
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IMPROVING MULTI-STEP RAG WITH HYPERGRAPH-
BASED MEMORY FOR LONG-CONTEXT COMPLEX RE-
LATIONAL MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-step retrieval-augmented generation (RAG) has become a widely adopted
strategy for enhancing large language models (LLMs) on tasks that demand global
comprehension and intensive reasoning. Many RAG systems incorporate a work-
ing memory module to consolidate retrieved information. However, existing mem-
ory designs function primarily as passive storage that accumulates isolated facts
for the purpose of condensing the lengthy inputs and generating new sub-queries
through deduction. This static nature overlooks the crucial high-order correlations
among primitive facts, the compositions of which can often provide stronger guid-
ance for subsequent steps. Therefore, their representational strength and impact on
multi-step reasoning and knowledge evolution are limited, resulting in fragmented
reasoning and weak global sense-making capacity in extended contexts.

We introduce HGMEM, a hypergraph-based memory mechanism that extends the
concept of memory beyond simple storage into a dynamic, expressive structure for
complex reasoning and global understanding. In our approach, memory is repre-
sented as a hypergraph whose hyperedges correspond to distinct memory units, en-
abling the progressive formation of higher-order interactions within memory. This
mechanism connects facts and thoughts around the focal problem, evolving into
an integrated and situated knowledge structure that provides strong propositions
for deeper reasoning in subsequent steps. We evaluate HGMEM on several chal-
lenging datasets designed for global sense-making. Extensive experiments and
in-depth analyses show that our method consistently improves multi-step RAG
and substantially outperforms strong baseline systems across diverse tasks.

1 INTRODUCTION

Single-step retrieval-augmented generation (RAG) often proves insufficient for resolving complex
queries within long contexts (Trivedi et al., 2023; Shao et al., 2023; Cheng et al., 2025), motivat-
ing the shift toward multi-step RAG methods that iteratively interleave retrieval with reasoning. To
effectively capture dependencies across steps and condense the lengthy processing history, many ap-
proaches incorporate working memory mechanisms inspired by human cognition (Lee et al., 2024;
Zhong et al., 2024). However, current memory-enhanced multi-step RAG methods still face chal-
lenges in complex relational modeling, especially for resolving global sense-making tasks over long
contexts.

During multi-step RAG execution, a straightforward implementation of working memory mech-
anism is to let a large language model (LLM) summarize the interaction history into a plaintext
description of current problem-solving state. This strategy has been widely adopted since early stud-
ies (Li et al., 2023; Trivedi et al., 2023) as well as in commercial systems (Jones, 2025; Shen & Yang,
2025). Nonetheless, such unstructured memory mechanisms cannot be manipulated with sufficient
accuracy across steps and often lose the ability to back-trace references to retrieved texts. Conse-
quently, recent research has shifted toward structured or semi-structured working memory, typically
with predefined schemas such as relational tables (Lu et al., 2023), knowledge graphs (Oguz et al.,
2022; Xu et al., 2025), or event-centric bullet points (Wang et al., 2025).

1

周楚伦
Highlight

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

However, existing memory mechanisms often treat memory as static storage that continually accu-
mulates meaningful but primitive facts. This view overlooks the evolving nature of human working
memory, which incrementally incorporates higher-order correlations from previously memorized
content. This capacity is particularly crucial for resolving global sense-making tasks that involve
complex relational modeling over long contexts. In such scenarios, the required knowledge for tack-
ling a query is often composed of complex structures that extend beyond predefined schemas, and
reasoning over long lists of primitive facts is both inefficient and prone to confusion with mixed or
irrelevant information. Current memory mechanisms in multi-step RAG systems lack these abilities,
preventing memory from effectively guiding LLMs’ interaction with external data sources. These
limitations highlight the need for a working memory with stronger representational capacity.

In this paper, we propose a hypergraph-based memory mechanism (HGMEM) for multi-step RAG
systems, which enables memory to evolve into more expressive structures that support complex
relational modeling to enhance LLMs’ understanding over long contexts. Hypergraphs, as a gener-
alization of graphs, are particularly well-suited for this purpose (Feng et al., 2019). In our design,
memory is structured as a hypergraph composed of hyperedges, each treated as a distinct memory
point that represents a specific perspective of the memorized information. Initially, these memory
points encode low-order primitive facts. As the LLM interacts with external environments, higher-
order correlations among memory points gradually emerge and are progressively integrated into the
memory through update, insertion, and merging operations. At each step before response generation,
the LLM examines the current memory and generates subqueries, enabling adaptive memory-based
evidene retrieval for both focused local investigation and broad global exploration.

This rich and structured memory facilitates broader contextual awareness and stronger reasoning in
real-world applications by offering several advantages. First, it maintains an integrated body of
knowledge around the focal problem by synthesizing primitive evidence and intermediate thoughts,
typically going beyond predefined schemas and providing a global perspective over the evidence.
Second, it offers structured and accurate guidance for the LLM’s sustained interactions in two
ways: (1) enabling subsequent reasoning to start from representational propositions rather than from
a long list of disparate primitive facts; and (2) leveraging the topological structure of hypergraph to
guide subquery generation and evidence retrieval in a more accurate manner.

We conduct extensive experiments on several challenging tasks involving global sense-making ques-
tions within long contexts. The results show that our HGMEM achieves significant improvements
over competitive RAG baselines, confirming the advantages.

2 RELATED WORK

2.1 WORKING MEMORY MECHANISMS FOR MULTI-STEP RAG

Starting from ReAct (Yao et al., 2023), many multi-step RAG systems have incorporated reflections
to integrate available information for subsequent decisions. These reflections can be regarded as a
simple form of memory. With the development of structured indexing for RAG, working memory
also borrows this idea. Prevailing studies (Li et al., 2023; 2025a; Shen & Yang, 2025; Chhikara et al.,
2025; Xu et al., 2025) save agent behavior, such as task decomposing, execution tracking, and result
verification, to manage task context more effectively, representing a step toward explicit working
memory for complex multi-agent coordination. This idea also matured in chain-of-thought (CoT)
and multi-round RAG, where working memory is represented as iteratively updated records of rea-
soning steps or retrieved evidence. For example, IRCOT (Trivedi et al., 2023) and ComoRAG (Wang
et al., 2025) employ a dynamic memory workspace to iteratively consolidate past knowledge or steps
and incorporate new evidence, supporting scalable and iterative reasoning across multiple steps.

Some studies take a step further to adopt a graph-structured working memory to enhance multi-step
RAG (Liu et al., 2024; Li et al., 2025a). ERA-CoT (Liu et al., 2024) aids LLMs in understanding
context through a series of pre-defined reasoning substeps performing entity-relationship analysis.
KnowTrace (Li et al., 2025a) equips LLMs with a graph-based working memory to trace relevant
knowledge through multi-step RAG execution. However, the working memories of these graph-
enhanced work do not effectively support modeling high-order correlations among multiple enti-
ties/relationships as each edge in their graphs can intrinsically describe at most binary relationships.
By contrast, due to the high-order nature of hypergraph structure, our HGMEM naturally enables

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

its working memory to evolve into more expressive forms capable of flexibly modeling high-order
n-ary (n > 2) relations. This advantage helps to fully unleash the reasoning capability of LLMs for
multi-step RAG, especially crucial for resolving global sense-making questions that require complex
reasoning and deep understanding over long contexts.

2.2 RAG WITH STRUCTURED KNOWLEDGE INDEX

There is a long line of work that studies managing extended corpora through structured knowledge
indexing to enhance RAG. Though different from our focus on working memory mechanism, these
work can be viewed as building structured (and static) long-term memory before actually tackling
user queries, thus are relevant. Specifically, tree-structured methods, such as RAPTOR (Sarthi et al.,
2024), T-RAG (Fatehkia et al., 2024), and TreeRAG (Tao et al., 2025), organize text chunks or entity
hierarchies, enabling multi-level or bidirectional retrieval to enhance context integration. Another
line of research focuses on building graph-structured index to flexibly represent knowledge for en-
hancing RAG systems (Xu et al., 2024a; Edge et al., 2024; Guo et al., 2024; Li et al., 2025b). For
example, GraphRAG (Edge et al., 2024) and LightRAG (Guo et al., 2024) build entity graphs and
community-level summaries, or leverage graph-enhanced indexing for dual-level retrieval, leading
to improvements in global reasoning, retrieval efficiency, and response diversity. CAM (Li et al.,
2025b) proposes a constructivist agentic memory that flexibly assimilates and accommodates input
texts within a hierarchical graph. HypergraphRAG (Luo et al., 2025) and PropRAG (Wang, 2025)
adopt hypergraph to build their structured knowledge index and design retrieval/search algorithms
for query resolving. In addition, there are also a range of other memory mechanisms, essentially
structured knowledge index, that simulate long contexts or dialog histories as long-term memory
to improve RAG systems. According to the form of memory representation, they can be basically
classified as contextual memory (Chen et al., 2023; Gutierrez et al., 2024; Lee et al., 2024; Li et al.,
2024b; Gutiérrez et al., 2025) and parametric memory (Qian et al., 2025).

