
The ART of LLM Refinement: Ask, Refine, and Trust

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have demon-001
strated remarkable generative abilities, but can002
they judge the quality of their own generations003
and self-improve? A popular concept, referred004
to as self-refinement, postulates that LLMs can005
detect and correct the errors in their genera-006
tions when asked to do so. However, recent007
empirical evidence points in the opposite di-008
rection, suggesting that LLMs often struggle009
to accurately identify errors when reasoning is010
involved. To address this, we propose a rea-011
soning with a refinement strategy called ART:012
Ask, Refine, and Trust, which asks neces-013
sary questions to decide when an LLM should014
refine its output, and uses it to affirm or deny015
trust in its refinement by ranking the refinement016
and the initial prediction. On two multistep017
reasoning tasks of mathematical word prob-018
lems (GSM8K) and question answering (Strat-019
egyQA), ART achieves a performance gain of 5020
points over self-refinement baselines, while us-021
ing a much smaller model as the decision maker.022
We believe that ART with smaller models, mak-023
ing refinement decisions can be a cost-effective024
alternative to fine-tuning LLMs.025

1 Introduction026

The ability of Large Language Models (LLMs) to027

generate coherent and meaningful text has signif-028

icantly improved over the years (OpenAI, 2023).029

However, LLMs still exhibit inaccuracies in their030

generations, and it has been posited that iterative re-031

finement of generations, also using the same LLMs,032

can help rectify these errors (Madaan et al., 2023;033

Shridhar et al., 2023a; Welleck et al.; Zheng et al.,034

2023). Madaan et al. (2023) demonstrated the po-035

tential of self-refinement for tasks such as dialogue036

response generation and sentiment reversal; how-037

ever, this approach proves less effective on other038

tasks such as mathematical reasoning. Shridhar039

et al. (2023a) and Huang et al. (2023) have also040

demonstrated the challenges LLMs face in iden-041

tifying errors in reasoning tasks. While develop- 042

ing models that can self-evaluate and self-correct 043

their errors is certainly a vital step towards reliable 044

LLMs, building such models is quite challenging. 045

Through empirical observation on two multi- 046

step reasoning datasets, we find that self-refinement 047

does not reliably improve initial generations, vali- 048

dating the previous findings of Huang et al. (2023). 049

In fact, in the majority of cases, self-refinement 050

has a detrimental effect on performance. On the 051

other hand, fine-tuning language models usually 052

improves their performance on a given task by facil- 053

itating better adaptation to the task objectives (Yuan 054

et al., 2023). Smaller models can be trained on 055

LLMs’ data to improve their performance, which 056

can further serve as cost-effective alternatives to 057

LLMs for the given task (Magister et al., 2023; 058

Shridhar et al., 2023b; Hsieh et al., 2023). Thus, in 059

this paper, we explore the possibility of training a 060

smaller model as the decision maker for refinement, 061

which can be used to determine when to refine the 062

output of a LLM, or use the original output. 063

In our work, we propose a refinement approach 064

called ART: Ask, Refine, and Trust, which, 065

given an initial LLM response, works in the follow- 066

ing three stages: (a) evaluating whether the initial 067

generation requires refinement by asking a series of 068

questions (Ask); (b) executing the refinement step 069

based on the evaluation (Refine); and finally (c) 070

selecting either the refined result or the initial pre- 071

diction (Trust). On two multistep reasoning tasks, 072

mathematical reasoning and question answering, 073

we illustrate the effectiveness of ART by training 074

refiners of different sizes. We observe that a much 075

smaller model (LLaMA 7B; Touvron et al., 2023) 076

trained to decide when to refine, can outperform a 077

10x larger model (LLaMA 70B) in a self-refinement 078

setup (by up to 5 points). We evaluate the cost 079

and accuracy tradeoffs of training a smaller model 080

with ART to make the refinement decision for a 081

pretrained LLM vs fine-tuning the LLM. In many 082

1

Initial Prediction:
2 pairs of shoes for 3

children = 4*3=12 shoes.
Total amount is 12*60 =
720 shoes. The answer is

720.

Question:
John buys 2 pairs of shoes
for each of his 3 children.
They cost $60 each. How

much did he pay?

How many pairs of
shoes did John buy?
How much did John

pay?

Subquestion:
1.

2.

2 pairs of ...
The answer is

720.
ALL SUBQ

ANSWERED

Refinement:
Q: How many pairs of shoes did John buy?

A: John buys 2*3=6 pairs of shoes
Q: How much did John pay?

A: John paid 6*60=360.
The answer is 360.

LLM

2 pairs of ...
Total amount is ...
The answer is 720.TRUSTER

John buys ...
John paid ...

The answer is 360.

1

2

Question

3. Refine

LLM

ALL SUBQ NOT
ANSWERED

 Initial
Prediction

Question
Question

 Initial
Prediction

Refinement

1. Initial Generation 2. Ask

3. Refine 4. Trust

Subquestion

ASKER

Ranking

Figure 1: Our proposed objective: ART: Ask, Refine, and Trust during inference. Given a problem, an LLM
first generates an initial prediction which is sent to an Asker that asks relevant questions (sub-questions) to decide
whether refinement is needed or not. If all sub-questions are answered, it returns the initial prediction and no
refinement is needed. If not, the model refines the initial prediction using the subquestions. Finally, the initial
prediction and the refined response is sent to the Truster, which ranks them to decide if refinement was needed or
if the initial prediction was better.

