308 0.326	RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.400 0.398 0.554 0.409 0.311 0.483 0.310 0.315 0.314 0.396 0.355 0.303 ETTh RMSE 0.464 0.631 0.440 0.542 0.579 0.955 0.841 0.452 0.516 0.436 0.588 0.439 0.457 0.515	MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 <u>1.729</u> 2.409 2.121 1.696 2 MAPE(%) 1.345 3.095 1.233 1.651 1.690 5.485 2.844 1.267 1.738 1.251 1.774 1.196 1.271 1.374	0.149 0.151 0.151 0.128 0.254 0.234 0.248 0.249 0.119 0.144 0.126 0.127 0.133 0.125 0.115 MAE 0.294 0.294 0.258 0.353 0.354 0.374 0.247 0.247 0.247 0.247	RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.423 0.422 0.331 0.311 0.313 0.303 0.294 0.295 Traff RMSE 0.693 0.626 0.594 0.740 0.740 0.740 0.754 0.602 0.833 0.577 0.6766 0.578 0.689 0.794	MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 <u>5.227</u> 11.606 5.238 8.593 ic MAPE(%) 3.107 3.261 <u>2.613</u> 4.142 3.519 3.982 3.291 3.117 4.990 2.762 2.675 2.481 2.715 4.189	0.197 0.197 0.246 0.282 0.455 0.263 0.209 0.209 0.200 0.189 0.196 0.196 0.226 0.245 0.226 0.245 0.226 0.245 0.226 0.188 0.146 0.160 0.166 0.160 0.166 0.160 0.166 0.189 0.355 0.189 0.174 0.137 0.121 0.122 0.124 0.124	RMSE 0.292 0.290 0.345 0.394 0.601 0.45 0.394 0.601 0.345 0.394 0.307 0.361 0.307 0.343 0.296 0.367 0.319 0.281 Solar-En RMSE 0.284 0.279 0.345 0.345 0.328 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.272 0.286 0.290 0.278 0.291 0.271 0.307	MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 <u>1.507</u> 1.518 1.903 1.488 ergy MAPE(%) 1.216 1.176 1.219 1.533 1.929 1.585 2.124 1.224 1.508 1.210 <u>1.211</u> 1.278 1.166 1.571

	Electricity			Weather			PEMS		
Method	MAE	RMSE	MAPE (%)	MAE	RMSE	MAPE (%)	MAE	RMSE	MAPE (%)
PatchTST [30]	0.241	0.378	2.383	0.206	0.404	13.692	0.354	0.497	1.906
FEDformer [45]	0.308	0.438	3.223	0.346	0.525	8.949	0.482	0.631	3.182
Autoformer [35]	0.303	0.433	2.923	0.339	0.518	21.389	0.721	0.927	3.447
Reformer [19]	0.389	0.549	3.675	0.470	0.695	11.815	0.403	0.534	3.151
iTransformer [28]	0.229	0.367	2.248	0.213	0.411	13.009	0.311	0.446	2.055
Crossformer [42]	0.232	0.366	2.465	0.211	0.384	7.745	0.271	0.405	2.421
Card [34]	0.225	0.364	2.310	<u>0.191</u>	0.389	9.293	0.283	0.414	<u>1.871</u>
Sumba	0.234	0.373	2.675	0.185	0.383	11.561	0.253	0.377	1.700

Table 5: The results with forecasting horizon 96.

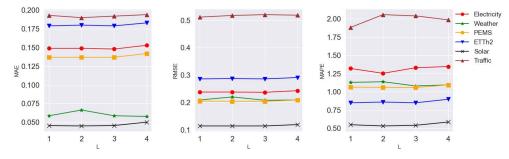


Figure 4: The sensitivity of our method to the number of blocks L.

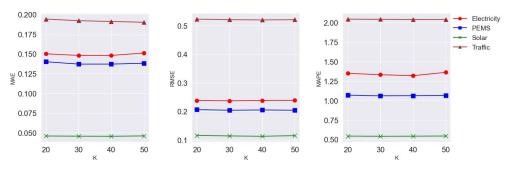


Figure 5: The sensitivity of our method to rank K.

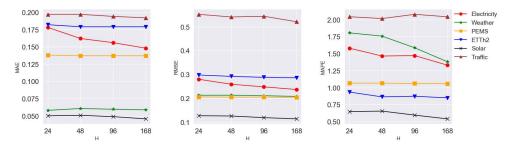


Figure 6: The sensitivity of our method to the history window H.

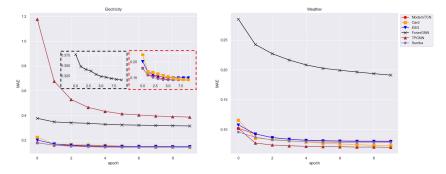


Figure 7: The training curves on Electricity and Weather datasets with prediction length F = 3.

Complexity
$O(N^2D)$
$\mathcal{O}(N^2 D)$
$\mathcal{O}(N^2 D)$
$\mathcal{O}(NrD)$
$\mathcal{O}(NrD)$
$\mathcal{O}(N^2D)$
$\mathcal{O}(N\dot{H}\log(\dot{N}H))$
$\mathcal{O}(N^2D)$
$\mathcal{O}(MNKD)$
$\mathcal{O}(NKD)$

Table 6: The complexity of different methods.

E Convergence Speed and Computational Complexity

Convergence Speed Figure 7 illustrates the training curves for the first 10 epochs on the Electricity and Weather datasets. Sumba, ModernTCN, and ESG exhibit fast convergence, achieving it within 5 epochs. In contrast, methods such as Card, FourierGNN, and TPGNN take several tens of epochs to reach convergence.

Computational Complexity As shown in Table 6, we analyze the computational complexity of different methods in capturing spatial dependencies, where N is the number of nodes, M is the dimension of the matrix basis, D is the dimension of node embedding or hidden representation, $r \ll N$ and $K \ll N$. MTGNN, MegaCRN, iTransformer, ESG, and TPGNN build the graph structure via inner product of static or dynamic node embedding, leading to a computation complexity of $\mathcal{O}(N^2D)$. Crossformer and Card employ router mechanism and summarized token, respectively, in spatial correlation modeling, reducing the complexity to $\mathcal{O}(Nrd)$. FourierGNN has complexity of $\mathcal{O}(NH\log(NH))$ due to building a hypervariable graph. Our proposed Sumba leverages low-rank approximation and common coordinate transformations strategy, achieving the complexity of $\mathcal{O}(KND)$ whereas the computational cost for the model without a common U-V basis is $\mathcal{O}(MKND)$. Thus, our model has low complexity, especially when N is large.

F Limitations

Although our proposed Sumba demonstrates superior performance in multivariate time series forecasting, the dimension of matrix basis M is empirically tuned in our experiments. Besides, the long-term forecasting capability of the proposed model requires further enhancement.

G Broader Impact

In this paper, we propose a novel time series forecasting method to capture dynamic spatial correlations with a structured matrix basis. Our research aims to contribute to the advancement of the relevant community without any negative social impact.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix F.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: See Appendix A.2.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Section 3 and Section 4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general. releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Our code is available at: https://anonymous.4open.science/r/Sumba/. Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: See Section 4 and Appendix B

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We repeat each experiment 3 times and report the mean results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.

- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: See Section 4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We make sure to preserve anonymity.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix G.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to

generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.

- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited, and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package or dataset. See Section 2 and Section 4.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.