However, these existing studies merely leverage their structured index (or memory) as static storage,
which are typically constructed during an offline indexing stage before actually responding to user
queries.

3 METHODOLOGY

We introduce HGMEM, the hypergraph-based memory mechanism designed to facilitate better con-
textual awareness and reasoning in multi-step RAG settings with structured data sources, especially
for long-context tasks that require complex global sense-making.

3.1 PROBLEM FORMULATION

In this work, we consider the kind of tasks for LLMs to resolve a query based on a given document.
Besides the plain texts, we assume that the document has been preprocessed into a graph through
an offline graph-building stage, where entities and relationships are extracted from the document
passage.Formally, let us denote the document as D segmented into a set of small manageable text
chunks {d1, d2, ..., d|D|}, and the derived graph as G composed of nodes VG and edges EG corre-
sponding to the extracted entities and relationships, respectively. Each node v ∈VG or edge e∈EG
is associated with the source text chunks in which its embodied entity/relationship appears, which
is recorded during the offline graph construction. Meanwhile, the nodes, edges, and text chunks are
embedded into high-dimensional vectors for vector-based retrieval. For resolving the query, LLMs
have access to both the document and its derived graph as structured data sources.

3.2 MULTI-STEP RAG SYSTEM WITH MEMORY

When dealing with tasks requiring comprehensive understanding, especially over long context, RAG
systems usually resort to multi-step approaches with an underlying memory mechanism, where re-
trieval operations are interleaved with intermediate reasoning to support broader contextual aware-
ness.

Given a target query q̂, the LLM iteratively interacts with D and G while managing a memoryM to
store relevant information for ultimately resolving q̂. During each interaction step t, the LLM judges

3

周楚伦
Highlight

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: (i) The RAG system at its t-th interaction step. ①: The LLM adaptively generates a set
of subqueries Q(t) for either local investigation or global exploration (see Section 3.4). ②: Q(t) are
used to retrieve information from D and G. ③: VQ(t) , E(VQ(t)) and D(VQ(t)) are obtained through
graph-based indexing and vector-based matching. ④: The LLM evolves current memoryM(t) into
M(t+1) using Equation 2. (ii) The structure of our proposed hypergraph-based memory that evolves
through update, insertion and merging operations.

whether the content of current memory has been sufficient with respect to the target query. If the
memory is deemed sufficient, it immediately produces a response. Otherwise, it analyzes current
memory and generates several subqueries Q(t) that aim at fetching more information from external
environment to enrich the memory. The prompts for generating subqueries are given in Appendix E.

Let RV(Q) define the entity retrieval operation fetching the most relevant nodes to a query set Q
from a candidate node set V using vector-based matching:

RV(Q) =
⋃
q∈Q

nv
argmax

v ∈V
(sim(hq,hv)), (1)

where nv is the number of retrieved entities per query, hq is the vector representation of q, hv is the
vector representation of v, and sim(·, ·) is the cosine similarity function.

As illustrated in Figure 1 (i), at the t-th step, if the LLM proceeds to generate subqueriesQ(t) based
on current memoryM(t) maintained until the previous step, it retrieves a set of the most relevant
entities VQ(t) =RVG (Q(t)) from VG . Then, via graph-based indexing, the relationships and text
chunks associated with the entities in VQ(t) are also obtained, represented as E(VQ(t)) andD(VQ(t)),
respectively.1 Subsequently, the LLM analyzes and consolidates these retrieved information into the
memory, evolving memory intoM(t+1), which can be formalized as

M(t+1) ← LLM(M(t),VQ(t) , E(VQ(t)),D(VQ(t))). (2)

Note that, at the initial step (t=0), we treat the target query q̂ as a special subquery belonging to
Q(0), i.e.Q(0)={q̂}. Further details about the memory storage, subquery generation and the dynamic
of memory evolving will be elaborated in Section 3.3, Section 3.4 and Section 3.5, respectively.

1We also use vector-based filtering to keep at most ne relationships and nd text chunks.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 HYPERGRAPH-BASED MEMORY STORAGE

When the LLM interacts with the documentD and the graph G, it continuously consolidates relevant
information into the memory storageM, which is modeled as a hypergraph:

M = (VM, ẼM), (3)

where VM = {v1, v2, ...} is the vertex set and ẼM = {ẽ1, ẽ2, ...} is the hyperedge set. It should
be noted that the vertices in VM are actually equivalent to those nodes in VG , both embodying
identified entities. Particularly, VM is a subset of VG . In our implementation, we ensure that each
vertex vi ∈VM must also exist in G.2 Formally, every vertex vi ∈VM is represented as

vi = (Ωent
vi ,Dvi), (4)

where Ωent
vi stands for the information of its embodied entity including name and description, and

Dvi denotes the set of text chunks associated with this vertex vi. Similarly, every hyperedge ẽj ∈EM
is represented as

ẽj = (Ωrel
ẽj ,Vẽj), (5)

where Ωrel
ẽj

characterizes the description of the embodied relationship and Vẽj is the set of involved
vertices subordinate to this hyperedge ẽj . Particularly, the hyperedges can be treated as separate
memory points, each of which corresponds to a certain aspect of the entire information stored in
current memory, as shown in Figure 1 (ii). Unlike those binary edges EG that connect at most two
nodes in the external graph, a hyperedge can connect an arbitrary number (two or more) of vertices.
In this way, our hypergraph-based memory is capable of flexibly modeling high-order correlation
among multiple vertices (n ≥ 2). As a result, the whole memory as a hypergraph can effectively
support complex relational modeling, ensuring strong expressiveness to enhance LLMs’ reasoning.

3.4 ADAPTIVE MEMORY-BASED EVIDENCE RETRIEVAL

As described in Section 3.2, at each step t of our RAG workflow, with respect to the target query, the
LLM determines whether to immediately produce a response or proceed to acquire more information
from the external documents D and graph G. If current memory M(t) =(V(t)

M , Ẽ(t)M) is deemed
insufficient, the LLM first analyzesM(t) and generates several subqueries Q(t) indicating what to
further explore. Specifically, we design an adaptive memory-based evidence retrieval strategy for
either local investigation or global exploration with Q(t):

(i) Local Investigation: When the LLM plans to more deeply investigate some specific memory
points, its generated subqueries are utilized to trigger local evidence retrieval over G. Con-
cretely, suppose a q ∈Q(t) especially targets at inspecting ẽj ∈ Ẽ(t)M , the nodes corresponding
to the vertices Vẽj subordinate to ẽj are used as anchor nodes on G. Thereafter, using the op-
eration defined by Equation 1, entity retrieval is conducted within the neighborhood of these
anchors, which is formalized as

Vq = RN (Vẽj
)(q), (6)

N (Vẽj) =
⋃

v∈Vẽj

(NM(t)(v) ∪ NG(v)),

whereNM(t)(v) represents the neighboring vertices of v overM(t) andNG(v) represents the
neighboring nodes of v over G.

(ii) Global Exploration: When there are unexplored aspects transcending the scope of current
memory, the LLM resorts to generating subqueries for exploring broader information from the
external documents and graph, not pertinent to any existing memory point. For a q ∈Q(t), the
process of entity retrieval can be written as

Vq = RC(M(t))(q), (7)

C(M(t)) = VG − VM(t) ,

where C(M(t)) represents the available scope comprised of all nodes except those already
existing in current memory.

2If any vertex does not exist in VG , we forcibly insert it, along with its associated relationships, into G.

5

周楚伦
Highlight

周楚伦
Highlight

周楚伦
Highlight

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

• Point 1
Subordinate Entities: COWSLIP, MOTH
Description: Insects such as moths are critical to survival
of cowslips.

Update

• Point 1 (updated)
Subordinate Entities: COWSLIP, MOTH
Description: Insects such as moths play critical roles in
the pollination and survival of cowslips.

In
se

rt

• Point 1
Subordinate Entities: COWSLIP, MOTH
Description: Insects such as moths play critical roles in the
pollination and survival of cowslips.

• Point 2 (inserted)
Subordinate Entities: CUCULLIA, BOMBYLIUS
Description: Cucullias visit cowslips at night for fertilization,
while Bombylius also aid in the pollination process.

• Point 3 (inserted)
Subordinate Entities: ANTHOPHORA PILIPES, NECTAR
Description: Anthophora pilipes is another type of bee fly
observed by H. Muller to visit cowslip flowers for nectar.