cases, we illustrate the cost-effectiveness of ART083

as a viable alternative to fine-tuning LLMs. We084

show that our trained models (Asker and Truster)085

can work seamlessly across a wide range of LLMs086

(LLaMA 70B (Touvron et al., 2023), ChatGPT087

(Brown et al., 2020) and GPT-4 (OpenAI, 2023))088

without requiring additional modifications.089

2 ART: Ask, Refine, and Trust090

In this section, we describe our proposed method-091

ology ART: Ask, Refine, and Trust in detail.092

Given a query and an initial prediction generated093

by the LLM, ART uses a trainable pipeline for re-094

finement as follows: (a) evaluate whether the initial095

generation requires refinement by asking a series096

of questions (Ask); (b) perform the refinement step097

based on the evaluation (Refine); and finally (c)098

choose either the refined result or the initial predic-099

tion (Trust).100

2.1 Initial Prediction101

Given a task query x, the LLM ψ generates an102

initial prediction y = ψ (x). For pre-trained LLMs,103

the query x is augmented with several examples of104

the task as few-shot prompts, while for fine-tuned105

models the query is provided directly without any106

examples. Due to the multi-step reasoning nature of107

the tasks where intermediate steps are beneficial for108

the model to arrive at the final answer, we use Chain109

of Thought (CoT; Wei et al., 2022) and Subquestion 110

Decomposition (Decomp; Shridhar et al., 2022; 111

Zhou et al., 2023) as our main methods for initial 112

prediction. 113

2.2 Ask 114

Once the initial prediction is generated, the next 115

step is to decide when to refine the output. Refin- 116

ing every sample often leads to much worse per- 117

formance (Huang et al., 2023). Thus, we train an 118

Asker to determine whether a prediction is cor- 119

rect or not, and then refine only the samples about 120

which the Asker is uncertain about. However, be- 121

fore a smaller model can determine whether a gen- 122

erated answer is correct or whether refinement is 123

needed, it is important to align the model with task- 124

specific knowledge and the expected outcome. We 125

fine-tune the smaller model in CoT style (interme- 126

diate steps with the final answer, as shown by the 127

“Initial Prediction” in Figure 1) on the training data. 128

We first describe how we create the dataset for 129

training the Asker model. We use the LLM ψ to 130

generate k predictions per example on the training 131

set, and then label them “Yes” or “No” for refine- 132

ment based on whether the prediction was correct 133

or incorrect (dataset statistics are presented in Ta- 134

ble 1). For each prediction, we append the subques- 135

tions present in the datasets1 prior to the “Yes” or 136

1Note that the subquestions are available for these datasets

2

“No” decision to train the fine-tuned model. In this137

way the Asker learns to first ask the relevant ques-138

tions, map them to the prediction and then decide139

whether all its questions are answered in the predic-140

tion or not, leading to the refinement decision. An141

example is presented in the appendix (Figure 5).142

Train Samples
Dataset Fine-tune Asker Truster

GSM8K 7473 35000 15000
StrategyQA 1832 9000 2300

Table 1: Comparison of different data sizes used for fine-
tuning, and training the Asker and Truster models.

2.3 Refine143

If the Asker predicts “Yes” (refinement is needed),144

then the LLM ψ is used to refine the output given145

the input and the subquestions from the Asker146

model, yref = ψ(x;subq). Similar to Shridhar et al.147

(2023a), for the StrategyQA dataset, additional148

facts (facts) are also provided to the model ψ149

during refinement (yref = ψ(x;subq;facts)). An150

example is presented in appendix (Figure 6).151

2.4 Trust152

Finally, to decide whether the refinement output153

should be preferred over the original generation,154

we train a Truster that takes two candidates (y,155

yref) for the task query x and decides which one156

to prefer among the two. An example is presented157

in the appendix (section 7). However, we noticed158

that in 80% of the cases, the final answer of the159

refinement yref and the initial prediction y were the160

same. Our goal is to make Truster learn to iden-161

tify the reasoning chain with the correct final an-162

swer and not a particular styled intermediate reason-163

ing chain. Thus, to create an appropriately-sized164

balances training data set, we used the same train-165

ing data collected for the Asker model (Table 1)166

and selected the prediction samples that have both167

a correct and an incorrect prediction. We construct168

preferred (correct predictions) vs. non-preferred169

(incorrect predictions) pairs and train Truster with170

the following text classification objective:171

Lθ = −Ex,yj ,yk∼D [log(σ(rθ(x, yj)− rθ(x, yk)))]172

and we directly used them to train the Asker model. However,
LLMs can also be used to generate subquestions when not
available. Previous work has shown that the quality of sub-
questions generated by LLMs on these datasets is quite close
to the ground truth (Magister et al., 2023).

