

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 IMPROVING MULTI-STEP RAG WITH HYPERGRAPH-BASED MEMORY FOR LONG-CONTEXT COMPLEX RELATIONAL MODELING

Anonymous authors

Paper under double-blind review

ABSTRACT

Multi-step retrieval-augmented generation (RAG) has become a widely adopted strategy for enhancing large language models (LLMs) on tasks that demand global comprehension and intensive reasoning. Many RAG systems incorporate a working memory module to consolidate retrieved information. However, existing memory designs function primarily as passive storage that accumulates isolated facts for the purpose of condensing the lengthy inputs and generating new sub-queries through deduction. This static nature overlooks the crucial high-order correlations among primitive facts, the compositions of which can often provide stronger guidance for subsequent steps. Therefore, their representational strength and impact on multi-step reasoning and knowledge evolution are limited, resulting in fragmented reasoning and weak global sense-making capacity in extended contexts.

We introduce HGMem, a hypergraph-based memory mechanism that extends the concept of memory beyond simple storage into a dynamic, expressive structure for complex reasoning and global understanding. In our approach, memory is represented as a hypergraph whose hyperedges correspond to distinct memory units, enabling the progressive formation of higher-order interactions within memory. This mechanism connects facts and thoughts around the focal problem, evolving into an integrated and situated knowledge structure that provides strong propositions for deeper reasoning in subsequent steps. We evaluate HGMem on several challenging datasets designed for global sense-making. Extensive experiments and in-depth analyses show that our method consistently improves multi-step RAG and substantially outperforms strong baseline systems across diverse tasks.

1 INTRODUCTION

Single-step retrieval-augmented generation (RAG) often proves insufficient for resolving complex queries within long contexts (Trivedi et al., 2023; Shao et al., 2023; Cheng et al., 2025), motivating the shift toward multi-step RAG methods that iteratively interleave retrieval with reasoning. To effectively capture dependencies across steps and condense the lengthy processing history, many approaches incorporate working memory mechanisms inspired by human cognition (Lee et al., 2024; Zhong et al., 2024). However, current memory-enhanced multi-step RAG methods still face challenges in complex relational modeling, especially for resolving global sense-making tasks over long contexts.

During multi-step RAG execution, a straightforward implementation of working memory mechanism is to let a large language model (LLM) summarize the interaction history into a plaintext description of current problem-solving state. This strategy has been widely adopted since early studies (Li et al., 2023; Trivedi et al., 2023) as well as in commercial systems (Jones, 2025; Shen & Yang, 2025). Nonetheless, such unstructured memory mechanisms cannot be manipulated with sufficient accuracy across steps and often lose the ability to back-trace references to retrieved texts. Consequently, recent research has shifted toward structured or semi-structured working memory, typically with predefined schemas such as relational tables (Lu et al., 2023), knowledge graphs (Oguz et al., 2022; Xu et al., 2025), or event-centric bullet points (Wang et al., 2025).

054 However, existing memory mechanisms often treat memory as static storage that continually accu-
 055 mulates meaningful but primitive facts. This view overlooks the evolving nature of human working
 056 memory, which incrementally incorporates higher-order correlations from previously memorized
 057 content. This capacity is particularly crucial for resolving global sense-making tasks that involve
 058 complex relational modeling over long contexts. In such scenarios, the required knowledge for tack-
 059 ling a query is often composed of complex structures that extend beyond predefined schemas, and
 060 reasoning over long lists of primitive facts is both inefficient and prone to confusion with mixed or
 061 irrelevant information. Current memory mechanisms in multi-step RAG systems lack these abilities,
 062 preventing memory from effectively guiding LLMs’ interaction with external data sources. These
 063 limitations highlight the need for a working memory with stronger representational capacity.

064 In this paper, we propose a hypergraph-based memory mechanism (HGMEM) for multi-step RAG
 065 systems, which enables memory to evolve into more expressive structures that support complex
 066 relational modeling to enhance LLMs’ understanding over long contexts. Hypergraphs, as a gener-
 067 alization of graphs, are particularly well-suited for this purpose (Feng et al., 2019). In our design,
 068 memory is structured as a hypergraph composed of hyperedges, each treated as a distinct memory
 069 point that represents a specific perspective of the memorized information. Initially, these memory
 070 points encode low-order primitive facts. As the LLM interacts with external environments, higher-
 071 order correlations among memory points gradually emerge and are progressively integrated into the
 072 memory through update, insertion, and merging operations. At each step before response generation,
 073 the LLM examines the current memory and generates subqueries, enabling adaptive memory-based
 074 evidence retrieval for both focused local investigation and broad global exploration.

075 This rich and structured memory facilitates broader contextual awareness and stronger reasoning in
 076 real-world applications by offering several advantages. First, it maintains an **integrated body of**
 077 **knowledge** around the focal problem by synthesizing primitive evidence and intermediate thoughts,
 078 typically going *beyond predefined schemas* and providing a *global perspective* over the evidence.
 079 Second, it offers **structured and accurate guidance** for the LLM’s sustained interactions in two
 080 ways: (1) enabling subsequent reasoning to start from representational propositions rather than from
 081 a long list of disparate primitive facts; and (2) leveraging the topological structure of hypergraph to
 082 guide subquery generation and evidence retrieval in a more accurate manner.

083 We conduct extensive experiments on several challenging tasks involving global sense-making ques-
 084 tions within long contexts. The results show that our HGMEM achieves significant improvements
 085 over competitive RAG baselines, confirming the advantages.

086 2 RELATED WORK

089 2.1 WORKING MEMORY MECHANISMS FOR MULTI-STEP RAG

090 Starting from ReAct (Yao et al., 2023), many multi-step RAG systems have incorporated reflections
 091 to integrate available information for subsequent decisions. These reflections can be regarded as a
 092 simple form of memory. With the development of structured indexing for RAG, working memory
 093 also borrows this idea. Prevailing studies (Li et al., 2023; 2025a; Shen & Yang, 2025; Chhikara et al.,
 094 2025; Xu et al., 2025) save agent behavior, such as task decomposing, execution tracking, and result
 095 verification, to manage task context more effectively, representing a step toward explicit working
 096 memory for complex multi-agent coordination. This idea also matured in chain-of-thought (CoT)
 097 and multi-round RAG, where working memory is represented as iteratively updated records of rea-
 098 soning steps or retrieved evidence. For example, IRCOT (Trivedi et al., 2023) and ComoRAG (Wang
 099 et al., 2025) employ a dynamic memory workspace to iteratively consolidate past knowledge or steps
 100 and incorporate new evidence, supporting scalable and iterative reasoning across multiple steps.

101 Some studies take a step further to adopt a graph-structured working memory to enhance multi-step
 102 RAG (Liu et al., 2024; Li et al., 2025a). ERA-CoT (Liu et al., 2024) aids LLMs in understanding
 103 context through a series of pre-defined reasoning substeps performing entity-relationship analysis.
 104 KnowTrace (Li et al., 2025a) equips LLMs with a graph-based working memory to trace relevant
 105 knowledge through multi-step RAG execution. However, the working memories of these graph-
 106 enhanced work do not effectively support modeling high-order correlations among multiple enti-
 107 ties/relationships as each edge in their graphs can intrinsically describe at most binary relationships.
 By contrast, due to the high-order nature of hypergraph structure, our HGMEM naturally enables

108 its working memory to evolve into more expressive forms capable of flexibly modeling high-order
 109 n -ary ($n > 2$) relations. This advantage helps to fully unleash the reasoning capability of LLMs for
 110 multi-step RAG, especially crucial for resolving global sense-making questions that require complex
 111 reasoning and deep understanding over long contexts.
 112

113 2.2 RAG WITH STRUCTURED KNOWLEDGE INDEX 114

115 There is a long line of work that studies managing extended corpora through structured knowledge
 116 indexing to enhance RAG. Though different from our focus on working memory mechanism, these
 117 work can be viewed as building structured (and static) long-term memory before actually tackling
 118 user queries, thus are relevant. Specifically, tree-structured methods, such as RAPTOR (Sarthi et al.,
 119 2024), T-RAG (Fatehkia et al., 2024), and TreeRAG (Tao et al., 2025), organize text chunks or entity
 120 hierarchies, enabling multi-level or bidirectional retrieval to enhance context integration. Another
 121 line of research focuses on building graph-structured index to flexibly represent knowledge for en-
 122 hancing RAG systems (Xu et al., 2024a; Edge et al., 2024; Guo et al., 2024; Li et al., 2025b). For
 123 example, GraphRAG (Edge et al., 2024) and LightRAG (Guo et al., 2024) build entity graphs and
 124 community-level summaries, or leverage graph-enhanced indexing for dual-level retrieval, leading
 125 to improvements in global reasoning, retrieval efficiency, and response diversity. CAM (Li et al.,
 126 2025b) proposes a constructivist agentic memory that flexibly assimilates and accommodates input
 127 texts within a hierarchical graph. HypergraphRAG (Luo et al., 2025) and PropRAG (Wang, 2025)
 128 adopt hypergraph to build their structured knowledge index and design retrieval/search algorithms
 129 for query resolving. In addition, there are also a range of other memory mechanisms, essentially
 130 structured knowledge index, that simulate long contexts or dialog histories as long-term memory
 131 to improve RAG systems. According to the form of memory representation, they can be basically
 132 classified as contextual memory (Chen et al., 2023; Gutierrez et al., 2024; Lee et al., 2024; Li et al.,
 133 2024b; Gutierrez et al., 2025) and parametric memory (Qian et al., 2025).
 134

135 However, these existing studies merely leverage their structured index (or memory) as static storage,
 136 which are typically constructed during an offline indexing stage before actually responding to user
 137 queries.
 138

139 3 METHODOLOGY 140

141 We introduce HGMEM, the hypergraph-based memory mechanism designed to facilitate better con-
 142 textual awareness and reasoning in multi-step RAG settings with structured data sources, especially
 143 for long-context tasks that require complex global sense-making.
 144