• Point 1 (merged)
Subordinate Entities: COWSLIP, MOTH, CUCULLIA, BOMBYLIUS
Description: Insects such as moths, specifically Cucullia, and bee flies of
the genus Bombylius play critical roles in the pollination and survival of
cowslips. Moths visit cowslips at night for fertilization, while Bombylius,
known for their hovering and pollination activities, also contribute to
the cowslip's survival by aiding in the pollination process.

• Point 2
Subordinate Entities: ANTHOPHORA PILIPES, NECTAR
Description: Anthophora pilipes is another type of bee fly observed by
H. Muller to visit cowslip flowers for nectar.

Merge

ℳ (") ℳ ("$%)

Figure 2: An illustration of memory evolving dynamics. Each point is equivalent to a hyperedge in
the hypergraph.M(t) evolves intoM(t+1) through update, insertion and merging operations.

Then, as in Section 3.2, the associated relationships E(Vq) and text chunks D(Vq) are obtained via
graph-based indexing. Finally, following Equation 2, the LLM evolves its current memory M(t)

into M(t+1). Under such a strategy, the RAG system is able to adaptively combine both local
investigation and global exploration for more flexible information retrieval during interaction with
external data sources.

3.5 DYNAMIC OF MEMORY EVOLVING

Once a set of subqueries have been generated at the t-th step, following Equation 2, the LLM ana-
lyzes the retrieved information and consolidates useful content into current memoryM(t), resulting
in the evolved memoryM(t+1). As shown in Figure 1 (ii), on the basis of hypergraph-based mem-
ory storage, the dynamic of memory evolving in our proposed HGMEM involves the following three
types of operations:

• Update. According to the retrieved information, if there are certain existing memory points whose
descriptions should be modified, the update operation will revise the descriptions of corresponding
hyperedges without changing their subordinate entities.

• Insertion. The insertion operation should be evoked when some content of the retrieved informa-
tion is suitable to be inserted as additional memory points into the current memory, which creates
new hyperedges into the hypergraph.

• Merging. After insertion and update, the LLM inspects current memory and selectively merges
existing memory points that are more suitable to constitute a single semantically/logically co-
hesive unit. With respect to the target query q̂, suppose the memory points ẽi=(Ωrel

ẽi
,Vẽi) and

ẽj=(Ωrel
ẽj

,Vẽj) are to be merged into a high-order memory point ẽk=(Ωrel
ẽk

,Vẽk), its description
and subordinate vertices are acquired as

Ωrel
ẽk
← LLM(Ωrel

ẽi ,Ωrel
ẽj , q̂) (8)

Vẽk = Vẽi ∪ Vẽj .

Then, the newly merged memory point is added into the hyperedge set ẼM(t) of current memory
M(t). This merging operation over the hypergraph-based memory builds higher-order correlations
among multiple existing memory points, facilitating the resolution of queries that require complex
relational modeling with disparate facts.

In this way, besides continuously accumulating primitive facts during the LLM’s interactions with
external data sources, the memory also gradually evolves into more sophisticated forms, captur-
ing higher-order correlations for complex relational modeling. Figure 2 gives a concrete example
illustrating the dynamic of memory evolving.

3.6 MEMORY-ENHANCED RESPONSE GENERATION

When the LLM exceeds its maximum interaction steps or the content in current memory
M(t) =(V(t)

M , Ẽ(t)M) has been deemed sufficient, a response is immediately produced according to
the information stored in current memory. Concretely, besides the descriptions of all memory points
(i.e. Ẽ(t)M), the text chunks associated with all the entities V(t)

M in current memory are also provided
to the LLM for producing the final response.

6

周楚伦
Highlight

周楚伦
Highlight

周楚伦
Highlight

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENTAL SETTINGS

4.1 DATASETS

We choose generative sense-making question answering (QA) (Edge et al., 2024; Guo et al., 2024)
and long narrative understanding (Li et al., 2024a; Xu et al., 2024b; Yu et al., 2025; Kociský et al.,
2018; Karpinska et al., 2024; Yen et al., 2025; Zhou et al., 2025) as our evaluation tasks. For gener-
ative sense-making QA, similar to the setups used in previous works (Edge et al., 2024; Guo et al.,
2024), we retain a portion of long documents with more than 100k tokens from Longbench V2 (Bai
et al., 2025). From each retained document, we use GPT-4o to generate several global sense-making
queries that satisfy the following requirements: 1) The queries should target at the overall under-
standing of the whole provided documents, instead of only concentrating on several specific phrases
or sentence pieces. 2) The queries should require high-level understandings and global reasoning
over disparate evidence scattered across the whole paragraph. For long narrative understanding,
we use three public benchmarks including NarrativeQA (Kociský et al., 2018), NoCha (Karpinska
et al., 2024) and Prelude (Yu et al., 2025). Both tasks require global comprehension and complex
sense-making over disparate evidence across long contexts. Details about the usage and statistics of
data used in our experiments are given in Appendix A.

4.2 IMPLEMENTATION DETAILS

Offline Graph Construction. For all the datasets used in our experiments, we first segment every
document into text chunks of 200 tokens with 50 overlapping tokens between adjacent chunks.
Then, GPT-4o is utilized to preprocess each of the chunkized documents into a graph using the
open-sourced tool provided by LightRAG (Guo et al., 2024). After building the graph, we adopt
bge-m3 (Chen et al., 2024) as the embedding model to convert all the entities, relationships and text
chunks into vector representations managed by nano vector database.

System Deployment and Configuration. Our RAG system is comprised of the backbone LLM
and the hypergraph-based memory. We choose GPT-4o and Qwen2.5-32B-Instruct as the representa-
tives of advanced closed-source and open-source LLMs, respectively. During experiments, GPT-4o
is accessed through official API while Qwen2.5-32B-Instruct is locally deployed with VLLM (Kwon
et al., 2023). For the configuration of LLM inference, we set the temperature to 0.8 and the max-
imum number of output tokens to 2,048. As for the hypergraph-based memory, we employ the
hypergraph-db package to maintain and manage the hypergraph at runtime. The vector representa-
tions of the nodes, hyperedges and associated text chunks in the hypergraph are also generated by
bge-m3 embedding model.

4.3 BASELINES AND EVALUATION METRICS

In our experiments, we compare our proposed HGMEM to two types of baseline methods, i.e. tra-
ditional RAG and multi-step RAG, which utilize plain texts and/or graph-structured data sources.
Among these methods, DeepRAG (Guan et al., 2025) and ComoRAG (Wang et al., 2025) are
equipped with a working memory while the others are not. The details of these comparison methods
can be found in Appendix B. To ensure fair comparison, all baselines operate on a similar number
of retrieved passages. In the case of single-step RAG, this means retrieving the same average num-
ber of text chunks as our HGMEM. For multi-step RAG methods, we approximate comparability
by constraining them to rewrite the same maximum number of subqueries and perform the same
maximum number of steps, while requiring retrieval of the same average number of chunks per step.

For generative sense-making QA, we adopt the following two metrics to assess the qualities of
model responses: 1) Comprehensiveness measures how well the model response comprehensively
covers and addresses all aspects and necessary details with respect to the target query. 2) Diversity
indicates how rich and diverse the response is in providing various perspectives and insights related
to the query. We employ GPT-4o as the judge to evaluate the model responses according to the
grading criteria that gives scores ranging from 0 to 100 based on a two-step scoring scheme, as
detailed in Appendix F.

For long narrative understanding, including NarrativeQA, Nocha, and Prelude, we uniformly use
prediction accuracy (Acc) as the reported metric. Specifically, for NarrativeQA, prior studies (Bu-
lian et al., 2022; Wang et al., 2024; Zhou et al., 2025) have shown that conventional token-level

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: The overall experimental results on four benchmarks. The second column “Working
Memory” distinguishes whether the corresponding method is equipped with a working memory
that enhances LLMs during RAG execution. The best scores in each dataset are bolded. HGMEM
consistently outperforms other comparison methods across all datasets.

Type Working Method Longbench NarrativeQA NoCha Prelude
Memory Comprehensiveness Diversity Acc (%) Acc (%) Acc (%)

GPT-4o

Traditional RAG

× NaiveRAG 61.62 64.20 52.00 67.46 60.00
× GraphRAG 60.39 64.02 53.00 70.63 59.26
× LightRAG 61.55 63.37 44.00 71.43 61.48
× HippoRAG v2 58.92 61.27 34.00 72.22 54.81

Multi-step RAG ✓ DeepRAG 63.62 65.98 45.00 67.46 56.30
✓ ComoRAG 62.18 65.82 54.00 63.49 54.07

Ours ✓ HGMEM 65.73 69.74 55.00 73.81 62.96
Qwen2.5-32B-Instruct

Traditional RAG

× NaiveRAG 61.41 62.25 37.00 64.29 52.59
× GraphRAG 60.78 62.16 44.00 62.70 50.37
× LightRAG 60.82 62.73 40.00 59.52 60.74
× HippoRAG v2 56.66 60.80 33.00 68.25 51.85

Multi-step RAG ✓ DeepRAG 61.45 63.56 44.00 66.40 51.11
✓ ComoRAG 60.74 61.28 44.00 57.60 50.37

Ours ✓ HGMEM 64.18 66.51 51.00 70.63 62.22

metrics such as Exact Match and F1 score usually fail to reflect actual semantic equivalence be-
tween hypothesis and reference answer, especially for abstractive answers. Therefore, we also apply
GPT-4o for judging whether the LLM’s prediction fully entails the reference answer, producing a
binary True/False decision.