where, r is the score of the Truster model, yj is 173

the preferred candidate (correct prediction) and yk 174

is the non-preferred candidate (incorrect prediction) 175

from the dataset D. Based on the score for each 176

sample, we select the best scored output. 177

3 Experiments 178

3.1 Dataset 179

We test the ART refinement strategy on two multi- 180

step reasoning tasks, GSM8K (Cobbe et al., 2021) 181

and StrategyQA (Geva et al., 2021). The GSM8K 182

dataset is a grade school math word problem 183

dataset with a training set of 7473 samples and 184

a test set of 1319 samples, each requiring two to 185

eight steps to solve. The dataset also consists of 186

sub-questions that correspond to the steps in a given 187

correct solution. StrategyQA, on the other hand, is 188

a question-answering benchmark that focuses on 189

open-domain questions, requiring step-wise reason- 190

ing to solve it. StrategyQA consists of 2290 train- 191

ing examples, of which the first 20% were used as 192

the test set and the remaining 80% as the training 193

set, following previous work (Magister et al., 2023; 194

Shridhar et al., 2023a). Each question is accompa- 195

nied by its decomposed questions and the correct 196

factual knowledge required to answer it. Example 197

of each dataset is presented in appendix (Figure 6). 198

3.2 Experimental Setup 199

We use LLaMA 70B (pre-trained and 200

chat) (Touvron et al., 2023), ChatGPT 201

(turbo (gpt-3.5-turbo) and turbo-instruct 202

(gpt-3.5-turbo-instruct)) (Brown et al., 203

2020), and GPT-4 (gpt-4) (OpenAI, 2023) 204

as base models ψ due to their popularity and 205

state-of-the-art performance. Next, we fine-tuned 206

variants of the LLaMA model (7B, 13B, and 207

70B) on the GSM8K dataset and 7B and 13B 208

on the StrategyQA dataset using CoT strategy. 209

All fine-tuned variants were further trained to 210

ask relevant questions and decide when to refine 211

to get the Asker model. Finally, we fine-tuned 212

the LLaMA 13B model to get the Truster that 213

decides between the original and refined output. 214

All pre-trained and fine-tuned LLaMA models 215

were used with greedy decoding during testing 216

(temperature = 0 and top p = 1). To collect data 217

for training, different temperatures were used to 218

collect diverse samples (temperature = {0, 0.3, 219

0.4, 0.7, 0.8}) and k was set to 5 to generate 5 220

predictions on the train set. All training was done 221

3

on a cluster of 8 A100 80GB GPUs (except for the222

LLaMA 70B fine-tuning, which required 4 clusters223

of 8 A100s each).224

3.3 Results225

Self-Refinement is not enough Table 2 shows226

the results of initial prediction, refinement, and227

trust. In general, the performance of LLaMA 70B228

is much lower than the ChatGPT turbo model for229

the GSM8K dataset (59 compared to 77 for CoT230

and 55 compared to 78 for Subquestion Decompo-231

sition). The Subquestion Decomposition (Decomp)232

approach performs better than CoT for ChatGPT,233

but the opposite is true for LLaMA 70B. Since the234

training data and the model architecture of Chat-235

GPT are not public, it is difficult to understand the236

performance gap. While, self-refinement improves237

performance in some cases, it leads to worse per-238

formance in others (Red colored boxes in Table 2239

show the comparison). However, combining refine-240

ment with the trust module consistently improves241

performance over the initial prediction in almost242

all cases. This demonstrates the usefulness of the243

different components of our proposed ART method-244

ology . Note that our baselines of the Self modules245

of refinement and trust uses the same prompts as246

presented in Shridhar et al. (2023a) for a fair com-247

parison.248

Importance of Asking Table 2 also demon-249

strates the effectiveness of training an Asker that250

decides when to refine the outputs. Compared to251

the self-refinement (Self) strategy, a much smaller252

model like LLaMA 7B (Asker7B) outperforms253

much larger LLMs like ChatGPT self-refinement254

(Self) by over 2 points (80.89 vs. 78.62). LLaMA255

13B (Asker13B) improves it by over 4 points (78.62256

→ 82.18). The trend is similar when refine-257

ments are compared with the self-refinement ca-258

pabilities (Self) of LLaMA 70B, where a 7B259

model (Asker7B) outperforms the pre-trained self-260

refinement capabilities of LLaMA 70B by about261

2 points (61.33 vs. 59.83) and over 1 point for262

the chat model (58.83 vs. 60.12). The 13B model263

(Asker13B), on the other hand, improves it by over264

3 points for the pretrained LLaMA 70B model265

(59.83 → 62.74) and the chat version by more266

than 4 points (58.83 → 63.00). Finally, using the267

70B model as Asker (Asker70B) further improves268

the results by 4 points for the pre-trained version269

(59.83 → 63.60) and over 5 points for the chat270

version (58.83 → 63.80). The results follow a sim-271

ilar trend for the GPT-4 models, where both the 7B 272

(Asker7B) and 13B (Asker13B) models improve the 273

results over the initial generation by about 2 points 274

(91.88 → 93.72), which is higher than other base- 275

lines from Madaan et al. (2023) and Shridhar et al. 276

(2023a). Finally, note that our proposed strategy 277

ART improves the overall performance of ChatGPT 278

to 82.18 after refining with a single pass (maj1@1), 279

which is similar to the self-consistency score of 3 280

samples (maj1@3) (Huang et al., 2023). 281

The results on StrategyQA follow a similar trend, 282

where a 7B model Asker7B improves the refine- 283

ment score by 1 point for LLaMA 70B (75.15 → 284

76.22) and over 3 points for ChatGPT (70.52 → 285

73.84), as shown in Table 3. Note that follow- 286

ing Shridhar et al. (2023a), we also provide some 287

factual information along with the questions dur- 288

ing refinement so that the model can correct its 289

factual inaccuracy. The gains are larger for the 290

Asker13B model, where the performance improves 291

by 3 points for LLaMA 70B (75.15 → 78.38) and 5 292

points for ChatGPT (70.52 → 75.76), demonstrat- 293

ing the clear importance of asking questions for 294

refinement decision making. 295

(Don’t) Always Trust Refinement Table 2 also 296

demonstrates the usefulness of a trust module that 297

decides whether the refinement improves or de- 298

grades the initial prediction. We train a Truster 299

model that learns to rank the initial prediction and 300

the refined output and decides which one to choose 301

for a given input. Our trained Truster model 302

(LLaMA 13B) achieves an accuracy of the pre- 303

trained LLaMA 70B of as high as 64.24, which 304

is 4 points higher than the baseline (60.43). The 305

trend is similar for the chat version, where the 306

improvement is almost 5 points over the baseline 307

method of using the same LLM for decision mak- 308

ing (59.55 → 64.40). The results follow a similar 309

trend for ChatGPT where the improvement over 310

baselines (the same LLM) is about 4 points for the 311

Turbo model over the baselines (78.89 → 82.64) 312

and about 7 points from the best previous method 313

of Self-Refine (Madaan et al., 2023) (75.10 of Self- 314

Refine → 82.64). The gains for GPT-4 are very 315

small, possibly due to the high performance of the 316

GPT-4 model, but Truster improves the perfor- 317

mance to 94.08 from the previous best refinement 318

score of 93.10. 319

For StrategyQA, the trust module does not prove 320

to be very helpful with a performance very similar 321

to the refinement scores. This shows that it is dif- 322

4

Model Initial Prediction Refinement Trust
Type Method Accuracy Subquestions Model Accuracy Model Accuracy

LLaMA 70B

Pre-trained CoT 59.74 No Self 59.07 Self 59.83
Pre-trained CoT 59.74 Yes Self 59.83 Self 60.43
Pre-trained Decomp 54.66 No Self 55.11 Self 55.34
Pre-trained Decomp 54.66 Yes Self 50.26 Self 54.51
Pre-trained CoT 59.74 Yes Asker7B 61.33 Truster 61.94
Pre-trained CoT 59.74 Yes Asker13B 62.74 Truster 63.85
Pre-trained CoT 59.74 Yes Asker70B 63.60 Truster 64.24

Chat CoT 58.90 No Self 59.10 Self 58.79
Chat CoT 58.90 Yes Self 58.83 Self 59.55
Chat CoT 58.90 Yes Asker7B 60.12 Truster 61.18
Chat CoT 58.90 Yes Asker13B 63.00 Truster 63.30
Chat CoT 58.90 Yes Asker70B 63.80 Truster 64.40

ChatGPT

Turbo CoTS 71.64 NoS SelfS 73.00 SelfS 72.93
Turbo CoTS 71.64 YesS SelfS 73.99 SelfS 73.99
Turbo CoTSR 74.58 NoSR SelfSR 75.00 Most RecentSR 75.00
Turbo CoT!C 75.90 No!C Self!C 75.10 Most Recent!C 75.10
Turbo CoT 77.71 No Self 78.16 Self 78.28
Turbo CoT 77.71 Yes Self 78.46 Self 78.89
Turbo Decomp 78.62 No Self 78.99 Self 78.99
Turbo Decomp 78.62 Yes Self 78.24 Self 79.22
Turbo CoT 77.71 No Asker7B 80.89 Truster 81.14
Turbo CoT 77.71 Yes Asker13B 82.18 Truster 82.64

Instruct CoT 71.26 No Self 70.28 Self 71.50
Instruct CoT 71.26 Yes Self 72.32 Self 72.85
Instruct CoT 71.26 Yes Asker7B 76.19 Truster 76.34
Instruct CoT 71.26 Yes Asker13B 78.46 Truster 79.86