145 3.1 PROBLEM FORMULATION 146

147 In this work, we consider the kind of tasks for LLMs to resolve a query based on a given document.
 148 Besides the plain texts, we assume that the document has been preprocessed into a graph through
 149 an offline graph-building stage, where entities and relationships are extracted from the document
 150 passage. Formally, let us denote the document as \mathcal{D} segmented into a set of small manageable text
 151 chunks $\{d_1, d_2, \dots, d_{|\mathcal{D}|}\}$, and the derived graph as \mathcal{G} composed of nodes $\mathcal{V}_{\mathcal{G}}$ and edges $\mathcal{E}_{\mathcal{G}}$ corre-
 152 sponding to the extracted entities and relationships, respectively. Each node $v \in \mathcal{V}_{\mathcal{G}}$ or edge $e \in \mathcal{E}_{\mathcal{G}}$
 153 is associated with the source text chunks in which its embodied entity/relationship appears, which
 154 is recorded during the offline graph construction. Meanwhile, the nodes, edges, and text chunks are
 155 embedded into high-dimensional vectors for vector-based retrieval. For resolving the query, LLMs
 156 have access to both the document and its derived graph as structured data sources.
 157

158 3.2 MULTI-STEP RAG SYSTEM WITH MEMORY 159

160 When dealing with tasks requiring comprehensive understanding, especially over long context, RAG
 161 systems usually resort to multi-step approaches with an underlying memory mechanism, where re-
 162 trieval operations are interleaved with intermediate reasoning to support broader contextual aware-
 163 ness.
 164

165 Given a target query \hat{q} , the LLM iteratively interacts with \mathcal{D} and \mathcal{G} while managing a memory \mathcal{M} to
 166 store relevant information for ultimately resolving \hat{q} . During each interaction step t , the LLM judges
 167

Figure 1: (i) The RAG system at its t -th interaction step. ①: The LLM adaptively generates a set of subqueries $\mathcal{Q}^{(t)}$ for either local investigation or global exploration (see Section 3.4). ②: $\mathcal{Q}^{(t)}$ are used to retrieve information from \mathcal{D} and \mathcal{G} . ③: $\mathcal{V}_{\mathcal{Q}^{(t)}}$, $\mathcal{E}(\mathcal{V}_{\mathcal{Q}^{(t)}})$ and $\mathcal{D}(\mathcal{V}_{\mathcal{Q}^{(t)}})$ are obtained through graph-based indexing and vector-based matching. ④: The LLM evolves current memory $\mathcal{M}^{(t)}$ into $\mathcal{M}^{(t+1)}$ using Equation 2. (ii) The structure of our proposed hypergraph-based memory that evolves through update, insertion and merging operations.

whether the content of current memory has been sufficient with respect to the target query. If the memory is deemed sufficient, it immediately produces a response. Otherwise, it analyzes current memory and generates several subqueries $\mathcal{Q}^{(t)}$ that aim at fetching more information from external environment to enrich the memory. The prompts for generating subqueries are given in Appendix E.

Let $\mathcal{R}_{\mathcal{V}}(\mathcal{Q})$ define the entity retrieval operation fetching the most relevant nodes to a query set \mathcal{Q} from a candidate node set \mathcal{V} using vector-based matching:

$$\mathcal{R}_{\mathcal{V}}(\mathcal{Q}) = \bigcup_{q \in \mathcal{Q}} \operatorname{argmax}_{v \in \mathcal{V}} \operatorname{sim}(\mathbf{h}_q, \mathbf{h}_v), \quad (1)$$

where n_v is the number of retrieved entities per query, \mathbf{h}_q is the vector representation of q , \mathbf{h}_v is the vector representation of v , and $\operatorname{sim}(\cdot, \cdot)$ is the cosine similarity function.

As illustrated in Figure 1 (i), at the t -th step, if the LLM proceeds to generate subqueries $\mathcal{Q}^{(t)}$ based on current memory $\mathcal{M}^{(t)}$ maintained until the previous step, it retrieves a set of the most relevant entities $\mathcal{V}_{\mathcal{Q}^{(t)}} = \mathcal{R}_{\mathcal{V}_{\mathcal{G}}}(\mathcal{Q}^{(t)})$ from $\mathcal{V}_{\mathcal{G}}$. Then, via graph-based indexing, the relationships and text chunks associated with the entities in $\mathcal{V}_{\mathcal{Q}^{(t)}}$ are also obtained, represented as $\mathcal{E}(\mathcal{V}_{\mathcal{Q}^{(t)}})$ and $\mathcal{D}(\mathcal{V}_{\mathcal{Q}^{(t)}})$, respectively.¹ Subsequently, the LLM analyzes and consolidates these retrieved information into the memory, evolving memory into $\mathcal{M}^{(t+1)}$, which can be formalized as

$$\mathcal{M}^{(t+1)} \leftarrow \text{LLM}(\mathcal{M}^{(t)}, \mathcal{V}_{\mathcal{Q}^{(t)}}, \mathcal{E}(\mathcal{V}_{\mathcal{Q}^{(t)}}), \mathcal{D}(\mathcal{V}_{\mathcal{Q}^{(t)}})). \quad (2)$$

Note that, at the initial step ($t=0$), we treat the target query \hat{q} as a special subquery belonging to $\mathcal{Q}^{(0)}$, i.e. $\mathcal{Q}^{(0)} = \{\hat{q}\}$. Further details about the memory storage, subquery generation and the dynamic of memory evolving will be elaborated in Section 3.3, Section 3.4 and Section 3.5, respectively.

¹We also use vector-based filtering to keep at most n_e relationships and n_d text chunks.

216 3.3 HYPERGRAPH-BASED MEMORY STORAGE
217

218 When the LLM interacts with the document \mathcal{D} and the graph \mathcal{G} , it continuously consolidates relevant
219 information into the memory storage \mathcal{M} , which is modeled as a hypergraph:

$$220 \quad \mathcal{M} = (\mathcal{V}_{\mathcal{M}}, \tilde{\mathcal{E}}_{\mathcal{M}}), \quad (3)$$

222 where $\mathcal{V}_{\mathcal{M}} = \{v_1, v_2, \dots\}$ is the vertex set and $\tilde{\mathcal{E}}_{\mathcal{M}} = \{\tilde{e}_1, \tilde{e}_2, \dots\}$ is the hyperedge set. It should
223 be noted that the vertices in $\mathcal{V}_{\mathcal{M}}$ are actually equivalent to those nodes in $\mathcal{V}_{\mathcal{G}}$, both embodying
224 identified entities. Particularly, $\mathcal{V}_{\mathcal{M}}$ is a subset of $\mathcal{V}_{\mathcal{G}}$. In our implementation, we ensure that each
225 vertex $v_i \in \mathcal{V}_{\mathcal{M}}$ must also exist in \mathcal{G} .² Formally, every vertex $v_i \in \mathcal{V}_{\mathcal{M}}$ is represented as

$$226 \quad v_i = (\Omega_{v_i}^{ent}, \mathcal{D}_{v_i}), \quad (4)$$

227 where $\Omega_{v_i}^{ent}$ stands for the information of its embodied entity including name and description, and
228 \mathcal{D}_{v_i} denotes the set of text chunks associated with this vertex v_i . Similarly, every hyperedge $\tilde{e}_j \in \tilde{\mathcal{E}}_{\mathcal{M}}$
229 is represented as

$$230 \quad \tilde{e}_j = (\Omega_{\tilde{e}_j}^{rel}, \mathcal{V}_{\tilde{e}_j}), \quad (5)$$

231 where $\Omega_{\tilde{e}_j}^{rel}$ characterizes the description of the embodied relationship and $\mathcal{V}_{\tilde{e}_j}$ is the set of involved
232 vertices subordinate to this hyperedge \tilde{e}_j . Particularly, the hyperedges can be treated as separate
233 memory points, each of which corresponds to a certain aspect of the entire information stored in
234 current memory, as shown in Figure 1 (ii). Unlike those binary edges $\mathcal{E}_{\mathcal{G}}$ that connect at most two
235 nodes in the external graph, a hyperedge can connect an arbitrary number (two or more) of vertices.
236 In this way, our hypergraph-based memory is capable of flexibly modeling high-order correlation
237 among multiple vertices ($n \geq 2$). As a result, the whole memory as a hypergraph can effectively
238 support complex relational modeling, ensuring strong expressiveness to enhance LLMs' reasoning.

239 3.4 ADAPTIVE MEMORY-BASED EVIDENCE RETRIEVAL
240

241 As described in Section 3.2, at each step t of our RAG workflow, with respect to the target query, the
242 LLM determines whether to immediately produce a response or proceed to acquire more information
243 from the external documents \mathcal{D} and graph \mathcal{G} . If current memory $\mathcal{M}^{(t)} = (\mathcal{V}_{\mathcal{M}}^{(t)}, \tilde{\mathcal{E}}_{\mathcal{M}}^{(t)})$ is deemed
244 insufficient, the LLM first analyzes $\mathcal{M}^{(t)}$ and generates several subqueries $\mathcal{Q}^{(t)}$ indicating what to
245 further explore. Specifically, we design an adaptive memory-based evidence retrieval strategy for
246 either local investigation or global exploration with $\mathcal{Q}^{(t)}$:

247 (i) Local Investigation: When the LLM plans to more deeply investigate some specific memory
248 points, its generated subqueries are utilized to trigger local evidence retrieval over \mathcal{G} . Con-
249 cretely, suppose a $q \in \mathcal{Q}^{(t)}$ especially targets at inspecting $\tilde{e}_j \in \tilde{\mathcal{E}}_{\mathcal{M}}^{(t)}$, the nodes corresponding
250 to the vertices $\mathcal{V}_{\tilde{e}_j}$ subordinate to \tilde{e}_j are used as anchor nodes on \mathcal{G} . Thereafter, using the op-
251 eration defined by Equation 1, entity retrieval is conducted within the neighborhood of these
252 anchors, which is formalized as

$$254 \quad \mathcal{V}_q = \mathcal{R}_{\mathcal{N}(\mathcal{V}_{\tilde{e}_j})}(q), \quad (6)$$

$$255 \quad \mathcal{N}(\mathcal{V}_{\tilde{e}_j}) = \bigcup_{v \in \mathcal{V}_{\tilde{e}_j}} (\mathcal{N}_{\mathcal{M}^{(t)}}(v) \cup \mathcal{N}_{\mathcal{G}}(v)),$$

256 where $\mathcal{N}_{\mathcal{M}^{(t)}}(v)$ represents the neighboring vertices of v over $\mathcal{M}^{(t)}$ and $\mathcal{N}_{\mathcal{G}}(v)$ represents the
257 neighboring nodes of v over \mathcal{G} .