5 RESULTS AND ANALYSIS

5.1 OVERALL RESULTS

Table 1 reports the overall results across all evaluation tasks. Our HGMEM consistently outperforms
both single-step and multi-step RAG baselines on every dataset. Importantly, our HGMEM with
Qwen2.5-32B-Instruct matches or even outperforms baselines powered by the stronger GPT-4o,
underscoring its value in resource-efficient scenarios.

The baselines exhibit mixed performance patterns reflecting their respective representational
strengths. For instance, HippoRAG v2 relies on knowledge triples, which provide strong fact rep-
resentation but limited coverage of events and plots. As a result, it performs well on NoCha but
falls behind NaiveRAG on NarrativeQA. In contrast, GraphRAG and LightRAG excel at building
global representations but are weaker at capturing fine-grained details, leading them to outperform
other baselines on Prelude and NarrativeQA. The two multi-step RAG methods, which mainly em-
ploy working memory to iteratively generate subqueries in a chaining fashion, struggle with sense-
making questions, where integrating higher-order relationships is essential.

In comparison, our HGMEM provides strong compositional representations that span from facts to
plots, equipping LLM reasoning with high-order correlations and integrated evidence. This enables
it to meet the diverse requirements posed by the evaluation tasks.

5.2 PERFORMANCE AT DIFFERENT STEPS

During the execution of our multi-step RAG system, the memory progressively evolves and guides
the LLM to proceed with retrieval and reasoning. To inspect the effects of memory evolving over
multiple interaction steps, we force the LLM to generate responses at every step for a total of six
turns, even if it originally decides to terminate the iteration earlier. Figure 3 presents the perfor-
mances at different steps using Qwen2.5-32B-Instruct on long narrative understanding tasks. Note
that t=0 represents the initial step when the target query q̂ is used for retrieval. We can observe that

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Prediction accuracies at different steps using Qwen2.5-32B-Instruct on long narrative
understanding datasets.

Table 2: Ablation results using Qwen2.5-32B-Instruct. “w/. GE Only” and “w/. LI Only” stand for
subquery generation strategies with Global Exploration and Local Investigation, respectively. “w/o.
Update” and “w/o. Merging” refer to HGMEM ablating update and merging operations during
memory evolving, respectively.

Ablation Type Method Longbench NarrativeQA Nocha Prelude
Comprehensiveness Diversity Acc (%) Acc (%) Acc (%)

Retrieval Strategy
HGMEM 64.18 66.51 51.00 70.63 62.22

w/. GE Only 59.25 61.67 47.00 68.25 59.26
w/. LI Only 61.38 63.82 43.00 63.49 60.00

Memory Evolution
HGMEM 64.18 66.51 51.00 70.63 62.22

w/o. Update 62.48 64.92 50.00 68.25 60.00
w/o. Merging 61.76 61.80 43.00 61.11 57.78

our HGMEM achieves its best performance at t=3, mostly outperforming NaiveRAG and LightRAG
baselines across steps. More steps bring no further improvements at a higher cost.

5.3 ABLATION STUDIES

Evidence Retrieval Strategy. When the LLM determines to acquire more information from D
and G, our HGMEM adopts an adaptive memory-based evidence retrieval strategy for either focused
local investigation or broad global exploration (Section 3.4). To investigate the effects of such
strategy, in Table 2, we compare our strategy to the variants that involve only Local Investigation
or Global Exploration, represented as “w/. LI Only” and “w/. GE Only”, respectively. The results
show that both “w/. LI Only” and “w/. GE Only” significantly underperforms the adaptive strategy
across all datasets, demonstrating the effectiveness and necessity of adaptively combining the two
modes of evidence retrieval.

Effects of Update and Merging Operations. The memory evolving in our HGMEM involves
update, insertion and merging operations, where merging is especially critical to building high-
order correlations from primitive facts. Because insertion is indispensable, we just carry out ablation
experiments on all datasets using Qwen2.5-32B-Instruct to assess the effects of update and merging
operations, as shown in Table 2. Compared to the “HGMEM”, removing either operation leads
to a performance drop, while removing merging (“w/o. Merging”) causes a substantially larger
degradation than removing update (“w/o. Update”). It reflects the effectiveness of both operations,
especially highlighting the importance of high-order correlations built through merging operations.

5.4 DISSECTING QUERY RESOLVING: PRIMITIVE VS. SENSE-MAKING

To better understand how our proposed HGMEM brings improvement to the evaluation tasks, we
conduct a targeted analysis across different query types. Specifically, we randomly sample 40
queries from each long narrative understanding dataset used in our experiments, yielding a total
of 120 queries. These are then manually categorized into two representative types:

• Primitive Query: Queries that primarily require locating directly associated chunks, which can
often be resolved with local evidence and focus on straightforward factual information.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 3: Average number of entities per hyperedge (Avg-Nv) in final memory and prediction accu-
racy (Acc) for a subset of 120 sampled primitive and sense-making queries.

Query Type Method NarrativeQA Nocha Prelude
Avg-Nv Acc (%) Avg-Nv Acc (%) Avg-Nv Acc (%)

Primitive HGMEM 3.35 70.00 3.78 60.00 3.85 55.00
w/o. Merging 3.32 70.00 3.42 65.00 3.73 60.00

Sense-making HGMEM 7.07 40.00 7.97 70.00 5.25 60.00
w/o. Merging 4.10 30.00 3.80 60.00 3.74 55.00

• Sense-making Query: Queries that require deeper comprehension by connecting and integrat-
ing multiple pieces of evidence, emphasizing the construction of higher-order relationships and
interpretation beyond surface retrieval.

We compare both prediction accuracy and the average number of entities per hyperedge (Avg-Nv)
in memory before generating final responses. The latter serves as a quantitative indicator of re-
lationship complexity. Table 3 shows that on sense-making queries, our full “HGMEM” achieves
higher accuracy with considerably larger Avg-Nv than “HGMEM w/o. Merging”, demonstrating
that forming higher-order correlations enhances comprehension. In contrast, for primitive queries,
“HGMEM” yields comparable or slightly lower accuracy relative to “HGMEM w/o. Merging”. This
is likely because the full model still tends to associate additional pieces of relevant evidence (as
indicated by the slightly higher Avg-Nv), even though the primitive evidence alone is sufficient to
answer straightforward queries, resulting in redundancy.

Notably, the Avg-Nv on sense-making queries consistently exceeds that on primitive queries, es-
pecially when merging is applied. Taken together, these results indicate that HGMEM improves
contextual understanding by constructing high-order correlations for complex relational reasoning,
rather than relying on shallow accumulation of surface facts.

6 CONCLUSION

In this work, we propose HGMEM, the hypergraph-based memory mechanism that aims at improv-
ing multi-step RAG by enabling the evolving of memory into more sophisticated forms for complex
relational modeling. In HGMEM, the memory is structured as a hypergraph composed of a set
of hyperedges as separate memory points. HGMEM allows the memory to progressively estab-
lish high-order correlations among previously accumulated primitive facts during the execution of
multi-step RAG systems, guiding LLMs to organize and connect thoughts for a focal problem. Ex-
tensive experiments and in-depth analysis validate the effectiveness of our method over strong RAG
baselines on challenging datasets featuring global sense-making questions over long context.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we introduce the usage and statistics of our used datasets in Section 4.1
and Appendix A. We also give the implementation details about the offline graph construction, sys-
tem deployment and configuration in Section 4.2. Appendix D gives the prompts for updating,
inserting and merging memory points for memory evolving during multi-step RAG execution. Ap-
pendix E describes the procedures for subquery generation with detailed prompts. Appendix F gives
the evaluation prompts for scoring model responses in the generative sense-making QA task.

REFERENCES

Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xiaozhi Wang, Xin Lv, Shulin Cao, Jiazheng
Xu, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench v2: Towards deeper under-
standing and reasoning on realistic long-context multitasks. In Proceedings of Association for
Computational Linguistics, pp. 3639–3664, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jannis Bulian, Christian Buck, Wojciech Gajewski, Benjamin Börschinger, and Tal Schuster.
Tomayto, tomahto. beyond token-level answer equivalence for question answering evaluation.
CoRR, abs/2202.07654, 2022.