GPT-4

- CoTS 91.45 YesS SelfS 90.80 SelfS 93.10
- CoTSR 92.90 NoSR SelfSR 93.10 Most RecentSR 93.10
- CoT 91.88 Yes Asker7B 93.25 Truster 93.45
- CoT 91.88 Yes Asker13B 93.72 Truster 94.08

Table 2: Accuracy (maj1@1) comparison between different methods and refinement strategies on the GSM8K
dataset. Initial Prediction refers to the initial generation from the LLM with its Method referring to one of the
reasoning strategies (Chain of Thought (CoT) or Subquestion Decomposition (Decomp) in our case). Refinement
refers to the combination of the Ask and the Refine stages in ART with or without the use of subquestions during
refinement (subquestions). Finally, Trust refers to the Trust stage in ART, where Self refers to self-refinement,
Truster is our trained model and Most Recent refers to choosing refinement as the final result. Yellow represents
the baseline methods from previous work ((.)S represents results from Shridhar et al. (2023a), (.)SR from Madaan
et al. (2023), and (.)!C from Huang et al. (2023)), Red represents our implementations of the baselines, and Green
represents our proposed methods. Underline represents the best results from previous strategies, and bold represents
the overall best result.

ficult to train a Truster on fact-based datasets, as323

it is hard to rank two pieces of factual information324

without knowing the true facts.325

Cost of fine-tuning LLMs vs. ART-based refine-326

ment We fine-tune LLaMA 70B to compare it327

with ART based refinment approach. Fine-tuning328

LLaMA 70B achieves 63.2% accuracy on GSM8K329

(Yuan et al., 2023). This is similar to what a trained330

13B Asker13B and Truster can achieve with a pre-331

trained LLaMA 70B model, while incurring much332

lower training costs and computational require-333

ments. Table 4 shows that training a 13B model 334

as Truster is 10X cheaper than fine-tuning a 70B 335

model, and even considering both the trained mod- 336

els (Asker and Truster), ART is still 5X cheaper. 337

In addition, while fine-tuning usually makes the 338

model narrowly specialized to the trained dataset 339

with reduced general in-context learning perfor- 340

mance (Wang et al., 2022b), this doesn’t happen 341

with our pre-trained model as a separate model 342

decides when to refine in our ART framework. 343

5

Initial Pred Refinement Trust
Acc Model Acc Model Acc

LLaMA 70B Pre-trained

74.45 Self 75.15 Self 75.74
74.45 Asker7B 76.22 Truster 76.12
74.45 Asker13B 78.38 Truster 78.44

ChatGPT Turbo

73.58 Self 70.52 Self 74.89
73.58 Asker7B 73.84 Truster 74.04
73.58 Asker13B 75.76 Truster 75.86

Table 3: Accuracy comparison on the StrategyQA
dataset for refinement and trust with different models.
Red represents our implementations of the baselines,

and Green represents our proposed methods.

Objective Model Size Flops GPU Hours

Asker 7B 1.5 X 1017 1
Truster 13B 3 X 1017 4

FineTuning 70B 1.5 X 1018 75

Table 4: Comparison of different compute requirements
for training different sized LLaMA models on GSM8K
with the objective of training a decision maker (Asker
and Truster) vs. finetuning a model (FineTuning).

4 Ablation Studies344

Importance of Asking Questions for Refinement345

For this ablation, we trained Asker to make only346

a binary decision of “Yes” or “No” to refine, with-347

out asking the relevant questions, and found that348

all versions of the LLaMA models always trusted349

the predictions and never decided to refine them.350

LLMs are often bad at judging their own predic-351

tions and often prefer their own predictions (Kada-352

vath et al., 2022), and our experiments observed a353

similar phenomenon. However, asking questions354

leads to a better refinement decision. A qualitative355

example is presented in Figure 3.356

Importance of Truster for selection We com-357

pared the performance of the selection module358

of the LLM (Self) vs. our trained Truster for359

the GSM8K dataset and observed that the trained360

Truster can better assess the errors made in the361

predictions and asks the model to revert to the pre-362

vious generation more (about 50% more compared363

to self-selection); leading to superior performance.364

When to refine? Assessing when to refine is an365

important component of the refinement pipeline, as366

always refining leads to worse results (Huang et al.,367

2023). Figure 2 supports the previous findings368

0 20 40 60 80 100
Num of Resamples (in %)

45
50
55
60
65
70
75
80

Ac
cu

ra
cy

ChatGPT
LLAMA 70B

Figure 2: Number of resamples for refinement for Chat-
GPT and LLaMA 70B models on GSM8K. 0 means no
resampling and 100 means resampling all the time.

and shows that always refining (100% refinement) 369

can hurt overall performance and is worse than 370

the initial prediction (0% refinement). The sweet 371

spot is somewhere in the middle (about 30-35% 372

refinement seems to work for both ChatGPT and 373

LLaMA 70B models on the GSM8K dataset). 374

Can Asker be trained on its own output? In- 375

stead of training an Asker to ask questions on the 376

output of the pre-trained LLM, can we train it on 377

its own predictions? We find that Asker trained on 378

its own data can make a better refinement decision 379

than LLM’s self-refinement abilities. However, as 380

expected, training on pre-trained model data proved 381

to be more beneficial in deciding when to refine, 382

due to a similar distribution of test and training sam- 383

ples, as shown in Table 5. However, for ChatGPT 384

models, Asker trained on its own data performs 385

similarly to that trained on LLaMA 70B models, as 386

both data distributions are different from the Chat- 387

GPT test distribution (82.10 vs. 82.18 for the 13B 388

model and 80.69 vs. 80.89 for the 7B model). 389

Can ART methodology be extended to SoTA mod- 390

els? We fine-tune MetaMath 7B and 13B (Yu 391

et al., 2023) as Asker using the same training strat- 392

egy as Asker models and compare the results in 393

Table 6. MetaMath, due to its training on additional 394

data and superior mathematical reasoning abilities, 395

can evaluate the prediction better and leads to a 396

better overall performance after refinement (62.31 397

vs. 61.33 for 7B and 64.06 vs. 62.74 for 13B vari- 398

ant). MetaMath models also perform better with 399

fewer samples (about 27% fewer samples for 7B 400

and 25% fewer for 13B), suggesting that superior 401

mathematical reasoning can help to better evaluate 402

predictions, leading to fewer uncertain samples for 403

6

Question A customer’s loyalty card at a store gives them rewards of $1 off their next purchase for every $20 they spend. Their
last shopping trip, they spent $80. This shopping trip, they spent $43, used their rewards, and applied a coupon that took twice
the amount of rewards off the price. How many dollars did the customer pay on this shopping trip?