258 (ii) Global Exploration: When there are unexplored aspects transcending the scope of current
259 memory, the LLM resorts to generating subqueries for exploring broader information from the
260 external documents and graph, not pertinent to any existing memory point. For a $q \in \mathcal{Q}^{(t)}$, the
261 process of entity retrieval can be written as

$$264 \quad \mathcal{V}_q = \mathcal{R}_{\mathcal{C}(\mathcal{M}^{(t)})}(q), \quad (7)$$

$$265 \quad \mathcal{C}(\mathcal{M}^{(t)}) = \mathcal{V}_{\mathcal{G}} - \mathcal{V}_{\mathcal{M}^{(t)}},$$

266 where $\mathcal{C}(\mathcal{M}^{(t)})$ represents the available scope comprised of all nodes except those already
267 existing in current memory.

268 ²If any vertex does not exist in $\mathcal{V}_{\mathcal{G}}$, we forcibly insert it, along with its associated relationships, into \mathcal{G} .

Figure 2: An illustration of memory evolving dynamics. Each point is equivalent to a hyperedge in the hypergraph. $\mathcal{M}^{(t)}$ evolves into $\mathcal{M}^{(t+1)}$ through update, insertion and merging operations.

Then, as in Section 3.2, the associated relationships $\mathcal{E}(\mathcal{V}_q)$ and text chunks $\mathcal{D}(\mathcal{V}_q)$ are obtained via graph-based indexing. Finally, following Equation 2, the LLM evolves its current memory $\mathcal{M}^{(t)}$ into $\mathcal{M}^{(t+1)}$. Under such a strategy, the RAG system is able to adaptively combine both local investigation and global exploration for more flexible information retrieval during interaction with external data sources.

3.5 DYNAMIC OF MEMORY EVOLVING

Once a set of subqueries have been generated at the t -th step, following Equation 2, the LLM analyzes the retrieved information and consolidates useful content into current memory $\mathcal{M}^{(t)}$, resulting in the evolved memory $\mathcal{M}^{(t+1)}$. As shown in Figure 1 (ii), on the basis of hypergraph-based memory storage, the dynamic of memory evolving in our proposed HGMEM involves the following three types of operations:

- **Update.** According to the retrieved information, if there are certain existing memory points whose descriptions should be modified, the update operation will revise the descriptions of corresponding hyperedges without changing their subordinate entities.
- **Insertion.** The insertion operation should be evoked when some content of the retrieved information is suitable to be inserted as additional memory points into the current memory, which creates new hyperedges into the hypergraph.
- **Merging.** After insertion and update, the LLM inspects current memory and selectively merges existing memory points that are more suitable to constitute a single semantically/logically cohesive unit. With respect to the target query \hat{q} , suppose the memory points $\tilde{e}_i = (\Omega_{\tilde{e}_i}^{rel}, \mathcal{V}_{\tilde{e}_i})$ and $\tilde{e}_j = (\Omega_{\tilde{e}_j}^{rel}, \mathcal{V}_{\tilde{e}_j})$ are to be merged into a high-order memory point $\tilde{e}_k = (\Omega_{\tilde{e}_k}^{rel}, \mathcal{V}_{\tilde{e}_k})$, its description and subordinate vertices are acquired as

$$\begin{aligned} \Omega_{\tilde{e}_k}^{rel} &\leftarrow \text{LLM}(\Omega_{\tilde{e}_i}^{rel}, \Omega_{\tilde{e}_j}^{rel}, \hat{q}) \\ \mathcal{V}_{\tilde{e}_k} &= \mathcal{V}_{\tilde{e}_i} \cup \mathcal{V}_{\tilde{e}_j}. \end{aligned} \quad (8)$$

Then, the newly merged memory point is added into the hyperedge set $\tilde{\mathcal{E}}_{\mathcal{M}^{(t)}}$ of current memory $\mathcal{M}^{(t)}$. This merging operation over the hypergraph-based memory builds higher-order correlations among multiple existing memory points, facilitating the resolution of queries that require complex relational modeling with disparate facts.

In this way, besides continuously accumulating primitive facts during the LLM's interactions with external data sources, the memory also gradually evolves into more sophisticated forms, capturing higher-order correlations for complex relational modeling. Figure 2 gives a concrete example illustrating the dynamic of memory evolving.

3.6 MEMORY-ENHANCED RESPONSE GENERATION

When the LLM exceeds its maximum interaction steps or the content in current memory $\mathcal{M}^{(t)} = (\mathcal{V}_{\mathcal{M}}^{(t)}, \tilde{\mathcal{E}}_{\mathcal{M}}^{(t)})$ has been deemed sufficient, a response is immediately produced according to the information stored in current memory. Concretely, besides the descriptions of all memory points (i.e. $\tilde{\mathcal{E}}_{\mathcal{M}}^{(t)}$), the text chunks associated with all the entities $\mathcal{V}_{\mathcal{M}}^{(t)}$ in current memory are also provided to the LLM for producing the final response.

324

4 EXPERIMENTAL SETTINGS

325

4.1 DATASETS

326 We choose generative sense-making question answering (QA) (Edge et al., 2024; Guo et al., 2024)
 327 and long narrative understanding (Li et al., 2024a; Xu et al., 2024b; Yu et al., 2025; Kociský et al.,
 328 2018; Karpinska et al., 2024; Yen et al., 2025; Zhou et al., 2025) as our evaluation tasks. For gener-
 329 ative sense-making QA, similar to the setups used in previous works (Edge et al., 2024; Guo et al.,
 330 2024), we retain a portion of long documents with more than 100k tokens from **Longbench V2** (Bai
 331 et al., 2025). From each retained document, we use GPT-4o to generate several global sense-making
 332 queries that satisfy the following requirements: 1) The queries should target at the overall under-
 333 standing of the whole provided documents, instead of only concentrating on several specific phrases
 334 or sentence pieces. 2) The queries should require high-level understandings and global reasoning
 335 over disparate evidence scattered across the whole paragraph. For long narrative understanding,
 336 we use three public benchmarks including **NarrativeQA** (Kociský et al., 2018), **NoCha** (Karpinska
 337 et al., 2024) and **Prelude** (Yu et al., 2025). Both tasks require global comprehension and complex
 338 sense-making over disparate evidence across long contexts. Details about the usage and statistics of
 339 data used in our experiments are given in Appendix A.

340

4.2 IMPLEMENTATION DETAILS

341 **Offline Graph Construction.** For all the datasets used in our experiments, we first segment every
 342 document into text chunks of 200 tokens with 50 overlapping tokens between adjacent chunks.
 343 Then, GPT-4o is utilized to preprocess each of the chunkized documents into a graph using the
 344 open-sourced tool provided by LightRAG (Guo et al., 2024). After building the graph, we adopt
 345 *bge-m3* (Chen et al., 2024) as the embedding model to convert all the entities, relationships and text
 346 chunks into vector representations managed by *nano vector database*.

347 **System Deployment and Configuration.** Our RAG system is comprised of the backbone LLM
 348 and the hypergraph-based memory. We choose GPT-4o and Qwen2.5-32B-Instruct as the representa-
 349 tives of advanced closed-source and open-source LLMs, respectively. During experiments, GPT-4o
 350 is accessed through official API while Qwen2.5-32B-Instruct is locally deployed with VLLM (Kwon
 351 et al., 2023). For the configuration of LLM inference, we set the temperature to 0.8 and the max-
 352 imum number of output tokens to 2,048. As for the hypergraph-based memory, we employ the
 353 *hypergraph-db* package to maintain and manage the hypergraph at runtime. The vector representa-
 354 tions of the nodes, hyperedges and associated text chunks in the hypergraph are also generated by
 355 *bge-m3* embedding model.

356

4.3 BASELINES AND EVALUATION METRICS

357 In our experiments, we compare our proposed HGMEM to two types of baseline methods, *i.e.* tra-
 358 ditional RAG and multi-step RAG, which utilize plain texts and/or graph-structured data sources.
 359 Among these methods, DeepRAG (Guan et al., 2025) and ComoRAG (Wang et al., 2025) are
 360 equipped with a working memory while the others are not. The details of these comparison methods
 361 can be found in Appendix B. To ensure fair comparison, all baselines operate on a similar number
 362 of retrieved passages. In the case of single-step RAG, this means retrieving the same average num-
 363 ber of text chunks as our HGMEM. For multi-step RAG methods, we approximate comparability
 364 by constraining them to rewrite the same maximum number of subqueries and perform the same
 365 maximum number of steps, while requiring retrieval of the same average number of chunks per step.

366 For generative sense-making QA, we adopt the following two metrics to assess the qualities of
 367 model responses: 1) **Comprehensiveness** measures how well the model response comprehensively
 368 covers and addresses all aspects and necessary details with respect to the target query. 2) **Diversity**
 369 indicates how rich and diverse the response is in providing various perspectives and insights related
 370 to the query. We employ GPT-4o as the judge to evaluate the model responses according to the
 371 grading criteria that gives scores ranging from 0 to 100 based on a two-step scoring scheme, as
 372 detailed in Appendix F.

373 For long narrative understanding, including NarrativeQA, Nocha, and Prelude, we uniformly use
 374 prediction accuracy (Acc) as the reported metric. Specifically, for NarrativeQA, prior studies (Bu-
 375 lian et al., 2022; Wang et al., 2024; Zhou et al., 2025) have shown that conventional token-level

378
 379 Table 1: The overall experimental results on four benchmarks. The second column “**Working**
 380 **Memory**” distinguishes whether the corresponding method is equipped with a working memory
 381 that enhances LLMs during RAG execution. The best scores in each dataset are **bolded**. HGMem
 382 consistently outperforms other comparison methods across all datasets.