Howard Chen, Ramakanth Pasunuru, Jason Weston, and Asli Celikyilmaz. Walking down the mem-
ory maze: Beyond context limit through interactive reading. CoRR, abs/2310.05029, 2023.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. BGE m3-embedding:
Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-
tillation. CoRR, abs/2402.03216, 2024.

Mingyue Cheng, Yucong Luo, Jie Ouyang, Qi Liu, Huijie Liu, Li Li, Shuo Yu, Bohou Zhang,
Jiawei Cao, Jie Ma, Daoyu Wang, and Enhong Chen. A survey on knowledge-oriented retrieval-
augmented generation. CoRR, abs/2503.10677, 2025.

Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
production-ready AI agents with scalable long-term memory. CoRR, abs/2504.19413, 2025.

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. From local to global: A graph RAG approach to query-focused summariza-
tion. CoRR, abs/2404.16130, 2024.

Masoomali Fatehkia, Ji Kim Lucas, and Sanjay Chawla. T-RAG: lessons from the LLM trenches.
CoRR, abs/2402.07483, 2024.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 3558–3565, 2019.

Xinyan Guan, Jiali Zeng, Fandong Meng, Chunlei Xin, Yaojie Lu, Hongyu Lin, Xianpei Han,
Le Sun, and Jie Zhou. Deeprag: Thinking to retrieval step by step for large language models.
CoRR, abs/2502.01142, 2025.

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
augmented generation. CoRR, abs/2410.05779, 2024.

Bernal Jimenez Gutierrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neu-
robiologically inspired long-term memory for large language models. In Proceedings of Neural
Information Processing Systems, 2024.

Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, and Yu Su. From RAG to memory:
Non-parametric continual learning for large language models. CoRR, abs/2502.14802, 2025.

Nicola Jones. Openai’s’ deep research’tool: is it useful for scientists? Nature, 2025.

Marzena Karpinska, Katherine Thai, Kyle Lo, Tanya Goyal, and Mohit Iyyer. One thousand and
one pairs: A ”novel” challenge for long-context language models. In Proceedings of EMNLP, pp.
17048–17085, 2024.

Tomás Kociský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis,
and Edward Grefenstette. The narrativeqa reading comprehension challenge. Transactions of the
Association for Computational Linguistics, 6:317–328, 2018.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the Symposium on Operating Systems Principles,
pp. 611–626, 2023.

Kuang-Huei Lee, Xinyun Chen, Hiroki Furuta, John F. Canny, and Ian Fischer. A human-inspired
reading agent with gist memory of very long contexts. In Proceedings of International Conference
on Machine Learning, 2024.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. CAMEL:
communicative agents for ”mind” exploration of large language model society. In Proceedings of
Neural Information Processing Systems, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiaqi Li, Mengmeng Wang, Zilong Zheng, and Muhan Zhang. Loogle: Can long-context language
models understand long contexts? In Proceedings of Association for Computational Linguistics,
pp. 16304–16333, 2024a.

Rui Li, Quanyu Dai, Zeyu Zhang, Xu Chen, Zhenhua Dong, and Ji-Rong Wen. Knowtrace: Boot-
strapping iterative retrieval-augmented generation with structured knowledge tracing. CoRR,
abs/2505.20245, 2025a.

Rui Li, Zeyu Zhang, Xiaohe Bo, Zihang Tian, Xu Chen, Quanyu Dai, Zhenhua Dong, and Ruiming
Tang. CAM: A constructivist view of agentic memory for llm-based reading comprehension.
CoRR, abs/2510.05520, 2025b.

Shilong Li, Yancheng He, Hangyu Guo, Xingyuan Bu, Ge Bai, Jie Liu, Jiaheng Liu, Xingwei Qu,
Yangguang Li, Wanli Ouyang, Wenbo Su, and Bo Zheng. Graphreader: Building graph-based
agent to enhance long-context abilities of large language models. In Findings of Empirical Meth-
ods in Natural Language Processing, pp. 12758–12786, 2024b.

Yanming Liu, Xinyue Peng, Tianyu Du, Jianwei Yin, Weihao Liu, and Xuhong Zhang. Era-cot:
Improving chain-of-thought through entity relationship analysis. In Proceedings of Association
for Computational Linguistics, pp. 8780–8794, 2024.

Junru Lu, Siyu An, Mingbao Lin, Gabriele Pergola, Yulan He, Di Yin, Xing Sun, and Yunsheng
Wu. Memochat: Tuning llms to use memos for consistent long-range open-domain conversation.
CoRR, abs/2308.08239, 2023.

Haoran Luo, Haihong E, Guanting Chen, Yandan Zheng, Xiaobao Wu, Yikai Guo, Qika Lin,
Yu Feng, Ze-min Kuang, Meina Song, Yifan Zhu, and Luu Anh Tuan. Hypergraphrag:
Retrieval-augmented generation with hypergraph-structured knowledge representation. CoRR,
abs/2503.21322, 2025.

Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan Peshterliev, Dmytro Okhonko, Michael Sejr
Schlichtkrull, Sonal Gupta, Yashar Mehdad, and Scott Yih. Unik-qa: Unified representations of
structured and unstructured knowledge for open-domain question answering. In Findings of the
Association for Computational Linguistics: NAACL, pp. 1535–1546, 2022.

Hongjin Qian, Zheng Liu, Peitian Zhang, Kelong Mao, Defu Lian, Zhicheng Dou, and Tiejun
Huang. Memorag: Boosting long context processing with global memory-enhanced retrieval
augmentation. In Proceedings of WWW 2025, pp. 2366–2377, 2025.

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D. Man-
ning. RAPTOR: recursive abstractive processing for tree-organized retrieval. In Proceedings of
International Conference on Learning Representations, 2024.

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. Enhancing
retrieval-augmented large language models with iterative retrieval-generation synergy. In Find-
ings of EMNLP, pp. 9248–9274. Association for Computational Linguistics, 2023.

Minjie Shen and Qikai Yang. From mind to machine: The rise of manus AI as a fully autonomous
digital agent. CoRR, abs/2505.02024, 2025.

Wenyu Tao, Xiaofen Xing, Yirong Chen, Linyi Huang, and Xiangmin Xu. Treerag: Unleashing the
power of hierarchical storage for enhanced knowledge retrieval in long documents. In Findings
of the Association for Computational Linguistics, pp. 356–371, 2025.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. In Pro-
ceedings of the Association for Computational Linguistics, pp. 10014–10037, 2023.

Jingjin Wang. Proprag: Guiding retrieval with beam search over proposition paths. CoRR,
abs/2504.18070, 2025.

Juyuan Wang, Rongchen Zhao, Wei Wei, Yufeng Wang, Mo Yu, Jie Zhou, Jin Xu, and Liyan Xu.
Comorag: A cognitive-inspired memory-organized RAG for stateful long narrative reasoning.
CoRR, abs/2508.10419, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yang Wang, Alberto Garcia Hernandez, Roman Kyslyi, and Nicholas Kersting. Evaluating qual-
ity of answers for retrieval-augmented generation: A strong LLM is all you need. CoRR,
abs/2406.18064, 2024.

Liyan Xu, Jiangnan Li, Mo Yu, and Jie Zhou. Fine-grained modeling of narrative context: A coher-
ence perspective via retrospective questions. In Proceedings of the Association for Computational
Linguistics, pp. 5822–5838, 2024a.

Wujiang Xu, Zujie Liang, Kai Mei, Hang Gao, Juntao Tan, and Yongfeng Zhang. A-MEM: agentic
memory for LLM agents. CoRR, abs/2502.12110, 2025.

Zhe Xu, Jiasheng Ye, Xiangyang Liu, Tianxiang Sun, Xiaoran Liu, Qipeng Guo, Linlin Li, Qun Liu,
Xuanjing Huang, and Xipeng Qiu. Detectiveqa: Evaluating long-context reasoning on detective
novels. CoRR, abs/2409.02465, 2024b.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In Proceedings of International
Conference on Learning Representations, 2023.

Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding, Daniel Fleischer, Peter Izsak, Moshe Wasserblat,
and Danqi Chen. HELMET: how to evaluate long-context models effectively and thoroughly. In
The Thirteenth International Conference on Learning Representations, 2025.

Mo Yu, Tsz Ting Chung, Chulun Zhou, Tong Li, Rui Lu, Jiangnan Li, Liyan Xu, Haoshu Lu, Ning
Zhang, Jing Li, and Jie Zhou. PRELUDE: A benchmark designed to require global comprehen-
sion and reasoning over long contexts. CoRR, abs/2508.09848, 2025.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
language models with long-term memory. In Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 19724–19731, 2024.