Initial Prediction The customer spent $80 on their last shopping trip, so they earned 80/20 = «80/20=4»4 rewards. They used
2*4 = «2*4=8»8 rewards on this shopping trip. So the price of their purchase was $43 - $8 = $«43-8=35»35. The customer paid
$35 on this shopping trip. The answer is 35. ✗

Self-Refinement Yes, the reasoning is correct. The customer spent $80 on their last shopping trip, earning them 80/20 = 4
rewards. They used 8 rewards on this shopping trip. Therefore, the price of their purchase was $43 - $8 = $35. ✗

Asker How much did the customer get in rewards? What was the coupons cost? How much did the customer pay on this
shopping trip? All questions are not answered.

Refinement How much did the customer get in rewards? The customer had 80 / 20 = $«80/20=4»4 in rewards.

What was the coupons cost? Their coupon was worth 4 * 2 = $«4*2=8»8. How much did the customer pay on this shopping trip?
Thus they paid 43 - 4 - 8 = $«43-4-8=31»31 on this shopping trip. ✓

Figure 3: Qualitative example demonstrating the usefulness of asking questions to decide when to refine and then
using those questions to refine the initial prediction by fixing the errors.

Initial Prediction Refinement
Accuracy Model Data Accuracy

LLaMA 70B Pre-trained

59.74 Asker7B 7B 59.21
59.74 Asker7B 70B 61.33
59.74 Asker13B 13B 62.39
59.74 Asker13B 70B 62.74

ChatGPT Turbo

77.71 Asker7B 7B 80.69
77.71 Asker7B 70B 80.89
77.71 Asker13B 13B 82.10
77.71 Asker13B 70B 82.18

Table 5: Comparison of refinement results when Asker
models are trained on their own outputs vs. LLaMA
70B model outputs on the GSM8K dataset. LLaMA
70B and ChatGPT models are used as decision makers.

refinement. Since MetaMath was trained on over404

250K samples with rejection sampling, it was not405

possible for us to run all experiments on this large406

dataset, and we stick to LLaMA models for all of407

our experiments.408

Initial pred Refinement
Accuracy Asker Acc (↑) % samp (↓)

59.74 LLaMA 7B 61.33 48
59.74 MetaMath 7B 62.31 35
59.74 LLaMA 13B 62.74 36
59.74 MetaMath 13B 64.06 27

Table 6: Comparison of LLaMA 7B and 13B refinement
accuracy (Acc) with the state-of-the-art MetaMath 7B
and 13B models (Yuan et al., 2023) and their sampling
percentage (% samp) for refinement.

Entire ART pipeline in one go To test whether409

the entire ART pipeline of asking relevant questions,410

LLAMA 13B LLAMA 70B
Model Size

0

10

20

30

40

50

60
A

cc
ur

ac
y

(%
)

Pre-trained
Fine-tuned
All in one go

Figure 4: Comparison of the all-in-one approach to fine-
tuning the LLMs on the GSM8K dataset.