383 384 385	Type	Working Memory	Method	Longbench		NarrativeQA Acc (%)	NoCha Acc (%)	Prelude Acc (%)
				386 387 388 389 390	386 387 388 389 390	386 387 388 389 390	386 387 388 389 390	386 387 388 389 390
GPT-4o								
386 387 388 389 390	Traditional RAG	✗	NaiveRAG	61.62	64.20	52.00	67.46	60.00
		✗	GraphRAG	60.39	64.02	53.00	70.63	59.26
		✗	LightRAG	61.55	63.37	44.00	71.43	61.48
		✗	HippoRAG v2	58.92	61.27	34.00	72.22	54.81
386 387 388 389 390	Multi-step RAG	✓	DeepRAG	63.62	65.98	45.00	67.46	56.30
		✓	ComoRAG	62.18	65.82	54.00	63.49	54.07
		✓	HGMEM	65.73	69.74	55.00	73.81	62.96
Qwen2.5-32B-Instruct								
386 387 388 389 390	Traditional RAG	✗	NaiveRAG	61.41	62.25	37.00	64.29	52.59
		✗	GraphRAG	60.78	62.16	44.00	62.70	50.37
		✗	LightRAG	60.82	62.73	40.00	59.52	60.74
		✗	HippoRAG v2	56.66	60.80	33.00	68.25	51.85
386 387 388 389 390	Multi-step RAG	✓	DeepRAG	61.45	63.56	44.00	66.40	51.11
		✓	ComoRAG	60.74	61.28	44.00	57.60	50.37
		✓	HGMEM	64.18	66.51	51.00	70.63	62.22

391
 392 metrics such as Exact Match and F1 score usually fail to reflect actual semantic equivalence be-
 393 tween hypothesis and reference answer, especially for abstractive answers. Therefore, we also apply
 394 GPT-4o for judging whether the LLM’s prediction fully entails the reference answer, producing a
 395 binary True/False decision.

404 5 RESULTS AND ANALYSIS

405 5.1 OVERALL RESULTS

409 Table 1 reports the overall results across all evaluation tasks. Our HGMem consistently outperforms
 410 both single-step and multi-step RAG baselines on every dataset. Importantly, our HGMem with
 411 Qwen2.5-32B-Instruct matches or even outperforms baselines powered by the stronger GPT-4o,
 412 underscoring its value in resource-efficient scenarios.

413 The baselines exhibit mixed performance patterns reflecting their respective representational
 414 strengths. For instance, HippoRAG v2 relies on knowledge triples, which provide strong fact rep-
 415 resentation but limited coverage of events and plots. As a result, it performs well on NoCha but
 416 falls behind NaiveRAG on NarrativeQA. In contrast, GraphRAG and LightRAG excel at building
 417 global representations but are weaker at capturing fine-grained details, leading them to outperform
 418 other baselines on Prelude and NarrativeQA. The two multi-step RAG methods, which mainly em-
 419 ploy working memory to iteratively generate subqueries in a chaining fashion, struggle with sense-
 420 making questions, where integrating higher-order relationships is essential.

421 In comparison, our HGMem provides strong compositional representations that span from facts to
 422 plots, equipping LLM reasoning with high-order correlations and integrated evidence. This enables
 423 it to meet the diverse requirements posed by the evaluation tasks.

425 5.2 PERFORMANCE AT DIFFERENT STEPS

427 During the execution of our multi-step RAG system, the memory progressively evolves and guides
 428 the LLM to proceed with retrieval and reasoning. To inspect the effects of memory evolving over
 429 multiple interaction steps, we force the LLM to generate responses at every step for a total of six
 430 turns, even if it originally decides to terminate the iteration earlier. Figure 3 presents the perfor-
 431 mances at different steps using Qwen2.5-32B-Instruct on long narrative understanding tasks. Note
 432 that $t=0$ represents the initial step when the target query \hat{q} is used for retrieval. We can observe that

Figure 3: Prediction accuracies at different steps using Qwen2.5-32B-Instruct on long narrative understanding datasets.

Table 2: Ablation results using Qwen2.5-32B-Instruct. “w/. GE Only” and “w/. LI Only” stand for subquery generation strategies with Global Exploration and Local Investigation, respectively. “w/o. Update” and “w/o. Merging” refer to HGMEM ablating update and merging operations during memory evolving, respectively.

Ablation Type	Method	Longbench		NarrativeQA	Nocha	Prelude
		Comprehensiveness	Diversity	Acc (%)	Acc (%)	Acc (%)
Retrieval Strategy	HGMEM	64.18	66.51	51.00	70.63	62.22
	w/. GE Only	59.25	61.67	47.00	68.25	59.26
	w/. LI Only	61.38	63.82	43.00	63.49	60.00
Memory Evolution	HGMEM	64.18	66.51	51.00	70.63	62.22
	w/. Update	62.48	64.92	50.00	68.25	60.00
	w/. Merging	61.76	61.80	43.00	61.11	57.78

our HGMEM achieves its best performance at $t=3$, mostly outperforming NaiveRAG and LightRAG baselines across steps. More steps bring no further improvements at a higher cost.

5.3 ABLATION STUDIES

Evidence Retrieval Strategy. When the LLM determines to acquire more information from \mathcal{D} and \mathcal{G} , our HGMEM adopts an adaptive memory-based evidence retrieval strategy for either focused local investigation or broad global exploration (Section 3.4). To investigate the effects of such strategy, in Table 2, we compare our strategy to the variants that involve only *Local Investigation* or *Global Exploration*, represented as “w/. LI Only” and “w/. GE Only”, respectively. The results show that both “w/. LI Only” and “w/. GE Only” significantly underperforms the adaptive strategy across all datasets, demonstrating the effectiveness and necessity of adaptively combining the two modes of evidence retrieval.

Effects of Update and Merging Operations. The memory evolving in our HGMEM involves update, insertion and merging operations, where merging is especially critical to building high-order correlations from primitive facts. Because insertion is indispensable, we just carry out ablation experiments on all datasets using Qwen2.5-32B-Instruct to assess the effects of update and merging operations, as shown in Table 2. Compared to the “HGMEM”, removing either operation leads to a performance drop, while removing merging (“w/. Merging”) causes a substantially larger degradation than removing update (“w/. Update”). It reflects the effectiveness of both operations, especially highlighting the importance of high-order correlations built through merging operations.

5.4 DISSECTING QUERY RESOLVING: PRIMITIVE VS. SENSE-MAKING

To better understand how our proposed HGMEM brings improvement to the evaluation tasks, we conduct a targeted analysis across different query types. Specifically, we randomly sample 40 queries from each long narrative understanding dataset used in our experiments, yielding a total of 120 queries. These are then manually categorized into two representative types:

- *Primitive Query*: Queries that primarily require locating directly associated chunks, which can often be resolved with local evidence and focus on straightforward factual information.

486
487
488
489 Table 3: Average number of entities per hyperedge ($\text{Avg-}N_v$) in final memory and prediction accu-
490 racy (Acc) for a subset of 120 sampled primitive and sense-making queries.
491
492
493
494
495

Query Type	Method	NarrativeQA		Nocha		Prelude	
		Avg- N_v	Acc (%)	Avg- N_v	Acc (%)	Avg- N_v	Acc (%)
Primitive	HGMEM	3.35	70.00	3.78	60.00	3.85	55.00
	w/o. Merging	3.32	70.00	3.42	65.00	3.73	60.00
Sense-making	HGMEM	7.07	40.00	7.97	70.00	5.25	60.00
	w/o. Merging	4.10	30.00	3.80	60.00	3.74	55.00

496 • *Sense-making Query*: Queries that require deeper comprehension by connecting and integrat-
497 ing multiple pieces of evidence, emphasizing the construction of higher-order relationships and
498 interpretation beyond surface retrieval.

500 We compare both prediction accuracy and the average number of entities per hyperedge ($\text{Avg-}N_v$)
501 in memory before generating final responses. The latter serves as a quantitative indicator of re-
502 lationship complexity. Table 3 shows that on *sense-making queries*, our full “HGMEM” achieves
503 higher accuracy with considerably larger $\text{Avg-}N_v$ than “HGMEM w/o. Merging”, demonstrating
504 that forming higher-order correlations enhances comprehension. In contrast, for primitive queries,
505 “HGMEM” yields comparable or slightly lower accuracy relative to “HGMEM w/o. Merging”. This
506 is likely because the full model still tends to associate additional pieces of relevant evidence (as
507 indicated by the slightly higher $\text{Avg-}N_v$), even though the primitive evidence alone is sufficient to
508 answer straightforward queries, resulting in redundancy.

509 Notably, the $\text{Avg-}N_v$ on sense-making queries consistently exceeds that on primitive queries, es-
510 pecially when merging is applied. Taken together, these results indicate that HGMEM improves
511 contextual understanding by constructing high-order correlations for complex relational reasoning,
512 rather than relying on shallow accumulation of surface facts.

514 6 CONCLUSION

516 In this work, we propose HGMEM, the hypergraph-based memory mechanism that aims at improv-
517 ing multi-step RAG by enabling the evolving of memory into more sophisticated forms for complex
518 relational modeling. In HGMEM, the memory is structured as a hypergraph composed of a set
519 of hyperedges as separate memory points. HGMEM allows the memory to progressively estab-
520 lish high-order correlations among previously accumulated primitive facts during the execution of
521 multi-step RAG systems, guiding LLMs to organize and connect thoughts for a focal problem. Ex-
522 tensive experiments and in-depth analysis validate the effectiveness of our method over strong RAG
523 baselines on challenging datasets featuring global sense-making questions over long context.

525 7 REPRODUCIBILITY STATEMENT

528 To ensure reproducibility, we introduce the usage and statistics of our used datasets in Section 4.1
529 and Appendix A. We also give the implementation details about the offline graph construction, sys-
530 tem deployment and configuration in Section 4.2. Appendix D gives the prompts for updating,
531 inserting and merging memory points for memory evolving during multi-step RAG execution. Ap-
532 pendix E describes the procedures for subquery generation with detailed prompts. Appendix F gives
533 the evaluation prompts for scoring model responses in the generative sense-making QA task.

535 REFERENCES

537 Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xiaozhi Wang, Xin Lv, Shulin Cao, Jiazheng
538 Xu, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench v2: Towards deeper under-
539 standing and reasoning on realistic long-context multitasks. In *Proceedings of Association for
Computational Linguistics*, pp. 3639–3664, 2025.

540 Jannis Bulian, Christian Buck, Wojciech Gajewski, Benjamin Börschinger, and Tal Schuster.
 541 Tomayto, tomahto. beyond token-level answer equivalence for question answering evaluation.
 542 *CoRR*, abs/2202.07654, 2022.

543 Howard Chen, Ramakanth Pasunuru, Jason Weston, and Asli Celikyilmaz. Walking down the mem-
 544 ory maze: Beyond context limit through interactive reading. *CoRR*, abs/2310.05029, 2023.

545 Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. BGE m3-embedding:
 546 Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-
 547 tillation. *CoRR*, abs/2402.03216, 2024.