Chulun Zhou, Qiujing Wang, Mo Yu, Xiaoqian Yue, Rui Lu, Jiangnan Li, Yifan Zhou, Shunchi
Zhang, Jie Zhou, and Wai Lam. The essence of contextual understanding in theory of mind: A
study on question answering with story characters. In Proceedings of the Association for Compu-
tational Linguistics, pp. 22612–22631, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Statistics of data used in our experiments. #Documents, Avg. #Tokens and #Queries
represent the number of documents, average tokens per document and the total number of queries,
respectively.

Longbench (Financial) Longbench (Governmental) Longbench (Legal) NarrativeQA Nocha Prelude
#Documents 20 22 7 10 4 5

Avg. #Tokens 266k 256k 194k 218k 139k 280k
#Queries 100 98 55 100 126 135

A DATASET STATISTICS

Generative Sense-making QA. We retain a portion of long documents with more than 100k to-
kens from Longbench V2 (Bai et al., 2025), which was originally comprised of six major task
categories designed to assess the ability of LLMs to handle long-context problems. In our experi-
ments, we select three domains of documents from the category of single-document QA, including
Financial, Governmental and Legal.

Long Narrative Understanding. We use the following public benchmarks:

• NarrativeQA (Kociský et al., 2018): It is one of the most widely used benchmarks for story
question answering. Because of its question construction strategy over high-level book summaries,
the task places greater emphasis on synthesis and inference beyond local texts. In contrast, many
other existing long-context QA tasks can often be solved with only local evidence, as shown by
studies in (Yu et al., 2025). For evaluation, we randomly sample 10 long books exceeding 100k
tokens, together with their associated queries, from the complete benchmark.

• NoCha (Karpinska et al., 2024): The task involves discriminating minimally different pairs of
true and false claims about English fictional books. Although the format may appear different
from sense-making questions, NoCha is explicitly designed to require constructing a global un-
derstanding of the book in relation to the focal statement. Since the official test set is hidden, we
conduct experiments using only the publicly released subset.

• Prelude (Yu et al., 2025): This benchmark assesses LLMs’ global comprehension and deep rea-
soning by requiring them to determine whether a character’s prequel story is consistent with the
original book. Most instances of this task demand integrating multiple pieces of evidence or even
forming a holistic impression of the character’s storyline. In our experiments, we use all English
books included in Prelude for evaluation.

Table 4 gives the detailed statistics about the data used in our experiments, including the number of
documents, average tokens per document and the total number of queries. Generative sense-making
QA task involves documents from Longbench V2 benchmark in Financial, Government and Legal
domains. Long narrative understanding task uses NarrativeQA, Nocha and Prelude benchmarks.

B COMPARISON BASELINES

In our experiments, we compare our methods to traditional RAG and Multi-step RAG methods.
Traditional RAG includes:

• NaiveRAG just uses the target query to retrieve a set of text chunks from the document for
dealing with queries.

• GraphRAG (Edge et al., 2024) constructs knowledge graph from plain-text documents and build
a hierarchy of communities of closely related entities before using an LLM to make responses.

• LightRAG (Guo et al., 2024) also builds a graph structure and employs a dual-level retrieval
strategy from both low-level and high-level evidence discovery.

• HippoRAG v2 (Gutiérrez et al., 2025) creates a knowledge graph and adopts the Personalized
PageRank algorithm with dense-sparse integration of passages into the graph search process for
resolving queries.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 4: The prompt for updating and inserting memory points during memory evolving in HG-
MEM.

Figure 5: The prompt for merging memory points during memory evolving in HGMEM.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 5: Statistics of the cost of online multi-step RAG execution in our HGMEM and other base-
lines with working memory.Avg-Token is the average count of tokens processed by LLMs per ques-
tion, while Avg-Time stands for the average inference latency per question.

Method NarrativeQA Nocha Prelude
Avg-Token Avg-Time Avg-Token Avg-Time Avg-Token Avg-Time

HGMEM 4436.43 15.84 5252.73 18.76 5421.74 19.36
w/o. Merging 4154.02 14.84 4750.32 16.97 4897.81 17.49

DeepRAG 3904.18 13.94 4724.07 16.87 4514.66 16.12
ComoRAG 5083.26 18.15 5503.98 19.66 7827.56 27.96

Multi-step RAG includes:

• DeepRAG (Guan et al., 2025) conducts multi-step reasoning as a Markov Decision Process by
iteratively decomposing queries.

• ComoRAG (Wang et al., 2025) undergoes multi-step interactions with external data sources
with a dynamic memory workspace, iteratively generateing probing queries and integrating the
retrieved evidence into a global memory pool.

C COST COMPARISON

We conduct a cost comparison between our HGMem and other baselines with working memory in
terms of token consumption and inference latency. Note that the cost of online multi-step RAG
execution is the real concern for fair comparison because the offline graph construction is just for
building query-agnostic indexing structure. With this focus, we measure the average token consump-
tion and inference latency of HGMEM, ComoRAG and DeepRAG in Table 5. From the statistics,
we can observe that the cost of our HGMem is basically of the same level with those of DeepRAG
and ComoRAG while consistently achieving better performance. We can also see that the merg-
ing operation, which is the core operation for forming high-order correlation in our HGMem, just
introduces minor computational overhead.

D PROMPTS FOR MEMORY EVOLVING

Section 3.5 describes the dynamics of memory evolving in HGMEM, which consists of update,
insertion and merging operations. The prompts for these three types of operations are given in
Figure 4 and Figure 5.

E PROMPTS FOR SUBQUERY GENERATION

During our multi-step RAG execution, the LLM needs to generate subqueries for acquiring infor-
mation from external data sources. First, it raises relevant concerns that either target at specific
memory points or aim at probing useful information outside current memory. Then, the LLM gen-
erates corresponding subqueries according to the raised concerns. The prompts for raising concerns
and generating subqueries are given in Figure 6 and Figure 7, respectively.

F EVALUATION PROMPTS FOR GENERATIVE SENSE-MAKING QA

For the evaluation of generative sense-making QA, we leverage GPT-4o as an evaluator to assess the
quality of model responses. Given the target query and the source paragraph from which the query
originated, the GPT-4o evaluator first indicates the level of comprehensiveness/diversity and then
gives a final score within the value range of the corresponding level. Detailed prompts for such LLM-
as-a-Judge evaluation. Figure 8 and Figure 9 give the prompts for scoring the comprehensiveness
and diversity, respectively.

16

周楚伦
Highlight

周楚伦
Highlight

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

You are an intelligent assistant responsible for dealing with the [Main Query] by making appropriate operations as specified.
With respect to the [Main Query], you have consolidated some memory points in your [Memory] describing what you have already known regarding the [Main Query].
Each memory point can be seen as a specific aspect relevant to the [Main Query], providing necessary details or insights from its perspective.

-Goal-
Your task is to analyze the [Main Query] and [Memory], then determine whether current [Memory] has been sufficient to comprehensively resolve the [Main Query].
If not sufficient, you need to indicate what you want to further investigate.

-Procedures-
Step 1.
Make appropriate judgement following the logic branches below.
Case 1: If the [Memory] has been sufficient to completely resolve the [Main Query], output <None> in [Concerns].
Case 2: If the [Memory] is not sufficient, determine current situation should be attributed to which of the following subcases.
 Case 2.1: There are some specific memory points which you want to further investigate more details about.
 Case 2.2: There are unexplored aspects that go beyond the scope of current [Memory] (i.e. not related to any of the existing memory points).

Step 2.
Output as **Example of Anticipated Output Format**.
Specifically, give your judgement in [Judgement] using corresponding case index (1, 2.1 or 2.2).
Then, generate several concerns that aim at exploring details or aspects not addressed by current [Memory] to better resolve the [Main Query]
 When case 2.1, generate up to {num_concerns} concerns, each of which targets at a specific memory point. For each concern, specify the index of its corresponding memory
point.
 When case 2.2, generate up to {num_concerns} concerns that probe meaningful information not yet covered by current [Memory]
###########-Example of Anticipated Output Format for Case 1-###########
[Judgement]: 1
[Concerns]: <None>

###########-Example of Anticipated Output Format for Case 2.1-###########
[Judgement]: 2.1
[Concerns]:
0{tuple_delimiter}your_concern_1{record_delimiter}
2{tuple_delimiter}your_concern_2{record_delimiter}
2{tuple_delimiter}your_concern_3{record_delimiter}
{completion_delimiter}

###########-Example of Anticipated Output Format for Case 2.2-###########
[Judgement]: 2.2
[Concerns]:
your_concern_1{record_delimiter}
your_concern_2{record_delimiter}
your_concern_3{record_delimiter}
{completion_delimiter}

######################-Real Data-######################
[Main Query]: {query}

[Memory]:
{memory}
######################
* Note that:
(1) Your concern should be concise and suggest what further details or aspect you subsequently will seek for.
(2) Only output the judgement, concerns, and the indices of corresponding memory points without any other content.
(3) If current [Memory] has covered most relevant perspectives, generate fewer concerns to avoid redundancy.
(4) Your generated concerns should be separated by "{record_delimiter}".