then deciding whether the questions are answered 411

or not, and then refining can be learned in one 412

go instead of individual models for each step, we 413

train a LLaMA 13B and 70B model over the entire 414

sequence (all-in-one-go). Figure 4 shows that all- 415

in-one-go (green) performs worse than fine-tuning 416

(orange) for the LLM, demonstrating that learning 417

the sequence of modules together is more challeng- 418

ing for LLMs than modularly learning the various 419

components in the pipeline. 420

5 Key Findings 421

From the experiments, we observe the following: 422

• ART allows smaller models to make re- 423

finement decisions superior to LLM self- 424

refinement: Smaller models trained to make 425

a refinement decision can outperform a much 426

larger model in self-refinement style (Table 2). 427

7

• Ask questions before refinement Asking428

questions is an effective way to verify the qual-429

ity of the generations and allows the models430

to make better refinement decisions.431

• Smaller models’ refinement decisions are432

a cost-effective alternative to fine-tuning433

LLMs The refinement decision of smaller434

models combined with a pre-trained LLM435

performs similarly to a larger model when436

fine-tuned. This saves a lot of computation437

required to fine-tune a larger model (Table 4)438

and preserves downstream performance on439

other tasks.440

• Expert models can make better judgments441

about refinement Larger models (Asker13B442

performance is better than Asker7B in all443

cases) show that better models can make more444

informed decisions about when to refine. Ta-445

ble 6 shows that MetaMath trained models446

outperform LLaMA models of similar size.447

• Trained Truster can rank decisions better448

A trained smaller Truster model can rank the449

results better than the self-selection version of450

LLMs.451

6 Related Work452

Strategies that use intermediate computation to453

solve reasoning tasks such as chain of thought (Wei454

et al., 2022; Lewkowycz et al., 2022; Zhang et al.,455

2022; Kojima et al., 2022; Wang et al., 2022a; LYU456

et al., 2023) and subquestion decomposition (Min457

et al., 2019; Shridhar et al., 2022; Zhou et al., 2023;458

Radhakrishnan et al., 2023) have proven to be very459

effective. However, a lot of times, these LLMs460

don’t get the correct outputs in the first place, of-461

ten requiring a refinement. Most LLM refinement462

techniques use one of these two strategies (Madaan463

et al., 2023; Welleck et al.; Huang et al., 2023; Paul464

et al., 2023; Yoran et al., 2023) or occasionally a465

combination of the two (Shridhar et al., 2023a).466

Shridhar et al. (2023a) unified past reasoning with467

refinement methods under a common umbrella of468

sampling (given a query, LLM generates the ini-469

tial response), re-sampling (LLM refines the initial470

response), and selection (choose either the refine-471

ment or rollback to initial response). However, a472

single LLM was used to perform the initial gen-473

eration, refinement and later selection by using474

different prompts. This makes the entire process475

dependent on the capability of a single model. We,476

on the other hand, propose to train a separate, much477

smaller capacity model to make refinement deci- 478

sions and later decide whether or not to trust the 479

refinement over the initial generation and are not 480

limited to prompting-based solutions. 481

Asking questions to verify factuality of the LLM 482

output has been studied by Dhuliawala et al. (2023). 483

However, this work only deals with hallucinations 484

in the form of directly stated factual inaccuracies. 485

It is important to note that hallucinations can take 486

other forms, including incorrect reasoning steps for 487

reasoning problems considered in our paper. To 488

address this, we train an expert model to verify 489

each reasoning step by asking relevant questions. 490

Training a model to rank LLM outputs has been 491

studied in the past in various contexts (Burges et al., 492

2005), including but not limited to open-ended text 493

generation (Krishna et al., 2022), mathematical 494

reasoning (Cobbe et al., 2021), machine translation 495

(Tunstall et al., 2023), and so on. In our work, we 496

do not study the standard setting of training to rank 497

the quality of generations, but rather to decide if the 498

refinement is inappropriate and needs to be rolled 499

back. Choosing one decision over the other has 500

some additional similarities to rejection sampling 501

fine-tuning (Yuan et al., 2023), where a model is 502

trained to generate and collect the correct reasoning 503

chains as augmented fine-tuning datasets. On the 504

other hand, we collect both correct and incorrect 505

reasoning chains for ranking the outputs. 506

Finally, our work is similar to distilling rea- 507

soning skills into smaller models (Shridhar et al., 508

2023b; Magister et al., 2023; Hsieh et al., 2023). 509

However, instead of teaching smaller models to 510

reason, we train smaller models to ask questions to 511

verify the reasoning and decide whether the reason- 512

ing is correct, which differs from asking questions 513

as planning to reason (Shridhar et al., 2022). 514

7 Conclusion 515

In this work, we propose a refinement strategy 516

called ART: Ask, Refine, and Trust, which al- 517

lows smaller models to make refinement decisions 518

for LLMs and determine whether these refinements 519

are reliable. We empirically demonstrate the effec- 520

tiveness of our approach on two reasoning tasks, 521

mathematical word problems and question answer- 522

ing. Our results show that smaller models, even up 523

to 10X smaller, can outperform larger models in 524

making refinement decisions. 525

8

Limitations and ethical considerations526

In this work, we trained a Asker to make a refine-527

ment decision by asking questions to verify the528

predictions. We used the training data available529

for the GSM8K and StrategyQA datasets. How-530

ever, for many tasks, training subquestions data531

may not be available. In such cases, LLMs can532

be used to generate such data without significant533

drop in performance as shown in Magister et al.534

(2023). However, we have not tested this with ART535

due to the availability of the training dataset. In536

addition, for StrategyQA, we used the available537

facts to support the model decision when refining538

the predictions. These facts were available in the539

dataset, but in the real world, these can be extracted540

with the help of some tools or from some databases.541

We did not test this approach in our work and leave542

it for future work.543

Finally, our work uses LLMs for reasoning tasks544

and LLMs may not always exhibit correct reason-545

ing and might provide inconsistent or implausi-546

ble answers, leading to inaccuracies in decision-547

making. We donot recommed using our approach548

for a real-life scenario like education.549

References550

Tom Brown, Benjamin Mann, Nick Ryder, Melanie551
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind552
Neelakantan, Pranav Shyam, Girish Sastry, Amanda553
Askell, Sandhini Agarwal, Ariel Herbert-Voss,554
Gretchen Krueger, Tom Henighan, Rewon Child,555
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens556
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-557
teusz Litwin, Scott Gray, Benjamin Chess, Jack558
Clark, Christopher Berner, Sam McCandlish, Alec559
Radford, Ilya Sutskever, and Dario Amodei. 2020.560
Language models are few-shot learners. In Ad-561
vances in Neural Information Processing Systems,562
volume 33, pages 1877–1901. Curran Associates,563
Inc.564

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier,565
Matt Deeds, Nicole Hamilton, and Greg Hullender.566
2005. Learning to rank using gradient descent. In567
Proceedings of the 22nd International Conference568
on Machine Learning, ICML ’05, page 89–96, New569
York, NY, USA. Association for Computing Machin-570
ery.571

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,572
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias573
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro574
Nakano, Christopher Hesse, and John Schulman.575
2021. Training verifiers to solve math word prob-576
lems.577

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, 578
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and 579
Jason Weston. 2023. Chain-of-verification reduces 580
hallucination in large language models. ArXiv, 581
abs/2309.11495. 582

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, 583
Dan Roth, and Jonathan Berant. 2021. Did Aristo- 584
tle Use a Laptop? A Question Answering Bench- 585
mark with Implicit Reasoning Strategies. Transac- 586
tions of the Association for Computational Linguis- 587
tics (TACL). 588

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, 589
Hootan Nakhost, Yasuhisa Fujii, Alexander J. Ratner, 590
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. 591
2023. Distilling step-by-step! outperforming larger 592
language models with less training data and smaller 593
model sizes. ArXiv, abs/2305.02301. 594

Jie Huang, Xinyun Chen, Swaroop Mishra, 595
Huaixiu Steven Zheng, Adams Wei Yu, Xiny- 596
ing Song, and Denny Zhou. 2023. Large language 597
models cannot self-correct reasoning yet. ArXiv, 598
abs/2310.01798. 599

Saurav Kadavath, Tom Conerly, Amanda Askell, T. J. 600
Henighan, Dawn Drain, Ethan Perez, Nicholas 601
Schiefer, Zachary Dodds, Nova DasSarma, Eli Tran- 602
Johnson, Scott Johnston, Sheer El-Showk, Andy 603
Jones, Nelson Elhage, Tristan Hume, Anna Chen, 604
Yuntao Bai, Sam Bowman, Stanislav Fort, Deep 605
Ganguli, Danny Hernandez, Josh Jacobson, John 606
Kernion, Shauna Kravec, Liane Lovitt, Kamal 607
Ndousse, Catherine Olsson, Sam Ringer, Dario 608
Amodei, Tom B. Brown, Jack Clark, Nicholas Joseph, 609
Benjamin Mann, Sam McCandlish, Christopher Olah, 610
and Jared Kaplan. 2022. Language models (mostly) 611
know what they know. ArXiv, abs/2207.05221. 612

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu- 613
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan- 614
guage models are zero-shot reasoners. In Advances in 615
Neural Information Processing Systems, volume 35, 616
page 22199–22213. Curran Associates, Inc. 617

Kalpesh Krishna, Yapei Chang, John Wieting, and Mo- 618
hit Iyyer. 2022. Rankgen: Improving text generation 619
with large ranking models. ArXiv, abs/2205.09726. 620

Aitor Lewkowycz, Anders Andreassen, David Dohan, 621
Ethan Dyer, Henryk Michalewski, Vinay Venkatesh 622
Ramasesh, Ambrose Slone, Cem Anil, Imanol 623
Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam 624
Neyshabur, Guy Gur-Ari, and Vedant Misra. 2022. 625
Solving quantitative reasoning problems with lan- 626
guage models. ArXiv, abs/2206.14858. 627