548 Mingyue Cheng, Yucong Luo, Jie Ouyang, Qi Liu, Huijie Liu, Li Li, Shuo Yu, Bohou Zhang,
 549 Jiawei Cao, Jie Ma, Daoyu Wang, and Enhong Chen. A survey on knowledge-oriented retrieval-
 550 augmented generation. *CoRR*, abs/2503.10677, 2025.

551 Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
 552 production-ready AI agents with scalable long-term memory. *CoRR*, abs/2504.19413, 2025.

553 Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
 554 and Jonathan Larson. From local to global: A graph RAG approach to query-focused summariza-
 555 tion. *CoRR*, abs/2404.16130, 2024.

556 Masoomali Fatehkia, Ji Kim Lucas, and Sanjay Chawla. T-RAG: lessons from the LLM trenches.
 557 *CoRR*, abs/2402.07483, 2024.

558 Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
 559 In *Proceedings of the AAAI Conference on Artificial Intelligence*, pp. 3558–3565, 2019.

560 Xinyan Guan, Jiali Zeng, Fandong Meng, Chunlei Xin, Yaojie Lu, Hongyu Lin, Xianpei Han,
 561 Le Sun, and Jie Zhou. Deeprag: Thinking to retrieval step by step for large language models.
 562 *CoRR*, abs/2502.01142, 2025.

563 Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
 564 augmented generation. *CoRR*, abs/2410.05779, 2024.

565 Bernal Jimenez Gutierrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neu-
 566 robiologically inspired long-term memory for large language models. In *Proceedings of Neural
 567 Information Processing Systems*, 2024.

568 Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, and Yu Su. From RAG to memory:
 569 Non-parametric continual learning for large language models. *CoRR*, abs/2502.14802, 2025.

570 Nicola Jones. Openai’s’ deep research’tool: is it useful for scientists? *Nature*, 2025.

571 Marzena Karpinska, Katherine Thai, Kyle Lo, Tanya Goyal, and Mohit Iyyer. One thousand and
 572 one pairs: A “novel” challenge for long-context language models. In *Proceedings of EMNLP*, pp.
 573 17048–17085, 2024.

574 Tomás Kociský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis,
 575 and Edward Grefenstette. The narrativeqa reading comprehension challenge. *Transactions of the
 576 Association for Computational Linguistics*, 6:317–328, 2018.

577 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 578 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 579 serving with pagedattention. In *Proceedings of the Symposium on Operating Systems Principles*,
 580 pp. 611–626, 2023.

581 Kuang-Huei Lee, Xinyun Chen, Hiroki Furuta, John F. Canny, and Ian Fischer. A human-inspired
 582 reading agent with gist memory of very long contexts. In *Proceedings of International Conference
 583 on Machine Learning*, 2024.

584 Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbulin, and Bernard Ghanem. CAMEL:
 585 communicative agents for “mind” exploration of large language model society. In *Proceedings of
 586 Neural Information Processing Systems*, 2023.

594 Jiaqi Li, Mengmeng Wang, Zilong Zheng, and Muhan Zhang. Loogle: Can long-context language
 595 models understand long contexts? In *Proceedings of Association for Computational Linguistics*,
 596 pp. 16304–16333, 2024a.

597 Rui Li, Quanyu Dai, Zeyu Zhang, Xu Chen, Zhenhua Dong, and Ji-Rong Wen. Knowtrace: Boot-
 598 strapping iterative retrieval-augmented generation with structured knowledge tracing. *CoRR*,
 599 abs/2505.20245, 2025a.

600 Rui Li, Zeyu Zhang, Xiaohe Bo, Zihang Tian, Xu Chen, Quanyu Dai, Zhenhua Dong, and Ruiming
 601 Tang. CAM: A constructivist view of agentic memory for llm-based reading comprehension.
 602 *CoRR*, abs/2510.05520, 2025b.

603 Shilong Li, Yancheng He, Hangyu Guo, Xingyuan Bu, Ge Bai, Jie Liu, Jiaheng Liu, Xingwei Qu,
 604 Yangguang Li, Wanli Ouyang, Wenbo Su, and Bo Zheng. Graphreader: Building graph-based
 605 agent to enhance long-context abilities of large language models. In *Findings of Empirical Meth-
 606 ods in Natural Language Processing*, pp. 12758–12786, 2024b.

607 Yanming Liu, Xinyue Peng, Tianyu Du, Jianwei Yin, Weihao Liu, and Xuhong Zhang. Era-cot:
 608 Improving chain-of-thought through entity relationship analysis. In *Proceedings of Association
 609 for Computational Linguistics*, pp. 8780–8794, 2024.

610 Junru Lu, Siyu An, Mingbao Lin, Gabriele Pergola, Yulan He, Di Yin, Xing Sun, and Yunsheng
 611 Wu. Memochat: Tuning llms to use memos for consistent long-range open-domain conversation.
 612 *CoRR*, abs/2308.08239, 2023.

613 Haoran Luo, Haihong E, Guanting Chen, Yandan Zheng, Xiaobao Wu, Yikai Guo, Qika Lin,
 614 Yu Feng, Ze-min Kuang, Meina Song, Yifan Zhu, and Luu Anh Tuan. Hypergraphrag:
 615 Retrieval-augmented generation with hypergraph-structured knowledge representation. *CoRR*,
 616 abs/2503.21322, 2025.

617 Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan Peshterliev, Dmytro Okhonko, Michael Sejr
 618 Schlichtkrull, Sonal Gupta, Yashar Mehdad, and Scott Yih. Unik-qa: Unified representations of
 619 structured and unstructured knowledge for open-domain question answering. In *Findings of the
 620 Association for Computational Linguistics: NAACL*, pp. 1535–1546, 2022.

621 Hongjin Qian, Zheng Liu, Peitian Zhang, Kelong Mao, Defu Lian, Zhicheng Dou, and Tiejun
 622 Huang. Memorag: Boosting long context processing with global memory-enhanced retrieval
 623 augmentation. In *Proceedings of WWW 2025*, pp. 2366–2377, 2025.

624 Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D. Man-
 625 ning. RAPTOR: recursive abstractive processing for tree-organized retrieval. In *Proceedings of
 626 International Conference on Learning Representations*, 2024.

627 Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. Enhancing
 628 retrieval-augmented large language models with iterative retrieval-generation synergy. In *Find-
 629 ings of EMNLP*, pp. 9248–9274. Association for Computational Linguistics, 2023.

630 Minjie Shen and Qikai Yang. From mind to machine: The rise of manus AI as a fully autonomous
 631 digital agent. *CoRR*, abs/2505.02024, 2025.

632 Wenyu Tao, Xiaofen Xing, Yirong Chen, Linyi Huang, and Xiangmin Xu. Treerag: Unleashing the
 633 power of hierarchical storage for enhanced knowledge retrieval in long documents. In *Findings
 634 of the Association for Computational Linguistics*, pp. 356–371, 2025.

635 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
 636 trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. In *Pro-
 637 ceedings of the Association for Computational Linguistics*, pp. 10014–10037, 2023.

638 Jingjin Wang. Proprag: Guiding retrieval with beam search over proposition paths. *CoRR*,
 639 abs/2504.18070, 2025.

640 Juyuan Wang, Rongchen Zhao, Wei Wei, Yufeng Wang, Mo Yu, Jie Zhou, Jin Xu, and Liyan Xu.
 641 Comorag: A cognitive-inspired memory-organized RAG for stateful long narrative reasoning.
 642 *CoRR*, abs/2508.10419, 2025.

648 Yang Wang, Alberto Garcia Hernandez, Roman Kyslyi, and Nicholas Kersting. Evaluating qual-
 649 ity of answers for retrieval-augmented generation: A strong LLM is all you need. *CoRR*,
 650 abs/2406.18064, 2024.

651 Liyan Xu, Jiangnan Li, Mo Yu, and Jie Zhou. Fine-grained modeling of narrative context: A coher-
 652 ence perspective via retrospective questions. In *Proceedings of the Association for Computational*
 653 *Linguistics*, pp. 5822–5838, 2024a.

654 Wujiang Xu, Zujie Liang, Kai Mei, Hang Gao, Juntao Tan, and Yongfeng Zhang. A-MEM: agentic
 655 memory for LLM agents. *CoRR*, abs/2502.12110, 2025.

656 Zhe Xu, Jiasheng Ye, Xiangyang Liu, Tianxiang Sun, Xiaoran Liu, Qipeng Guo, Linlin Li, Qun Liu,
 657 Xuanjing Huang, and Xipeng Qiu. Detectiveqa: Evaluating long-context reasoning on detective
 658 novels. *CoRR*, abs/2409.02465, 2024b.

659 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao.
 660 React: Synergizing reasoning and acting in language models. In *Proceedings of International*
 661 *Conference on Learning Representations*, 2023.

662 Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding, Daniel Fleischer, Peter Izsak, Moshe Wasserblat,
 663 and Danqi Chen. HELMET: how to evaluate long-context models effectively and thoroughly. In
 664 *The Thirteenth International Conference on Learning Representations*, 2025.

665 Mo Yu, Tsing Chung, Chulun Zhou, Tong Li, Rui Lu, Jiangnan Li, Liyan Xu, Haoshu Lu, Ning
 666 Zhang, Jing Li, and Jie Zhou. PRELUDE: A benchmark designed to require global comprehen-
 667 sion and reasoning over long contexts. *CoRR*, abs/2508.09848, 2025.

668 Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
 669 language models with long-term memory. In *Proceedings of the AAAI Conference on Artificial*
 670 *Intelligence*, pp. 19724–19731, 2024.

671 Chulun Zhou, Qijiang Wang, Mo Yu, Xiaoqian Yue, Rui Lu, Jiangnan Li, Yifan Zhou, Shunchi
 672 Zhang, Jie Zhou, and Wai Lam. The essence of contextual understanding in theory of mind: A
 673 study on question answering with story characters. In *Proceedings of the Association for Compu-*
 674 *tational Linguistics*, pp. 22612–22631, 2025.

675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 Table 4: Statistics of data used in our experiments. #Documents, Avg. #Tokens and #Queries
 703 represent the number of documents, average tokens per document and the total number of queries,
 704 respectively.