######################
Output:

Figure 6: The prompt for raising concerns either targeting at specific memory points or probing
useful information outside the current memory.

You are an assistant responsible for dealing with the [Main Query].
Although you have had some relevant information in your [Memory], your current [Memory] is still not sufficient to comprehensively
resolve the [Main Query] due to the concern given in [Concern].
Therefore, you need to generate a subquery that aims at either retrieving more evidences or investigating unexplored aspects in
[Subquery] to better deal with the [Main Query] ultimately.

[Previous Subqueries] records a series of previous subqueries that have been raised before.

###########-Anticipated Output Format-###########
[Subquery]: xxx

######################-Real Data-######################
[Main Query]: {query}

[Memory]:
{memory}

[Concern]:
{concern}

[Previous Subqueries]:
{history_subqueries}

######################
* Note that:
(1) Your generated subquery should be concise and address the concerns in your [Concern].
(2) You should avoid generating a subquery that is overly similar to any one of the [Previous Subqueries] or [Main Query].
(3) Only output your subquery without any other redundant content such as markup strings.
######################
Output:

Figure 7: The prompt for generating subqueries based on previously raised concerns.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Given a [Paragraph] and a [Question], you will evaluate the quality of the [Response] in terms of Comprehensiveness.

######################-Real Case-######################
[Paragraph]:{paragraph}
[Question]: {question}
[Response]:{response}

######################-Evaluation Criteria-######################
Comprehensiveness measures whether the [Response] comprehensively covers all key aspects in the [Paragraph] with respect to the
[Question].
Level | score range | description
Level 1 | 0-20 | The response is extremely one-sided, leaving out key parts or important aspects of the question.
Level 2 | 20-40 | The response has some content, but it misses many important aspects of the question and is not comprehensive enough.
Level 3 | 40-60 | The response is moderately comprehensive, covering the main aspects of the question, but there are still some omissions.
Level 4 | 60-80 | The response is comprehensive, covering most aspects of the question, with few omissions.
Level 5 | 80-100 | The response is extremely comprehensive, covering almost all aspects of the question no omissions, enabling the reader to
gain a complete and thorough understanding.
Evaluate the [Response] using the criteria listed above, give a level of comprehensiveness in [Level] based on the description of the indicator,
then give a score in [Score] based on the corresponding value range, and finally explain in [Explanation].

Note that:
(1) You should reference to the [Paragraph] and avoid misinterpreting any content of [Paragraph] as part of the [Response].
(2) Avoid excessively concerning very specific details. When the response mentions an aspect without providing very specific details, you
should consider this aspect as validly covered, as long as the omitted detail is not crucial to particularly mention with respect to the
[Question] in the whole scope of the response.
(3) If [Response] contains extra content not directly included in the [Paragraph], as long as the extra content is correct, do not consider the
extra content as defects for giving final evaluation.
(4) You should conform to the -Anticipated Output Format- and give your evaluation results in [Your Evaluation].
######################-Anticipated Output Format-######################
[Level]: A level ranging from 1 to 5 # This should be a single number, not a range.
[Score]: A value ranging from 0 to 100 # This should be a single number satisfying the ranging constraint of the corresponding [Level], not a
range.
[Explanation]: xxx
[Your Evaluation]:

Figure 8: The prompt for evaluating the comprehensiveness of a model response.

Given a [Paragraph] and a [Question], you will evaluate the quality of the [Response] in terms of Diversity.

######################-Real Case-######################
[Paragraph]: {paragraph}
[Question]: {question}
[Response]: {response}

######################-Evaluation Criteria-######################
Diversity measures how varied and rich is the response in offering different perspectives and insights related to the question.
Level | score range | description
Level 1 | 0-20 | The response is extremely narrow and repetitive, providing only a single perspective or insight without exploring alternative
viewpoints or additional information.
Level 2 | 20-40 | The response offers a few different perspectives but remains largely superficial. It may touch on alternative viewpoints but
does not elaborate or provide substantial insights.
Level 3 | 40-60 | The response moderately presents several perspectives with moderate depth. It begins to integrate different viewpoints and
insights but may still miss some important angles or lack thorough exploration.
Level 4 | 60-80 | The response is rich in perspectives and insights. It basically explores multiple viewpoints and provides substantial
evidence and examples to support each angle.
Level 5 | 80-100 | The response is exceptionally varied and rich in perspectives and insights. It offers a comprehensive exploration of the
question, addressing multiple angles with depth and originality.
Evaluate the [Response] using the criteria listed above, give a level of comprehensiveness in [Level] based on the description of the indicator,
then give a score in [Score] based on the corresponding value range, and finally explain in [Explanation].

Note that:
(1) You should reference to the [Paragraph] and avoid misinterpreting any content of [Paragraph] as part of the [Response].
(2) If [Response] contains extra content not directly included in the [Paragraph], as long as the extra content is correct, do not consider the
extra content as defects for giving final evaluation.
(3) You should conform to the -Anticipated Output Format- and give your evaluation results in [Your Evaluation]
######################-Anticipated Output Format-######################
[Level]: A level ranging from 1 to 5 # This should be a single number, not a range.
[Score]: A value ranging from 0 to 100 # This should be a single number satisfying the ranging constraint of the corresponding [Level], not a
range.
[Explanation]: xxx
[Your Evaluation]:

Figure 9: The prompt for evaluating the diversity of a model response.

G CASE STUDY

As shown in Table 6, we present two representative cases highlighting HGMem’s distinct reasoning
advantages over LightRAG from the perspective of forming high-order correlations and the strategy
of adaptive memory-based evidence retrieval during memory evolving.

The first case is from NarrativeQA, where the question requires inferring the underlying cause of Xo-
dar’s enslavement—a relation not explicitly stated in the original text. LightRAG just makes incor-
rect surface-level predictions based on the retrieved content. While DeepRAG stores the knowledge
in the memory, it does not form high-order correlation and fails to predict correctly. In contrast,

18

周楚伦
Highlight

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

HGMem progressively evolves its memory and establishes high-order correlations from primitive
evidences accumulated from past interactions, uncovering that Xodar’s punishment originates from
his defeat by Carter.

The second case is from Nocha, where the query mixes factual and misleading details. The LLM
raises a subquery about the source of the name ‘White Sands’. Using the strategy of local investiga-
tion, it particularly conducts in-depth inspection about the related memory point (Point 1) in current
memory and verifies that there is no clear evidence showing the name was given by Anne. However,
LightRAG mistakenly recognizes that the name ‘White Sands’ was given by Anne and DeepRAG
doesn’t qualify the correctness of ‘White Sands’.

Together, these examples show that HGMem enables a deeper and more accurate contextual under-
standing beyond superficial text retrieval.

H A TOY EXAMPLE

To illustrate the core workflow of our method, we present a toy example in Figure 10. Given the
query “Why is Xodar given to Carter as a slave?”, the LLM first retrieves relevant evidence, con-
verting it into a structured representation (corresponding to Point 0 in the figure). It then generates
sub-queries based on current memory to retrieve missing reasoning elements. In the subsequent
iteration, newly retrieved evidence is integrated into the memory storage through update, insertion
and merging operations, yielding a unified representation that includes high-order memory points
capturing complex relationships beyond surface content in original data sources. Finally, the LLM
leverages its evolved memory to produce an answer to the target query. This example illustrates how
the memory evolves during the multi-step RAG execution to iteratively refine its understanding and
support complex relational modeling.

19

周楚伦
Highlight

周楚伦
Highlight

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 6: Illustrative Cases on NarrativeQA and Nocha, where red and blue stand for the relevant
answer and its corresponding source, respectively

Source NarrativeQA Nocha
Question Why is Xodar given to Carter as a slave? Answer TRUE if the statement is true, otherwise answer FALSE

[Statement]: Anne assigns romantic names to her surroundings, like
“Lake of Shining Waters” and “White Sands”.
[Question]: Based on the context provided, is the above statement
TRUE or FALSE?

Golden Answer As his punishment for being defeated by Carter previously False
Relevent Chunks 1. Xodar was brought from the adjoining room. Issus glared at him,

a baleful light in her hideous eyes. “And such as you are a Dator of
the First Born?” she squealed. “For the disgrace you have brought
upon the Immortal Race, you shall be degraded to a rank below
the lowest. No longer be you a Dator, but forevermore a slave of
slaves....”
2. ...

1. “Oh, I don’t like that name, either. I shall call it—let me
see—the Lake of Shining Waters. Yes, that is the right name for
it. I know because of the thrill. When I hit on a name that suits
exactly, it gives me a thrill. Do things ever give you a thrill?”
Matthew ruminated. ...”
2. said Anne dreamily. “Is it as nice as it sounds? Just when you
said ‘shore road’, I saw it in a picture in my mind, as quick as that!
And White Sands is a pretty name, too, but I don’t like it as well as
Avonlea. Avonlea is a lovely name. It just sounds like music. ...