QING LYU, Shreya Havaldar, Adam Stein, Li Zhang, 628
Delip Rao, Eric Wong, Marianna Apidianaki, and 629
Chris Callison-Burch. 2023. Faithful chain-of- 630
thought reasoning. ArXiv, abs/2301.13379. 631

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler 632
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, 633
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, 634

9

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/1102351.1102363
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2309.11495
https://arxiv.org/abs/2309.11495
https://arxiv.org/abs/2309.11495
https://aclanthology.org/2021.tacl-1.21/
https://aclanthology.org/2021.tacl-1.21/
https://aclanthology.org/2021.tacl-1.21/
https://aclanthology.org/2021.tacl-1.21/
https://aclanthology.org/2021.tacl-1.21/
https://arxiv.org/abs/2305.02301
https://arxiv.org/abs/2305.02301
https://arxiv.org/abs/2305.02301
https://arxiv.org/abs/2305.02301
https://arxiv.org/abs/2305.02301
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2207.05221
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://arxiv.org/abs/2205.09726
https://arxiv.org/abs/2205.09726
https://arxiv.org/abs/2205.09726
https://openreview.net/forum?id=IFXTZERXdM7
https://openreview.net/forum?id=IFXTZERXdM7
https://openreview.net/forum?id=IFXTZERXdM7
https://api.semanticscholar.org/CorpusID:256416127
https://api.semanticscholar.org/CorpusID:256416127
https://api.semanticscholar.org/CorpusID:256416127

Sean Welleck, Bodhisattwa Prasad Majumder,635
Shashank Gupta, Amir Yazdanbakhsh, and Peter636
Clark. 2023. Self-refine: Iterative refinement with637
self-feedback. Advances in Neural Information Pro-638
cessing Systems, 2023.639

Lucie Charlotte Magister, Jonathan Mallinson, Jakub640
Adamek, Eric Malmi, and Aliaksei Severyn. 2023.641
Teaching small language models to reason. In Pro-642
ceedings of the 61st Annual Meeting of the Associa-643
tion for Computational Linguistics (Volume 2: Short644
Papers), pages 1773–1781, Toronto, Canada. Associ-645
ation for Computational Linguistics.646

Sewon Min, Victor Zhong, Luke Zettlemoyer, and Han-647
naneh Hajishirzi. 2019. Multi-hop reading compre-648
hension through question decomposition and rescor-649
ing. In Proceedings of the 57th Annual Meeting of650
the Association for Computational Linguistics, pages651
6097–6109, Florence, Italy. Association for Compu-652
tational Linguistics.653

OpenAI. 2023. Gpt-4 technical report.654

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beat-655
riz Borges, Antoine Bosselut, Robert West, and Boi656
Faltings. 2023. Refiner: Reasoning feedback on in-657
termediate representations. ArXiv, abs/2304.01904.658

Ansh Radhakrishnan, Karina Nguyen, Anna Chen,659
Carol Chen, Carson E. Denison, Danny Hernan-660
dez, Esin Durmus, Evan Hubinger, John Kernion,661
Kamil.e Lukovsiut.e, Newton Cheng, Nicholas662
Joseph, Nicholas Schiefer, Oliver Rausch, Sam Mc-663
Candlish, Sheer El Showk, Tamera Lanham, Tim664
Maxwell, Venkat Chandrasekaran, Zac Hatfield-665
Dodds, Jared Kaplan, Janina Brauner, Sam Bowman,666
and Ethan Perez. 2023. Question decomposition im-667
proves the faithfulness of model-generated reasoning.668
ArXiv, abs/2307.11768.669

Kumar Shridhar, Harsh Jhamtani, Hao Fang, Ben-670
jamin Van Durme, Jason Eisner, and Patrick Xia.671
2023a. Screws: A modular framework for reasoning672
with revisions. ArXiv, abs/2309.13075.673

Kumar Shridhar, Jakub Macina, Mennatallah El-Assady,674
Tanmay Sinha, Manu Kapur, and Mrinmaya Sachan.675
2022. Automatic generation of socratic subquestions676
for teaching math word problems. In Proceedings677
of the 2022 Conference on Empirical Methods in678
Natural Language Processing. Association for Com-679
putational Linguistics.680

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya681
Sachan. 2023b. Distilling reasoning capabilities into682
smaller language models. In Findings of the Asso-683
ciation for Computational Linguistics: ACL 2023,684
pages 7059–7073, Toronto, Canada. Association for685
Computational Linguistics.686

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-687
bert, Amjad Almahairi, Yasmine Babaei, Nikolay688
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti689
Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-690
tian Cantón Ferrer, Moya Chen, Guillem Cucurull,691

David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin 692
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, 693
Naman Goyal, Anthony S. Hartshorn, Saghar Hos- 694
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor 695
Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V. 696
Korenev, Punit Singh Koura, Marie-Anne Lachaux, 697
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai 698
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, 699
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew 700
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan 701
Saladi, Alan Schelten, Ruan Silva, Eric Michael 702
Smith, R. Subramanian, Xia Tan, Binh Tang, Ross 703
Taylor, Adina Williams, Jian Xiang Kuan, Puxin 704
Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, An- 705
gela Fan, Melanie Kambadur, Sharan Narang, Aure- 706
lien Rodriguez, Robert Stojnic, Sergey Edunov, and 707
Thomas Scialom. 2023. Llama 2: Open foundation 708
and fine-tuned chat models. ArXiv, abs/2307.09288. 709

Lewis Tunstall, Edward Beeching, Nathan Lambert, 710
Nazneen Rajani, Alexander M. Rush, and Thomas 711
Wolf. 2023. The alignment handbook. https:// 712
github.com/huggingface/alignment-handbook. 713

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, 714
Ed Huai hsin Chi, and Denny Zhou. 2022a. Self- 715
Consistency improves chain of thought reasoning in 716
language models. ArXiv, abs/2203.11171. 717

Yihan Wang, Si Si, Daliang Li, Michal Lukasik, Felix X. 718
Yu, Cho-Jui Hsieh, Inderjit S. Dhillon, and Surinder 719
Kumar. 2022b. Two-stage llm fine-tuning with less 720
specialization and more generalization. 721

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 722
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le, 723
and Denny Zhou. 2022. Chain of thought prompt- 724
ing elicits reasoning in large language models. In 725
Advances in Neural Information Processing Systems. 726

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, 727
Tianxiao Shen, Daniel Khashabi, and Yejin Choi. 728
Generating sequences by learning to self-correct. In 729
The Eleventh International Conference on Learning 730
Representations, 2023. 731