	Longbench (Financial)	Longbench (Governmental)	Longbench (Legal)	NarrativeQA	Nocha	Prelude
#Documents	20	22	7	10	4	5
Avg. #Tokens	266k	256k	194k	218k	139k	280k
#Queries	100	98	55	100	126	135

A DATASET STATISTICS

713 **Generative Sense-making QA.** We retain a portion of long documents with more than 100k tokens from **Longbench V2** (Bai et al., 2025), which was originally comprised of six major task
 714 categories designed to assess the ability of LLMs to handle long-context problems. In our experiments, we select three domains of documents from the category of single-document QA, including
 715 *Financial*, *Governmental* and *Legal*.

716 **Long Narrative Understanding.** We use the following public benchmarks:

- 717 • **NarrativeQA** (Kočiský et al., 2018): It is one of the most widely used benchmarks for story
 718 question answering. Because of its question construction strategy over high-level book summaries,
 719 the task places greater emphasis on synthesis and inference beyond local texts. In contrast, many
 720 other existing long-context QA tasks can often be solved with only local evidence, as shown by
 721 studies in (Yu et al., 2025). For evaluation, we randomly sample 10 long books exceeding 100k
 722 tokens, together with their associated queries, from the complete benchmark.
- 723 • **NoCha** (Karpinska et al., 2024): The task involves discriminating minimally different pairs of
 724 true and false claims about English fictional books. Although the format may appear different
 725 from sense-making questions, NoCha is explicitly designed to require constructing a global under-
 726 standing of the book in relation to the focal statement. Since the official test set is hidden, we
 727 conduct experiments using only the publicly released subset.
- 728 • **Prelude** (Yu et al., 2025): This benchmark assesses LLMs’ global comprehension and deep rea-
 729 soning by requiring them to determine whether a character’s prequel story is consistent with the
 730 original book. Most instances of this task demand integrating multiple pieces of evidence or even
 731 forming a holistic impression of the character’s storyline. In our experiments, we use all English
 732 books included in Prelude for evaluation.

733 Table 4 gives the detailed statistics about the data used in our experiments, including the number of
 734 documents, average tokens per document and the total number of queries. Generative sense-making
 735 QA task involves documents from Longbench V2 benchmark in *Financial*, *Government* and *Legal*
 736 domains. Long narrative understanding task uses NarrativeQA, Nocha and Prelude benchmarks.

B COMPARISON BASELINES

744 In our experiments, we compare our methods to traditional RAG and Multi-step RAG methods.
 745 Traditional RAG includes:

- 746 • **NaiveRAG** just uses the target query to retrieve a set of text chunks from the document for
 747 dealing with queries.
- 748 • **GraphRAG** (Edge et al., 2024) constructs knowledge graph from plain-text documents and build
 749 a hierarchy of communities of closely related entities before using an LLM to make responses.
- 750 • **LightRAG** (Guo et al., 2024) also builds a graph structure and employs a dual-level retrieval
 751 strategy from both low-level and high-level evidence discovery.
- 752 • **HippoRAG v2** (Gutiérrez et al., 2025) creates a knowledge graph and adopts the Personalized
 753 PageRank algorithm with dense-sparse integration of passages into the graph search process for
 754 resolving queries.

756
 757 You are an intelligent assistant responsible for resolving the [Main Query] through analyzing supportive information from external knowledge sources and making necessary treatment.
 758 Your current [Memory] records the existing memory points describing what you have already known with respect to the [Main Query].
 759 At present, in order to ultimately resolve the [Main Query], one or several auxiliary subqueries have been raised, i.e. those in [Current Subqueries]. Correspondingly, [Retrieved Info] that contains possibly useful content retrieved by either [Main Query] or [Current Subqueries] in the form of a csv table.
 760 -Goal-
 761 Given the [Retrieved Info], your task is to extract useful information worth memorizing for dealing with the [Main Query] by adding new memory points and/or editing the existing memory points.
 762 -Steps-
 763 1. Based on your existing [Memory], identify useful content worth memorizing from the [Retrieved Info] to better deal with the [Main Query], then reorganize your [Memory] using one or more of the following prescribed operations.
 764 - (1) **Insert New Memory Point(s)**. The Insertion operation should be evoked when some aspects of the identified information are suitable to be inserted into your memory as one or multiple additional points.
 765 - (2) **Update Existing Memory Point(s)**. The Update operation should be evoked when some aspects of the identified information are closely related to existing memory points so that they are suitable to be absorbed into one or multiple existing memory points.
 766 For each inserted or updated memory point, use **{record_delimiter}** as the delimiter to format as
 767 `(point{tuple_delimiter}related_object_1{object_delimiter}related_object_2{object_delimiter}related_object_3{tuple_delimiter})point_description`
 768 2. Output in [language] as two separate lists of inserted and updated memory points as the **Example of Anticipated Output Format**.
 769 - For memory insertion, just give the newly-inserted memory points in [Inserted Memory Points]. When finished, output {completion_delimiter}.
 770 If there's no meaningful memory points to insert that can bring new information besides current [Memory], just output <None> in [Inserted Memory Points].
 771 - For memory update, indicate the indices of existing memory points to be updated and give the newly-updated memory point(s) in [Updated Memory Points]. When finished, output {completion_delimiter}.
 772 The [Main Query], [Memory], [Current Subqueries] and [Retrieved Info] are given as below. Please output your results as the **Example of Anticipated Output Format**.
 773 #####Example of Anticipated Output Format#####
 774 [Inserted Memory Points]:
 775 `(point{tuple_delimiter}Alex{object_delimiter}Jordan{object_delimiter}Cruz{tuple_delimiter})Alex and Jordan's shared commitment to discovery highlights their camaraderie and rebellion against Cruz's control, creating a bond based on innovation and mutual goals. Cruz represents an opposing force with a 'narrowing vision' of control, contrasting with the desire for discovery and innovation expressed by Alex and Jordan.){record_delimiter}`
 776 `(point{tuple_delimiter}Sam{object_delimiter}Rivera{object_delimiter}Alex{tuple_delimiter})The collaboration between Sam and Alex represents two facets of humanity's response to the unknown intelligence, both driven by their emotional experiences and their acknowledgment of the historical significance of their actions during this first contact situation.){record_delimiter}`
 777 `(completion_delimiter)`
 778 [Updated Memory Points]:
 779 `0, (point{tuple_delimiter}Steve Jobs{object_delimiter})San Francisco, California{object_delimiter}Paul{object_delimiter}Clara Jobs{object_delimiter}(tuple_delimiter)Steve Jobs was born on February 24, 1955, in San Francisco, California, and was adopted by Paul and Clara Jobs. He grew up in Mountain View, California, in what would later become Silicon Valley.){record_delimiter}`
 780 `2, (point{tuple_delimiter}Pricing Strategy{object_delimiter})Premium Pricing{object_delimiter}Premium Model{object_delimiter}Tiered Pricing Structures{tuple_delimiter}Apple's pricing strategy has evolved from a focus on premium, high-end products with a "cult following" to a more diversified approach that includes both premium and more affordable options like freemium model. This shift has involved strategies like price skimming for new releases, tiered pricing structures with various models at different price points, and even some instances of underpricing to attract new users.){record_delimiter}`
 781 `(completion_delimiter)`
 782 #####Real Data#####
 783 [Main Query]: {main_query}
 784 [Memory]:
 785 (memory)
 786 [Current Subqueries]:
 787 (cur_subqueries)
 788 [Retrieved Info]:
 789 (retrieved_info)
 790 #####
 791 Note that:
 792 1. The so-called useful information are those that could enrich the query-specific knowledge or potentially bring insights to better deal with the [Main Query].
 2. For each memory point, you should comprehensively organize and summarize its description from the whole context of the [Retrieved Info], rather than just repeat original contents from the given csv table.
 793 3. A memory point can involve multiple closely associated objects so that it can describe higher-level relationships among multiple mutually-connected objects.
 794 4. Meanwhile, avoid forcibly merging everything into a single point. If several distinct objects are not strongly associated, output as separate memory points.
 795 5. Avoid forcibly inserting or updating existing memory points if not necessary.
 796 6. It is encouraged to directly use the existing entity terms listed in the [Retrieved Info] for manipulating memory points. If necessary, you can also introduce new entity terms besides those already explicitly listed.
 797 Output:

Figure 4: The prompt for updating and inserting memory points during memory evolving in HG-MEM.

798
 799 For resolving the [Main Query], you have consolidated some memory points in your [Memory] recording the relevant information you have known.
 800 Based on current [Memory], your task is to conduct memory reorganization that merges multiple memory points into new ones when they are more suitable to constitute a semantically/logically cohesive unit as a whole.
 801
 802 Specifically, you need to specify the indices of original memory points to merge.
 803 Then, for each newly merged point, provide updated descriptions that could build essentially higher-order associations while preserving their original information necessary for dealing with the [Main Query].
 804
 805 Format each reorganized memory point as <indices>{tuple_delimiter}<new description>
 806 Output in [Points_to_Merge] using [language] as the **Example of Anticipated Output Format**.
 807 #####Example of Anticipated Output Format#####
 808 [Points_to_Merge]:
 809 `(1,2{tuple_delimiter}<new_description>){record_delimiter}`
`(2,4,5{tuple_delimiter}<new_description>){record_delimiter}`
`(completion_delimiter)`
 #####Real Data#####
 [Main Query]: {main_query}
 [Memory]:
 (memory)
 #####
 Note that, after reorganization,
 (1) Each new memory point should encapsulate a semantically/logically cohesive unit that highlights unique and essential association among the involved entities of original memory points.
 (2) Each memory point aims to cover distinct aspects, minimizing overlap across different memory points.
 (3) Memory redundancy is reduced by eliminating duplicate content across different memory points.
 (4) If an original point itself is more suitable to be kept as a separate point, just leave it unchanged and do not output it.
 (5) If a memory point has included objects significantly more than other points and encapsulated comprehensive content, it should not be further merged.
 (6) Avoid forcibly merging. If there is no suitable points to merge, output <None> in [Points_to_Merge] without any other thing.
 (7) Principally, new memory points should primarily reuse original entities and preserve original details as much as possible.
 Output:

Figure 5: The prompt for merging memory points during memory evolving in HGMEM.

810
811 Table 5: Statistics of the cost of online multi-step RAG execution in our HGMEM and other base-
812 lines with working memory. Avg-Token is the average count of tokens processed by LLMs per ques-
813 tion, while Avg-Time stands for the average inference latency per question.