LightRAG Re-
trieval&Prediction

Prediction:

Xodar is given to Carter as a slave due to his degradation by Issus
after falling from favor. Issus degrades Xodar to a rank below the
lowest and commands that he serve as a slave to Carter, who previ-
ously conquered Xodar in the prison on the Isle of Shador.

Prediction:

[Answer]: TRUE
[Explanation]: The statement is true based on the information pro-
vided in the data tables. In the Relationships table, there is a record
that indicates Anne of Green Gables gave the romantic name “Lake
of Shining Waters” to Barry’s Pond. Additionally, in the Sources
table, Anne expresses a preference for the name “Avonlea” over
“White Sands”, suggesting she has a fondness for romantic names.

DeepRAG Re-
trieval&Prediction

Generated Subquery:

1. What factors influenced Issus’s decision to demote Xodar from a
Dator to a slave?
2.: What specific orders or instructions did Issus give to ensure
Xodar was transferred to Carter as a slave?

Memory:

1. Xodar, originally a member of the First Born, was degraded to
a slave status by Issus due to his fall from favor. This demotion
signifies...
2. Issus, in a display of her absolute authority, degrades Xodar to
the lowest status of a slave, specifically instructing him to serve
Carter. This act is designed to further demean Xodar and to test
Carter’s response.

Prediction:

Xodar is given to Carter as a slave because Issus seeks to degrade
and humiliate him. This act undermines Xodar’s former prestige
and weakens his influence, while tying Carter’s treatment and suc-
cess to the actions of a once-respected figure, likely intended to
provoke internal conflict and dissatisfaction.

Generated Subqueries:

1. Is there evidence in the provided memory or data that Anne has
given romantic names to other locations besides Barry’s Pond?
2. Does the extended info suggest that Anne applies her romantic
naming to all her surroundings?

Memory:

1. Anne gives the romantic name ”Lake of Shining Waters” to
Barry’s Pond, indicating her imaginative and poetic nature towards
her surroundings.
2. Anne finds Lover’s Lane picturesque and romantic, appreciating
its natural beauty and atmosphere for thoughtful reflection. This
highlights her imaginative and poetic nature towards her surround-
ings.

Prediction:

[Answer]: TRUE
[Explanation]: The statement is true. There is a record that in-
dicates Anne of Green Gables gave the romantic name “Lake of
Shining Waters” to Barry’s Pond, indicating her imaginative and
poetic nature towards her surroundings.

HGMEM Re-
trieval&Prediction

Generated Subquery:

1. What specific incident of Xodar was considered a disgrace to
the Immortal Race, leading directly to his punishment by Issus?
(Global Exploration)
2.: What role does Carter have in the decision to give Xodar to him
as a slave? (Global Exploration)
3....

Original Memory:

Point I:
Subordinate Entities: Xodar, Issus, Cowardly injustice
Description: Xodar is punished by Issus as a form of cowardly
injustice for the disgrace he has brought upon the Immortal Race.
Point II:
Subordinate Entities: Xodar, Issus, Degradation
Description: Issus degrades Xodar to a rank below the lowest, Xo-
dar is no longer a Dator, but forever a slave of slaves, to fetch and
carry for the lower orders that serve in the gardens of Issus.

Memory After Evolving (Guided by Subquery 1):

Point I (Merged):
Subordinate Entities: Xodar, Issus, Cowardly injustice, Degradation
Description: Xodar’s degradation into a slave is a result of his
disgraceful defeat by John Carter, which brought shame to the
Immortal Race, leading Issus to punish him as a form of cowardly
injustice. This reflects the societal judgment and loss of honor
within the Immortal Race’s culture.

Prediction:

Xodar is given to Carter as a slave due to his disgraceful defeat by
John Carter, which brought shame to the Immortal Race. Issus,
the goddess, punishes Xodar for his cowardice, degrading him to a
slave, and he is subsequently treated as such by Carter.

Generated Subqueries:

1.: Is there any evidence in “Anne of Green Gables” that suggests
Anne gave a romantic name to a place known as White Sands?
(Local Investigation)
2.: What’s the actual name of White Sands in the book “Anne of
Green Gables”? (Local Investigation)
3....

Original Memory:

Point I:
Subordinate Entities: Diana, Barry’s pond, Lover’s lane, Gilbert,
Anne, White sands, Anne of Green Gables
Description: ... Anne has a habit of giving romantic names to her
surroundings, such as calling Barry’s Pond the “Lake of Shining
Waters”. While she does romanticize places, there is no specific
mention of her assigning a romantic name to “White Sands”.

Memory after Evolving (Guided by Subquery 1):

Point I (Updated):
Subordinate Entities: Diana, Barry’s pond, Lover’s lane, Gilbert,
Anne, White sands, Anne of Green Gables
Description: ...Anne has a habit of giving romantic names to her
surroundings, such as calling Barry’s Pond the “Lake of Shining
Waters”. However, there is no specific mention of her assigning a
romantic name to “White Sands”. White Sands is instead associated
with Gilbert and an educational opportunity offered to Anne by the
White Sands trustees.

Prediction:

[Answer]: FALSE
[Explanation]: According to the provided information, Anne does
give a romantic name to Barry’s Pond, referring to it as the “Lake
of Shining Waters”. However, there is no evidence in the memory
or data tables that Anne assigns a romantic name to “White Sands”.
Instead, White Sands is associated with Gilbert and an educational
opportunity for Anne, and it is mentioned as a geographical loca-
tion without any indication that Anne romanticizes it. Therefore,
the statement is false because it incorrectly includes “White Sands”
as one of the locations Anne romanticizes.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

[Iteration 1]

Query: Why is Xodar given to Carter as a slave?

[Iteration 2]

Retrieve Information

[Iteration 0]

Response: Xodar is given to John Carter as a slave by Issus to degrade him further after his defeat and humiliation.
Issus wants to punish Xodar by making him serve the very person who conquered him, marking a drastic change in
Xodar's status from a member of the First Born to a slave.

Reference Answer: As his punishment for being defeated by Carter previously

Memory Evolving

Generate Subquery

Retrieve Information

Memory Evolving

Generate Response

Memory �0: None

Memory �1:
• Point I
Subordinate Entities: Xodar, Issus, Cowardly Injustice
Description: Xodar is punished by Issus as a form of cowardly injustice for the disgrace he has brought upon the
Immortal Race.

• Point II
Subordinate Entities: Xodar, Issus, Degradation
Description: Issus degrades Xodar to a rank below the lowest, Xodar is no longer a Dator, but forever a slave of slaves,
to fetch and carry for the lower orders that serve in the gardens of Issus.

• Point III
Subordinate Entities: Nobel Blacks, Xodar, Thurid
Description: The Noble Blacks exhibit hostility towards Xodar, reviling and cursing him for his fall from favor. Thurid is
suggested as a challenge for Xodar, demonstrating the social dynamics and conflicts within the group. This reflects
the broader theme of societal judgment and persecution against those who have lost status.

Memory �2:
• Point I
Subordinate Entities: Xodar, Issus, Cowardly Injustice,Degradation
Description: Xodar's degradation into a slave is a result of his disgraceful defeat by John Carter, which brought shame
to the Immortal Race}, leading Issus to punish him as a form of cowardly injustice. This reflects the societal judgment
and loss of honor within the Immortal Race's culture.

• Point II
Subordinate Entities: Nobel Blacks, Xodar, Thurid
Description: The Noble Blacks exhibit hostility towards Xodar, reviling and cursing him for his fall from favor. Thurid is
suggested as a challenge for Xodar, demonstrating the social dynamics and conflicts within the group. This reflects
the broader theme of societal judgment and persecution against those who have lost status.

Figure 10: A toy example of HGMem workflow from the NarrativeQA dataset of GPT-4o

21

	Introduction
	Related Work
	Working Memory Mechanisms for Multi-step RAG
	RAG with Structured Knowledge Index

	Methodology
	Problem Formulation
	Multi-step RAG System with Memory
	Hypergraph-based Memory Storage
	Adaptive Memory-based Evidence Retrieval
	Dynamic of Memory Evolving
	Memory-enhanced Response Generation

	Experimental Settings
	Datasets
	Implementation Details
	Baselines and Evaluation Metrics

	Results and Analysis
	Overall Results
	Performance at Different Steps
	Ablation Studies
	Dissecting Query Resolving: Primitive vs. Sense-making

	Conclusion
	Reproducibility statement
	Dataset Statistics
	Comparison Baselines
	Cost Comparison
	Prompts for Memory Evolving
	Prompts for Subquery Generation
	Evaluation Prompts for Generative Sense-making QA
	Case Study
	A Toy Example