Ori Yoran, Tomer Wolfson, Ben Bogin, Uri Katz, Daniel 732
Deutch, and Jonathan Berant. 2023. Answering 733
questions by meta-reasoning over multiple chains 734
of thought. ArXiv, abs/2304.13007. 735

Long Long Yu, Weisen Jiang, Han Shi, Jincheng Yu, 736
Zhengying Liu, Yu Zhang, James T. Kwok, Zheng Li, 737
Adrian Weller, and Weiyang Liu. 2023. Metamath: 738
Bootstrap your own mathematical questions for large 739
language models. ArXiv, abs/2309.12284. 740

Zheng Yuan, Hongyi Yuan, Cheng Li, Guanting Dong, 741
Chuanqi Tan, and Chang Zhou. 2023. Scaling re- 742
lationship on learning mathematical reasoning with 743
large language models. ArXiv, abs/2308.01825. 744

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alexan- 745
der J. Smola. 2022. Automatic chain of thought 746
prompting in large language models. ArXiv, 747
abs/2210.03493. 748

10

https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://doi.org/10.18653/v1/2023.acl-short.151
https://doi.org/10.18653/v1/P19-1613
https://doi.org/10.18653/v1/P19-1613
https://doi.org/10.18653/v1/P19-1613
https://doi.org/10.18653/v1/P19-1613
https://doi.org/10.18653/v1/P19-1613
http://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2304.01904
https://arxiv.org/abs/2304.01904
https://arxiv.org/abs/2304.01904
https://arxiv.org/abs/2307.11768
https://arxiv.org/abs/2307.11768
https://arxiv.org/abs/2307.11768
https://arxiv.org/abs/2309.13075
https://arxiv.org/abs/2309.13075
https://arxiv.org/abs/2309.13075
https://aclanthology.org/2022.emnlp-main.277/
https://aclanthology.org/2022.emnlp-main.277/
https://aclanthology.org/2022.emnlp-main.277/
https://doi.org/10.18653/v1/2023.findings-acl.441
https://doi.org/10.18653/v1/2023.findings-acl.441
https://doi.org/10.18653/v1/2023.findings-acl.441
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/alignment-handbook
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2211.00635
https://arxiv.org/abs/2211.00635
https://arxiv.org/abs/2211.00635
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=hH36JeQZDaO
https://arxiv.org/abs/2304.13007
https://arxiv.org/abs/2304.13007
https://arxiv.org/abs/2304.13007
https://arxiv.org/abs/2304.13007
https://arxiv.org/abs/2304.13007
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2308.01825
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=5NTt8GFjUHkr

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo749
Li, and Yu Li. 2023. Progressive-hint prompting750
improves reasoning in large language models.751

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,752
Nathan Scales, Xuezhi Wang, Dale Schuurmans,753
Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi.754
2023. Least-to-most prompting enables complex rea-755
soning in large language models. In The Eleventh756
International Conference on Learning Representa-757
tions, 2023.758

11

http://arxiv.org/abs/2304.09797
http://arxiv.org/abs/2304.09797
http://arxiv.org/abs/2304.09797
https://openreview.net/pdf?id=WZH7099tgfM
https://openreview.net/pdf?id=WZH7099tgfM
https://openreview.net/pdf?id=WZH7099tgfM

Question A customer’s loyalty card at a store gives them rewards of $1 off their next purchase for every $20 they spend. Their
last shopping trip, they spent $80. This shopping trip, they spent $43, used their rewards, and applied a coupon that took twice
the amount of rewards off the price. How many dollars did the customer pay on this shopping trip?

Initial Prediction The customer spent $80 on their last shopping trip, so they earned 80/20 = «80/20=4»4 rewards. They used
2*4 = «2*4=8»8 rewards on this shopping trip. So the price of their purchase was $43 - $8 = $«43-8=35»35. The customer paid
$35 on this shopping trip. The answer is 35. ✗

Ask How much did the customer get in rewards? What was the coupons cost? How much did the customer pay on this shopping
trip? All questions are not answered.

Refine How much did the customer get in rewards? The customer had 80 / 20 = $«80/20=4»4 in rewards. What was the coupons
cost? Their coupon was worth 4 * 2 = $«4*2=8»8. How much did the customer pay on this shopping trip? Thus they paid 43 - 4
- 8 = $«43-4-8=31»31 on this shopping trip. ✓

Trust The customer had 80 / 20 = $«80/20=4»4 in rewards. Their coupon was worth 4 * 2 = $«4*2=8»8. Thus they paid 43 - 4 -
8 = $«43-4-8=31»31 on this shopping trip. ✓

Question The cell-phone recharges at the rate of 1 percentage-point of charge per 3 minutes. Now, the phone is at 60% charged.
How long will it take to fully charge, in hours?

Initial Prediction The phone needs 100-60 = «100-60=40»40% more charge to be fully charged. Since the phone recharges at
the rate of 1 percentage-point of charge per 3 minutes, it will take 40*3 = «40*3=120»120 minutes to fully charge. Therefore, it
will take 120/60 = «120/60=2»2 hours to fully charge. The answer is 2. ✓

Ask How many percentage points is left to be charged? How many minutes will it take to fully charge? How long will it take to
fully charge, in hours? All questions are answered.

Figure 5: End to end flow of our proposed objective of ART: Ask, Refine, and Trust if Asker decides to refine
(top) vs no refinement needed (bottom).

Question Claire makes a 3 egg omelet every morning for breakfast. How many dozens of eggs will she eat in 4 weeks?

Subquestions How many eggs does Claire eat in a week? How many eggs will Claire eat in 4 weeks? How many dozens of eggs
will Claire eat in 4 weeks?
Answer She eats 3 eggs every day and there are 7 days in a week so she eats 3*7 = «3*7=21»21 eggs a week. After 4 weeks she
will have eaten 4*21 = «4*21=84»84 eggs. There are 12 eggs in 1 dozen and she’ll eat 84 eggs so that’s 84/12 = «84/12=7»7
dozen eggs.

Question Can a greyhound walk on two legs?

Subquestions What type of animal is a greyhound? Does #1 walk on two legs?

Facts Greyhounds are dogs. Dogs walk on four legs.

Answer False

Figure 6: Example of a GSM8K data sample (top) and StrategyQA data sample (bottom).

12

	Introduction
	ART: Ask, Refine, and Trust
	Initial Prediction
	Ask
	Refine
	Trust

	Experiments
	Dataset
	Experimental Setup
	Results

	Ablation Studies
	Key Findings
	Related Work
	Conclusion