Method	NarrativeQA		Nocha		Prelude	
	Avg-Token	Avg-Time	Avg-Token	Avg-Time	Avg-Token	Avg-Time
HGMEM	4436.43	15.84	5252.73	18.76	5421.74	19.36
w/o. Merging	4154.02	14.84	4750.32	16.97	4897.81	17.49
DeepRAG	3904.18	13.94	4724.07	16.87	4514.66	16.12
ComoRAG	5083.26	18.15	5503.98	19.66	7827.56	27.96

820
821 Multi-step RAG includes:

822
823 • **DeepRAG** (Guan et al., 2025) conducts multi-step reasoning as a Markov Decision Process by
824 iteratively decomposing queries.

825
826 • **ComoRAG** (Wang et al., 2025) undergoes multi-step interactions with external data sources
827 with a dynamic memory workspace, iteratively generateing probing queries and integrating the
828 retrieved evidence into a global memory pool.

829 C COST COMPARISON

830
831 We conduct a cost comparison between our HGMEM and other baselines with working memory in
832 terms of token consumption and inference latency. Note that the cost of online multi-step RAG
833 execution is the real concern for fair comparison because the offline graph construction is just for
834 building query-agnostic indexing structure. With this focus, we measure the average token consump-
835 tion and inference latency of HGMEM, ComoRAG and DeepRAG in Table 5. From the statistics,
836 we can observe that the cost of our HGMEM is basically of the same level with those of DeepRAG
837 and ComoRAG while consistently achieving better performance. We can also see that the merg-
838 ing operation, which is the core operation for forming high-order correlation in our HGMEM, just
839 introduces minor computational overhead.

841 D PROMPTS FOR MEMORY EVOLVING

842
843 Section 3.5 describes the dynamics of memory evolving in HGMEM, which consists of update,
844 insertion and merging operations. The prompts for these three types of operations are given in
845 Figure 4 and Figure 5.

848 E PROMPTS FOR SUBQUERY GENERATION

849
850 During our multi-step RAG execution, the LLM needs to generate subqueries for acquiring infor-
851 mation from external data sources. First, it raises relevant concerns that either target at specific
852 memory points or aim at probing useful information outside current memory. Then, the LLM gen-
853 erates corresponding subqueries according to the raised concerns. The prompts for raising concerns
854 and generating subqueries are given in Figure 6 and Figure 7, respectively.

856 F EVALUATION PROMPTS FOR GENERATIVE SENSE-MAKING QA

857
858 For the evaluation of generative sense-making QA, we leverage GPT-4o as an evaluator to assess the
859 quality of model responses. Given the target query and the source paragraph from which the query
860 originated, the GPT-4o evaluator first indicates the level of comprehensiveness/diversity and then
861 gives a final score within the value range of the corresponding level. Detailed prompts for such LLM-
862 as-a-Judge evaluation. Figure 8 and Figure 9 give the prompts for scoring the comprehensiveness
863 and diversity, respectively.

864 You are an intelligent assistant responsible for dealing with the [Main Query] by making appropriate operations as specified.
 865 With respect to the [Main Query], you have consolidated some memory points in your [Memory] describing what you have already known regarding the [Main Query].
 866 Each memory point can be seen as a specific aspect relevant to the [Main Query], providing necessary details or insights from its perspective.
 867 -Goal-
 868 Your task is to analyze the [Main Query] and [Memory], then determine whether current [Memory] has been sufficient to comprehensively resolve the [Main Query].
 869 If not sufficient, you need to indicate what you want to further investigate.
 870 -Procedures-
 871 Step 1.
 872 Make appropriate judgement following the logic branches below.
 873 Case 1: If the [Memory] has been sufficient to completely resolve the [Main Query], output <None> in [Concerns].
 874 Case 2: If the [Memory] is not sufficient, determine current situation should be attributed to which of the following subcases.
 875 Case 2.1: There are some specific memory points which you want to further investigate more details about.
 876 Case 2.2: There are unexplored aspects that go beyond the scope of current [Memory] (i.e. not related to any of the existing memory points).
 877 Step 2.
 878 Output as **Example of Anticipated Output Format**.
 879 Specifically, give your judgement in [Judgement] using corresponding case index (1, 2.1 or 2.2).
 880 Then, generate several concerns that aim at exploring details or aspects not addressed by current [Memory] to better resolve the [Main Query]
 881 When case 2.1, generate up to {num_concerns} concerns, each of which targets at a specific memory point. For each concern, specify the index of its corresponding memory point.
 882 When case 2.2, generate up to {num_concerns} concerns that probe meaningful information not yet covered by current [Memory]
 883 #####-Example of Anticipated Output Format for Case 1-#####
 884 [Judgement]: 1
 885 [Concerns]: <None>
 886 #####-Example of Anticipated Output Format for Case 2.1-#####
 887 [Judgement]: 2.1
 888 [Concerns]:
 889 0{tuple_delimiter}your_concern_1{record_delimiter}
 890 2{tuple_delimiter}your_concern_2{record_delimiter}
 891 2{tuple_delimiter}your_concern_3{record_delimiter}
 892 {completion_delimiter}
 893 #####-Example of Anticipated Output Format for Case 2.2-#####
 894 [Judgement]: 2.2
 895 [Concerns]:
 896 your_concern_1{record_delimiter}
 897 your_concern_2{record_delimiter}
 898 your_concern_3{record_delimiter}
 899 {completion_delimiter}
 900 #####-Real Data-#####
 901 [Main Query]: {query}
 902 [Memory]:
 903 {memory}
 904 #####-* Note that:
 905 (1) Your concern should be concise and suggest what further details or aspect you subsequently will seek for.
 906 (2) Only output the judgement, concerns, and the indices of corresponding memory points without any other content.
 907 (3) If current [Memory] has covered most relevant perspectives, generate fewer concerns to avoid redundancy.
 908 (4) Your generated concerns should be separated by "{record_delimiter}"
 909 #####
 910 Output:

Figure 6: The prompt for raising concerns either targeting at specific memory points or probing useful information outside the current memory.

894 You are an assistant responsible for dealing with the [Main Query].
 895 Although you have had some relevant information in your [Memory], your current [Memory] is still not sufficient to comprehensively
 896 resolve the [Main Query] due to the concern given in [Concern].
 897 Therefore, you need to generate a subquery that aims at either retrieving more evidences or investigating unexplored aspects in
 898 [Subquery] to better deal with the [Main Query] ultimately.
 899 [Previous Subqueries] records a series of previous subqueries that have been raised before.
 900 #####-Anticipated Output Format-#####
 901 [Subquery]: xxx
 902 #####-Real Data-#####
 903 [Main Query]: {query}
 904 [Memory]:
 905 {memory}
 906 [Concern]:
 907 {concern}
 908 [Previous Subqueries]:
 909 {history_subqueries}
 910 #####
 911 * Note that:
 912 (1) Your generated subquery should be concise and address the concerns in your [Concern].
 913 (2) You should avoid generating a subquery that is overly similar to any one of the [Previous Subqueries] or [Main Query].
 914 (3) Only output your subquery without any other redundant content such as markup strings.
 915 #####
 916 Output:

Figure 7: The prompt for generating subqueries based on previously raised concerns.

918 Given a [Paragraph] and a [Question], you will evaluate the quality of the [Response] in terms of Comprehensiveness.
 919
 920 #####-Real Case-#####
 921 [Paragraph]: {paragraph}
 921 [Question]: {question}
 921 [Response]: {response}
 922 #####-Evaluation Criteria-#####
 923 Comprehensiveness measures whether the [Response] comprehensively covers all key aspects in the [Paragraph] with respect to the [Question].
 924 Level | score range | description
 924 Level 1 | 0-20 | The response is extremely one-sided, leaving out key parts or important aspects of the question.
 925 Level 2 | 20-40 | The response has some content, but it misses many important aspects of the question and is not comprehensive enough.
 926 Level 3 | 40-60 | The response is moderately comprehensive, covering the main aspects of the question, but there are still some omissions.
 927 Level 4 | 60-80 | The response is comprehensive, covering most aspects of the question, with few omissions.
 928 Level 5 | 80-100 | The response is extremely comprehensive, covering almost all aspects of the question no omissions, enabling the reader to gain a complete and thorough understanding.
 928 Evaluate the [Response] using the criteria listed above, give a level of comprehensiveness in [Level] based on the description of the indicator, then give a score in [Score] based on the corresponding value range, and finally explain in [Explanation].
 929
 930 Note that:
 930 (1) You should reference to the [Paragraph] and avoid misinterpreting any content of [Paragraph] as part of the [Response].
 931 (2) Avoid excessively concerning very specific details. When the response mentions an aspect without providing very specific details, you should consider this aspect as validly covered, as long as the omitted detail is not crucial to particularly mention with respect to the [Question] in the whole scope of the response.
 932 (3) If [Response] contains extra content not directly included in the [Paragraph], as long as the extra content is correct, do not consider the extra content as defects for giving final evaluation.
 933 (4) You should conform to the -Anticipated Output Format- and give your evaluation results in [Your Evaluation].
 934 #####-Anticipated Output Format-#####
 935 [Level]: A level ranging from 1 to 5 # This should be a single number, not a range.
 935 [Score]: A value ranging from 0 to 100 # This should be a single number satisfying the ranging constraint of the corresponding [Level], not a range.
 936 [Explanation]: xxx
 937 [Your Evaluation]:

Figure 8: The prompt for evaluating the comprehensiveness of a model response.

938 Given a [Paragraph] and a [Question], you will evaluate the quality of the [Response] in terms of Diversity.
 939
 940 #####-Real Case-#####
 941 [Paragraph]: {paragraph}
 941 [Question]: {question}
 941 [Response]: {response}
 942 #####-Evaluation Criteria-#####
 943 Diversity measures how varied and rich is the response in offering different perspectives and insights related to the question.
 943 Level | score range | description
 944 Level 1 | 0-20 | The response is extremely narrow and repetitive, providing only a single perspective or insight without exploring alternative viewpoints or additional information.
 945 Level 2 | 20-40 | The response offers a few different perspectives but remains largely superficial. It may touch on alternative viewpoints but does not elaborate or provide substantial insights.
 946 Level 3 | 40-60 | The response moderately presents several perspectives with moderate depth. It begins to integrate different viewpoints and insights but may still miss some important angles or lack thorough exploration.
 947 Level 4 | 60-80 | The response is rich in perspectives and insights. It basically explores multiple viewpoints and provides substantial evidence and examples to support each angle.
 948 Level 5 | 80-100 | The response is exceptionally varied and rich in perspectives and insights. It offers a comprehensive exploration of the question, addressing multiple angles with depth and originality.
 949 Evaluate the [Response] using the criteria listed above, give a level of comprehensiveness in [Level] based on the description of the indicator, then give a score in [Score] based on the corresponding value range, and finally explain in [Explanation].
 950
 951 Note that:
 951 (1) You should reference to the [Paragraph] and avoid misinterpreting any content of [Paragraph] as part of the [Response].
 952 (2) If [Response] contains extra content not directly included in the [Paragraph], as long as the extra content is correct, do not consider the extra content as defects for giving final evaluation.
 953 (3) You should conform to the -Anticipated Output Format- and give your evaluation results in [Your Evaluation].
 954 #####-Anticipated Output Format-#####
 955 [Level]: A level ranging from 1 to 5 # This should be a single number, not a range.
 955 [Score]: A value ranging from 0 to 100 # This should be a single number satisfying the ranging constraint of the corresponding [Level], not a range.
 956 [Explanation]: xxx
 957 [Your Evaluation]:

Figure 9: The prompt for evaluating the diversity of a model response.

G CASE STUDY

958 As shown in Table 6, we present two representative cases highlighting HGMem’s distinct reasoning
 959 advantages over LightRAG from the perspective of forming high-order correlations and the strategy
 960 of adaptive memory-based evidence retrieval during memory evolving.

961 The first case is from NarrativeQA, where the question requires inferring the underlying cause of Xo-
 962 dar’s enslavement—a relation not explicitly stated in the original text. LightRAG just makes incor-
 963 rect surface-level predictions based on the retrieved content. While DeepRAG stores the knowledge
 964 in the memory, it does not form high-order correlation and fails to predict correctly. In contrast,

972 HGMem progressively evolves its memory and establishes high-order correlations from primitive
 973 evidences accumulated from past interactions, uncovering that Xodar’s punishment originates from
 974 his defeat by Carter.

975 The second case is from Nocha, where the query mixes factual and misleading details. The LLM
 976 raises a subquery about the source of the name ‘White Sands’. Using the strategy of local investiga-
 977 tion, it particularly conducts in-depth inspection about the related memory point (Point 1) in current
 978 memory and verifies that there is no clear evidence showing the name was given by Anne. However,
 979 LightRAG mistakenly recognizes that the name ‘White Sands’ was given by Anne and DeepRAG
 980 doesn’t qualify the correctness of ‘White Sands’.

981 Together, these examples show that HGMem enables a deeper and more accurate contextual under-
 982 standing beyond superficial text retrieval.

984

985 H A TOY EXAMPLE

986

987 To illustrate the core workflow of our method, we present a toy example in Figure 10. Given the
 988 query “Why is Xodar given to Carter as a slave?”, the LLM first retrieves relevant evidence, con-
 989 verting it into a structured representation (corresponding to Point 0 in the figure). It then generates
 990 sub-queries based on current memory to retrieve missing reasoning elements. In the subsequent
 991 iteration, newly retrieved evidence is integrated into the memory storage through update, insertion
 992 and merging operations, yielding a unified representation that includes high-order memory points
 993 capturing complex relationships beyond surface content in original data sources. Finally, the LLM
 994 leverages its evolved memory to produce an answer to the target query. This example illustrates how
 995 the memory evolves during the multi-step RAG execution to iteratively refine its understanding and
 support complex relational modeling.

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026
 1027 Table 6: Illustrative Cases on NarrativeQA and Nocha, where **red** and **blue** stand for the relevant
 1028 answer and its corresponding source, respectively
 1029

1029 Source	1030 NarrativeQA	1031 Nocha
1030 Question	1031 Why is Xodar given to Carter as a slave?	1032 Answer TRUE if the statement is true, otherwise answer FALSE [Statement]: Anne assigns romantic names to her surroundings, like "Lake of Shining Waters" and "White Sands". [Question]: Based on the context provided, is the above statement TRUE or FALSE?
1031 Golden Answer	1032 As his punishment for being defeated by Carter previously	1033 False
1032 Relevant Chunks	1033 1. Xodar was brought from the adjoining room. Issus glared at him, a baleful light in her hideous eyes. "And such as you are a Dator of the First Born?" she squealed. "For the disgrace you have brought upon the Immortal Race, you shall be degraded to a rank below the lowest. No longer be you a Dator, but forevermore a slave of slaves...." 2. ...	1034 1. "Oh, I don't like that name, either. I shall call it—let me see—the Lake of Shining Waters. Yes, that is the right name for it. I know because of the thrill. When I hit on a name that suits exactly, it gives me a thrill. Do things ever give you a thrill?" Matthew ruminated. ... 2. said Anne dreamily. "Is it as nice as it sounds? Just when you said 'shore road', I saw it in a picture in my mind, as quick as that! And White Sands is a pretty name, too, but I don't like it as well as Avonlea. Avonlea is a lovely name. It just sounds like music. ...
1033 LightRAG Retrieval&Prediction	1034 Prediction: 1035 Xodar is given to Carter as a slave due to his degradation by Issus after falling from favor . Issus degrades Xodar to a rank below the lowest and commands that he serve as a slave to Carter, who previously conquered Xodar in the prison on the Isle of Shador.	1036 Prediction: 1037 [Answer]: TRUE 1038 [Explanation]: The statement is true based on the information provided in the data tables. In the Relationships table, there is a record that indicates Anne of Green Gables gave the romantic name "Lake of Shining Waters" to Barry's Pond. Additionally, in the Sources table, Anne expresses a preference for the name "Avonlea" over "White Sands", suggesting she has a fondness for romantic names.
1038 DeepRAG Retrieval&Prediction	1039 Generated Subquery: 1. What factors influenced Issus's decision to demote Xodar from Dator to a slave? 2. What specific orders or instructions did Issus give to ensure Xodar was transferred to Carter as a slave? Memory: 1. Xodar, originally a member of the First Born, was degraded to a slave status by Issus due to his fall from favor. This demotion signifies... 2. Issus, in a display of her absolute authority, degrades Xodar to the lowest status of a slave, specifically instructing him to serve Carter. This act is designed to further demean Xodar and to test Carter's response. Prediction: Xodar is given to Carter as a slave because Issus seeks to degrade and humiliate him. This act undermines Xodar's former prestige and weakens his influence, while tying Carter's treatment and success to the actions of a once-respected figure, likely intended to provoke internal conflict and dissatisfaction.	1040 Generated Subqueries: 1. Is there evidence in the provided memory or data that Anne has given romantic names to other locations besides Barry's Pond? 2. Does the extended info suggest that Anne applies her romantic naming to all her surroundings? Memory: 1. Anne gives the romantic name "Lake of Shining Waters" to Barry's Pond, indicating her imaginative and poetic nature towards her surroundings. 2. Anne finds Lover's Lane picturesque and romantic, appreciating its natural beauty and atmosphere for thoughtful reflection. This highlights her imaginative and poetic nature towards her surroundings. Prediction: [Answer]: TRUE [Explanation]: The statement is true. There is a record that indicates Anne of Green Gables gave the romantic name "Lake of Shining Waters" to Barry's Pond, indicating her imaginative and poetic nature towards her surroundings.
1040 HGMEM Retrieval&Prediction	1041 Generated Subquery: 1. What specific incident of Xodar was considered a disgrace to the Immortal Race, leading directly to his punishment by Issus? (Global Exploration) 2. What role does Carter have in the decision to give Xodar to him as a slave? (Global Exploration) 3... Original Memory: Point I: Subordinate Entities: <u>Xodar</u> , <u>Issus</u> , Cowardly injustice Description: Xodar is punished by Issus as a form of cowardly injustice for the disgrace he has brought upon the Immortal Race. Point II: Subordinate Entities: <u>Xodar</u> , <u>Issus</u> , Degradation Description: Issus degrades Xodar to a rank below the lowest, Xodar is no longer a Dator, but forever a slave of slaves, to fetch and carry for the lower orders that serve in the gardens of Issus. Memory After Evolving (Guided by Subquery 1): Point I (Merged): Subordinate Entities: <u>Xodar</u> , <u>Issus</u> , Cowardly injustice, Degradation Description: Xodar's degradation into a slave is a result of his disgraceful defeat by John Carter, which brought shame to the Immortal Race, leading Issus to punish him as a form of cowardly injustice. This reflects the societal judgment and loss of honor within the Immortal Race's culture. Prediction: Xodar is given to Carter as a slave due to his disgraceful defeat by John Carter, which brought shame to the Immortal Race. Issus, the goddess, punishes Xodar for his cowardice, degrading him to a slave, and he is subsequently treated as such by Carter.	1042 Generated Subqueries: 1. Is there any evidence in "Anne of Green Gables" that suggests Anne gave a romantic name to a place known as White Sands? (Local Investigation) 2. What's the actual name of White Sands in the book "Anne of Green Gables"? (Local Investigation) 3... Original Memory: Point I: Subordinate Entities: <u>Diana</u> , <u>Barry's pond</u> , <u>Lover's lane</u> , <u>Gilbert</u> , <u>Anne</u> , <u>White sands</u> , <u>Anne of Green Gables</u> Description: ... Anne has a habit of giving romantic names to her surroundings, such as calling Barry's Pond the "Lake of Shining Waters". While she does romanticize places, there is no specific mention of her assigning a romantic name to "White Sands". Memory after Evolving (Guided by Subquery 1): Point I (Updated): Subordinate Entities: <u>Diana</u> , <u>Barry's pond</u> , <u>Lover's lane</u> , <u>Gilbert</u> , <u>Anne</u> , <u>White sands</u> , <u>Anne of Green Gables</u> Description: ... Anne has a habit of giving romantic names to her surroundings, such as calling Barry's Pond the "Lake of Shining Waters". However, there is no specific mention of her assigning a romantic name to "White Sands". White Sands is instead associated with Gilbert and an educational opportunity offered to Anne by the White Sands trustees. Prediction: [Answer]: FALSE [Explanation]: According to the provided information, Anne does give a romantic name to Barry's Pond, referring to it as the "Lake of Shining Waters". However, there is no evidence in the memory or data tables that Anne assigns a romantic name to "White Sands". Instead, White Sands is associated with Gilbert and an educational opportunity for Anne, and it is mentioned as a geographical location without any indication that Anne romanticizes it. Therefore, the statement is false because it incorrectly includes "White Sands" as one of the locations Anne romanticizes.

